The Ipdoc Documentation Generator

An Automatic Documentation Generator for (C)LP Systems
REFERENCE MANUAL

The Ciao Documentation Series
http://www.ciaohome.org/
Generated/Printed on: 10 June 2011
Technical Report CLIP 5/97.1-2.1
Version 2.1 (2011/5/30, 16:25:11 CEST)

Edited by:
Manuel Hermenegildo
José Francisco Morales

Copyright (© 1996-2011 Manuel Hermenegildo and José Francisco Morales.

This document may be freely read, stored, reproduced, disseminated, translated or quoted by
any means and on any medium provided the following conditions are met:

1.

Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and
fitness for any purpose.

No modification is made other than cosmetic, change of representation format, translation,
correction of obvious syntactic errors, or as permitted by the clauses below.

Comments and other additions may be inserted, provided they clearly appear as such;
translations or fragments must clearly refer to an original complete version, preferably one
that is easily accessed whenever possible.

Translations, comments and other additions or modifications must be dated and their au-
thor(s) must be identifiable (possibly via an alias).

This licence is preserved and applies to the whole document with modifications and additions
(except for brief quotes), independently of the representation format.

Any reference to the "official version", "original version" or "how to obtain original versions"
of the document is preserved verbatim. Any copyright notice in the document is preserved
verbatim. Also, the title and author(s) of the original document should be clearly mentioned
as such.

In the case of translations, verbatim sentences mentioned in (6.) are preserved in the
language of the original document accompanied by verbatim translations to the language
of the traslated document. All translations state clearly that the author is not responsible
for the translated work. This license is included, at least in the language in which it is
referenced in the original version.

Whatever the mode of storage, reproduction or dissemination, anyone able to access a
digitized version of this document must be able to make a digitized copy in a format directly
usable, and if possible editable, according to accepted, and publicly documented, public
standards.

Redistributing this document to a third party requires simultaneous redistribution of this
licence, without modification, and in particular without any further condition or restriction,
expressed or implied, related or not to this redistribution. In particular, in case of inclusion
in a database or collection, the owner or the manager of the database or the collection re-
nounces any right related to this inclusion and concerning the possible uses of the document
after extraction from the database or the collection, whether alone or in relation with other
documents.

Any incompatibility of the above clauses with legal, contractual or judiciary decisions or con-
straints implies a corresponding limitation of reading, usage, or redistribution rights for this
document, verbatim or modified.

Table of Contents

SUMMATY .+« v v ittt et i e eeeenennnnnnnnnns
1 Introduction.................... ...,
1.1 Overview of this document
1.2 Ipdoc operation - source and target files......................
1.3 Ipdocusageo
1.4 Version/Change Log,
PART I - LPdoc Reference Manual
2 Generating Installing and Accessing Manuals. ..
2.1 Generating a manual from the Ciao Emacs mode
2.2 Generating amanual
2.3 Workingonamanual...............
2.4 Cleaning up the documentation directory.....................
2.5 Installing a generated manual in a publicarea................
2.6 Enhancing the documentation being generated................
2.7 Accessing on-line manuals...............
2.7.1 Accessing html manuals
2.7.2 Accessing info manuals................
2.7.3 Accessing man manuals
2.7.4 Putting it all together.............
2.8 S0me USAZE tiPS . o oo v ettt

2.8.1 Ensuring Compatibility with All Supported Target
Formats.......

2.8.2 Writing comments which document version/patch

changes
2.8.3 Documenting Libraries and/or Applications..........
2.8.4 Documenting files which are not modules............
2.8.5 Splitting large documents into parts.................
2.8.6 Documenting reexported predicates
2.8.7 Separating the documentation from the source file. . ..
2.8.8 Generating auxiliary files (e.g. READMEs)
2.9 Troubleshooting........... ... i

3 Documentation Mark-up Language and
Declarations..................coinn...

3.1 Usage and interface (comments)
3.2 Documentation on exports (comments).......................
docstring/1 (prop).......coovviiii
stringcommand /1 (prop).............ooiiiiiii...
version_descriptor/1 (regtype)
filetype/1 (1egtype)o
docid_type/3 (pred)........ i
3.3 Documentation on internals (comments)......................
doc/2 (decl) ..o
version_number/1 (regtype) ...,
ymd_date/1 (regtype)........ooeiiiiiiii .

ii The Ipdoc Documentation Generator

time_struct/1 (regtype) ..., 33
version_maintenance_type/1 (regtype)............... 33

4 The Ciao assertion package................... 35
4.1 Moreinfo. ... 35
4.2 Some attention points 35
4.3 Usage and interface (assertions_doc)....................... 36
4.4 Documentation on new declarations (assertions_doc)........ 36
(pred)/1 (decl)...... ..o 36

(pred)/2 (decl)o 37

(texec)/1 (decl)ovieiii 37

(texec)/2 (decl) ..o 37

(calls)/1 (decl) ... 37

(calls)/2 (decl) ... 37

(success)/1 (decl). ... 38

(success)/2 (decl). ... 38

(test)/1 (decl) ... oo 38

(test)/2 (decl).o 38

(comp)/1 (decl) ... 39

(comp)/2 (decl) ... 39

(prop)/1 (decl) ... 39

(prop)/2 (decl) ..o 40

(entry)/1 (decl) ..o 40

(exit)/1 (decl).o 40

(exit)/2 (decl). ... oo 41

(modedef)/1 (decl) i 41

(decl)/1 (decl) ..o 41

(decl)/2 (decl) ..o 41

doc/2 (decl) ..o 41

comment/2 (decl)l 42

4.5 Documentation on exports (assertions_doc) 42
check/1 (pred) ... 42

trust/1 (pred). ... 42

true/1 (pred) ... 43

false/1 (pred) ... 43

5 Types and properties related to assertions 45

5.1 Usage and interface (assertions_props)..................... 45
5.2 Documentation on exports (assertions_props).............. 45
assrt_body /1 (regtype) ... 45
head_pattern/1 (prop) 46
complex_arg_property/1 (regtype) 46
property_conjunction/1 (regtype) 47
property starterm/1 (regtype)...................... 47
complex_goal_property/1 (regtype).................. 47
nabody/1 (Prop) ... 48
dictionary/1 (regtype) ... 48
c_assrt_body/1 (regtype) ..o 48
s_assrt_body/1 (regtype)ccovviii i 48
g-assrt_body/1 (regtype)ccooviiiiiii... 49
assrt_status/1 (regtype) ..., 50
assrt_type/1 (regtype)oovveiiiii 50
predfunctor/1 (regtype).............c.oiiiL.. 50
propfunctor/1 (regtype)........c.covvviieieiiii... 50

docstring/1 (Prop)........oeeieiiiieiii i 50

6 Declaring regular types 51

6.1 Defining propertiesoo i 51
6.2 Usage and interface (regtypes_doc)oouveeonn... 53
6.3 Documentation on new declarations (regtypes_doc).......... 54
(regtype)/1 (decl) ... 54

(regtype)/2 (decl) ... i 54

7 Basic data types and properties 55
7.1 Usage and interface (basic_props)c.ooooie ... 55
7.2 Documentation on exports (basic_props).................... 55
term/1 (regtype) ... 55

int/1 (regtype)o 56

nnegint/1 (regtype)........o.ooiiiii 56

flt/1 (regtype) - vvvoee 57

num/1 (Tegtype) - ..o 57

atm/1 (Tegtype)ot 58

struct/1 (regtype) ... o.vviiii 58

gnd/1 (T€ZEYPE) - v v vt 59

gndstr/1 (regtype) . ..o 59

constant/1 (Tegtype)........couiiiiiiii ... 60

callable/1 (regtype) ..., 60
operator_specifier/1 (regtype) 61

list/1 (TeGLYDPE) .« o oveee e 61

list/2 (TegEYDPE) . v vt 62

nlist/2 (regtype)ovvoi i 62

member/2 (Prop)........oueeiiiiii 63

sequence/2 (regtype) ... 63
sequence_or_list/2 (regtype) ..., 64
character_code/1 (regtype)oovviuieniii... 64

string /1 (Tegtype) - . vvvvv 65

num-_code/1 (regtype) ... 65

predname/1 (regtype)coveeiiiiiiiniii... 65
atm_or_atm_list /1 (regtype) 66

compat/2 (Prop)vvveii 66

INSE/2 (PrOP) « v v vve et 66

1SO/1 (PIODP) . v oot 67

deprecated/1 (Prop) ... 67
not_further_inst/2 (prop)........................... 67

sideff/2 (prop) ... 68

(regtype) /1 (ProP) ..o oo 68

native/1 (Prop)oeeiiiiiiii 68

native/2 (Prop) 68

no_rtcheck/1 (prop) L 68

eval/1 (Prop) «..oovevuiii i 69

EQUIV/2 (PIOD) - v v v ettt 69

bind_ins/1 (Prop).......covveiiiiiiiii 69

error_free/1 (Prop) ... 69

memo/1 (Prop).....oovveouieii 69

filter/2 (Prop)oooiiiiiii 69

flag_values/1 (regtype).........coovviiieiieai... 69

pe_type/1 (Prop) -« vvvee e 70

iv The Ipdoc Documentation Generator

8 Properties which are native to analyzers 71
8.1 Usage and interface (native_props)..................c....... 71
8.2 Documentation on exports (native_props)................... 71

clique/1 (Prop)ouvveiiii 71
clique_1/1 (Prop) .. .covvvei 72
constraint/1 (Prop)c.oiiiiiii... 72
covered/1 (Prop) «...ovuveiiieii i 72
covered/2 (Prop) «..vveune i 72
exception/1 (Prop)o.oviiiiiiiiii . 72
exception/2 (Prop)oeeviiiiii i 72
fails/1 (Prop) .o oo 73
finite_solutions/1 (Prop)cevieeni. .. 73
have_choicepoints/1 (prop)ccovvevio... 73
indep/1 (Prop) -« vvvvueeei e 73
Indep/2 (Prop) -« vvvvee i 73
is_det/1 (Prop)vvvniiei 73
linear/1 (Prop)ooviuiiniiiii i 74
mshare/1 (Prop)ooveiiiiiii 74
mut_exclusive/1 (Prop) ..., 74
no_choicepoints/1 (prop)........... ... 74
no_exception/1 (prop)c.ooiiiiii. 75
no_exception/2 (Prop) ..., 75
no_signal/1 (Prop)c.oooiiiiii .. 75
no_signal/2 (Prop) ... 75
non-det/1 (Prop)coeuiiieiiiiiieiiii... 75
nonground/1 (Prop)cooiiiiiiiiiiii.. 75
not_covered/1 (Prop)oovuuieniieninenii.n. 75
not_fails/1 (prop)........... 75
not_mut_exclusive/1 (prop)......................... 76
num-_solutions/2 (Prop)cooueieiaan... 76
solutions/2 (Prop)oeeviieiiiaii ... 76
possibly_fails/1 (prop), 76
possibly_nondet/1 (prop)............ccooiiiii.... 77
relations/2 (prop) il 7
sideff_hard/1 (prop) ...t 7
sideff_pure/1 (prop)co i 7
sideff_soft/1 (prop)oiiiiiiL 7
signal/1 (Prop)coueiuieiiii i 7
signal/2 (Prop)......oouueeiiin i 7
signals/2 (Prop)oouvrei 78
S1Z€/2 (PTOD) « o vv e 78
812€/3 (PIODP) . o v e 78
size1b/2 (Prop) ...oovv 78
S12€.0/2 (PIOP) « oo e 78
size_ub/2 (Prop)covvii 78
size_metric/3 (Prop)ooeeiiiiiiii .. 78
size_metric/4 (Prop)oiiiii i 78
StePS/2 (PLOP) « v vv e 79
steps_1b/2 (prop) ... 79
StEPS_0/2 (PIODP) .. v v vt 79
steps_ub/2 (Prop)ovviiiiii 79
tau/1 (Prop) .. .ovvve 79
terminates/1 (Prop) i 80
test_type/2 (Prop) . .ovvvee e 80
throws/2 (Prop)oovvieeeni 80

user_output/2 (Prop)ovviin i 80

Instance/2 (Prop)..........oeeeouieiiieiieai... 80

9 Meta-propertiesciiiiiiiii... 81
9.1 Usage and interface (meta_props)cooou... 81

9.2 Documentation on exports (meta_props)..................... 81

call/2 (Prop) ..o oo 81

(Prop)/2 (Prop) -« v evvveee e 81

(regtype)/2 (ProP) . v oo 82

9.3 Documentation on multifiles (meta_props) 82
callme/2 (pred) i 82

9.4 Documentation on internals (meta_props).................... 82
prop-abs/1 (Prop)ooviuiiiiii .. 82

10 An Example - Documenting a Library Module

... 83
11 Auto Documenter Output for the Example

Module.......cooiiiiiiiiii i, 89

11.1 Usage and interface (example_module)...................... 89

11.2 Documentation on exports (example_module) 89

bar/1 (regtype)vonreiii 89

baz/1 (regtype) ... 89

aorb/1 (regtype) - ..oonren 89

tree_of /2 (regtype)t 90

list_or_aorb/2 (regtype)ccooeeiiiia.. 90

Q/2 (pred) ..o 90

r/1 (pred) ... 90

p/l(pred)o 91

/o (pred) ...oo 91

u/3 (pred) ..o 91

long/1 (Prop) -« vvvvveei 91

W/l (pred). ..o 92

mytype/1 (pred) 92

t/5 (pred) .o 92

s/L(pred) ..o 92

Q/l (pred) ..o 93

list/1 (regtype). . ..covveei 93

11.3 Documentation on multifiles (example_module).............. 94

P/3(pred) ...ooe 94

11.4 Documentation on internals (example_module).............. 95

list/2 (regtype). . ..oovveee 95

0g/2 (modedef) L 95

i8/2 (pred) . ..o 96

12 Run-time checking of assertions 97

12.1 Usage and interface (rtchecks_doc)........................ 98

13 Unit Testing Library........................ 99

13.1 Additional notes 99

13.2 Usage and interface (unittest_doc)....................... 100

vi The Ipdoc Documentation Generator

14 Imstalling lpdoc............ ia... 101
14.1 Installing the source distribution (lpdoc) 101

14.2 Other software packages required (Ipdoc)................... 101
PART 1II - LPdoc Internals Manual 103
15 Documentation Generation Library......... 105
15.1 Usage and interface (autodoc)coviinea..... 106

15.2 Documentation on exports (autodoc) 106
index_comment/2 (pred) 106
reset_output_dir_db/0 (pred) 106
ensure_output_dir_prepared/2 (pred) 106

get_autodoc_opts/3 (pred) 107
autodoc_gen_doctree/5 (pred) 107

fmt_infodir_entry/3 (pred) 107
autodoc_compute_grefs/3 (pred) 107
autodoc_translate_doctree/3 (pred) 107

autodoc_finish/1 (pred) 108
autodoc_gen_alternative/2 (pred) 108

15.3 Documentation on multifiles (autodoc) 108
autodoc_finish_hook/1 (pred)...................... 108
autodoc_gen_alternative_hook/2 (pred)............. 108

16 Internal State for Documentation Generation

.. 109
16.1 Usage and interface (autodoc_state)...................... 109
16.2 Documentation on exports (autodoc_state) 109
supported_option/1 (prop) 109
option_comment/2 (pred) 110
backend_id/1 (regtype) L 110
backend_ignores_components/1 (pred).............. 110
backend_alt_format/2 (pred) 111
top_suffix/2 (pred) oL 111
docstate/1 (regtype)coveieiii 111
docst_backend/2 (pred) 111
docst_currmod/2 (pred).............. ...l 111
docst_set_currmod/3 (pred) 111
docst_opts/2 (pred) ... 111
docst_set_opts/3 (pred) ... 111
docst_inputfile/2 (pred).................. 111
docst_new.no_src/4 (pred) 111
docst_new_with_src/6 (pred)....................... 112
docst_new_sub/3 (pred) 112
docst_message/2 (pred) ... 112
docst_message/3 (pred) 112
docst_opt/2 (pred) ... 112
docst_currmod_is_main/1 (pred) 112
docst_no_components/1 (pred)..................... 112
docst_modname/2 (pred) 112
labgen_init/1 (pred) L. 112
labgen_clean/1 (pred)......... 112
labgen_get/2 (pred). ..., 112
docst_mvar_lookup/3 (pred) 113

docst_mvar_replace/4 (pred)....................... 113

vii

docst_mvar_get/3 (pred) 113
docst_mdata_clean/1 (pred) 113
docst_mdata_assertz/2 (pred)...................... 113
docst_mdata_save/1 (pred) 113
docst_gdata/3 (pred) L 113
docst_gdata_query/2 (pred) 113
docst_gdata_query/3 (pred) 113
docst_gdata_restore/1 (pred) 113
docst_gdata_clean/1 (pred) 113
docst_gvar_save/2 (pred), 114
docst_gvar_restore/2 (pred)........................ 114
docst_has_index/2 (pred).......................... 114
all_indices/2 (pred) ..., 114
get_doc/4 (pred) ... 114
get_doc_field/3 (pred)...................... ... 114
get_doc_field_dict/3 (pred) 114
bind_dict_varnames/1 (pred) 114
get_mod_doc/3 (pred) 114
modtype/1 (regtype) ..o 114
docst_modtype/2 (pred) 115
get_first_loc_for_pred/3 (pred) 115
17 Documentation Abstract Syntax Tree....... 117
17.1 Usage and interface (autodoc_doctree).................... 117
17.2 Documentation on exports (autodoc_doctree)............. 117
cmd_type/1 (pred) oL 117
doctree/1 (T€gtypPe) ... vvvne e 118
doctree_is_empty/1 (pred)......................... 118
is_-nonempty_doctree/1 (pred) 118
empty_doctree/1 (pred)................, 118
doctree_insert_end/3 (pred) 118
doctree_insert_before_section/3 (pred).............. 118
doctree_concat/3 (pred) ... 118
doclink/1 (regtype) ..., 119
doclabel/1 (regtype) 119
doclink_at/2 (pred)............. oL 119
doclink_is_local/1 (pred) 119
doctokens/1 (regtype)coeeiiiiiii .. 119
section_prop/2 (pred).............. 119
section_select_prop/3 (pred) 119
doctree_save/2 (pred) ..., 119
doctree_restore/2 (pred) 119
doctree_simplify /2 (pred) 119
doctree_putvars/5 (pred)................, 119
doctree_scan_and_save_refs/2 (pred)................ 120
doctree_prepare_docst_translate_and_write/3 (pred).. 120
doctree_to_rawtext/3 (pred)....................... 120
doctree_translate_and_write/3 (pred) 120
escape_string/4 (pred) L. 120
is_version/1 (pred) i 120
version_patch/2 (pred).............., 121
version_date/2 (pred), 121
version numstr/2 (pred) L 121
version_string/2 (pred)............ 121
insert_show_toc/3 (pred) 121

17.3 Documentation on multifiles (autodoc_doctree)............ 121

viii The Ipdoc Documentation Generator

autodoc_rw_command_hook/4 (pred)............... 121
autodoc_escape_string_hook/5 (pred)............... 121

18 Handling the Document Structure.......... 123
18.1 Usage and interface (autodoc_structure) 123
18.2 Documentation on exports (autodoc_structure)........... 123
docstrnode/4 (pred) ... 123
clean_docstr/0 (pred) 123
parse_structure/0 (pred) 123
standalone_docstr/1 (pred)........................ 123
get_mainmod/1 (pred)........... 123
get_mainmod_spec/1 (pred) 124
all_component_specs/1 (pred) 124

19 Access to Default Settings 125
19.1 Usage and interface (autodoc_settings) 125
19.2 Documentation on exports (autodoc_settings)............ 125
Ipdoc_option/1 (pred) 125
verify_settings/0 (pred) 125

check setting/1 (pred), 125
setting_value_or_default/2 (pred)................... 125
setting_value_or_default/3 (pred)................... 126
setting_value/2 (pred) 126
all_setting_values/2 (pred)......................... 126
get_command_option/1 (pred)..................... 126
requested_file_formats/1 (pred) 126
load_vpaths/0 (pred) 126

viewer/3 (pred) ... 126

xdvi/1 (pred) ... 126

xdvisize/1 (pred) i 126

pdfview/1 (pred)............l 126

psview/1 (pred) il 126

htmlview/1 (pred).............. .. 127

bibtex/1 (pred) ... 127

tex/1 (pred) ... 127

texindex/1 (pred)o i 127

dvips/1 (pred) 127

ps2pdf/1 (pred) 127

makeinfo/1 (pred)............ 127

makertf/1 (pred) 127

rtftohlp/1 (pred) 127

convertc/1 (pred) L. 127

LPdoc Backends................oi... 129
20 Texinfo Backend........................... 131
20.1 Usage and interface (autodoc_texinfo).................... 131
20.2 Documentation on exports (autodoc_texinfo)............. 131
infodir_base/2 (pred) i 131

20.3 Documentation on multifiles (autodoc_texinfo)............ 131
autodoc_escape_string_hook/5 (pred)............... 131
autodoc_rw_command_hook/4 (pred)............... 131
autodoc_finish_hook/1 (pred)...................... 132

autodoc_gen_alternative_hook/2 (pred)............. 132

21

22

23

24

25

HTML Backendooiiuva... 133
21.1 Usage and interface (autodoc_html)....................... 133
21.2 Documentation on multifiles (autodoc_html)............... 133
autodoc_escape_string_hook/5 (pred)............... 133
autodoc_rw_command_hook/4 (pred)............... 133
autodoc_finish_hook/1 (pred)...................... 133
autodoc_gen_alternative_hook/2 (pred)............. 134

Resource Handling for the HTML Backend.. 135

22.1 Usage and interface (autodoc_html_resources)............ 135
22.2 Documentation on exports (autodoc_html_resources) 135
prepare_web_skel/1 (pred)......................... 135
prepare_mathjax/0 (pred)......................... 135
using_mathjax/1 (pred)........................... 135

Template Support for the HTML Backend .. 137

23.1 Usage and interface (autodoc_html_template)............. 137
23.2 Documentation on exports (autodoc_html_template) 137
imgurl/2 (pred) 137
fmt_html_template/3 (pred) 137
Man Pages (man) Backend................. 139
24.1 Usage and interface (autodoc_man)........................ 139
24.2 Documentation on multifiles (autodoc_man)................ 139
autodoc_rw_command_hook/4 (pred)............... 139
autodoc_finish_hook/1 (pred)...................... 139
autodoc_gen_alternative_hook/2 (pred)............. 139
Filesystem Abstraction 141
25.1 Usage and interface (autodoc_filesystem) 141
25.2 Documentation on exports (autodoc_filesystem).......... 141
filename/1 (regtype)......c.ovvviiiiii 141
basename/1 (regtype) ... 141
subtarget/1 (regtype).......... 141
file_format name/2 (pred)............... 142
supported_file_format/1 (pred) 142
file_format_provided_by_backend/3 (pred)........... 142
clean_fs_.db/0 (pred) 142
get_output_dir/2 (pred) 142
get_cache_dir/2 (pred) 142
ensure_output_dir/1 (pred)........................ 142
ensure_cache_dir/1 (pred) 142
main_absfile_in_format/2 (pred).................... 142
main_absfile_for_subtarget/3 (pred) 143
absfile_for_aux/3 (pred) 143
absfile_for_subtarget/4 (pred)...................... 143
main_output_name/2 (pred)....................... 143
get_subbase/3 (pred) 143
absfile_to_relfile/3 (pred) 143
clean_all/0 (pred) i 143
clean_docs_no_texi/0 (pred) 143
clean_all_temporal/0 (pred) 143
clean_intermediate/0 (pred) 144

clean_tex_intermediate/0 (pred) 144

ix

The Ipdoc Documentation Generator

X
26 Indexing Commands (Definition and Formatting)
.. 145
26.1 Usage and interface (autodoc_index)...................... 145
26.2 Documentation on exports (autodoc_index) 145
get_idxsub/2 (pred)ol 145
get_idxbase/3 (pred)........... ..., 145
typeindex/5 (pred)o i 145
idx_get_indices/3 (pred)............. 146
iscindex_cmd/1 (pred) 146
codetype/1 (pred)........... ... i 146
normalize_index_cmd/3 (pred)..................... 146
fmt_idx_env/7 (pred) 146
fmt_index/3 (pred) 146
27 Database of Documentation References..... 147
27.1 Usage and interface (autodoc_refsdb)..................... 147
27.2 Documentation on exports (autodoc_refsdb) 147
compute_refs_and_biblio/1 (pred) 147
prepare_current_refs/1 (pred)...................... 147
clean_current_refs/1 (pred) 147
secttree/1 (regtype)c. il 148
secttree_resolve/3 (pred) 148
28 Error Messages.......c.cooviiiiiiiennnnn.. 149
28.1 Usage and interface (autodoc_errors)..................... 149
28.2 Documentation on exports (autodoc_errors) 149
error_text/3 (pred) L 149
29 Resolution of Bibliographical References.... 151
29.1 Usage and interface (autodoc_bibrefs).................... 151
29.2 Documentation on exports (autodoc_bibrefs)............. 151
resolve_bibliography/1 (pred)...................... 151
30 Auxiliary Definitions 153
30.1 Usage and interface (autodoc_aux) 153
30.2 Documentation on exports (autodoc_aux).................. 153
read_file/2 (pred).......... 153
ascii_blank lines/2 (pred) 153
shoexec/2 (pred) i 153
31 ImageHandling........................... 155
31.1 Usage and interface (autodoc_images)..................... 155
31.2 Documentation on exports (autodoc_images) 155
locate_and_convert_image/4 (pred)................. 155
clean_image_cache/0 (pred)........................ 155
References 157
Library/Module Index 159

Predicate/Method Index 161

Property Index 163
Regular TypeIndex............... 165
Declaration Index.................. ..., 167
Concept Index............coiiiiiiiiiininnnna., 169
Author Index............coiiiiiiinna., 171

Global Index . ..o i e e e 173

xi

Summary 1

Summary

lpdoc is an automatic program documentation generator for (C)LP systems.

lpdoc generates a reference manual automatically from one or more source files for a logic
program (including ISO-Prolog, Ciao, many CLP systems, ...). It is particularly useful for
documenting library modules, for which it automatically generates a description of the module
interface. However, 1pdoc can also be used quite successfully to document full applications and
to generate nicely formatted plain ascii “readme” files. A fundamental advantage of using 1pdoc
to document programs is that it is much easier to maintain a true correspondence between the
program and its documentation, and to identify precisely to what version of the program a given
printed manual corresponds.

The quality of the documentation generated can be greatly enhanced by including within the
program text:

e assertions (types, modes, etc. ...) for the predicates in the program, and
e machine-readable comments (in the “literate programming” style).

The assertions and comments included in the source file need to be written using the Ciao
system assertion language. A simple compatibility library is available to make traditional (con-
straint) logic programming systems ignore these assertions and comments allowing normal treat-
ment of programs documented in this way.

The documentation is currently generated in HTML or texinfo format. From the texinfo
output, printed and on-line manuals in several formats (dvi, ps, info, etc.) can be easily generated
automatically, using publicly available tools. 1lpdoc can also generate 'man’ pages (Unix man
page format) as well as brief descriptions in html or emacs info formats suitable for inclusion in
an on-line index of applications. In particular, 1pdoc can create and maintain fully automatically
WWW and info sites containing on-line versions of the documents it produces.

The 1pdoc manual (and the Ciao system manuals) are generated by 1pdoc.
lpdoc is distributed under the GNU general public license.

Note: lpdoc is fully supported on Linux, Mac OS X, and other Un*x-like systems. Due to the
use of several Un*x-related utilities, some documentation back-ends may require Cygwin under

Win32.

This documentation corresponds to version 2.1 (2011/5/30, 16:25:11 CEST).

The Ipdoc Documentation Generator

Chapter 1: Introduction 3

1 Introduction

lpdoc is an automatic program documentation generator for (C)LP systems.

lpdoc generates a reference manual automatically from one or more source files for a logic
program (including ISO- Prolog [DEDCY96], Ciao [Bue95], many CLP [JM94] systems, ...). It
is particularly useful for documenting library modules, for which it automatically generates
a description of the module interface. However, 1pdoc can also be used quite successfully
to document full applications and to generate nicely formatted plain ASCIT “readme” files.
A fundamental advantage of using lpdoc to document programs is that it is much easier to
maintain a true correspondence between the program and its documentation, and to identify
precisely to what version of the program a given printed manual corresponds.

1.1 Overview of this document

This first part of the document provides basic explanations on how to generate a manual
from a set of files that already contain assertions and comments. Examples are given using the
files in the examples directory provided with the 1pdoc distribution.

These instructions assume that lpdoc (at least the executable and the library) is installed
somewhere in your system. Installation instructions can be found in Chapter 14 [Installing
Ipdoc], page 101.

Other parts of this document provide:

e Documentation on the syntax and meaning of the assertions that 1pdoc uses (those defined
in the Ciao assertions library [PBH97,PBH98,Bue98]). These include comment assertions
(containing basically documentation text), formal assertions (containing properties), and
combined assertions.

e Documentation on a basic set of properties, types, etc. which are predefined in the Ciao
basic_props, regtypes, native_props, and meta_props libraries. These properties, and
any others defined by the user or in other Ciao libraries, can be used in program assertions.

e Documentation on the formatting commands that can be embedded in comments.

This document is also an internals manual, providing information on how the different internal
parts of 1pdoc are connected, which can be useful if new capabilities need to be added to the
system or its libraries are used for other purposes. To this end, the document also provides:

e The documentation for the autodoc automatic documentation library, which provides the
main functionality of 1pdoc.

e Documentation on the predicates that define the conversion formats used (texinfo, and
others), and which are in the autodocformats library.

All of the above have been generated automatically from the assertions in the corresponding
sources and can also be seen as examples of the use of 1pdoc.

Some additional information on lpdoc can be found in [Her00].

1.2 lpdoc operation - source and target files

The main input used by 1pdoc in order to generate a manual are Prolog source files. Basically,
1pdoc generates a file in the GNU texinfo format (with a .texi ending) for each Prolog file
(see “The GNU Texinfo Documentation System” manual for more info on this format). The
Prolog files must have a .pl ending.

If the .pl file does not define the predicates main/0 or main/1, it is assumed to be a library
and it is documented as such: the .texi file generated will contain information on the interface
(e.g., the predicates exported by the file, the name of the module and usage if it is a module,

4 The Ipdoc Documentation Generator

etc.), in addition to any other machine readable comments included in the file (see Section 2.6
[Enhancing the documentation being generated], page 12). If, on the contrary, the file defines
the predicates main/0 or main/1, it is assumed to be an application and no description of the
interface is generated (see Section 2.8 [Some usage tips|, page 15).

If needed, files written directly in texinfo can also be used as input files for 1pdoc. These
files must have a .src (instead of .texi) ending. This is needed to distinguish them from any
automatically generated .texi files. Writing files directly in texinfo has the disadvantage that
it may be difficult to adhere to all the conventions used by 1pdoc. For example, these files will
be typically used as chapters and must be written as such. Also, the set of indices used must
be the same that 1pdoc is generating automatically. Finally, no bibliographic citations can be
used. Because of this, and because in the future 1pdoc may be able to generate documentation
in formats other than texinfo directly (in which case these files would not be useful), writing
files in texinfo directly is discouraged. This facility was added mainly to be able to reuse parts
of manuals which were already written in texinfo. Note that if a stand-alone file needs to be
written (i.e., a piece of documentation that is not associated to any .pl file) it can always be
written as a “dummy” .pl file (i.e., one that is not used as code), but which contains machine
readable comments).

A manual can be generated either from a single source file (.pl or .src) or from a set of
source files. In the latter case, then one of these files should be chosen to be the main file,
and the others will be the component files. The main file is the one that will provide the title,
author, date, summary, etc. to the entire document. In principle, any set of source files can be
documented, even if they contain no assertions or comments. However, the presence of these
will greatly improve the documentation (see Section 2.6 [Enhancing the documentation being
generated|, page 12).

If the manual is generated from a single main file (i.e., component/1, defined below, is
empty), then the document generated will be a flat document containing no chapters. If the
manual is generated from a main file and one or more components, then the document will
contain chapters. The comments in the main file will be used to generate the introduction,
while each of the component files will be used to generate a separate chapter. The contents of
each chapter will be controlled by the contents of the corresponding component file.

As mentioned before, lpdoc typically generates texinfo files. From the texinfo files,
lpdoc can generate printed and on-line manuals in several formats (dvi, ps, ascii, html, info,
etc.) automatically, using different (publicly available) packages. Documentation in some other
formats (e.g., manl pages) can be generated directly by 1pdoc, selecting the appropriate options
(see below). 1pdoc can also generate directly includes generating (parts of) a master index of
documents which can be placed in an installation directory and which will provide pointers to
the individual manuals generated. Using this feature, 1pdoc can maintain global html and/or
info documentation sites automatically (see Section 2.5 [Installing a generated manual in a
public areal, page 12).

Additionally, 1pdoc can provide some data from the main (prolog) documentation file. For
this purpose the option getinfo can be used instead of specifying the format. This option
reads the asked fields from getinfo variable (defined in SETTINGS.pl or via arguments with -d
option). 1lpdoc will generate files with main documentation file-name as base-name, followed
by one underscore, the asked field (got from getinfo), and the extension. The content of
each of these files (so also the extension) is specified by getinfo_format, that can take the
values html, ascii, texic. For example, to ask for the summary and the author fields from a
prolog file called file.pl, with 1pdoc documentation, we can execute the command lpdoc -d
getinfo=[author, summary] getinfo. The filesmyfile_author.txt and myfile_summary.txt
will be created. If also the option -d getinfo_format=html is used, the files will have html
extension (and content).

Chapter 1: Introduction 5

1.3 lpdoc usage

The following provides the different command line options available when invoking lpdoc.
This description is intended only for advanced users which might like to use 1pdoc in custom
applications. Note that the normal way to use 1lpdoc is by setting parameters in an SETTINGS
file (see Section 2.2 [Generating a manual], page 9).

[TODO: command line options not available here; need cooperation with Ipmake

1.4 Version/Change Log

Version 2.1 (2011/5/30, 16:25:11 CEST)
Revamped LPdoc (full changelog soon) (Jose Morales)

The Ipdoc Documentation Generator

PART I - LPdoc Reference Manual

PART I - LPdoc Reference Manual

The Ipdoc Documentation Generator

Chapter 2: Generating Installing and Accessing Manuals 9

2 Generating Installing and Accessing Manuals

Author(s): Manuel Hermenegildo.

0 0Note: significant parts of this are obsolete. They must be updated to describe Ipdoc version}

This section describes how to generate a manual (semi-)automatically from a set of source
files using 1pdoc, how to install it in a public area, and how to access it on line. It also includes
some recommendations for improving the layout of manuals, usage tips, and troubleshooting
advice.

2.1 Generating a manual from the Ciao Emacs mode

If you use the Emacs editor (highly recommended in all circumstances), then the simplest way
to quickly generate a manual is by doing it from the Ciao Emacs mode (this mode comes with
the Ciao Prolog distribution and is automatically installed with Ciao). The Ciao Emacs mode
provides menu- and keyboard-binding driven facilities for generating a stand-alone document
with the documentation corresponding to the file in the buffer being visited by Emacs. This
is specially useful while modifying the source of a file, in order to check the output that will
be produced when incorporating this file into a larger document. It is also possible to generate
more complex documents, by editing the (automatically provided) SETTINGS.pl in the same
way as when generating a manual from the command line (see below). However, when generating
complex documents, it is best to devote an independent, permanent directory to the manual,
and the full procedure described in the rest of this text is preferred.

2.2 Generating a manual

Two possible scenarios are described in this section. The first one is indicated to document
quickly a single module and the second one targets the documentation of a larger application or
library, in which the settings (which define how the documentation is to be generated, etc.) are
read from a file, so that they can be reused as the application / library evolves.

In order to make 1pdoc generate quickly the documentation of a single file it suffices to execute
the command 1lpdoc -d doc_structure=modulename dvi, where modulename is the module to
be documented (without extension) and (in this example) dvi is the desired format of the
manual (other accepted formats include html, pfd, ps, etc. — see later). 1lpdoc will generate
a manual with the name of the module and the format extension (in the example it would be
modulename.dvi) in the same directory where it is executed.

For the second scenario, the 1pdoc library directory includes a generic file which is quite
useful for the generation of complete manuals: the SETTINGS.pl file. Use of this file is strongly
recommended. Generating a manual using this file involves the following steps:

e Create a directory (e.g., doc) in which the documentation will be built. The creation of
this directory is recommended, as it will be populated with intermediate files which are best
kept separate. This directory is typically created in the top directory of the distribution of
the application or library to be documented.

e Execute the command lpdoc lpsettings in the directory where the documentation is to
be created (e.g., doc in the previous point). lpdoc will create an SETTINGS.pl.generated
file with the default settings. This file should be renamed to SETTINGS.pl once the user
agrees with its contents.

e Edit SETTINGS.pl to suit your needs. It is recommended that you review, at least, the
following points:

10

The Ipdoc Documentation Generator

Set the variable filepath to include all the directories where the files to be documented
can be found.

Set the variable systempath to include all the system directories where system files
used can be found, regardless whether they are to be documented or not. This will be
used to access definitions of types, etc.

It is very important to include all related directories either in filepath or in
systempath because on startup lpdoc has no default search paths for files defined
(not even those typically defined by default in the Prolog system under which it was
compiled! — this allows documenting Prolog systems other than that under which
lpdoc was compiled).

The effect of putting a path in systempaths instead of in filepaths is that the mod-
ules and files in those paths are documented as system modules (this is useful when
documenting an application to distinguish its parts from those which are in the system
libraries).

Set doc_structure to be the document structure (doc_structure/1).

For the rest of the settings in the SETTINGS.pl file you can simply use the default values
indicated. You may however want to change several of these:

doc_mainopts can be set to a series of options which allow more detailed control of
what is included in the documentation for the main file and how (i.e., including bug
information , versions and patches or only patches , authors , changelog , explanation
of modes, one-sided printing (two-sided is the default), etc.). See option_comment/2
in autodoc or type lpdoc -help for a list of these options.

In the same way doc_compopts sets options for the component files. Currently these op-
tions are common to all component files but they can be different from doc_mainopts.
The allowable options are the same as above.

docformat determines the set of formats (dvi, ps, ascii, html, info, manl, ...) in
which the documentation should be generated by default when typing 1pdoc all. Se-
lecting htmlindex and/or infoindex requests the generation of (parts of) a master
index to be placed in an installation directory and which provide pointers to the docu-
ments generated (see below). If the main file is an application, and the manl option is
selected, then lpdoc looks for a usage_message/1 fact, which should contain a string
as argument, and will use that string to document the usage of the application (i.e., it
will be used to fill in the synopsis section of the man page).

output_name determines the base file name of the main documents generated by Ipdoc.
By default it is equal to the main file name, or, if the main file name ends with _doc,
then it is equal to the name without the _doc suffix. This is useful when the name of
the documentation file to be produced needs to have a name that is not directly related
to the main file being documented.

index determines the list of indices to be included at the end of the document. These
can include indices for defined predicates, modules, concepts, etc. For a complete list of
the types of indices available see index_comment/2 in autodoc or type lpdoc -help for
a listing. A setting of all generates all the supported indices — but beware of limitations
in the number of simultaneous indices supported in many texinfo installations.

bibfile determines a list of .bib files (one file per path), i.e., files containing
bibliographic entries in bibtex format. This is only relevant if you are using cita-
tions in the text (using the @cite command). In that case those will be the files in
which the citations will be searched for. All the references will appear together in a
References appendix at the end of the manual.

If you are not using citations, then select the -nobiblio option on the main file, which
will prevent an empty 'References’ appendix from appearing in the manual.

Chapter 2: Generating Installing and Accessing Manuals 11

e startpage (default value 1) allows changing the page number of the first page of the
manual. This can be useful if the manual is to be included in a larger document or set
of manuals. Typically, this should be an odd number.

e papertype (default value afourpaper) allows select several paper sizes for the printable
outputs (dvi, ps, etc.). The currently supported outputs (most of them inherited from
texinfo) are:

afourpaper
The default, usable for printing on A4 paper. Rather busy, but saves trees.
afourwide
This one crams even more stuff than afourpaper on an A4 page. Useful
for generating manuals in the least amount of space. It saves more trees.
afourlatex
This one is a little less compressed than afourpaper.
smallbook
Small pages, like in a handbook.
letterpaper
For printing on American letter size paper.
afourthesis

A thesis-like style (i.e., double spaced, wide margins etc.). Useful — for
inserting 1pdoc output as appendices of a thesis or similar document. It
does not save trees.

e Type lpdoc all to generate all the formats defined. 1pdoc dvi, 1lpdoc html, 1pdoc ps or
lpdoc info, etc. will force the generation of a single target format.

2.3 Working on a manual

In order to speed up processing while developing a manual, it is recommended to work by
first generating a .dvi version only (i.e., by typing lpdoc dvi). The resulting output can be
easily viewed by tools such as xdvi (which can be started by simply typing 1pdoc view). Note
that once an xdvi window is started, it is not necessary to restart it every time the document
is reformatted (lpdoc dvi), since xdvi automatically updates its view every time the .dvi file
changes. This can also be forced by typing [®) in the xdvi window. The other formats can be
generated later, once the .dvi version has the desired contents.

2.4 Cleaning up the documentation directory

lpdoc can also take care of tidying up the directory where the documentation is being
generated:

e 1lpdoc clean deletes all intermediate files, but leaves the targets (i.e., the .ps, .dvi, .ascii,
.html, etc. files), as well as all the generated .texic files.

e Ipdoc distclean deletes all intermediate files and the generated .texic files, leaving only
the targets (i.e., the .ps, .dvi, .ascii, .html, etc. files). This is the option normally
used when building software distributions in which the manuals come ready made in the
distribution itself and will not need to be generated during installation.

e 1pdoc docsclean deletes all intermediate files and the generated targets, but leaves the
.texic files. This option can be used in software distributions in which the manuals in
the different formats will be generated during installation. This is generally more compact,
but requires the presence of several tools, such as tex, Emacs, etc. (see Section 14.2 [Other
software packages required (lpdoc)], page 101), in order to generate the manuals in the
target formats during installation.

12 The Ipdoc Documentation Generator

e 1pdoc realclean performs a complete cleanup, deleting also the .texic files, i.e., it typically
leaves only the SETTINGS.pl file. This is is the most compact, but requires the presence
of the tools mentioned above, the source files from which the manuals are generated and
lpdoc in order to re generate the manuals in the target formats during installation.

2.5 Installing a generated manual in a public area

[Note: This part is obsolete. It must be updated to describe Ipdoc version 2.0. — EMM }

Once the manual has been generated in the desired formats, the Makefile provided also al-
lows automatic installation in a different area, specified by the docdir option in the SETTINGS.pl
file. This is done by typing 1pdoc install.

As mentioned above, 1lpdoc can generate directly brief descriptions in html or Emacs info
formats suitable for inclusion in an on-line index of applications. In particular, if the htmlindex
and/or infoindex options are selected, lpdoc install will create the installation directory,
place the documentation in the desired formats in this directory, and produce and place in the
same directory suitable index.html and/or dir files. These files will contain some basic info
on the manual (extracted from the summary and title, respectively) and include pointers to
the relevant documents which have been installed. The infodirheadfile / infodirtailfile
(default examples, used in the CLIP group at UPM, are included with the distribution) should
point to files which will be used as head and tail templates when generating the dir files.Several
manuals, coming from different doc directories, can be installed in the same docdir directory.
In this case, the descriptions of and pointers to the different manuals will be automatically
combined (appearing in alphabetic order) in the index.html and/or dir indices, and a contents
area will appear at the beginning of the html index page. Important Note: In order for the
different components to appear in the correct positions in the index pages mentioned above the
traditional (’C’) Lexical order must be active. In recent Un*x systems (e.g., in most current
Linux systems) this may not be the case. There are several possible fixes:

e For csh put setenv LC_COLLATE C in your .cshrc.
e For bash put export LC_COLLATE=C in your .profile.

e In many systems this can be done globally by the super-user. E.g., in many Linux systems
set LANG="C" in /etc/sysconfig/i18n.

Note that, depending on the structure of the manuals being generated, some formats are not
very suitable for public installation. For example, the .dvi format has the disadvantage that
it is not self contained if images are included in the manual. Typing 1pdoc uninstall in a doc
directory will uninstall from docdir the manuals corresponding to the Makefile in that doc
directory. If a manual is already installed and changes in the number of formats being installed
are desired, 1pdoc uninstall should be made before changing the docformats variable and
doing lpdoc install again. This is needed in order to ensure that a complete cleanup is
performed.

2.6 Enhancing the documentation being generated

The quality of the documentation generated can be greatly enhanced by including within the
program text:

e assertions, and
e machine-readable comments.

Assertions are declarations which are included in the source program and provide the com-
piler with information regarding characteristics of the program. Typical assertions include type

Chapter 2: Generating Installing and Accessing Manuals 13

declarations, modes, general properties (such as does not fail), standard compiler directives
(such as dynamic/1, op/3, meta_predicate/1...), etc. When documenting a module, 1pdoc
will use the assertions associated with the module interface to construct a textual description
of this interface. In principle, only the exported predicates are documented, although any pred-
icate can be included in the documentation by explicitly requesting it (see the documentation
for the doc/2 declaration). Judicious use of these assertions allows at the same time docu-
menting the program code, documenting the external use of the module, and greatly improving
the debugging process. The latter is possible because the assertions provide the compiler with
information on the intended meaning or behaviour of the program (i.e., the specification) which
can be checked at compile-time (by a suitable preprocessor/static analyzer) and/or at run-time
(via checks inserted by a preprocessor).

Machine-readable comments are also declarations included in the source program but which
contain additional information intended to be read by humans (i.e., this is an instantiation of
the literate programming style of Knuth [Knu84]). Typical comments include title, author(s),
bugs, changelog, etc. Judicious use of these comments allows enhancing at the same time the
documentation of the program text and the manuals generated from it.

1lpdoc requires these assertions and comments to be written using the Ciao system assertion
language. A simple compatibility library is available in order to make it possible to compile
programs documented using assertions and comments in traditional (constraint) logic program-
ming systems which lack native support for them (see the compatibility directory in the 1pdoc
library). Using this library, such assertions and comments are simply ignored by the compiler.
This compatibility library also allows compiling 1pdoc itself under (C)LP systems other than
the Ciao system under which it is developed.

2.7 Accessing on-line manuals

As mentioned previously, it is possible to generate on-line manuals automatically from the
.texic files, essentially .html, .info, and man files. This is done by simply including the
corresponding options in the list of docformats in the SETTINGS.pl file and typing 1pdoc all.
We now address the issue of how the different manuals can be read on-line.

2.7.1 Accessing html manuals

Once generated, the .html files can be viewed using any standard WWW browser, e.g.,
Firefox (a command lpdoc htmlview is available which, if there is an instance of a web
browser running in the machine, will make that instance visit the manual in html format).
To make these files publicly readable on the WWW, they should be copied into a directory
visible by browsers running in other machines, such as /home/clip/public_html/lpdoc_docs,
/usr/home/httpd/htmldocs/1lpdoc_docs, etc. As mentioned before, this is easily done by set-
ting the docdir variable in the SETTINGS.pl file to this directory and typing 1pdoc install.

2.7.2 Accessing info manuals

Generated .info files are meant to be viewed by the Emacs editor or by the standalone
info application, both publicly available from the GNU project sites. To view the a generated
info file from Emacs manually (i.e., before it is installed in a common area), type C-u M-x info.
This will prompt for an info file name. Input the name of the info file generated by lpdoc
(main.info) and Emacs will open the manual in info mode.

There are several possibilities in order to install an .info file so that it is publicly available,
i.e., so that it appears automatically with all other info manuals when starting info or typing
C-u M-x info in Emacs:

e Installation in the common info directory:

14 The Ipdoc Documentation Generator

e Move the .info file to the common info directory (typically /usr/info,
/usr/local/info, ..). This can be done automatically by setting the docdir vari-
able in the SETTINGS.pl file to this directory and typing lpdoc install.

Warning: if you are installing in an info directory that is not maintained automatically
by 1pdoc, make sure that you have not selected the infoindex option in docformats,
since this will overwrite the existing dir file).

e Add an entry to the info index in that directory (normally a file in that directory
called dir). The manual should appear as part of the normal set of manuals available
when typing M-x info in Emacs or info in a shell. See the Emacs manual for details.

e Installation in a different info directory: you may want to place one or more manuals
generated by 1pdoc in their own directory. This has the advantage that 1pdoc will maintain
automatically an index for all the 1pdoc generated manuals installed in that directory. In
order for such manuals to appear when typing M-x info in Emacs or info in a shell there
are two requirements:

e This directory must contain a dir index. The first part of the process can all be done
automatically by setting the docdir variable in the SETTINGS.pl file to this directory,
including the infoindex option in docformats, and typing lpdoc install. This will
install the info manual in directory docdir and update the dir file there. 1lpdoc
uninstall does the opposite, eliminating also the manual from the index.

e The directory must be added to the info path list. The easiest way to do this is to
set the INFOPATH environment variable. For example, assuming that we are installing
the info manual in /home/clip/public_html/lpdoc_docs and that /usr/info is the
common info directory, for csh in .cshrc:

setenv INFOPATH /usr/info:/home/clip/public_html/lpdoc_docs

Adding the directory to the info path list can also be done within Emacs, by including
the following line in the .Emacs file:

(defun add-info-path (newpath)

(setq Info-default-directory-list
(cons (expand-file-name newpath) Info-default-directory-list)))
(add-info-path "/home/clip/public_html/lpdoc_docs")
(add-info-path "/usr/info/")

However, this has the disadvantage that it will not be seen by the standalone info
command.

Automatic, direct on-line access to the information contained in the info file (e.g., going au-
tomatically to predicate descriptions by clicking on predicate names in programs in an Emacs
buffer) can be easily implemented via existing . el packages such as word-help, written by Jens
T. Berger Thielemann (jensthi@ifi.uio.no). word-help may already be in your Emacs dis-
tribution, but for convenience the file word-help.el and a word-help-setup.el file, providing
suitable initialization are included in the 1pdoc library. A suitable interface for word-help is
also provided by the ciao.el Emacs file that comes with the Ciao system distribution (i.e., if
ciao.el is loaded it is not necessary to load or initialize word-help).

2.7.3 Accessing man manuals

The Unix man format manuals generated by 1lpdoc can be viewed using the Unix man com-
mand. In order for man to be able to locate the manuals, they should be copied to one of the
subdirectories (e.g., /usr/local/man/manl) of one of the main man directories (in the previous
case the main directory would be /usr/local/man). As usual, any directory can be used as as
a man main directory, provided it is included in the environment variable MANPATH. Again, this
process can be performed automatically by setting the docdir variable in the SETTINGS.pl file
to this directory and typing 1lpdoc install.

Chapter 2: Generating Installing and Accessing Manuals 15

2.7.4 Putting it all together

A simple, powerful, and very convenient way to use the facilities provided by lpdoc for
automatic installation of manuals in different formats is to install all manuals in all formats in
the same directory docdir, and to choose a directory which is also accessible via WWW. After
setting docdir to this directory in the SETTINGS. pl file, and selecting infoindex and htmlindex
for the docformats variable, 1pdoc install/lpdoc uninstall will install/uninstall all manuals
in all the selected formats in this directory and create and maintain the corresponding html and
info indices. Then, setting the environment variables as follows (e.g., for csh in .cshrc):

setenv DOCDIR /home/clip/public_html/lpdoc_docs
setenv INFOPATH /usr/local/info:${DOCDIR}
setenv MANPATH ${DOCDIR}:${MANPATH}

Example files for inclusion in user’s or common shell initialization files are included in the
lpdoc library.

More complex setups can be accommodated, as, for example, installing different types of
manuals in different directories. However, this currently requires changing the docformats and
docdir variables and performing lpdoc install for each installation format/directory.

2.8 Some usage tips

This section contains additional suggestions on the use of 1pdoc.

2.8.1 Ensuring Compatibility with All Supported Target Formats

One of the nice things about 1pdoc is that it allows generating manuals in several formats
which are quite different in nature. Because these formats each have widely different require-
ments it is sometimes a little tricky to get things to work successfully for all formats. The
following recommendations are intended to help in achieving useful manuals in all formats:

e The best results are obtained when documenting code organized as a series of libraries, and
with a well-designed module structure.

e texinfo supports only a limited number of indices. Thus, if you select too many indices
in the SETTINGS.pl file you may exceed texinfo’s capacity (which it will signal by saying
something like “No room for a new @write”).

e The GNU info format requires all nodes (chapters, sections, etc.) to have different names.
This is ensured by 1pdoc for the automatically generated sections (by appending the module
or file name to all section headings). However, care must be taken when writing section
names manually to make them different. For example, use “lpdoc usage” instead of simply
“Usage”, which is much more likely to be used as a section name in another file being
documented.

e Also due to a limitation of the info format, do not use : or , or —- in section, chapter, etc.
headings.

e The character “_” in names may sometimes give problems in indices, since current versions

of texinfo do not always handle it correctly.

2.8.2 Writing comments which document version/patch changes

When writing version comments (:- doc(version(...), "...").), it is useful to keep in
mind that the text can often be used to include in the manual a list of improvements made to the
software since the last time that it was distributed. For this to work well, the textual comments
should describe the significance of the work done for the user. For example, it is more useful to
write "added support for pred assertions" than "modifying file so pred case is also handled".

16 The Ipdoc Documentation Generator

Sometimes one would like to write version comments which are internal, i.e., not meant
to appear in the manual. This can easily be done with standard Prolog comments (which
1pdoc will not read). An alternative and quite useful solution is to put such internal comments
in patch changes (e.g., 1.1#2 to 1.1#3), and put the more general comments, which describe
major changes to the user and should appear in the manual, in version changes (e.g., 1.1#2
to 1.2#0). Selecting the appropriate options in 1pdoc then allows including in the manual the
version changes but not the patch changes (which might on the other hand be included in an
internals manual).

2.8.3 Documenting Libraries and/or Applications

As mentioned before, for each a .pl file, 1pdoc tries to determine whether it is a library
or the main file of an application, and documents it accordingly. Any combination of libraries
and/or main files of applications can be used arbitrarily as components or main files of a 1pdoc
manual. Some typical combinations are:

e Main file is a library, no components: A manual of a simple library, which appears externally
as a single module. The manual describes the purpose of the library and its interface.

e Main file is an application, no components: A manual of a simple application.

o Main file is a library, components are also libraries: This can be used for example for
generating an internals manual of a library. The main file describes the purpose and use of
the library, while the components describe the internal modules of the library.

o Main file is an application, components are libraries: This can be used similarly for gener-
ating an internals manual of an application. The main file describes the purpose and use
of the application, while the components describe the internal modules which compose the
application.

e Main file is a (pseudo-)application, components are libraries: A manual of a complex library
made up of smaller libraries (for example, the Prolog library). The (pseudo-)application file
contains the introductory material (title, version, etc.). Each chapter describes a particular
library.

o Main file is a (pseudo-)application, components are applications: This can be used to gen-
erate a manual of a set of applications (e.g., a set of utilities). The (pseudo-)application file
contains the introductory material (title, version, etc.). Each chapter describes a particular
component application.

2.8.4 Documenting files which are not modules

Sometimes it is difficult for 1pdoc to distinguish include files and Ciao packages from normal
user files (i.e., normal code files but which are not modules). The distinction is important
because the former are quite different in their form of use (they are loaded via include/1 or
use_package/1 declarations instead of ensure_loaded/1) and effect (since they are included,
they ’export’ operators, declarations, etc.), and should typically be documented differently.
There is a special doc/2 declaration (:- doc(filetype, ...).) which provides a way of defining
the intended use of the file. This declaration is normally not needed in modules, include files,
or packages, but should be added in user files (i.e., those meant to be loaded using ensure_
loaded/1). Adding this declaration will, for example, avoid spurious documentation of the
declarations in the assertions package themselves when this package is included in a user file.

2.8.5 Splitting large documents into parts

As mentioned before, in lpdoc each documented file (each component) corresponds to a
chapter in the generated manual. In large documents, it is sometimes convenient to build a
super-structure of parts, each of which groups several chapters. There is a special value of the

Chapter 2: Generating Installing and Accessing Manuals 17

second argument of the :- doc(filetype,...). declaration mentioned above designed for this
purpose. The special filetype value part can be used to flag that the file in which it appears
should be documented as the start of one of the major parts in a large document. In order to
introduce such a part, a .pl file with a declaration : - doc(filetype,part) . should be inserted
in the sequence of files that make up the components variable of the SETTINGS.pl file at each
point in which a major part starts. The :- doc(title,"..."). declaration of this file will be
used as the part title, and the :- doc(module,"..."). declaration text will be used as the
introduction to the part.

2.8.6 Documenting reexported predicates

Reexported predicates, i.e., predicates which are exported by a module m1 but defined in
another module m2 which is used by m1, are normally not documented in the original module, but
instead a simple reference is included to the module in which it is defined. This can be changed,
so that the documentation is included in the original module, by using a doc/2 declaration
with doinclude in the first argument (see the comments library). This is often useful when
documenting a library made of several components. For a simple user’s manual, it is often
sufficient to include in the 1pdoc SETTINGS.pl file the principal module, which is the one which
users will do a use_module/1 of, in the manual. This module typically exports or reexports all
the predicates which define the library’s user interface. Note, however, that currently, due to
limitations in the implementation, only the comments inside assertions (but not those in doc/2
declarations) are included for reexported predicates.

2.8.7 Separating the documentation from the source file

Sometimes one would not like to include long introductory comments in the module itself but
would rather have them in a different file. This can be done quite simply by using the @include
command. For example, the following declaration:

:— doc(module,"@include{Intro.lpdoc}").
will include the contents of the file Intro.lpdoc as the module description.

Alternatively, sometimes one may want to generate the documentation from a completely
different file. Assuming that the original module is m1.pl, this can be done by calling the
module containing the documentation m1_doc.pl. This m1_doc.pl file is the one that will be
included in the lpdoc SETTINGS.pl file, instead of m1.pl. lpdoc recognizes and treats such
_doc files specially so that the name without the _doc part is used in the different parts of the
documentation, in the same way as if the documentation were placed in file m1.

2.8.8 Generating auxiliary files (e.g. READMEs)

0Note: significant parts of this are obsolete. They must be updated to describe Ipdoc version}

Using 1pdoc it is often possible to use a common source for documentation text which should
appear in several places. For example, assume a file INSTALLATION.1pdoc contains text (with
1pdoc formatting commands) describing an application. This text can be included in a section
of the main file documentation as follows:

:— doc(module,"

Osection{Installation instructions}
@include{INSTALLATION.1lpdoc}

18 The Ipdoc Documentation Generator

At the same time, this text can be used to generate a nicely formatted INSTALLATION file in
ascii, which can perhaps be included in the top level of the source directory of the application.
To this end, an INSTALL.pl file as follows can be constructed:

:- use_package([assertions]).

doc(filetype, application). %) forces file to be documented as an application]]
:— doc(title,"Installation instructions").

:— doc(module, "@include{INSTALLATION.1lpdoc}").

Then, the ascii INSTALLATION file can be generated by simply running lpdoc ascii in a
dlrectory with a SETTINGS.pl file where MAIN is set to INSTALLATION.pl.

2.9 Troubleshooting

These are some common errors which may be found using 1pdoc and the usual fix:
e Sometimes, messages of the type:

gmake: **x No rule to make target ‘myfile.texic’, needed by
‘main.texic’. Stop.

appear (i.e., in the case above when running (g)make main. target). Since 1lpdoc definitely
knows how to make a .texic file given a .pl file, this means (in make’s language) that it
cannot find the corresponding .pl file (myfile.pl in the case above). The usual reason for
this is that there is no directory path to this file declared in the SETTINGS.pl file.

e Messages of the type:

! No room for a new Qurite .

while converting from .texi to .dvi (i.e., while running tex). These messages are tex’s way
of saying that an internal area (typically for an index) is full. This is normally because more
indices were selected in the INDICES variable of the SETTINGS.pl file than the maximum
number supported by the installed version of tex/ texinfo installations, as mentioned in
Section 2.2 [Generating a manual], page 9. The easiest fix is to reduce the number of
indices generated. Alternatively, it may be possible to recompile your local tex/ texinfo
installation with a higher number of indices.

e Missing links in info files (a section which exists in the printed document cannot be accessed
in the on-line document) can be due to the presence of a colon (:), a comma (,), a double
dash (--), or other such separators in a section name. Due to limitations of info section
names cannot contain these symbols.

e Menu listings in info which do not work (i.e., the menu listings are there, but they cannot
be followed): see if they are indented. In that case it is due to an itemize or enumerate
which was not closed.

Chapter 3: Documentation Mark-up Language and Declarations 19

3 Documentation Mark-up Language and
Declarations

Author(s): Manuel Hermenegildo.

This defines the admissible uses of the doc/2 declaration (which is used mainly for adding
machine readable comments to programs), the formatting commands which can be used in
the text strings inside these comments, and some related properties and data types. These
declarations are ignored by the compiler in the same way as classical comments. Thus, they
can be used to document the program source in place of (or in combination with) the normal
comments typically inserted in the code by programmers. However, because they are more
structured and they are machine-readable, they can also be used to generate printed or on-
line documentation automatically, using the 1pdoc automatic documentation generator. These
textual comments are meant to be complementary to the formal statements present in assertions
(see the assertions library).

3.1 Usage and interface (comments)

N
e Library usage:
It is not necessary to use this library in user programs. The recommended procedure in
order to make use of the doc/2 declarations that this library defines is to include instead the
assertions package, which provides efficient support for all assertion- and comment-related
declarations, using one of the following declarations, as appropriate:

:— module(...,...,[assertions]).
:- use_package(assertions).
e Exports:
— Predicates:
doc_id_type/3.
— Properties:

docstring/1, stringcommand/1.
— Regular Types:
version_descriptor/1, filetype/1.
e Other modules used:
— System library modules:
strings.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

3.2 Documentation on exports (comments)

docstring/1: PROPERTY
Defines the format of the character strings which can be used in machine readable com-
ments (doc/2 declarations) and assertions. These character strings can include certain
formatting commands.

20 The Ipdoc Documentation Generator

e All printable characters are admissible in documentation strings except “@”, “{,” and
“}”. To produce these characters the following escape sequences should be used,
respectively: @@, @{, and @}.

e In order to allow better formatting of on-line and printed manuals, in addition to
normal text, certain formatting commands can be used within these strings. The
syntax of all these commands is:

Q@command

(followed by either a space or {}), or

@command{body}

where command is the command name and body is the (possibly empty) command
body.

The set of commands currently admitted can be found in the documentation for the
predicate stringcommand/1.

Usage: docstring(Text)
— Description: Text is a documentation string.

stringcommand/1: PROPERTY
Defines the set of structures which can result from parsing a formatting command admis-
sible in comment strings inside assertions.

In order to make it possible to produce documentation in a wide variety of formats, the
command set is kept small. The names of the commands are intended to be reminiscent of
the commands used in the LaTeX text formatting system, except that “@” is used instead
of “\.” Note that \ would need to be escaped in ISO-Prolog strings, which would make
the source less readable (and, in any case, many ideas in LaTeX were taken from scribe,
where the escape character was indeed @!).

The following are the currently admissible commands.
e Formatting commands:

The following commands are used to format certain words or sentences in a special
font, build itemized lists, introduce sections, include examples, etc.

Q@comment{tezrt}
text will be treated as a comment and will be ignored.

@begin{itemize}
marks the beginning of an itemized list. Each item should be in a separate
paragraph and preceded by an @item command.

@item marks the beginning of a new item in an itemized list.

Q@end{itemize}
marks the end of an itemized list.

@begin{enumerate}
marks the beginning of an enumerated list. Each item should be in a
separate paragraph and preceded by an @item command.

Q@end{enumerate}
marks the end of an enumerated list.

@begin{description}
marks the beginning of a description list, i.e., a list of items and their
description (this list describing the different allowable commads is in fact
a description list). Each item should be in a separate paragraph and
contained in an @item{stemiert} command.

Chapter 3: Documentation Mark-up Language and Declarations 21

Q@item{itemtexrt}
marks the beginning of a new item in description list, and contains the
header for the item.

Q@end{description}
marks the end of a description list.

@begin{verbatim}
marks the beginning of fized format text, such as a program example. A
fixed-width, typewriter-like font is used.

@end{verbatim}
marks the end of formatted text.

@begin{cartouche}
marks the beginning of a section of text in a framed box, with round
corners.

@end{cartouche}
marks the end of a section of text in a framed box.

@begin{alert}
marks the beginning of a section of text in a framed boz, for alert messages.

@end{alert}
marks the end of the alert message.

@section{tert}
starts a section whose title is text. Due to a limitation of the info format,
do not use : or - or , in section, subsection, title (chapter), etc. headings.

@subsection{text}
starts a subsection whose title is text.

@footnote{texrt}
places text in a footnote.

@hfill introduces horizontal filling space (may be ignored in certain formats).
@bf{tert} text will be formatted in bold face or any other strong face.

Qem{text} text will be formatted in italics face or any other emphasis face.
Qtt{text} text will be formatted in a fized-width font (i.e., typewriter-like font).

Qkey{key?
key is the identifier of a keyboard key (i.e., a letter such as a, or a special
key identifier such as RET or DEL) and will be formatted as orin a
fixed-width, typewriter-like font.

@sp{N} generates N blank lines of space. Forces also a paragraph break.

@p forces a paragraph break, in the same way as leaving one or more blank
lines.

Onoindent
used at the beginning of a paragraph, states that the first line of the
paragraph should not be indented. Useful, for example, for avoiding
indentation on paragraphs that are continuations of other paragraphs,
such as after a verbatim.

e Indexing commands:

The following commands are used to mark certain words or sentences in the text
as concepts, names of predicates, libraries, files, etc. The use of these commands is
highly recommended, since it results in very useful indices with little effort.

22

The Ipdoc Documentation Generator

@index{text}
text will be printed in an emphasized font and will be included in the
concept definition index (and also in the usage index). This command
should be used for the first or definitional appearance(s) of a concept.
The idea is that the concept definition index can be used to find the
definition(s) of a concept.

@cindex{text}
text will be included in the concept index (and also in the usage index),
but it is not printed. This is used in the same way as above, but allows
sending to the index a different text than the one that is printed in the
text.

@concept{tert}
text will be printed (in a normal font). This command is used to mark
that some text is a defined concept. In on-line manuals, a direct access
to the corresponding concept definition may also be generated. A pointer
to the place in which the @concept command occurs will appear only in
the usage index.

@pred{predname}
predname (which should be in functor/arity form) is the name of a pred-
icate and will be printed in fixed-width, typewriter-like font. This com-
mand should be used when referring to a predicate (or a property or type)
in a documentation string. A reference will be included in the usage in-
dex. In on-line manuals, a direct access to the corresponding predicate
definition may also be generated.

Q@op{operatorname}
operatorname (which should be in functor/arity form) is the name of an
operator and will be printed in fixed-width, typewriter-like font. This
command should be used when referring to an operator in a documenta-
tion string. A reference will be included in the usage index. In on-line
manuals, a direct access to the corresponding operator definition may
also be generated.

@decl{declname}
declname (which should be in functor/arity form) is the name of a dec-
laration and will be printed in fixed-width, typewriter-like font. This
command should be used when referring to a declaration in a documen-
tation string. A reference will be included in the usage index. In on-line
manuals, a direct access to the corresponding declaration definition may
also be generated.

@lib{libnamel}
libname is the name of a library and will be printed in fixed-width,
typewriter-like font. This command should be used when referring to
a module or library in a documentation string. A reference will be in-
cluded in the usage index. In on-line manuals, a direct access to the
corresponding module definition may also be generated.

Q@apl{aplname}
aplname is the name of an application and will be printed in fixed-width,
typewriter-like font. This command should be used when referring to an
application in a documentation string. A reference will be included in
the usage index.

Chapter 3: Documentation Mark-up Language and Declarations 23

efile{filename}
filename is the name of a file and will be printed in fixed-width,
typewriter-like font. This command should be used when referring to
a file in a documentation string. A reference will be included in the usage
index.

@var{varname}
varname is the name of a variable and will be formatted in an emphasized
font. Note that when referring to variable names in a pred/1 declara-
tion, such names should be enclosed in @var commands for the automatic
documentation system to work correctly.

e Referencing commands:

The following commands are used to introduce bibliographic citations and references
to sections, urls, email addresses, etc.

Q@cite{keyword}

keyword is the identifier of a bibliographic entry. Such entry is assumed
to reside in on of a number of bibtex files (.bib files) . A reference in
brackets ([]) is inserted in the text an the full reference is included at the
end, with all other references, in an appendix. For example, @cite{iso-
prolog} will introduce a citation to a bibliographic entry whose keyword
is iso-prolog. The list of bibliography files which will be searched for
a match is determined by the BIBFILES variable of the 1pdoc SETTINGS
file.

Q@ref{section title}
introduces at point a reference to the section or node section title, where
section title must be the exact text of the section title.

Quref{URL?}
introduces at point a reference to the Universal Resource Locator (i.e., a

WWW address ® URL’.

Quref{tert}{URL}
introduces at point a reference to the Universal Resource Locator URL,
associated to the text text.

@email{address}
introduces at point a reference to email address address.

Qemail{text}{address}
introduces at point a reference to the email address address, associated
to the text text.

Qauthor{tert}
text will be printed (in a normal font). This command is used to ref-
erence the name of an author (not necessarily establishing the module
authorship).

e Date and Version:
@today prints the current date.

@version prints the version of the current manual.
e Mathematics:
The following commands are used to format text in mathematical .

@math{text}
in-line typeset the text formula.

24

The Ipdoc Documentation Generator

@begin{displaymath}
marks the beginning of a formula (useful for long formulas).

Q@end{displaymath}
marks the end of the (long) formula.

@defmathcmd{cmd}{n}{def}
defines the math command cmd, taking n arguments, which is expanded
as def. Arguments are denotated as #1, ..., #n inside def.

@defmathcmd{cmd}{def}
defines the math command c¢md, which is expanded as def (with no ar-
guments).

Inclusion commands:

The following commands are used to include code or strings of text as part of doc-
umentation. The latter may reside in external files or in the file being documented.
The former must be part of the module being documented. There are also commands
for inserting and scaling images.

@include{filename}
the contents of filename will be included in-line, as if they were part of
the string. This is useful for common pieces of documentation or storing
in a separate file long explanations if they are perceived to clutter the
source file.

@includeverbatim{filename}
as above, but the contents of the file are included verbatim, i.e., com-
mands within the file are not interpreted. This is useful for includ-
ing code examples which may contain @’s, etc. Note that this only
means that the file will be included as is. If you want the string
to be represented in verbatim mode in the output, you must sur-
round the @includeverbatim{filename} with @begin{verbatim} and
Q@end{verbatim}.

@includefact{factname}
it is assumed that the file being documented contains a fact of the pred-
icate factname/1, whose argument is a character string. The contents of
that character string will be included in-line, as if they were part of the
documentation string. This is useful for sharing pieces of text between
the documentation and the running code. An example is the text which
explains the usage of a command (options, etc.).

@includedef{predname’}
it is assumed that the file being documented contains a definition for the
predicate predname. The clauses defining this predicate will be included
in-line, in verbatim mode, as if they were part of the documentation
string.

@image{epsfile}
including an image at point, contained in file epsfile. The image file
should be in encapsulated postscript format.

Q@image{epsfile}{width}{height} same as above, but width and height
should be integers which provide a size (in points) to which the image
will be scaled.

Accents and special characters:
The following commands can be used to insert accents and special characters.

Chapter 3: Documentation Mark-up Language and Declarations 25

@‘{o} =0
@’ {o} =6
@~ {o} =0
@..{o} =0
@"{o} =0
@ {o} =0
e={o} =0
Q.{o} =0
Qu{o} =90
Qv{o} =0
@H{o} =06
@t{oo} = 00
@c{o} =9
@d{o} =0
@b{o} =0
@oe = e
QOE = E
Qae = &
OAE = B
Qaa = a
@AA = A
©o = 0
@0 =0
(ChN =1
QL = L
@ss =8
(Cirg =
Q! =
@i =1
@j =]
Q@copyright

= ©
@iso =

@bullet = o
Q@result = =

Usage: stringcommand (CO)

— Description: CO is a structure denoting a command that is admissible in strings inside
assertions.

26 The Ipdoc Documentation Generator

version_descriptor/1: REGTYPE
A structure denoting a complete version description:

version_descriptor([]).
version_descriptor(version(Version,Date)) :-
version_number (Version),
ymd_date(Date) .
version_descriptor(version(Version,Date,Time)) :-
version_number (Version),
ymd_date (Date),
time_struct(Time) .
Usage: version_descriptor(Descriptor)

— Description: Descriptor is a complete version descriptor.

filetype/1: REGTYPE
Intended uses of a file:

filetype (module) .
filetype(user).
filetype(include) .
filetype (package) .
filetype(part).

Usage: filetype(Type)
— Description: Type describes the intended use of a file.

doc_id_type/3: PREDICATE
No further documentation available for this predicate.

3.3 Documentation on internals (comments)

doc/2: DECLARATION
This declaration provides one of the main means for adding machine readable comments
to programs (the other one is adding documentation strings to assertions).

Usage 1: :- doc(CommentType,TitleText).

— Description: Provides a title for the module, library, or application. When generating
documentation automatically, the text in TitleText will be used appropriately (e.g.,
in the cover page as document title or as chapter title if part of a larger document).
This will also be used as a brief description of the manual in on-line indices. There
should be at most one of these declarations per module.

— Ezample:
:— doc(title,"Documentation-Oriented Assertions").
— The following properties should hold upon exit:
CommentType=title (=7/2)

TitleText is a documentation string. (docstring/1)

Usage 2: :- doc(CommentType,SubtitleText).

Chapter 3: Documentation Mark-up Language and Declarations 27

— Description: Provides a subtitle, an explanatory or alternate title. The subtitle will
be displayed under the proper title.

— FExzample:

:- doc(title,"Dr. Strangelove").
:— doc(subtitle,"How I Learned to Stop Worrying and Love the Bomb") .||

— The following properties should hold upon exit:
CommentType=subtitle (=/2)
SubtitleText is a documentation string. (docstring/1)

Usage 3: :- doc(CommentType,SubtitleText).

— Description: Provides additional subtitle lines. This can be, e.g., an explanation of
the application to add to the title, the address of the author(s) of the application,
etc. When generating documentation automatically, the text in SubtitleText will
be used accordingly. Several of these declarations can appear per module, which is
useful for, e.g., multiple line addresses.

— Ezample:

:— doc(subtitle_extra,"A Reference Manual").
:- doc(subtitle_extra,"Technical Report 1/1.0").

— The following properties should hold upon exit:
CommentType=subtitle_extra (=7/2)
SubtitleText is a documentation string. (docstring/1)

Usage 4: :- doc(CommentType,SubtitleText).
— Description: The name of the logo image for the manual.
— The following properties should hold upon exit:
CommentType=logo (=/2)
SubtitleText is any term. (term/1)
Usage 5: :- doc(CommentType, AuthorText).

— Description: Provides the author(s) of the module or application. If present, when
generating documentation for the module automatically, the text in AuthorText will
be placed in the corresponding chapter or front page. There can be more than one of
these declarations per module. In order for author indexing to work properly, please
use one author declaration per author. If more explanation is needed (who did what
when, etc.) use an acknowledgements comment.

— Ezample:
:— doc(author,"Alan Robinson").
— The following properties should hold upon exit:
CommentType=author (=7/2)
AuthorText is a documentation string. (docstring/1)

Usage 6: :- doc(CommentType,Text).

— Description: Provides the physical and electronic address, or any other contact infor-
mation for the authors of the module or application.

— Ezample:
:- doc(address, "Syracuse University").
— The following properties should hold upon exit:
CommentType=address (=/2)
Text is a documentation string. (docstring/1)

28 The Ipdoc Documentation Generator

Usage 7: :- doc(CommentType,AckText).

— Description: Provides acknowledgements for the module. If present, when generating
documentation for the module automatically, the text in AckText will be placed in
the corresponding chapter or section. There can be only one of these declarations per
module.

— FExample:
:- doc(ack, "Module was written by Alan, but others helped.").
— The following properties should hold upon exit:
CommentType=ack (=/2)
AckText is a documentation string. (docstring/1)

Usage 8: :- doc(CommentType,CopyrightText).

— Description: Provides a copyright text. This normally appears somewhere towards
the beginning of a printed manual. There should be at most one of these declarations
per module.

— FExample:
:— doc(copyright,"Copyright (¢ 2001 FSF.").
— The following properties should hold upon exit:
CommentType=copyright (=/2)
CopyrightText is a documentation string. (docstring/1)
Usage 9: :- doc(CommentType, SummaryText).

— Description: Provides a brief global explanation of the application or library. The
text in SummaryText will be used as the abstract for the whole manual. There should
be at most one of these declarations per module.

— FExample:
:- doc(summary,"This is a @bf{very} important library.").
— The following properties should hold upon exit:
CommentType=summary (=/2)
SummaryText is a documentation string. (docstring/1)

Usage 10: :- doc (CommentType,CommentText).

— Description: Provides the main comment text for the module or application. When
generating documentation automatically, the text in CommentText will be used as the
introduction or main body of the corresponding chapter or manual. There should
be at most one of these declarations per module. CommentText may use sections if
substructure is needed.

— Ezample:
:- doc(module,"This module is the @lib{comments} library.").
— The following properties should hold upon exit:
CommentType=module (=72)
CommentText is a documentation string. (docstring/1)

Usage 11: :- doc(CommentType,CommentText).

— Description: Provides additional comments text for a module or application. When
generating documentation automatically, the text in CommentText will be used in one
of the last sections or appendices of the corresponding chapter or manual. There
should be at most one of these declarations per module. CommentText may use
subsections if substructure is needed.

Chapter 3: Documentation Mark-up Language and Declarations 29

— FExample:
:- doc(appendix,"Other module functionality...").
— The following properties should hold upon exit:
CommentType=appendix (=/2)
CommentText is a documentation string. (docstring/1)
Usage 12: :- doc(CommentType,CommentText).

— Description: Provides a description of how the library should be loaded. Normally,
this information is gathered automatically when generating documentation automat-
ically. This declaration is meant for use when the module needs to be treated in some
special way. There should be at most one of these declarations per module.

— Ezample:
:- doc(usage,"Do not use: still in development!").
— The following properties should hold upon exit:
CommentType=usage (=/2)
CommentText is a documentation string. (docstring/1)
Usage 13: :- doc(CommentType,Section).

— Description: Insert a program section with name Section. Sectioning commands
allow a structured separation of the program into parts. The division is only for doc-
umentation purposes, so visibility and scope of definitions is not affected by sectioning
commands.

— Ezample:
:— doc(section,"Main Steps of the Algorithm").
— The following properties should hold upon exit:
CommentType=section (=7/2)
Section is a documentation string. (docstring/1)

Usage 14: :- doc(CommentType,SubSection).

— Description: Insert a program subsection with name SubSection (see program section
command for more details).

— FEzample:
:- doc(subsection,"Auxiliary Definitions").
— The following properties should hold upon exit:
CommentType=subsection (=72
SubSection is a documentation string. (docstring/1)

Usage 15: :- doc(PredName,CommentText).

— Description: Provides an introductory comment for a given predicate, function, prop-
erty, type, etc., denoted by PredName. When generating documentation for the mod-
ule automatically, the text in Text will be used as the introduction of the corre-
sponding predicate/function/... description. There should be at most one of these
declarations per predicate, function, property, or type.

— Ezample:

:- doc(doc/2,"This declaration provides one of the main
means for adding Q@concept{machine readable comments} to
programs.") .

— The following properties should hold upon exit:
PredName is a Name/Arity structure denoting a predicate name:

The Ipdoc Documentation Generator

predname (P/A) :-
atm(P),
nnegint (4).
(predname/1)
CommentText is a documentation string. (docstring/1)

Usage 16: :- doc (CommentType,CommentText).

— Description: Documents a known bug or planned improvement in the module or
application. Several of these declarations can appear per module. When generating
documentation automatically, the text in the Text fields will be used as items in an
itemized list of module or application bugs.

— FExzample:
:- doc(bug,"Comment text still has to be written by user.").
— The following properties should hold upon exit:
CommentType=bug (=/2)
CommentText is a documentation string. (docstring/1)

Usage 17: :- doc(Version,CommentText).

— Description: Provides a means for keeping a log of changes. Version contains the
version number and date corresponding to the change and CommentText an expla-
nation of the change. Several of these declarations can appear per module. When
generating documentation automatically, the texts in the different CommentText fields
typically appear as items in an itemized list of changes. The emacs Ciao mode helps
tracking version numbers by prompting for version comments when files are saved.
This mode requires version comments to appear in reverse chronological order (i.e.,
the topmost comment should be the most recent one).

— Ezample:

:— doc(version(1%*1+21,1998/04/18,15:05%01+’EST’), "Added some
missing comments. (Manuel Hermenegildo)").
— The following properties should hold upon exit:
Version is a complete version descriptor. (version_descriptor/1)
CommentText is a documentation string. (docstring/1)

Usage 18: :- doc(CommentType,VersionMaintenanceType).

— Description: Defines the type of version maintenance that should be performed by
the emacs Ciao mode.
— FEzample:
:— doc(version_maintenance,dir(’../version’)).
Version control info is kept in directory ../version. See the definition of version_
maintenance_type/1 for more information on the different version maintenance
modes. See the documentation on the emacs Ciao mode in the Ciao manual for
information on how to automatically insert version control doc/2 declarations in files.
The version maintenance mode can also be set alternatively by inserting a comment
such as:
%% Local Variables:
%% mode: CIAQ
%% update-version-comments: "off"
%% End:
The lines above instruct emacs to put the buffer visiting the file in emacs Ciao mode
and to turn version maintenance off. Setting the version maintenance mode in this way

Chapter 3: Documentation Mark-up Language and Declarations 31

has the disadvantage that 1pdoc will not be aware of the type of version maintenance
being performed (the lines above are comments for Prolog). However, this can be
useful in fact for setting the version maintenance mode for packages and other files
meant for inclusion in other files, since that way the settings will not affect the file in
which the package is included.

— The following properties should hold upon exit:
CommentType=version_maintenance (=/2)
VersionMaintenanceType a type of version maintenance for a file. (
version_maintenance_type/1)

Usage 19: :- doc(CommentType ,PredName).

— Description: This is a special case that is used to control which predicates are in-
cluded in the documentation. Normally, only exported predicates are documented. A
declaration :- doc(doinclude,PredName) . forces documentation for predicate (or
type, property, function, ...) PredName to be included even if PredName is not ex-
ported. Also, if PredName is reexported from another module, a declaration :-
doc(doinclude,PredName) . will force the documenation for PredName to appear
directly in this module.

— FExample:
:— doc(doinclude,p/3).
— The following properties should hold upon exit:
CommentType=doinclude (=/2)
PredName is a Name/Arity structure denoting a predicate name:

predname (P/A) :-
atm(P),
nnegint (4) .

(predname/1)

Usage 20: :- doc(CommentType,PredName).
— Description: A different usage which allows the second argument of :-

doc(doinclude,...) to be a list of predicate names.

— The following properties should hold upon exit:
CommentType=doinclude (=/2)
PredName is a list of prednames. (1list/2)

Usage 21: :- doc(CommentType,PredName).

— Description: This is similar to the previous usage but has the opposite effect: it
signals that an exported predicate should not be included in the documentation.

— Ezxzample:
:- doc(hide,p/3).
— The following properties should hold upon exit:
CommentType=hide (=/2)
PredName is a Name/Arity structure denoting a predicate name:
predname (P/A) :-

atm(P),
nnegint (A).

(predname/1)
Usage 22: :- doc(CommentType ,PredName).

32 The Ipdoc Documentation Generator

— Description: A different usage which allows the second argument of :-
doc(hide,...) to be a list of predicate names.

— The following properties should hold upon exit:
CommentType=hide (=/2)
PredName is a list of prednames. (1list/2)

Usage 23: :- doc(CommentType,FileType).

— Description: Provides a way of defining the intended use of the file. This use is
normally easily inferred from the contents of the file itself, and therefore such a
declaration is in general not needed. The exception is the special case of include
files and Ciao packages, which are typically indistiguishable from normal user files
(i.e., files which are not modules), but are however quite different in their form of use
(they are loaded via include/1 or use_package/1 declarations instead of ensure_
loaded/1) and effect (since they are included, they ’export’ operators, declarations,
etc.). Typically, it is assumed by default that files which are not modules will be used
as include files or packages. Thus, a doc/2 declaration of this kind strictly only needs
to be added to user-type files.

Example:
:- doc(filetype,user).

There is another special case: the value part. This filetype is used to flag files which
serve as introductions to boundaries between major parts in large documents. See
Section 2.8.5 [Splitting large documents into parts|, page 16 for details.

— The following properties should hold upon exit:
CommentType=filetype (=1/2)
FileType describes the intended use of a file. (filetype/1)
Usage 24: :- doc(CommentType,FileName).

— Description: Do not document anything that comes from a file whose name (after
taking away the path and the suffix) is FileName. This is used for example when doc-
umenting packages to avoid the documenter from including documentation of certain
other packages which the package being documented uses.

— FEzample:
:— doc(nodoc,assertions).
— The following properties should hold upon exit:

CommentType=nodoc (=/2)
FileName is an atom. (atm/1)
version_number/1: REGTYPE

Version is a structure denoting a complete version number (major version, minor version,
and patch number):
version_number (Major*Minor+Patch) :-
int (Major),
int (Minor),
int (Patch) .
Usage: version_number (Version)

— Description: Version is a complete version number

Chapter 3: Documentation Mark-up Language and Declarations 33

ymd_date/1: REGTYPE
A Year/Month/Day structure denoting a date:
ymd_date(Y/M/D) :-
int (Y),
int(M),
int (D).

Usage: ymd_date(Date)
— Description: Date is a Year/Month/Day structure denoting a date.

time_struct/1: REGTYPE

A struture containing time information:
time_struct (Hours:Minutes*Seconds+TimeZone) :-

int (Hours),
int (Minutes),
int (Seconds),
atm(TimeZone) .

Usage: time_struct(Time)

— Description: Time contains time information.

version_maintenance_type/1: REGTYPE
Possible kinds of version maintenance for a file:
version_maintenance_type(on) .
version_maintenance_type (off) .
version_maintenance_type(dir(Path)) :-
atm(Path) .

e on: version numbering is maintained locally in the file in which the declaration occurs,
i.e., an independent version number is kept for this file and the current version is given
by the most recent doc(version(...),...) declaration.

e off: no version numbering maintained.

e dir(Path): version numbering is maintained (globally) in directory Path. This is
useful for maintaining a common global version for an application which involves
several files.

The automatic maintenance of version numbers is typically done by the Ciao emacs mode.

Usage: version_maintenance_type(Type)
— Description: Type a type of version maintenance for a file.

34

The Ipdoc Documentation Generator

Chapter 4: The Ciao assertion package 35

4 The Ciao assertion package

Author(s): Manuel Hermenegildo, Francisco Bueno, German Puebla.

The assertions package adds a number of new declaration definitions and new operator
definitions which allow including program assertions in user programs. Such assertions can
be used to describe predicates, properties, modules, applications, etc. These descriptions can
contain formal specifications (such as sets of preconditions, post-conditions, or descriptions of
computations) as well as machine-readable textual comments.

This module is part of the assertions library. It defines the basic code-related assertions,
i.e., those intended to be used mainly by compilation-related tools, such as the static analyzer
or the run-time test generator.

Giving specifications for predicates and other program elements is the main functionality
documented here. The exact syntax of comments is described in the autodocumenter (lpdoc
[Knu84,Her99]) manual, although some support for adding machine-readable comments in as-
sertions is also mentioned here.

There are two kinds of assertions: predicate assertions and program point assertions. All
predicate assertions are currently placed as directives in the source code, i.e., preceded by “:-".
Program point assertions are placed as goals in clause bodies.

4.1 More info

The facilities provided by the library are documented in the description of its component
modules. This documentation is intended to provide information only at a “reference man-
ual” level. For a more tutorial introduction to the subject and some more examples please
see [PBH00]. The assertion language implemented in this library is modeled after this design
document, although, due to implementation issues, it may differ in some details. The purpose
of this manual is to document precisely what the implementation of the library supports at any
given point in time.

4.2 Some attention points

e Formatting commands within text strings: many of the predicates defined in these mod-
ules include arguments intended for providing textual information. This includes titles,
descriptions, comments, etc. The type of this argument is a character string. In order for
the automatic generation of documentation to work correctly, this character string should
adhere to certain conventions. See the description of the docstring/1 type/grammar for
details.

e Referring to variables: In order for the automatic documentation system to work correctly,
variable names (for example, when referring to arguments in the head patterns of pred dec-
larations) must be surrounded by an @var command. For example, @var{VariableName}
should be used for referring to the variable “VariableName”, which will appear then for-
matted as follows: VariableName. See the description of the docstring/1 type/grammar
for details.

36 The Ipdoc Documentation Generator

4.3 Usage and interface (assertions_doc)

e Library usage:

The recommended procedure in order to make use of assertions in user programs is to include
the assertions syntax library, using one of the following declarations, as appropriate:

:— module(...,...,[assertions]).
:- use_package([assertions]).
e Exports:
— Predicates:

check/1, trust/1, true/1, false/1.

e New operators defined:
=>/2[975,xfx], : : /2 [978 xfx], decl/1 [1150,fx], dec1/2 [1150,xfx], pred/1 [1150,fx], pred/2
[1150,xfx], prop/1 [1150,fx], prop/2 [1150,xfx], modedef/1 [1150,fx], calls/1 [1150,fx],
calls/2 [1150,xfx]|, success/1 [1150,fx]|, success/2 [1150,xfx]|, test/1 [1150,fx], test/2
[1150,xfx], texec/1 [1150,fx], texec/2 [1150,xfx], comp/1 [1150,fx], comp/2 [1150,xfx],
entry/1 [1150,fx], exit/1 [1150,fx], exit/2 [1150,xfx].

e New declarations defined:
pred/1, pred/2, texec/1, texec/2, calls/1, calls/2, success/1, success/2, test/1,
test/2, comp/1, comp/2, prop/1, prop/2, entry/1, exit/1, exit/2, modedef/1, decl/1,
decl/2, doc/2, comment/2.

e Other modules used:
— System library modules:
assertions/assertions_props.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

4.4 Documentation on new declarations (assertions_doc)

pred/1: DECLARATION
This assertion provides information on a predicate. The body of the assertion (its only
argument) contains properties or comments in the formats defined by assrt_body/1.

More than one of these assertions may appear per predicate, in which case each one
represents a possible “ mode” of use (usage) of the predicate. The exact scope of the
usage is defined by the properties given for calls in the body of each assertion (which
should thus distinguish the different usages intended). All of them together cover all
possible modes of usage.
For example, the following assertions describe (all the and the only) modes of usage of
predicate length/2 (see lists):

:— pred length(L,N) : list * var => list * integer

"Computes the length of L.".

:— pred length(L,N) : var * integer => list * integer

"Outputs L of length N.".

:— pred length(L,N) : list * integer => list * integer

Chapter 4: The Ciao assertion package 37

"Checks that L is of length N.".

Usage: :- pred AssertionBody.
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

pred/2: DECLARATION
This assertion is similar to a pred/1 assertion but it is explicitely qualified. Non-qualified
pred/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus pred AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)
texec/1: DECLARATION

This assertion is similar to a calls/1 assertion but it is used to provide input data and
execution commands to the unit-test driver.

Usage: :- texec AssertionBody.
— The following properties should hold at call time:
AssertionBody is a call assertion body. (c_assrt_body/1)

texec/2: DECLARATION
This assertion is similar to a texec/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified texec/1 assertions are assumed to have check status.

Usage: :- AssertionStatus texec AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a call assertion body. (c_assrt_body/1)
calls/1: DECLARATION

This assertion is similar to a pred/1 assertion but it only provides information about the
calls to a predicate. If one or several calls assertions are given they are understood to
describe all possible calls to the predicate.

For example, the following assertion describes all possible calls to predicate is/2 (see
arithmetic):

:- calls is(term,arithexpression).

Usage: :- calls AssertionBody.
— The following properties should hold at call time:
AssertionBody is a call assertion body. (c_assrt_body/1)

38 The Ipdoc Documentation Generator

calls/2: DECLARATION
This assertion is similar to a calls/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified calls/1 assertions are assumed to have check status.

Usage: :- AssertionStatus calls AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a call assertion body. (c_assrt_body/1)
success/1: DECLARATION

This assertion is similar to a pred/1 assertion but it only provides information about the
answers to a predicate. The described answers might be conditioned to a particular way
of calling the predicate.

For example, the following assertion specifies the answers of the length/2 predicate if it
is called as in the first mode of usage above (note that the previous pred assertion already
conveys such information, however it also compelled the predicate calls, while the success
assertion does not):

:—- success length(L,N) : list * var => list * integer.

Usage: :- success AssertionBody.
— The following properties should hold at call time:
AssertionBody is a predicate assertion body. (s_assrt_body/1)

success/2: DECLARATION
success assertion This assertion is similar to a success/1 assertion but it is explicitely
qualified with an assertion status. The status of non-qualified success/1 assertions is
assumed to be check.

Usage: :- AssertionStatus success AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a predicate assertion body. (s_assrt_body/1)
test/1: DECLARATION

This assertion is similar to a success assertion but it specifies a concrete test case to be
run in order verify (partially) that the predicate is working as expected. For example, the
following test will verify that the length predicate works well for the particular list given:

:- test length(L,N) : (L = [1,2,5,2]) => (N =4).

Usage: :- test AssertionBody.
— The following properties should hold at call time:
AssertionBody is a predicate assertion body. (s_assrt_body/1)

Chapter 4: The Ciao assertion package 39

test/2: DECLARATION
This assertion is similar to a test/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified test/1 assertions are assumed to have check status. In
this context, check means that the test should be executed when the developer runs the
test battery.
Usage: :- AssertionStatus test AssertionBody.

— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a predicate assertion body. (s_assrt_body/1)
comp/1: DECLARATION

This assertion is similar to a pred/1 assertion but it only provides information about the
global execution properties of a predicate (note that such kind of information is also con-
veyed by pred assertions). The described properties might be conditioned to a particular
way of calling the predicate.

For example, the following assertion specifies that the computation of append/3 (see
lists) will not fail if it is called as described (but does not compel the predicate to be
called that way):

:— comp append(Xs,Ys,Zs) : var * var * var + not_fail.

Usage: :- comp AssertionBody.
— The following properties should hold at call time:
AssertionBody is a comp assertion body. (g_assrt_body/1)

comp/2: DECLARATION
This assertion is similar to a comp/1 assertion but it is explicitely qualified. Non-qualified
comp/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus comp AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a comp assertion body. (g_assrt_body/1)
prop/1: DECLARATION

This assertion is similar to a pred/1 assertion but it flags that the predicate being docu-
mented is also a “ property.”

Properties are standard predicates, but which are guaranteed to terminate for any possible
instantiation state of their argument(s), do not perform side-effects which may interfere
with the program behaviour, and do not further instantiate their arguments or add new
constraints.

Provided the above holds, properties can thus be safely used as run-time checks. The
program transformation used in ciaopp for run-time checking guarantees the third re-
quirement. It also performs some basic checks on properties which in most cases are
enough for the second requirement. However, it is the user’s responsibility to guaran-
tee termination of the properties defined. (See also Chapter 6 [Declaring regular types],
page 51 for some considerations applicable to writing properties.)

40 The Ipdoc Documentation Generator

The set of properties is thus a strict subset of the set of predicates. Note that properties
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.

Usage: :- prop AssertionBody.
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

prop/2: DECLARATION
This assertion is similar to a prop/1 assertion but it is explicitely qualified. Non-qualified
prop/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus prop AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)
entry/1: DECLARATION

This assertion provides information about the external calls to a predicate. It is identical
syntactically to a calls/1 assertion. However, they describe only external calls, i.e., calls
to the exported predicates of a module from outside the module, or calls to the predicates
in a non-modular file from other files (or the user).

These assertions are trusted by the compiler. As a result, if their descriptions are erroneous
they can introduce bugs in programs. Thus, entry/1 assertions should be written with
care.

An important use of these assertions is in providing information to the compiler which it
may not be able to infer from the program. The main use is in providing information on
the ways in which exported predicates of a module will be called from outside the module.
This will greatly improve the precision of the analyzer, which otherwise has to assume
that the arguments that exported predicates receive are any arbitrary term.

Usage: :- entry AssertionBody.
— The following properties should hold at call time:
AssertionBody is a call assertion body. (c_assrt_body/1)

exit/1: DECLARATION
This type of assertion provides information about the answers that an (exported) predicate
provides for external calls. It is identical syntactically to a success/1 assertion. However,
it describes only external answers, i.e., answers to the exported predicates of a module
from outside the module, or answers to the predicates in a non-modular file from other
files (or the user). The described answers may be conditioned to a particular way of calling
the predicate. E.g.:

:— exit length(L,N) : list * var => list * integer.

Usage: :- exit AssertionBody.
— The following properties should hold at call time:
AssertionBody is a predicate assertion body. (s_assrt_body/1)

Chapter 4: The Ciao assertion package 41

exit/2: DECLARATION
exit assertion This assertion is similar to an exit/1 assertion but it is explicitely qualified
with an assertion status. Non-qualified exit/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus exit AssertionBody.
— The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is a predicate assertion body. (s_assrt_body/1)
modedef/1: DECLARATION

This assertion is used to define modes. A mode defines in a compact way a set of call
and success properties. Once defined, modes can be applied to predicate arguments in
assertions. The meaning of this application is that the call and success properties defined
by the mode hold for the argument to which the mode is applied. Thus, a mode is
conceptually a “property macro”.

The syntax of mode definitions is similar to that of pred declarations. For example, the
following set of assertions:

:— modedef +A : nonvar(A) # "A is bound upon predicate entry.".

:— pred p(+A,B) : integer(A) => ground(B).
is equivalent to:

:— pred p(A,B) : (nonvar(A),integer(A)) => ground(B)
"A is bound upon predicate entry.".

Usage: :- modedef AssertionBody.
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

decl/1: DECLARATION
This assertion is similar to a pred/1 assertion but it is used for declarations instead than
for predicates.

Usage: :- decl AssertionBody.
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

decl/2: DECLARATION
This assertion is similar to a decl/1 assertion but it is explicitely qualified. Non-qualified
decl/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus decl AssertionBody.
— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)

42 The Ipdoc Documentation Generator

doc/2: DECLARATION
Usage: :- doc(Pred,Comment).
— Description: Documentation . This assertion provides a text Comment for a given
predicate Pred.
— The following properties should hold at call time:
Pred is a head pattern. (head_pattern/1)

Comment is a text comment with admissible documentation commands. The usual
formatting commands that are applicable in comment strings are defined by

stringcommand/1. See the 1pdoc manual for documentation on comments. (
docstring/1)
comment /2: DECLARATION

Usage: :- comment (Pred,Comment).

— Description: An alias for doc/2 (deprecated, for compatibility with older versions).

— The following properties should hold at call time:
Pred is a head pattern. (head_pattern/1)
Comment is a text comment with admissible documentation commands. The usual
formatting commands that are applicable in comment strings are defined by
stringcommand/1. See the 1pdoc manual for documentation on comments. (
docstring/1)

4.5 Documentation on exports (assertions_doc)

check/1: PREDICATE
Usage: check(PropertyConjunction)
— Description: This assertion provides information on a clause program point (position
in the body of a clause). Calls to a check/1 assertion can appear in the body of a
clause in any place where a literal can normally appear. The property defined by
PropertyConjunction should hold in all the run-time stores corresponding to that
program point. See also Chapter 12 [Run-time checking of assertions|, page 97.

— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/1)

trust/1: PREDICATE
Usage: trust (PropertyConjunction)

— Description: This assertion also provides information on a clause program point. It is
identical syntactically to a check/1 assertion. However, the properties stated are not
taken as something to be checked but are instead trusted by the compiler. While the
compiler may in some cases detect an inconsistency between a trust/1 assertion and
the program, in all other cases the information given in the assertion will be taken
to be true. As a result, if these assertions are erroneous they can introduce bugs in
programs. Thus, trust/1 assertions should be written with care.

Chapter 4: The Ciao assertion package 43

An important use of these assertions is in providing information to the compiler which
it may not be able to infer from the program (either because the information is not
present or because the analyzer being used is not precise enough). In particular,
providing information on external predicates which may not be accessible at the time
of compiling the module can greatly improve the precision of the analyzer. This can
be easily done with trust assertion.
— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first

argument of each such term is a variable which appears as a head argument. (
property_conjunction/1)

true/1: PREDICATE
Usage: true(PropertyConjunction)

— Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved to hold by the analyzer. Thus, these assertions
often represent the analyzer output.

— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/1)

false/1: PREDICATE
Usage: false(PropertyConjunction)

— Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved not to hold by the analyzer. Thus, these
assertions often represent the analyzer output.

— The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument. (
property_conjunction/1)

44

The Ipdoc Documentation Generator

Chapter 5: Types and properties related to assertions 45

5 Types and properties related to assertions

Author(s): Manuel Hermenegildo.

This module is part of the assertions library. It provides the formal definition of the
syntax of several forms of assertions and describes their meaning. It does so by defining types
and properties related to the assertions themselves. The text describes, for example, the overall
fields which are admissible in the bodies of assertions, where properties can be used inside these
bodies, how to combine properties for a given predicate argument (e.g., conjunctions) , etc. and
provides some examples.

5.1 Usage and interface (assertions_props)

e Library usage:
:- use_module(library(assertions_props)).
e Exports:
— Properties:
head_pattern/1, nabody/1, docstring/1.
— Regular Types:

assrt_body/1, complex_arg_property/l, property_conjunction/1, property_
starterm/1, complex_goal_property/1, dictionary/1, c_assrt_body/1, s_assrt_
body/1, g_assrt_body/l1, assrt_status/1l, assrt_type/l, predfunctor/1,
propfunctor/1.

e Other modules used:
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

5.2 Documentation on exports (assertions_props)

assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of pred/1,
decl/1, etc. assertions. Such a body is of the form:

Pr [:: DP] [: CP] [=> AP] [+ GP] [# COJ]

where (fields between |[...] are optional):

e Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

e DP is a (possibly empty) complex argument property (complex_arg_property/1)
which expresses properties which are compatible with the predicate, i.e., instantiations
made by the predicate are compatible with the properties in the sense that applying
the property at any point would not make it fail.

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

46 The Ipdoc Documentation Generator

e AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

e GP is a (possibly empty) complex goal property (complex_goal_property/1) which
applies to the whole execution of a call to the predicate. These only apply if the
(possibly empty) properties given for calls in the assertion hold.

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

See the 1pdoc manual for documentation on assertion comments.

Usage: assrt_body (X)
— Description: X is an assertion body.

head_pattern/1: PROPERTY
A head pattern can be a predicate name (functor/arity) (predname/1) or a term. Thus,
both p/3 and p(A,B,C) are valid head patterns. In the case in which the head pattern is
a term, each argument of such a term can be:

e A wvariable. This is useful in order to be able to refer to the correspond-
ing argument positions by name within properties and in comments. Thus,
p(Input,Parameter,Output) is a valid head pattern.

e A variable, as above, but preceded by a “ mode.” This mode determines in a

compact way certain call or answer properties. For example, the head pattern
p(Input,+Parameter,Output) is valid, as long as +/1 is declared as a mode.

Acceptable modes
are documented in library(basicmodes) and library(isomodes). User defined
modes are documented in modedef/1.

e Any term. In this case this term determines the instantiation state of the correspond-
ing argument position of the predicate calls to which the assertion applies.

4

e A ground term preceded by a “ mode.” The ground term determines a property of
the corresponding argument. The mode determines if it applies to the calls and/or
the successes. The actual property referred to is that given by the term but with
one more argument added at the beginning, which is a new variable which, in a
rewriting of the head pattern, appears at the argument position occupied by the term.
For example, the head pattern p(Input,+list(int),Output) is valid for mode +/1
defined in 1ibrary(isomodes), and equivalent in this case to having the head pattern
p(Input,A,Output) and stating that the property 1ist(A,int) holds for the calls
of the predicate.

“

e Any term preceded by a “ mode.” In this case, only one variable is admitted,
it has to be the first argument of the mode, and it represents the argument po-
sition. l.e., it plays the role of the new variable mentioned above. Thus, no
rewriting of the head pattern is performed in this case. For example, the head
pattern p(Input,+(Parameter,list(int)),0utput) is valid for mode +/2 defined
in library(isomodes), and equivalent in this case to having the head pattern
p(Input,Parameter,Qutput) and stating that the property list(Parameter,int)
holds for the calls of the predicate.

Usage: head_pattern(Pr)
— Description: Pr is a head pattern.

Chapter 5: Types and properties related to assertions 47

complex_arg_property/1: REGTYPE
complex_arg_property(Props)
Props is a (possibly empty) complex argument property. Such properties can appear in
two formats, which are defined by property_conjunction/1 and property_starterm/1
respectively. The two formats can be mixed provided they are not in the same field of an
assertion. L.e., the following is a valid assertion:

:- pred foo(X,Y) : nonvar * var => (ground(X),ground(Y)).
Usage: complex_arg_property(Props)
— Description: Props is a (possibly empty) complex argument property

property_conjunction/1: REGTYPE
This type defines the first, unabridged format in which properties can be expressed in the
bodies of assertions. It is essentially a conjunction of properties which refer to variables.
The following is an example of a complex property in this format:

o (integer(X),list(Y,integer)): X has the property integer/1 and Y has the prop-
erty 1list/2, with second argument integer.

Usage: property_conjunction(Props)
— Description: Props is either a term or a conjunction of terms. The main functor

and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument.

property_starterm/1: REGTYPE

This type defines a second, compact format in which properties can be expressed in the
bodies of assertions. A property_starterm/1 is a term whose main functor is */2 and,
when it appears in an assertion, the number of terms joined by */2 is exactly the arity of
the predicate it refers to. A similar series of properties as in property_conjunction/1
appears, but the arity of each property is one less: the argument position to which they
refer (first argument) is left out and determined by the position of the property in the
property_starterm/1. The idea is that each element of the */2 term corresponds to a
head argument position. Several properties can be assigned to each argument position by
grouping them in curly brackets. The following is an example of a complex property in
this format:

e integer * list(integer): the first argument of the procedure (or function, or ...)
has the property integer/1 and the second one has the property 1ist/2, with second
argument integer.

e {integer,var} * list(integer): the first argument of the procedure (or function,
or ...) has the properties integer/1 and var/1 and the second one has the property
list/2, with second argument integer.

Usage: property_starterm(Props)

— Description: Props is either a term or several terms separated by */2. The main
functor of each of those terms corresponds to that of the definition of a property, and
the arity should be one less than in the definition of such property. All arguments of
each such term are ground.

48 The Ipdoc Documentation Generator

complex_goal_property/1: REGTYPE
complex_goal_property (Props)

Props is a (possibly empty) complex goal property. Such properties can be either a term
or a conjunction of terms. The main functor and arity of each of those terms corresponds
to the definition of a property. Such properties apply to all executions of all goals of the
predicate which comply with the assertion in which the Props appear.

The arguments of the terms in Props are implicitely augmented with a first argument
which corresponds to a goal of the predicate of the assertion in which the Props appear.
For example, the assertion

:— comp var(A) + not_further_inst(A).

has property not_further_inst/1 as goal property, and establishes that in all executions
of var (A) it should hold that not_further_inst(var(A),A).

Usage: complex_goal_property(Props)

— Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. A first
implicit argument in such terms identifies goals to which the properties apply.

nabody/1: PROPERTY
Usage: nabody (ABody)

— Description: ABody is a normalized assertion body.

dictionary/1: REGTYPE
Usage: dictionary(D)

— Description: D is a dictionary of variable names.

c._assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of call/1,
entry/1, etc. assertions. The following are admissible:

Pr : CP [# CO]

where (fields between [...] are optional):

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: c_assrt_body (X)

— Description: X is a call assertion body.

Chapter 5: Types and properties related to assertions 49

s_assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of pred/1,
func/1, etc. assertions. The following are admissible:

Pr : CP => AP # CO
Pr : CP => AP

Pr => AP # CO

Pr => AP

where:

e Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

e AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: s_assrt_body(X)

— Description: X is a predicate assertion body.

g_assrt_body/1: REGTYPE
This predicate defines the different types of syntax admissible in the bodies of comp/1
assertions. The following are admissible:

Pr : CP + GP # CO
Pr : CP + GP

Pr + GP # CO

Pr + GP

where:

e Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

e CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

e GP contains (possibly empty) complex goal property (complex_goal_property/1)
which applies to the whole execution of a call to the predicate. These only apply if
the (possibly empty) properties given for calls in the assertion hold.

e CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.
Usage: g_assrt_body(X)

— Description: X is a comp assertion body.

50 The Ipdoc Documentation Generator

assrt_status/1: REGTYPE
The types of assertion status. They have the same meaning as the program-point asser-
tions, and are as follows:

assrt_status(true).
assrt_status(false).
assrt_status(check).
assrt_status(checked) .
assrt_status(trust).

Usage: assrt_status(X)
— Description: X is an acceptable status for an assertion.

assrt_type/1: REGTYPE
The admissible kinds of assertions:

assrt_type(pred) .
assrt_type (prop) .
assrt_type(decl).
assrt_type(func) .
assrt_type(calls).
assrt_type(success).
assrt_type (comp) .
assrt_type(entry).
assrt_type(exit).
assrt_type(test).
assrt_type(texec).
assrt_type(modedef) .

Usage: assrt_type(X)
— Description: X is an admissible kind of assertion.

predfunctor/1: REGTYPE
Usage: predfunctor (X)

— Description: X is a type of assertion which defines a predicate.

propfunctor/1: REGTYPE
Usage: propfunctor(X)

— Description: X is a type of assertion which defines a property.

docstring/1: PROPERTY
Usage: docstring(String)
— Description: String is a text comment with admissible documentation commands.
The usual formatting commands that are applicable in comment strings are defined
by stringcommand/1. See the 1pdoc manual for documentation on comments.

Chapter 6: Declaring regular types 51

6 Declaring regular types

Author(s): Manuel Hermenegildo, Pedro Lépez, Francisco Bueno.

This library package adds declarations and new operator definitions which provide simple
syntactic sugar to write regular type definitions in source code. Regular types are just properties
which have the additional characteristic of being regular types (basic_props:regtype/1),
defined below.

For example, this library package allows writing:
:- regtype tree(X) # "X is a tree.".

instead of the more cumbersome:
:- prop tree(X) + regtype # "X is a tree.".

Regular types can be used as properties to describe predicates and play an essential role in
program debugging (see the Ciao Prolog preprocessor (ciaopp) manual).

In this chapter we explain some general considerations worth taking into account when writing
properties in general, not just regular types.

6.1 Defining properties

Given the classes of assertions in the Ciao assertion language, there are two fundamental
classes of properties. Properties used in assertions which refer to execution states (i.e., calls/1,
success/1, and the like) are called properties of execution states. Properties used in asser-
tions related to computations (i.e., comp/1) are called properties of computations. Different
considerations apply when writing a property of the former or of the later kind.

Consider a definition of the predicate string_concat/3 which concatenates two character
strings (represented as lists of ASCII codes):

string_concat([],L,L).

string_concat ([X|Xs],L, [X|INL]):- string_concat(Xs,L,NL).

Assume that we would like to state in an assertion that each argument “is a list of inte-
gers.” However, we must decide which one of the following two possibilities we mean exactly:
“the argument is instantiated to a list of integers” (let us call this property instantiated_
to_intlist/1), or “if any part of the argument is instantiated, this instantiation must be
compatible with the argument being a list of integers” (we will call this property compatible_
with_intlist/1). For example, instantiated_to_intlist/1 should be true for the terms []
and [1,2], but should not for X, [a,2], and [X,2]. In turn, compatible_with_intlist/1
should be true for [1, X, [1,2], and [X,2], but should not be for [X|1], [a,2], and 1. We
refer to properties such as instantiated_to_intlist/1 above as instantiation properties and
to those such as compatible_with_intlist/1 as compatibility properties (corresponding to the
traditional notions of “instantiation types” and “compatibility types”).

It turns out that both of these notions are quite useful in practice. In the example above, we
probably would like to use compatible_with_intlist/1 to state that on success of string_
concat/3 all three argument must be compatible with lists of integers in an assertion like:

:- success string_concat(A,B,C) => (compatible_with_intlist(4),
compatible_with_intlist(B),
compatible_with_intlist(C)).

With this assertion, no error will be flagged for a call to string_concat/3 such
as string_concat([20],L,R), which on success produces the resulting atom string_
concat ([20],L, [20|L]), but a call string_concat([],a,R) would indeed flag an error.

On the other hand, and assuming that we are running on a Prolog system, we would probably
like to use instantiated_to_intlist/1 for sumlist/2 as follows:

52 The Ipdoc Documentation Generator

:- calls sumlist(L,N) : instantiated_to_intlist(L).

sumlist ([],0).
sumlist ([X|R],S) :- sumlist(R,PS), S is PS+X.
to describe the type of calls for which the program has been designed, i.e., those in which the
first argument of sumlist/2 is indeed a list of integers.
The property instantiated_to_intlist/1 might be written as in the following (Prolog)
definition:

:— prop instantiated_to_intlist/1.

instantiated_to_intlist(X) :-
nonvar (X), instantiated_to_intlist_aux(X).

instantiated_to_intlist_aux([]).
instantiated_to_intlist_aux([X|T]) :-
integer(X), instantiated_to_intlist(T).
(Recall that the Prolog builtin integer/1 itself implements an instantiation check, failing if
called with a variable as the argument.)

The property compatible_with_intlist/1 might in turn be written as follows (also in
Prolog):

:— prop compatible_with_intlist/1.

compatible_with_intlist(X) :- var(X).
compatible_with_intlist(X) :-
nonvar(X), compatible_with_intlist_aux(X).

compatible_with_intlist_aux([]).
compatible_with_intlist_aux([X|T]) :-
int_compat(X), compatible_with_intlist(T).

int_compat (X) :- var(X).
int_compat (X) :- nonvar(X), integer(X).

Note that these predicates meet the criteria for being properties and thus the prop/1 decla-
ration is correct.

Ensuring that a property meets the criteria for “not affecting the computation” can sometimes
make its coding somewhat tedious. In some ways, one would like to be able to write simply:

intlist([]).
intlist([X|R]) :- int(X), intlist(R).

(Incidentally, note that the above definition, provided that it suits the requirements for being a
property and that int/1 is a regular type, meets the criteria for being a regular type. Thus, it
could be declared :- regtype intlist/1.)

But note that (independently of the definition of int/1) the definition above is not the
correct instantiation check, since it would succeed for a call such as intlist(X). In fact, it is
not strictly correct as a compatibility property either, because, while it would fail or succeed
as expected, it would perform instantiations (e.g., if called with intlist(X) it would bind X to
[1). In practice, it is convenient to provide some run-time support to aid in this task.

The run-time support of the Ciao system (see Chapter 12 [Run-time checking of assertions],
page 97) ensures that the execution of properties is performed in such a way that properties
written as above can be used directly as instantiation checks. Thus, writing:

Chapter 6: Declaring regular types 53

:- calls sumlist(L,N) : intlist(L).

has the desired effect. Also, the same properties can often be used as compatibility checks by
writing them in the assertions as compat (Property) (basic_props:compat/1). Thus, writing:

:- success string_concat(A,B,C) => (compat(intlist(A)),
compat (intlist(B)),
compat (intlist(C))).

also has the desired effect.

As a general rule, the properties that can be used directly for checking for compatibility should
be downwards closed, i.e., once they hold they will keep on holding in every state accessible in
forwards execution. There are certain predicates which are inherently instantiation checks and
should not be used as compatibility properties nor appear in the definition of a property that
is to be used with compat. Examples of such predicates (for Prolog) are ==, ground, nonvar,
integer, atom, >, etc. as they require a certain instantiation degree of their arguments in order
to succeed.

In contrast with properties of execution states, properties of computations refer to the entire
execution of the call(s) that the assertion relates to. One such property is, for example, not_
fail/1 (note that although it has been used as in :- comp append(Xs,Ys,Zs) + not_fail,
it is in fact read as not_fail (append(Xs,Ys,Zs)); see assertions_props:complex_goal_
property/1). For this property, which should be interpreted as “execution of the predicate
either succeeds at least once or loops,” we can use the following predicate not_fail/1 for run-
time checking;:

not_fail(Goal):-
if (call(Goal),
true, %% then
warning(Goal)). %% else

where the warning/1 (library) predicate simply prints a warning message.

In this simple case, implementation of the predicate is not very difficult using the (non-
standard) if/3 builtin predicate present in many Prolog systems.

However, it is not so easy to code predicates which check other properties of the computation
and we may in general need to program a meta-interpreter for this purpose.

6.2 Usage and interface (regtypes_doc)

e Library usage:
:— use_package (regtypes) .
or
:- module(...,...,[regtypes]).
e New operators defined:
regtype/1 [1150,fx], regtype/2 [1150,xfx].
e New declarations defined:
regtype/1, regtype/2.
e Other modules used:
— System library modules:
assertions/assertions_props.
— Internal (engine) modules:
term_basic.

54 The Ipdoc Documentation Generator

6.3 Documentation on new declarations (regtypes_doc)

regtype/1: DECLARATION
This assertion is similar to a prop assertion but it flags that the property being doc-
umented is also a “ regular type.” Regular types are properties whose definitions are
reqular programs (see lelow). This allows for example checking whether it is in the class
of types supported by the regular type checking and inference modules.

A regular program is defined by a set of clauses, each of the form:
p(x, v_1, ..., v_n) :- body_1, ..., body_k.
where:

1. xis a term whose variables (which are called term variables) are unique, i.e., it is not
allowed to introduce equality constraints between the variables of x.

For example, p(£ (X, Y)) :- ... is valid, but p(£(X, X)) :- ... is not.

2. in all clauses defining p/n+1 the terms x do not unify except maybe for one single
clause in which x is a variable.

3. n >= 0 and p/n is a parametric type functor (whereas the predicate defined by the
clauses is p/n+1).

4. v_1, ..., v_n are unique variables, which are called parametric variables.
5. FEach body_i is of the form:

1. t(z) where z is one of the term variables and t is a reqular type expression;

2. q(y, t_1, ..., t_m) where m >= 0, 9/m is a parametric type functor, not in the
set of functors =/2, ~/2, ./3.
t_1, ..., t_m are reqular type expressions, and y is a term variable.

6. Each term variable occurs at most once in the clause’s body (and should be as the
first argument of a literal).

A reqular type expression is either a parametric variable or a parametric type functor
applied to some of the parametric variables.

A parametric type functor is a regular type, defined by a regular program, or a basic type.
Basic types are defined in Chapter 7 [Basic data types and properties], page 55.

The set of regular types is thus a well defined subset of the set of properties. Note that
types can be used to describe characteristics of arguments in assertions and they can also
be executed (called) as any other predicates.

Usage: :- regtype AssertionBody.
— The following properties should hold at call time:
AssertionBody is an assertion body. (assrt_body/1)

regtype/2: DECLARATION
This assertion is similar to a regtype/1 assertion but it is explicitely qualified. Non-
qualified regtype/1 assertions are assumed the qualifier check. Note that checking regular
type definitions should be done with the ciaopp preprocessor.

Usage: :- AssertionStatus regtype AssertionBody.

— The following properties should hold at call time:
AssertionStatus is an acceptable status for an assertion. (assrt_status/1)
AssertionBody is an assertion body. (assrt_body/1)

Chapter 7: Basic data types and properties 55

7 Basic data types and properties

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This library contains the set of basic properties used by the builtin predicates, and which
constitute the basic data types and properties of the language. They can be used both as type
testing builtins within programs (by calling them explicitly) and as properties in assertions.

7.1 Usage and interface (basic_props)

P
e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
e Exports:
— Properties:

member/2, compat/2, inst/2, iso/1, deprecated/1, not_further_inst/2, sideff/2,
regtype/1, native/1, native/2, no_rtcheck/1, eval/l, equiv/2, bind_ins/1,
error_free/1, memo/1, filter/2, pe_type/1.

— Regular Types:

term/1, int/1, nnegint/1, f1t/1, num/1, atm/1, struct/1, gnd/1, gndstr/1,
constant/1, callable/1, operator_specifier/1, list/1, list/2, nlist/2,
sequence/2, sequence_or_list/2, character_code/1, string/1, num_code/1,
predname/1, atm_or_atm_list/1, flag_values/1.

e Other modules used:
— System library modules:
assertions/native_props, terms_check.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
compare, term_typing, hiord_rt, debugger_support.

7.2 Documentation on exports (basic_props)

term/1: REGTYPE
The most general type (includes all possible terms).

General properties: term(X)
— The following properties hold globally:

term(X) is side-effect free. (sideff/2)
term(X)
— The following properties hold globally:
term(X) is evaluable at compile-time. (eval/1)
term(X)

— The following properties hold globally:
term(X) is equivalent to true. (equiv/2)

Usage: term(X)

56 The Ipdoc Documentation Generator

— Description: X is any term.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

int/1: REGTYPE
The type of integers. The range of integers is [-2°2147483616, 2°2147483616). Thus
for all practical purposes, the range of integers can be considered infinite.

General properties: int (T)
— The following properties hold globally:

int (T) is side-effect free. (sideff/2)
int (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
int (T) is evaluable at compile-time. (eval/1)
All calls of the form int (T) are deterministic. (is_det/1)
int (T)
— The following properties hold upon exit:
T is an integer. (int/1)

— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (test_type/2)
Usage: int(T)
— Description: T is an integer.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

nnegint /1: REGTYPE
The type of non-negative integers, i.e., natural numbers.

General properties: nnegint (T)
— The following properties hold globally:
nnegint (T) is side-effect free. (sideff/2)
nnegint (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
nnegint (T) is evaluable at compile-time. (eval/l)
nnegint (T)
— The following properties hold upon exit:
T is a non-negative integer. (nnegint/1)

Chapter 7: Basic data types and properties 57

— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (test_type/2)
Usage: nnegint (T)
— Description: T is a non-negative integer.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

fit/1: REGTYPE
The type of floating-point numbers. The range of floats is the one provided by the C
double type, typically [4.9e-324, 1.8e+308] (plus or minus). There are also three spe-
cial values: Infinity, either positive or negative, represented as 1.0e1000 and -1.0e1000;
and Not-a-number, which arises as the result of indeterminate operations, represented as
0.Nan

General properties: £1t(T)
— The following properties hold globally:

£1t(T) is side-effect free. (sideff/2)
£f1t(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
£f1t(T) is evaluable at compile-time. (eval/1)
All calls of the form f1t(T) are deterministic. (is_det/1)
£f1t(T)
— The following properties hold upon exit:
T is a float. (£1t/1)

— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (test_type/2)
Usage: £1t(T)
— Description: T is a float.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

num/1: REGTYPE
The type of numbers, that is, integer or floating-point.

General properties: num(T)
— The following properties hold globally:
num(T) is side-effect free. (sideff/2)
num(T) is binding insensitive. (bind_ins/1)

num(T)

58 The Ipdoc Documentation Generator

— If the following properties hold at call time:

T is currently a term which is not a free variable. (nonvar/1)

then the following properties hold globally:

num(T) is evaluable at compile-time. (eval/1)

All calls of the form num(T) are deterministic. (is_det/1)
num (T)

— The following properties hold upon exit:
T is a number. (num/1)
— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (test_type/2)
Usage: num(T)
— Description: T is a number.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

atm/1: REGTYPE
The type of atoms, or non-numeric constants. The size of atoms is unbound.

General properties: atm(T)
— The following properties hold globally:

atm(T) is side-effect free. (sideff/2)
atm(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
atm(T) is evaluable at compile-time. (eval/l)
All calls of the form atm(T) are deterministic. (is_det/1)
atm(T)

— The following properties hold upon exit:
T is an atom. (atm/1)
— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (test_type/2)
Usage: atm(T)
— Description: T is an atom.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

struct/1: REGTYPE
The type of compound terms, or terms with non-zeroary functors. By now there is a limit
of 255 arguments.

General properties: struct(T)

Chapter 7: Basic data types and properties 59

— The following properties hold globally:
struct(T) is side-effect free. (sideff/2)

struct(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:
struct(T) is evaluable at compile-time. (eval/1)

struct (T)
— The following properties hold upon exit:
T is a compound term. (struct/1)

Usage: struct(T)
— Description: T is a compound term.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

gnd/1: REGTYPE
The type of all terms without variables.

General properties: gnd(T)
— The following properties hold globally:

gnd (T) is side-effect free. (sideff/2)
gnd (T)
— If the following properties hold at call time:
T is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
gnd (T) is evaluable at compile-time. (eval/1)
All calls of the form gnd(T) are deterministic. (is_det/1)
gnd (T)
— The following properties hold upon exit:
T is ground. (gnd/1)

— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (test_type/2)
Usage: gnd (T)
— Description: T is ground.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

gndstr/1: REGTYPE
General properties: gndstr (T)

— The following properties hold globally:
gndstr(T) is side-effect free. (sideff/2)

60 The Ipdoc Documentation Generator

gndstr(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables).
then the following properties hold globally:
gndstr(T) is evaluable at compile-time.

All calls of the form gndstr(T) are deterministic.

gndstr(T)
— The following properties hold upon exit:
T is a ground compound term.

Usage: gndstr (T)
— Description: T is a ground compound term.
— The following properties hold globally:

This predicate is understood natively by CiaoPP.

constant/1:
General properties: constant (T)

— The following properties hold globally:
constant (T) is side-effect free.

constant (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
constant (T) is evaluable at compile-time.

All calls of the form constant(T) are deterministic.

constant (T)
— The following properties hold upon exit:
T is an atomic term (an atom or a number).

Usage: constant (T)

— Description: T is an atomic term (an atom or a number).

callable/1:
General properties: callable(T)

— The following properties hold globally:
callable(T) is side-effect free.

callable(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
callable(T) is evaluable at compile-time.

All calls of the form callable(T) are deterministic.

callable(T)

(ground/1)

(eval/1)
(is_det/1)

(gndstr/1)

(native/1)

REGTYPE

(sideff/2)

(nonvar/1)

(eval/1)
(is_det/1)

(constant/1)

REGTYPE

(sideff/2)

(nonvar/1)

(eval/1)
(is_det/1)

Chapter 7: Basic data types and properties 61

— The following properties hold upon exit:
T is currently a term which is not a free variable. (nonvar/1)

Usage: callable(T)
— Description: T is a term which represents a goal, i.e., an atom or a structure.

operator_specifier/1: REGTYPE

The type and associativity of an operator is described by the following mnemonic atoms:

xfx Infix, non-associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than
the operator itself.

xfy Infix, right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence
as the main operator.

yfx Infix, left-associative: same as above, but the other way around.

fx Prefix, non-associative: the subexpression must be of lower precedence than
the operator.

fy Prefix, associative: the subexpression can be of the same precedence as the
operator.

xf Postfix, non-associative: the subexpression must be of lower precedence than
the operator.

yf Postfix, associative: the subexpression can be of the same precedence as the
operator.

General properties: operator_specifier(X)
— The following properties hold globally:
operator_specifier(X) is side-effect free. (sideff/2)

operator_specifier (X)
— If the following properties hold at call time:

X is currently a term which is not a free variable. (nonvar/1)
then the following properties hold globally:

operator_specifier(X) is evaluable at compile-time. (eval/1)
All calls of the form operator_specifier(X) are deterministic. (is_det/1)
Goal operator_specifier(X) produces 7 solutions. (relations/2)

operator_specifier(T)
— The following properties hold upon exit:
T specifies the type and associativity of an operator. (operator_specifier/1)

Usage: operator_specifier (X)
— Description: X specifies the type and associativity of an operator.

list/1: REGTYPE
A list is formed with successive applications of the functor ’.’/2, and its end is the atom
[1. Defined as

62 The Ipdoc Documentation Generator

list([]).
list([_1|L]) :-
list(L).

General properties: 1ist (L)
— The following properties hold globally:
list (L) is side-effect free.

list (L)
— If the following properties hold at call time:
L is currently ground (it contains no variables).
then the following properties hold globally:
list (L) is evaluable at compile-time.
All calls of the form 1ist (L) are deterministic.

list(T)
— The following properties hold upon exit:
T is a list.

Usage: 1list (L)
— Description: L is a list.

list /2:
list(L,T)
L is a list, and for all its elements, T holds.
Meta-predicate with arguments: 1ist (7, (pred 1)).
General properties: 1ist(L,T)
— The following properties hold globally:
1list(L,T) is side-effect free.
list(L,T)
— If the following properties hold at call time:
L is currently ground (it contains no variables).
T is currently ground (it contains no variables).
then the following properties hold globally:
list(L,T) is evaluable at compile-time.

list(X,T)
— The following properties hold upon exit:
X is a list.
Usage: 1ist(L,T)
— Description: L is a list of Ts.

nlist /2:
Meta-predicate with arguments: nlist(?, (pred 1)).
General properties: nlist(L,T)

(sideff/2)

(ground/1)

(eval/l)
(is_det/1)

(list/1)

REGTYPE

(sideff/2)

(ground/1)
(ground/1)

(eval/l)

(list/1)

REGTYPE

Chapter 7: Basic data types and properties

— The following properties hold globally:
nlist(L,T) is side-effect free.
nlist(L,T)
— If the following properties hold at call time:

L is currently ground (it contains no variables).
T is currently ground (it contains no variables).

then the following properties hold globally:
nlist(L,T) is evaluable at compile-time.
nlist(X,T)
— The following properties hold upon exit:

X is any term.

Usage: nlist(L,T)

63

(sideff/2)

(ground/1)
(ground/1)

(eval/l)

(term/1)

— Description: Lis T or a nested list of Ts. Note that if T is term, this type is equivalent

to term, this fact explain why we do not have a nlist/1 type

member /2:
General properties: member (X,L)

— The following properties hold globally:
member (X,L) is side-effect free.
member (X,L) is binding insensitive.

member (X,L)

— If the following properties hold at call time:
L is a list.
then the following properties hold globally:
member (X,L) is evaluable at compile-time.

member (_X,L)
— The following properties hold upon exit:
L is a list.

member (X,L)
— If the following properties hold at call time:

L is currently ground (it contains no variables).

then the following properties hold upon exit:

X is currently ground (it contains no variables).

Usage: member (X,L)
— Description: X is an element of L.

PROPERTY

(sideff/2)

(bind_ins/1)

(1ist/1)

(eval/1)

(1ist/1)

(ground/1)

(ground/1)

sequence/2: REGTYPE
A sequence is formed with zero, one or more occurrences of the operator ’,’/2. For
example, a, b, c is a sequence of three atoms, a is a sequence of one atom.

Meta-predicate with arguments: sequence(?, (pred 1)).
General properties: sequence(S,T)

64 The Ipdoc Documentation Generator

— The following properties hold globally:
sequence (S, T) is side-effect free.

sequence (S, T)
— If the following properties hold at call time:
S is currently ground (it contains no variables).
T is currently ground (it contains no variables).
then the following properties hold globally:
sequence(S,T) is evaluable at compile-time.
sequence (E,T)
— The following properties hold upon exit:
E is currently a term which is not a free variable.
T is currently ground (it contains no variables).
Usage: sequence(S,T)
— Description: S is a sequence of Ts.

sequence_or _list /2:

Meta-predicate with arguments: sequence_or_list(?, (pred 1)).

General properties: sequence_or_list(S,T)
— The following properties hold globally:
sequence_or_list (S, T) is side-effect free.

sequence_or_list(S,T)
— If the following properties hold at call time:
S is currently ground (it contains no variables).
T is currently ground (it contains no variables).
then the following properties hold globally:
sequence_or_list(S,T) is evaluable at compile-time.

sequence_or_list(E,T)
— The following properties hold upon exit:
E is currently a term which is not a free variable.
T is currently ground (it contains no variables).

Usage: sequence_or_list(S,T)
— Description: S is a sequence or list of Ts.

character_code/1:
General properties: character_code(T)

— The following properties hold globally:
character_code(T) is side-effect free.

character_code(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
character_code(T) is evaluable at compile-time.

(sideff/2)

(ground/1)
(ground/1)

(eval/l)

(nonvar/1)
(ground/1)

REGTYPE

(sideff/2)

(ground/1)
(ground/1)

(eval/l)

(nonvar/1)
(ground/1)

REGTYPE

(sideff/2)

(nonvar/1)

(eval/l)

Chapter 7: Basic data types and properties 65

character_code(I)
— The following properties hold upon exit:
I is an integer which is a character code. (character_code/1)

Usage: character_code(T)
— Description: T is an integer which is a character code.

string/1: REGTYPE
A string is a list of character codes. The usual syntax for strings "string" is allowed, which
is equivalent to [0’s,0°t,0°r,0°i,0’n,0’g] or [115,116,114,105,110,103]. There
is also a special Ciao syntax when the list is not complete: "st"||R is equivalent to
[0°s,0°t|R].
General properties: string(T)
— The following properties hold globally:

string(T) is side-effect free. (sideff/2)

string(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
string(T) is evaluable at compile-time. (eval/1)

string(T)
— The following properties hold upon exit:
T is a string (a list of character codes). (string/1)

Usage: string(T)
— Description: T is a string (a list of character codes).

num_code/1: REGTYPE
These are the ASCII codes which can appear in decimal representation of floating point
and integer numbers, including scientific notation and fractionary part.

predname/1: REGTYPE
General properties: predname (P)

— The following properties hold globally:
predname (P) is side-effect free. (sideff/2)

predname (P)
— If the following properties hold at call time:
P is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
predname (P) is evaluable at compile-time. (eval/l)

predname (P)
— The following properties hold upon exit:
P is a Name/Arity structure denoting a predicate name:

66 The Ipdoc Documentation Generator

predname (P/A) :-
atm(P),
nnegint (4).
(predname/1)

Usage: predname (P)
— Description: P is a Name/Arity structure denoting a predicate name:

predname (P/A) :-
atm(P),
nnegint (4) .
atm_or_atm_list/1: REGTYPE

General properties: atm_or_atm_1ist (T)
— The following properties hold globally:
atm_or_atm_list(T) is side-effect free. (sideff/2)

atm_or_atm_list(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
atm_or_atm_list(T) is evaluable at compile-time. (eval/l)

atm_or_atm_list(T)
— The following properties hold upon exit:
T is an atom or a list of atoms. (atm_or_atm_list/1)

Usage: atm_or_atm_list(T)
— Description: T is an atom or a list of atoms.

compat /2: PROPERTY
This property captures the notion of type or property compatibility. The instantiation
or constraint state of the term is compatible with the given property, in the sense that
assuming that imposing that property on the term does not render the store inconsistent.
For example, terms X (i.e., a free variable), [Y|Z], and [Y,Z] are all compatible with the
regular type list/1, whereas the terms f(a) and [1]2] are not.

Meta-predicate with arguments: compat (7, (pred 1)).
General properties: compat (Term,Prop)
— If the following properties hold at call time:
Term is currently ground (it contains no variables). (ground/1)
Prop is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
compat (Term,Prop) is evaluable at compile-time. (eval/1)

Usage: compat (Term,Prop)
— Description: Term is compatible with Prop

Chapter 7: Basic data types and properties 67

inst/2: PROPERTY
Meta-predicate with arguments: inst (7, (pred 1)).

General properties: inst(Term,Prop)
— The following properties hold globally:
inst (Term,Prop) is side-effect free. (sideff/2)

inst (Term,Prop)
— If the following properties hold at call time:
Term is currently ground (it contains no variables). (ground/1)
Prop is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
inst (Term,Prop) is evaluable at compile-time. (eval/1)

Usage: inst(Term,Prop)
— Description: Term is instantiated enough to satisfy Prop.

iso/1: PROPERTY
Meta-predicate with arguments: iso(goal).

General properties: iso(G)
— The following properties hold globally:
iso(G) is side-effect free. (sideff/2)

Usage: iso(G)
— Description: Complies with the 1SO-Prolog standard.

deprecated/1: PROPERTY
Specifies that the predicate marked with this global property has been deprecated, i.e.,
its use is not recommended any more since it will be deleted at a future date. Typically
this is done because its functionality has been superseded by another predicate.

Meta-predicate with arguments: deprecated(goal).
General properties: deprecated(G)
— The following properties hold globally:
deprecated(G) is side-effect free. (sideff/2)

Usage: deprecated(G)
— Description. DEPRECATED.

not_further_inst/2: PROPERTY
Meta-predicate with arguments: not_further_inst(goal,?).

General properties: not_further_inst(G,V)
— The following properties hold globally:
not_further_inst(G,V) is side-effect free. (sideff/2)

Usage: not_further_inst(G,V)
— Description: V is not further instantiated.

68 The Ipdoc Documentation Generator

sideff/2: PROPERTY
sideff (G,X)

Declares that G is side-effect free (if its execution has no observable result other than its
success, its failure, or its abortion), soft (if its execution may have other observable results
which, however, do not affect subsequent execution, e.g., input/output), or hard (e.g.,
assert /retract).

Meta-predicate with arguments: sideff (goal,?).
General properties: sideff (G,X)
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)
sideff (G,X) is side-effect free. (sideff/2)

Usage: sideff (G,X)
— Description: G is side-effect X.
— If the following properties hold at call time:
X is an element of [free,soft,hard]. (member/2)

regtype/1: PROPERTY
Meta-predicate with arguments: regtype goal.

General properties: regtype G
— The following properties hold globally:
regtype G is side-effect free. (sideff/2)
Usage: regtype G
— Description: Defines a regular type.

native/1: PROPERTY
Meta-predicate with arguments: native(goal).

General properties: native (P)
— The following properties hold globally:
native(P) is side-effect free. (sideff/2)

Usage: native (Pred)
— Description: This predicate is understood natively by CiaoPP.

native/2: PROPERTY

Meta-predicate with arguments: native(goal,?).
General properties: native (P,K)
— The following properties hold globally:
native(P,K) is side-effect free. (sideff/2)

Usage: native(Pred,Key)
— Description: This predicate is understood natively by CiaoPP as Key.

Chapter 7: Basic data types and properties 69

no_rtcheck/1: PROPERTY
Meta-predicate with arguments: no_rtcheck(goal).

General properties: no_rtcheck(G)
— The following properties hold globally:
no_rtcheck(G) is side-effect free. (sideff/2)

Usage: no_rtcheck(G)

— Description: Declares that the assertion in which this comp property appears must
not be checked at run-time.

eval/1: PROPERTY
Meta-predicate with arguments: eval(goal).

Usage: eval(Goal)
— Description: Goal is evaluable at compile-time.

equiv/2: PROPERTY
Meta-predicate with arguments: equiv(goal,goal).

Usage: equiv(Goall,Goal2)
— Description: Goall is equivalent to Goal2.

bind_ins/1: PROPERTY
Meta-predicate with arguments: bind_ins(goal).

Usage: bind_ins(Goal)
— Description: Goal is binding insensitive.

error_free/1: PROPERTY
Meta-predicate with arguments: error_free(goal).

Usage: error_free(Goal)
— Description: Goal is error free.

memo/1: PROPERTY

Meta-predicate with arguments: memo (goal).
Usage: memo (Goal)
— Description: Goal should be memoized (not unfolded).

filter/2: PROPERTY
Usage: filter(Vars,Goal)

— Description: Vars should be filtered during global control).

70 The Ipdoc Documentation Generator

flag_values/1: REGTYPE
Usage: flag_values(X)

— Description: Define the valid flag values

pe_type/1: PROPERTY
Meta-predicate with arguments: pe_type(goal).

Usage: pe_type(Goal)

— Description: Goal will be filtered in partial evaluation time according to the PE types
defined in the assertion.

Chapter 8: Properties which are native to analyzers 71

8 Properties which are native to analyzers

Author(s): Francisco Bueno, Manuel Hermenegildo, Pedro Lépez, Edison Mera.

This library contains a set of properties which are natively understood by the different pro-
gram analyzers of ciaopp. They are used by ciaopp on output and they can also be used as
properties in assertions.

8.1 Usage and interface (native_props)

e ™
e Library usage:
:- use_module(library(assertions(native_props)))
or also as a package :- use_package(nativeprops).
Note the different names of the library and the package.
o Exports:
— Properties:
clique/1,
clique_1/1, constraint/1, covered/1, covered/2, exception/1, exception/2,
fails/1, finite_solutions/1, have_choicepoints/1, indep/1, indep/2, is_det/1,
linear/1, mshare/1, mut_exclusive/1, no_choicepoints/1, no_exception/1, no_
exception/2, no_signal/1, no_signal/2, non_det/1, nonground/1, not_covered/1,
not_fails/1, not_mut_exclusive/1, num_solutions/2, solutions/2, possibly_
fails/1, possibly_nondet/1, relations/2, sideff_hard/1, sideff_pure/1,
sideff_soft/1, signal/1, signal/2, signals/2, size/2, size/3, size_1b/2, size_
0/2, size_ub/2, size_metric/3, size_metric/4, steps/2, steps_1b/2, steps_o/2,
steps_ub/2, tau/1, terminates/1, test_type/2, throws/2, user_output/2.
e Other modules used:
— System library modules:
terms_check, terms_vars, sort, lists, streams, file_utils, system.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support,

internals.
J
8.2 Documentation on exports (native_props)
clique/1: PROPERTY

clique(X)

X is a set of variables of interest, much the same as a sharing group but X represents all
the sharing groups in the powerset of those variables. Similar to a sharing group, a clique
is often translated to ground/1, indep/1, and indep/2 properties.

Usage: clique(X)
— Description: The clique pattern is X.
— The following properties should hold globally:
This predicate is understood natively by CiaoPP as clique(X). (native/2)

72 The Ipdoc Documentation Generator

clique_1/1: PROPERTY

clique_1(X)
X is a set of variables of interest, much the same as a sharing group but X represents all the
sharing groups in the powerset of those variables but disregarding the singletons. Similar
to a sharing group, a clique_1 is often translated to ground/1, indep/1, and indep/2
properties.
Usage: clique_1(X)

— Description: The 1-clique pattern is X.

— The following properties should hold globally:

This predicate is understood natively by CiaoPP as clique_1(X). (native/2)

constraint/1: PROPERTY
constraint (C)
C contains a list of linear (in)equalities that relate variables and int values. For example,
[A < B + 4] is a constraint while [A < BC + 4] or [A = 3.4, B >= C] are not.
Usage: constraint (C)
— Description: C is a list of linear equations

— The following properties hold globally:

This predicate is understood natively by CiaoPP. (native/1)
covered/1: PROPERTY
covered (X)

For any call of the form X there is at least one clause whose test succeeds (i.e., all the calls
of the form X are covered) [DLGH97].

Usage: covered(X)
— Description: All the calls of the form X are covered.

covered/2: PROPERTY
covered(X,Y)
All variables occuring in X occur also in Y.
Usage: covered(X,Y)
— Description: X is covered by Y.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

exception/1: PROPERTY
Meta-predicate with arguments: exception(goal).

Usage: exception(Goal)
— Description: Calls of the form Goal throw an exception.

Chapter 8: Properties which are native to analyzers 73

exception/2: PROPERTY

Meta-predicate with arguments: exception(goal,?).
Usage: exception(Goal,E)

— Description: Calls of the form Goal throw an exception that unifies with E.

fails/1: PROPERTY
fails(X)

Calls of the form X fail.
Meta-predicate with arguments: fails(goal).
Usage: fails(X)
— Description: Calls of the form X fail.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

finite_solutions/1: PROPERTY
finite_solutions(X)

Calls of the form X produce a finite number of solutions [DLGH97].
Meta-predicate with arguments: finite_solutions(goal).
Usage: finite_solutions(X)

— Description: All the calls of the form X have a finite number of solutions.

have_choicepoints/1: PROPERTY
Meta-predicate with arguments: have_choicepoints(goal).

Usage: have_choicepoints(X)

— Description: A call to X creates choicepoints.

indep/1: PROPERTY
Usage: indep(X)

— Description: The variables in pairs in X are pairwise independent.
— The following properties hold globally:
This predicate is understood natively by CiaoPP as indep(X). (native/2)

indep/2: PROPERTY
Usage: indep(X,Y)

— Description: X and Y do not have variables in common.
— The following properties hold globally:
This predicate is understood natively by CiaoPP as indep([[X,Y]]). (native/2)

74 The Ipdoc Documentation Generator

is_det/1: PROPERTY
is_det (X)
All calls of the form X are deterministic, i.e., produce at most one solution, or do not
terminate. In other words, if X succeeds, it can only succeed once. It can still leave choice
points after its execution, but when backtracking into these, it can only fail or go into an
infinite loop.

Meta-predicate with arguments: is_det(goal).
Usage: is_det(X)
— Description: All calls of the form X are deterministic.

linear/1: PROPERTY
linear(X)

X is bound to a term which is linear, i.e., if it contains any variables, such variables appear
only once in the term. For example, [1,2,3] and £ (A,B) are linear terms, while £ (A,A)
is not.

Usage: linear(X)
— Description: X is instantiated to a linear term.
— The following properties hold globally:

This predicate is understood natively by CiaoPP. (native/1)
mshare/1: PROPERTY
mshare (X)

X contains all sharing sets [JL88,MH89] which specify the possible variable occurrences in
the terms to which the variables involved in the clause may be bound. Sharing sets are a
compact way of representing groundness of variables and dependencies between variables.
This representation is however generally difficult to read for humans. For this reason, this
information is often translated to ground/1, indep/1 and indep/2 properties, which are
easier to read.

Usage: mshare (X)
— Description: The sharing pattern is X.
— The following properties should hold globally:
This predicate is understood natively by CiaoPP as sharing(X). (native/2)

mut_exclusive/1: PROPERTY
mut_exclusive (X)

For any call of the form X at most one clause succeeds, i.e., clauses are pairwise exclusive.
Meta-predicate with arguments: mut_exclusive(goal).
Usage: mut_exclusive (X)

— Description: For any call of the form X at most one clause succeeds.

no_choicepoints/1: PROPERTY
Meta-predicate with arguments: no_choicepoints(goal).

Usage: no_choicepoints(X)
— Description: A call to X does not create choicepoints.

Chapter 8: Properties which are native to analyzers 75

no_exception/1: PROPERTY

Meta-predicate with arguments: no_exception(goal).
Usage: no_exception(Goal)
— Description: Calls of the form Goal do not throw any exception.

no_exception/2: PROPERTY
Meta-predicate with arguments: no_exception(goal,?).

Usage: no_exception(Goal,E)
— Description: Calls of the form Goal do not throw exception E.

no_signal /1: PROPERTY
Meta-predicate with arguments: no_signal(goal).

Usage: no_signal(Goal)
— Description: Calls of the form Goal do not send any signal.

no_signal /2: PROPERTY
Meta-predicate with arguments: no_signal (goal,?).

Usage: no_signal(Goal,E)
— Description: Calls of the form Goal do not send the signal E.

non_det/1: PROPERTY
non_det (X)

All calls of the form X are non-deterministic, i.e., produce several solutions.
Meta-predicate with arguments: non_det (goal).
Usage: non_det (X)

— Description: All calls of the form X are non-deterministic.

nonground/1: PROPERTY
Usage: nonground (X)

— Description: X is not ground.
— The following properties should hold globally:
This predicate is understood natively by CiaoPP as not_ground(X). (native/2)

not_covered/1: PROPERTY
not_covered(X)

There is some call of the form X for which there is no clause whose test succeeds [DLGH97].
Usage: not_covered(X)
— Description: Not all of the calls of the form X are covered.

76 The Ipdoc Documentation Generator

not_fails/1: PROPERTY
not_fails(X)

Calls of the form X produce at least one solution, or do not terminate [DLGH97].
Meta-predicate with arguments: not_fails(goal).
Usage: not_fails(X)
— Description: All the calls of the form X do not fail.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

not_mut_exclusive/1: PROPERTY
not_mut_exclusive (X)

For calls of the form X more than one clause may succeed. I.e., clauses are not disjoint for
some call.

Meta-predicate with arguments: not_mut_exclusive(goal).
Usage: not_mut_exclusive (X)
— Description: For some calls of the form X more than one clause may succeed.

num_solutions/2: PROPERTY
Usage 1: num_solutions(X,N)

— Description: All the calls of the form X have N solutions.
— If the following properties should hold at call time:
X is a term which represents a goal, i.e., an atom or a structure. (callable/1)
N is an integer. (int/1)
Usage 2: num_solutions(Goal,Check)

— Description: For a call to Goal, Check(X) succeeds, where X is the number of solu-
tions.

— If the following properties should hold at call time:
Goal is a term which represents a goal, i.e., an atom or a structure. (callable/1)
Check is a term which represents a goal, i.e., an atom or a structure. (callable/1)

solutions/2: PROPERTY
Usage: solutions(Goal,Sols)

— Description: Goal Goal produces the solutions listed in Sols.

— If the following properties should hold at call time:
Goal is a term which represents a goal, i.e., an atom or a structure. (callable/1)
Sols is a list. (1list/1)

possibly_fails/1: PROPERTY
possibly_fails(X)

Non-failure is not ensured for any call of the form X [DLGH97]. In other words, nothing
can be ensured about non-failure nor termination of such calls.
Meta-predicate with arguments: possibly_fails(goal).
Usage: possibly_fails(X)
— Description: Non-failure is not ensured for calls of the form X.

Chapter 8: Properties which are native to analyzers 77

possibly_nondet/1: PROPERTY
possibly_nondet (X)

Non-determinism is not ensured for all calls of the form X. In other words, nothing can
be ensured about determinacy nor termination of such calls.

Usage: possibly_nondet (X)
— Description: Non-determinism is not ensured for calls of the form X.

relations/2: PROPERTY
relations(X,N)

The goal X produces N solutions. In other words, N is the cardinality of the solution set of
X.

Meta-predicate with arguments: relations(goal,?).
Usage: relations(X,N)
— Description: Goal X produces N solutions.

sideff_hard/1: PROPERTY
Meta-predicate with arguments: sideff_hard(goal).

Usage: sideff_hard(X)

— Description: X has hard side-effects, i.e., those that might affect program execution
(e.g., assert/retract).

sideff_pure/1: PROPERTY
Meta-predicate with arguments: sideff_pure(goal).

Usage: sideff_pure(X)
— Description: X is pure, i.e., has no side-effects.

sideff_soft /1: PROPERTY
Meta-predicate with arguments: sideff_soft(goal).

Usage: sideff_soft (X)

— Description: X has soft side-effects, i.e., those not affecting program execution (e.g.,
input/output).

signal/1: PROPERTY
Meta-predicate with arguments: signal(goal).

Usage: signal(Goal)
— Description: Calls of the form Goal throw a signal.

signal /2: PROPERTY
Meta-predicate with arguments: signal(goal,?).

Usage: signal(Goal,E)
— Description: A call to Goal sends a signal that unifies with E.

78 The Ipdoc Documentation Generator

signals/2: PROPERTY
Meta-predicate with arguments: signals(goal,?).

Usage: signals(Goal,Es)

— Description: Calls of the form Goal can generate only the signals that unify with the
terms listed in Es.

size/2: PROPERTY
Usage: size(X,Y)
— Description: Y is the size of argument X, for any approximation.

size/3: PROPERTY
Usage: size(A,X,Y)
— Description: Y is the size of argument X, for the approximation A.

size_lb/2: PROPERTY
size_1b(X,Y)

The minimum size of the terms to which the argument Y is bound is given by the expression
Y. Various measures can be used to determine the size of an argument, e.g., list-length,
term-size, term-depth, integer-value, etc. [DL93,LGHDY96].

Usage: size_1b(X,Y)
— Description: Y is a lower bound on the size of argument X.

size_o/2: PROPERTY
Usage: size_o(X,Y)
— Description: The size of argument X is in the order of Y.

size_ub/2: PROPERTY
size_ub(X,Y)

The maximum size of the terms to which the argument Y is bound is given by the expression
Y. Various measures can be used to determine the size of an argument, e.g., list-length,
term-size, term-depth, integer-value, etc. [DL93,LGHD96].

Usage: size_ub(X,Y)
— Description: Y is a upper bound on the size of argument X.

size_metric/3: PROPERTY
Meta-predicate with arguments: size_metric(goal,?,?).

Usage: size_metric(Head,Var,Metric)
— Description: Metric is the metric of the variable Var, for any approximation.

Chapter 8: Properties which are native to analyzers 79

size_metric/4: PROPERTY
Meta-predicate with arguments: size_metric(goal,?,?,7).
Usage: size_metric(Head,Approx,Var,Metric)

— Description: Metric is the metric of the variable Var, for the approximation Approx.
Currently, Metric can be: int/1, size/1, length/1, depth/2, and void/1.

steps/2: PROPERTY
steps(X,Y)
The time (in resolution steps) spent by any call of the form X is given by the expression Y
Meta-predicate with arguments: steps(goal,?).
Usage: steps(X,Y)
— Description: Y is the cost (number of resolution steps) of any call of the form X.

steps_lb/2: PROPERTY
steps_1b(X,Y)

The minimum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DLGHL97,LGHD96]

Meta-predicate with arguments: steps_lb(goal,?).
Usage: steps_1b(X,Y)
— Description: Y is a lower bound on the cost of any call of the form X.

steps_o/2: PROPERTY
Meta-predicate with arguments: steps_o(goal,?).

Usage: steps_o(X,Y)
— Description: Y is the complexity order of the cost of any call of the form X.

steps_ub/2: PROPERTY
steps_ub(X,Y)

The maximum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DL93,LGHD96].

Meta-predicate with arguments: steps_ub(goal,?).
Usage: steps_ub(X,Y)
— Description: Y is a upper bound on the cost of any call of the form X.

tau/1: PROPERTY
tau(Types)
Types contains a list with the type associations for each variable, in the form
V/[T1,..,TN]. Note that tau is used in object-oriented programs only

Usage: tau(TypeInfo)
— Description: Types is a list of associations between variables and list of types
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

80 The Ipdoc Documentation Generator

terminates/1: PROPERTY
terminates (X)

Calls of the form X always terminate [DLGH97].
Meta-predicate with arguments: terminates(goal).
Usage: terminates (X)

— Description: All calls of the form X terminate.

test_type/2: PROPERTY
Meta-predicate with arguments: test_type(goal,?).

Usage: test_type(X,T)

— Description: Indicates the type of test that a predicate performs. Required by the
nonfailure analyisis.

throws/2: PROPERTY
Meta-predicate with arguments: throws(goal,?).

Usage: throws(Goal,Es)

— Description: Calls of the form Goal can throw only the exceptions that unify with
the terms listed in Es.

user_output/2: PROPERTY
Meta-predicate with arguments: user_output (goal,?).

Usage: user_output (Goal,S)
— Description: Calls of the form Goal write S to standard output.

instance/2: PROPERTY

Usage: instance(Terml,Term2)
— Description: Terml is an instance of Term2.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (native/1)

Chapter 9: Meta-properties 81

9 Meta-properties

Author(s): Francisco Bueno.

This library allows the use of some meta-constructs which provide for specifying properties
of terms which are unknown at the time of the specification, or expressed with a shorthand for
the property definition, i.e., without really defining it.

An example of such use is an assertion which specifies that any property holding upon call
will also hold upon exit:
:- pred p(X) : Prop(X) => Prop(X).

Another example is using shorthands for properties when documenting;:
:- pred p(X) : regtype(X, (" (list;list);list)).

(See below for an explanation of such a regular type.)

9.1 Usage and interface (meta_props)

e N
e Library usage:
:- use_module(library(assertions(meta_props)))
or also as a package :- use_package (metaprops).
Note the different names of the library and the package.
o Exports:
— Properties:
call/2, prop/2, regtype/2.
— Multifiles:
callme/2.
e Other modules used:
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

9.2 Documentation on exports (meta_props)

call/2: PROPERTY
call(P,A)
A has property P (provided that P is a property). Equivalent to P(A).
Usage: call(P,A)
— Description: A has property P.
— If the following properties hold at call time:
P is a term which represents a goal, i.e., an atom or a structure. (callable/1)

The Ipdoc Documentation Generator

prop/2: PROPERTY

Usage: A prop P
— Description: A has property P.
— If the following properties hold at call time:
P has property ~ (callable;prop_abs). ((prop)/2)

regtype/2: PROPERTY

Usage: A regtype T
— Description: A is of type T.
— If the following properties hold at call time:
T has property ~ ((regtype) ; prop_abs). ((prop)/2)

9.3 Documentation on multifiles (meta_props)

callme/2: PREDICATE

(User defined.) A hook predicate you have to define as callme(P,X):- P(X), !. in the
program that uses this library. This is done automatically if the package is used instead
of the library module (but then you should not define callme/2 in your program).

The predicate is multifile.
Usage: callme(A,B)
— The following properties should hold at call time:
A is a term which represents a goal, i.e., an atom or a structure. (callable/1)

9.4 Documentation on internals (meta_props)

prop-abs/1: PROPERTY

prop_abs (Prop)

Prop is a property abstraction, i.e., a parametric property, or a term formed of property
abstractions, where the functors used in the term are escaped by ~.

One particular case of property abstractions are parametric regular type abstractions, i.e.,
a parametric type functor or a ~-escaped term formed of regular type abstractions.

Such abstractions are a short-hand for a corresponding regular type (correspondingly,
property). For example, the following abstraction:

~(list;list);list

denotes terms of the form (X;Y) where 1ist(X) and 1ist (Y) hold and also terms T such
that 1ist (T) holds. It is equivalent to the regular type:

abstract_type((X;Y)):- list(X), list(Y).
abstract_type(T):- list(T).

Usage: prop_abs (Prop)
— Description: Prop is a property abstraction.

Chapter 10: An Example - Documenting a Library Module 83

10 An Example - Documenting a Library Module

Author(s): Manuel Hermenegildo.

A simple example of the use of 1pdoc is this manual, which can be built in the doc directory
of the 1pdoc distribution. Other examples of manuals generated using lpdoc can be found in
the Ciao system and preprocessor doc directories (i.e., most of the Ciao manuals are generated
using lpdoc). Some simpler examples can be found in the examples directory of the lpdoc
distribution. In particular, the chapter following this one contains the documentation generated
automatically for the module defined by file examples/example_module.pl (which for simplic-
ity contains only assertions, i.e., no actual code) and which is included in source form below.
Comparing this code with the output in the following chapter illustrates the use and some of
the capabilities of 1pdoc:

%% The module headers produce documentation on the module interface

%% Exported predicates (+ properties and types) are documented by default

:— module(example_module,
[bar/1,baz/1,aorb/1,tree_of/2,list_or_aorb/2,q/2,r/1, p/1, p/5, u/3,}}
long/1, w/1, mytype/l, t/5, s/1, q/1],
[assertions,basicmodes,fsyntax,regtypes,hiord,nativeprops]) .

%% We import two types: list/1 and list/2 (now in basic_props, which is
%% exported by default from assertions).

%% We reexport list/1
:- reexport(library(engine(basic_props)),[list/1]).

:— use_module(library(lists), [length/2]).
%:- use_module(bar).
:— ensure_loaded(foo).

%% "doc" declarations provide additional information
1= doc(title,"Auto Documenter Output for the Example Module").

:— doc(author, "Anonymous Author 1").
:— doc(author, "Anonymous Author 2").

:- doc(summary,"This is a brief summary description of the module
or file. In this case the file is a library.").

:— doc(module,"This is where general comments on the file go. In
this case the file is a library which contains some assertion examples
for testing the Qem{automatic documentation system}. ").

%% An example of a comment documenting a bug
:— doc(bug,"Library is hard to execute: no actual code!").

%/ Standard declarations are documented with the corresponding predicate
:- data r/1.

:- dynamic q/2.

:- multifile p/3.

:- dynamic p/3.

:— meta_predicate p(7,:,7).

The Ipdoc Documentation Generator

%% Uncommenting this would make these not appear in the documentation
%% :— doc(hide, [bar/1,baz/1]).

%% This is a type definition in Prolog syntax: declaration and code
:— true regtype bar(X) # "@var{X} is an acceptable kind of bar.".

bar(night) .
bar(day) .

%% This is another type definition in Prolog syntax, with no comment.
:- true regtype baz/1.

baz(a).
baz(b) .

%% Two type definitions in ’typedef’ syntax (will be expanded to code as above)]]
%% :— typedef aorb ::= "a;"b.
%h :— typedef listof_or_aorb(X) ::= list(X);aorb.

%% Using functional notation:
:- regtype aorb/1.

aorb := a.
aorb := b.

%% Should use the other function syntax which uses *first argument* for return]]
:- regtype tree_of/2.

tree_of (_) := void.
tree_of (T) tree(“call(T), tree_of(T), tree_of(T)).

%% tree_of(_, void).
%% tree_of (T, tree(X,L,R)) :-

YA TX),
YA tree_of (T,L),
ot tree_of (T,R).

:- regtype list_or_aorb/2.

~1ist(T).
“aorb.

list_or_aorb(T)
list_or_aorb(_T)

%% This is a property definition

%% This comment appears only in the place where the property itself

%% is documented.

:- doc(long/1,"This is a property, describing a list that is longish.
The definition is:

@includedef{long/1}

Chapter 10: An Example - Documenting a Library Module

ll).

%% The comment here will be used to document any predicate which has an
%/ assertion which uses the property
:- prop long(L) # "@var{L} is rather long.".

long(L) :-
length(L,N),
N>100.

%/ Now, a series of assertions:

oo

%% This declares the entry mode of this exported predicate (i.e.,
%/ how it is called from outside).

:- entry p/3 : gnd * var * var.

%% This describes all the calls
:— calls p/3 : foo * bar * baz.

foo().

%% This describes the successes (for a given type of calls)
:- success p/3 : int * int * var => int * int * gnd.

%% This describes a global property (for a given type of calls)
:— comp p/3 : int * int * var + not_fails.

:— doc(p/3,"A @bf{general comment} on the predicate.").
%% Documenting some typical usages of the predicate
:- pred p/3
int * int * var
=> int * int * list
+ (iso,not_fails)
"This mode is nice.".
:— pred p(Preds,Value,Assoc)
: var * var * list
=> int * int * list
+ not_fails # "This mode is also nice.".
:- pred p/3
=> list * int * list
+ (not_fails,not_fails)
"Just playing around.".

:— pred q(A)
list(A)
=> (list(A),gnd(A))
+ not_fails
"Foo".
:- pred q(A)
"Not a bad use at all.".

86

The Ipdoc Documentation Generator

:— pred q/2
: var * {gnd,int}
=> {gnd,int} * int.
:— pred q/2
: int * list
"Non-moded types are best used this way.".

q(L).
:- pred p/1 : var => list.
p().

:= pred r(A)
: list(A)
=> (list(A,int),gnd(A))
+ not_fails
"This uses parametric types".

:- doc(doinclude,s/1). %) Forces documentation even if not exported
:- pred s(A)
: list(A)
=> (list(A),gnd(A))
+ not_fails.

s().

doc(doinclude, [1ist/2,1ist/1]). %% Forces (local) documentation even if
%% not exported

modedef og(A)
=> gnd(A)
"This is a Q@em{mode} definition: the output is ground.".

doc(doinclude,o0g/2) .

modedef og(A,T)
: T(A)
=> gnd(A)
"This is a @em{parametric mode definition}.".

:- pred t(+A,-B,?C,@D,og(E))
:: list * list * int * int * list
long(B)
=> (gnd(C),gnd(A))
+ not_fails
"This predicate uses @em{modes} extensively.".

t(—’ B e e —)'

%% Some other miscellaneous assertions:

Chapter 10: An Example - Documenting a Library Module 87

%% Check is default assertion status anyway...
:- check pred u(+,-,0g).

:- check pred u(int,list(mytype),int).

ul_, _,).

%% ¢ ‘true’’ status is normally compiler output
:— true pred w(+list(mytype)).

mytype (_) .
w(l).
:— doc(doinclude,is/2).
:— trust pred is(Num,Expr) : arithexpression(Expr) => num(Num)
"Typical way to describe/document an external predicate (e.g.,

written in C).".

:- doc(doinclude,p/5) .
:- pred p(og(int),in,@list(int),-,+A) + steps_lb(1l+length(A)).

p(_, —y —y _,) := _ is 1.

%% Version information. The ciao.el emacs mode allows automatic maintenance

88

The Ipdoc Documentation Generator

Chapter 11: Auto Documenter Output for the Example Module 89

11 Auto Documenter Output for the Example
Module

Author(s): Anonymous Author 1, Anonymous Author 2.

This is where general comments on the file go. In this case the file is a library which contains
some assertion examples for testing the automatic documentation system.

11.1 Usage and interface (example_module)

e p
e Library usage:
:- use_module (library(example_module)) .
e Exports:
— Predicates:
q/2, r/1, p/1, p/5, u/3, w/1, mytype/1, t/5, s/1, q/1.
— Properties:
long/1.
— Regular Types:
bar/1, baz/1, aorb/1, tree_of/2, list_or_aorb/2.
— Multifiles:
p/3.
e Other modules used:
— Files of module user:
foo.
— System library modules:
assertions/native_props, engine/basic_props, lists.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

/)

11.2 Documentation on exports (example_module)
bar/1: REGTYPE

Usage: bar (X)

— Description: X is an acceptable kind of bar.

baz/1: REGTYPE

A regular type, defined as follows:

baz(a).

baz(b) .

90 The Ipdoc Documentation Generator

aorb/1: REGTYPE
A regular type, defined as follows:
aorb(a).
aorb(b).
tree_of/2: REGTYPE

A regular type, defined as follows:
tree_of (_1,void).
tree_of (T,tree(_1,_2,_3)) :-
call(T,_1),
tree_of (T,_2),
tree_of (T,_3).

list_or_aorb/2: REGTYPE
A regular type, defined as follows:

list_or_aorb(T,_1) :-

list(T,_1).
list_or_aorb(_T,_1) :-
aorb(_1).
q/2: PREDICATE
The predicate is of type dynamic.
Usage 1:
— The following properties should hold at call time:
Argl is a free variable. (var/1)
Arg?2 is ground. (gnd/1)
Arg?2 is an integer. (int/1)
— The following properties should hold upon exit:
Argl is ground. (gnd/1)
Argi is an integer. (int/1)
Arg2 is an integer. (int/1)
Usage 2:

— Description: Non-moded types are best used this way.
— Call and exit should be compatible with:

Argi is an integer. (int/1)
Arg?2 is a list. (1list/1)
r/1: PREDICATE
The predicate is of type data.
Usage: r(4A)

— Description: This uses parametric types

Chapter 11: Auto Documenter Output for the Example Module

p/1:

p/5:

u/3:

The following properties should hold at call time:
A is a list.

The following properties should hold upon exit:

A is a list of ints.

A is ground.

The following properties should hold globally:

All the calls of the form r(A) do not fail.

Usage:

The following properties should hold at call time:
Argl is a free variable.

The following properties should hold upon exit:
Argl is a list.

Usage: p(Argl,Arg2,Arg3,Arg4d,A)

Call and exit should be compatible with:

Argl is an integer.

Arg3 is a list of ints.

The following properties should hold at call time:
Arg2 is currently ground (it contains no variables).
Arg4 is a free variable.

A is currently a term which is not a free variable.
The following properties should hold upon exit:
Argl is ground.

Arg?2 is currently ground (it contains no variables).
The following properties should hold globally:

Arg3 is not further instantiated.

91

(1list/1)

(1ist/2)
(gnd/1)

(not_fails/1)

PREDICATE

(var/1)

(1list/1)
PREDICATE

(int/1)

(1list/2)

(ground/1)

(var/1)

(nonvar/1)

(gnd/1)
(ground/1)

(not_further_inst/2)

1+length(A) is a lower bound on the cost of any call of the form

p(Argl,Arg2,Arg3,Argd,).

Usage 1:

The following properties should hold at call time:
Argl is currently a term which is not a free variable.
Arg?2 is a free variable.

The following properties should hold upon exit:

Arg3 is ground.

(steps_1b/2)

PREDICATE

(nonvar/1)
(var/1)

(gnd/1)

92 The Ipdoc Documentation Generator
long/1: PROPERTY
This is a property, describing a list that is longish. The definition is:
long(L) :-
length(L,N),
N>100.
Usage: long(L)
— Description: L is rather long.
w/1: PREDICATE
Usage:
— Clalls should, and exit will be compatible with:
Arg1 is a list of mytypes. (1list/2)
— The following properties should hold at call time:
Argl is currently a term which is not a free variable. (nonvar/1)
mytype/1: PREDICATE
No further documentation available for this predicate.
t/5: PREDICATE
Usage: t(A,B,C,D,E)
— Description: This predicate uses modes extensively.
— Call and exit should be compatible with:
A is a list. (1list/1)
B is a list. (1list/1)
C is an integer. (int/1)
D is an integer. (int/1)
E is a list. (1list/1)

The following properties should hold at call time:
A is currently a term which is not a free variable.
B is a free variable.

B is rather long.

The following properties should hold upon exit:

E is ground.

C is ground.

A is ground.

The following properties should hold globally:

D is not further instantiated.

All the calls of the form t(A,B,C,D,E) do not fail.

(nonvar/1)
(var/1)
(long/1)

(gnd/1)
(gnd/1)
(gnd/1)

(not_further_inst/2)
(not_fails/1)

Chapter 11: Auto Documenter Output for the Example Module

s/1:

Usage: s(4A)

— The following properties should hold at call time:
A is a list.

— The following properties should hold upon exit:
A is a list.
A is ground.

— The following properties should hold globally:
All the calls of the form s(A) do not fail.

q/1:
Usage 1: q(A)

— Description: Foo

— The following properties should hold at call time:
A is a list.

— The following properties should hold upon exit:
A is a list.
A is ground.

— The following properties should hold globally:
All the calls of the form q(A) do not fail.

Usage 2: q(4)
— Description: Not a bad use at all.

list /1:
General properties: 1ist (L)
— The following properties hold globally:

list (L) is side-effect free.
list (L)
— If the following properties hold at call time:
L is currently ground (it contains no variables).
then the following properties hold globally:
list (L) is evaluable at compile-time.
All calls of the form 1ist (L) are deterministic.
list(T)
— The following properties hold upon exit:
T is a list.
Usage: 1list (L)
— Description: L is a list.

93

PREDICATE

(list/1)

(1ist/1)
(gnd/1)

(not_fails/1)

PREDICATE

(1list/1)

(1list/1)
(gnd/1)

(not_fails/1)

REGTYPE

(sideff/2)

(ground/1)

(eval/1)
(is_det/1)

(1list/1)

94

The Ipdoc Documentation Generator

11.3 Documentation on multifiles (example_module)

p/3:

A general comment on the predicate.

The predicate is multifile.

The predicate is of type dynamic.

General properties:

If the following properties hold at call time:
Argl is ground.

Arg?2 is a free variable.

Arg3 is a free variable.

The following properties should hold at call time:
foo(Argl)

Arg?2 is an acceptable kind of bar.
baz(Arg3)

If the following properties hold at call time:
Argl is an integer.

Arg?2 is an integer.

Arg3 is a free variable.

then the following properties should hold upon exit:

Argl is an integer.

Arg2 is an integer.

Arg3 is ground.

If the following properties hold at call time:

Argl is an integer.

Arg?2 is an integer.

Arg3 is a free variable.

then the following properties should hold globally:

All the calls of the form p(Argl,Arg2,Arg3) do not fail.

Usage 1:

Description: This mode is nice.

The following properties should hold at call time:
Argl is an integer.

Arg?2 is an integer.

Arg3 is a free variable.

The following properties should hold upon exit:
Argl is an integer.

Arg?2 is an integer.

Arg3 is a list.

The following properties should hold globally:
Complies with the ISO-Prolog standard.

All the calls of the form p(Argl,Arg2,Arg3) do not fail.

Usage 2: p(Preds,Value,Assoc)

PREDICATE

(gnd/1)
(var/1)
(var/1)

(undefined property)
(bar/1)
(baz/1)

(int/1)
(int/1)
(var/1)

(int/1)
(int/1)
(gnd/1)

(int/1)
(int/1)
(var/1)

(not_fails/1)

(int/1)
(int/1)
(var/1)

(int/1)
(int/1)
(1ist/1)

(iso/1)
(not_fails/1)

Chapter 11: Auto Documenter Output for the Example Module 95

— Description: This mode is also nice.
— The following properties should hold at call time:

Preds is a free variable. (var/1)

Value is a free variable. (var/1)

Assoc is a list. (1list/1)
— The following properties should hold upon exit:

Preds is an integer. (int/1)

Value is an integer. (int/1)

Assoc is a list. (list/1)
— The following properties should hold globally:

All the calls of the form p(Preds,Value,Assoc) do not fail. (not_fails/1)

Usage 3:

— Description: Just playing around.
— The following properties should hold upon exit:

Argl is a list. (1list/1)

Arg2 is an integer. (int/1)

Arg3 is a list. (list/1)
— The following properties should hold globally:

All the calls of the form p(Argl,Arg2,Arg3) do not fail. (not_fails/1)

All the calls of the form p(Argl,Arg2,Arg3) do not fail. (not_fails/1)

11.4 Documentation on internals (example_module)

list /2: REGTYPE
General properties: 1ist(L,T)

— The following properties hold globally:

list(L,T) is side-effect free. (sideff/2)
list(L,T)
— If the following properties hold at call time:
L is currently ground (it contains no variables). (ground/1)
T is currently ground (it contains no variables). (ground/1)
then the following properties hold globally:
list(L,T) is evaluable at compile-time. (eval/1)
list(X,T)
— The following properties hold upon exit:
X is a list. (1list/1)

Usage: 1ist(L,T)
— Description: L is a list of Ts.

96 The Ipdoc Documentation Generator

og/2: MODE
Usage: og(A,T)

— Description: This is a parametric mode definition.
— Call and exit are compatible with:

call(T,A) (undefined property)
— The following properties are added upon exit:
A is ground. (gnd/1)
is/2: PREDICATE

Usage: Num is Expr
— Description: Typical way to describe/document an external predicate (e.g., written
in C).
— The following properties should hold at call time:
Expr is an arithmetic expression. (arithexpression/1)
— The following properties hold upon exit:
Num is a number. (num/1)

Chapter 12: Run-time checking of assertions 97

12 Run-time checking of assertions

Author(s): Edison Mera.

This package provides a complete implementation of run-time checks of predicate assertions.
The program is instrumented to check such assertions at run time, and in case a property does
not hold, the error is reported. Note that there is also an older package called rtchecks, by David
Trallero. The advantage of this one is that it can be used independently of CiaoPP and also has
updated functionality.

There are two main applications of run-time checks:

e To improve debugging of certain predicates, specifying some expected behavior that is
checked at run-time with the assertions.

e To avoid manual implementation of run-time checks that should be done in some predicates,
leaving the code clean and understandable.
The run-time checks can be configured using prolog flags. Below we itemize the valid prolog
flags with its values and a brief explanation of the meaning:
e rtchecks_level
e exports: Only use rtchecks for external calls of the exported predicates.
e inner : Use also rtchecks for internal calls. Default.
e rtchecks_trust
e no : Disable rtchecks for trust assertions.
e yes : FEnable rtchecks for trust assertions. Default.
e rtchecks_entry
e no : Disable rtchecks for entry assertions.
e yes : Enable rtchecks for entry assertions. Default.
e rtchecks_exit
e no : Disable rtchecks for exit assertions.
e yes : Enable rtchecks for exit assertions. Default.
e rtchecks_test
e no : Disable rtchecks for test assertions. Default.

e yes : Enable rtchecks for test assertions. Used for debugging purposes, but is better
to use the unittest library.

e rtchecks_inline

e no : Instrument rtchecks using call to library predicates present in rtchecks_rt.pl,
nativeprops.pl and basic_props.pl. In this way, space is saved, but sacrifying
performance due to usage of meta calls and external methods in the libraries. Default.

e yes : Expand library predicates inline as far as possible. In this way, the code is faster,
because its avoids metacalls and usage of external methods, but the final executable
could be bigger.

e rtchecks_asrloc Controls the usage of locators for the assertions in the error messages.
The locator says the file and lines that contains the assertion that had failed. Valid values
are:

e no : Disabled.

e yes : Enabled. Default.

e rtchecks_predloc Controls the usage of locators for the predicate that caused the run-time
check error. The locator says the first clause of the predicate that the violated assertion
refers to.

e no : Disabled.

98 The Ipdoc Documentation Generator

e yes : Enabled, Default.
e rtchecks_callloc
e no : Do not show the stack of predicates that caused the failure

e predicate: Show the stack of predicates that caused the failure. Instrument it in the
predicate. Default.

e literal : Show the stack of predicates that caused the failure. Instrument it in the
literal. This mode provides more information, because reports also the literal in the
body of the predicate.

e rtchecks_namefmt
e long : Show the name of predicates, properties and the values of the variables
e short : Only show the name of the predicate in a reduced format. Default.

12.1 Usage and interface (rtchecks_doc)

e Library usage:
:- use_package (rtchecks) .
or
:—module(...,...,[rtchecks]).
e Other modules used:
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

Chapter 13: Unit Testing Library 99

13 Unit Testing Library

Author(s): Edison Mera.

This library provides an extension of the Ciao assertion language which allows writing unit
tests. The central idea is to use the assertion language to provide specifications of test cases for
a given predicate. The package also provides some special properties that are convenient when
specifying unit tests and the required run-time libraries.

In general, a test assertion is written as follows:

:- test predicate(Al, A2, ..., An)
<Precondition>
=> <Postcondition>
+ <Global properties>
<Comment>.

Where the fields of the test assertion have the usual meaning in Ciao assertions, i.e., they
contain conjunctions of properties which must hold at certain points in the execution. Here
we give a somewhat more operational (“test oriented”), reading to these fields: predicate/n
is the predicate to be tested. Precondition is a goal that is called before the predicate being
tested, and can be used to generate values of the input parameters. Postcondition is a goal
that should succeed after predicate/n has been called. The idea appears to be simple, but
note that due to the non-determinism of logic programs, the test engine needs to test all the
solutions that can be tested up to given limits (for example, a maximum number of solutions,
or a given time-out). Properties specifies some global properties that the predicate should
meet, for example, not_fails means that the program does not fail, exception(error(a,b))
means that the program should throw the exception error(a,b), and so on. But there are
some specific properties that only applies to testing specified in the module unittest_props.pl,
for example times(N) specifies that the given test should be executed N times, try_sols(N)
specifies that the first N solutions of the predicate predicate/n are tested. Comment is a string
that document the test.

A convenient way to run these tests is by selecting options in the CiaoDbg menu within the
development environment:

1. Run tests in current module: execute only the tests specified in the current module.

2. Run tests in all related modules: execute the tests specified in the module and in all
the modules being used by this.

3. Show untested predicates: show the exported predicates that do not have any test asser-
tion.

13.1 Additional notes

1. The test assertions allow performing wunit testing, i.e., in Ciao, performing tests at the
predicate level.

2. The tests currently can only be applied to exported predicates.

3. If you need to write tests for predicates that are spread over several modules, but work
together, then it is best to create a separate module, and reexport to the predicates required
to build the test. This allows performing integration testing, using the same syntax of the
unit tests.

4. The Ciao system includes a good (and growing) number of unit tests. To run all the tests
among the other standard tests within the CiaoDE run the following (at the top level of
the source tree):

./ciaosetup runtests

100 The Ipdoc Documentation Generator

13.2 Usage and interface (unittest_doc)

e Library usage:
:- use_module(library(unittest)).
e Other modules used:
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

Chapter 14: Installing Ipdoc 101

14 Installing lpdoc

Author(s): Manuel Hermenegildo.

[This documentation is outdated.]

The source distribution contains all the source code and libraries and can be compiled on a
supported Prolog system
1pdoc is developed using Ciao Prolog). The latest publically distributed version of lpdoc is
available from http:://www.clip.dia.fi.upm.es/Software/Ciao. A newer version in Beta
test is often available in http:://www.clip.dia.fi.upm.es/Software/Beta/Ciao.

14.1 Installing the source distribution (Ipdoc)

e Before installing lpdoc, you may want to read Section 14.2 [Other software packages re-
quired (Ipdoc)], page 101. Make sure that emacs is installed in your system

e Uncompress (using gunzip) and unpackage (using tar -xpf) the distribution in a suitable
directory. This will create a new directory called 1pdoc as well as a link 1pdoc-X.Y to this
directory, where X.Y is the version number of the distribution. The -p option in the tar
command ensures that the relative dates of the files in the package are preserved, which is
needed for correct operation of the Makefiles.

e Enter the newly created directory and if needed edit the file LPDOCSETTINGS.pl in a text
editor, but in general the default options works well (edit the one in that directory, not the
ones in the subdirectories).

e Decide which Prolog/CLP system you will use for compiling 1pdoc (actually, currently
only Ciao is supported — but porting to, e.g., SICStus Prolog should not be too diffi-
cult) and modify the first part of the LPDOCSETTINGS.pl file accordingly. The DOCDIR
directory should not be an existing info directory, since this will overwrite the dir file
in that directory.

e Select the directories in which you want the 1pdoc binaries, libraries, and documents
installed, by setting the corresponding variables in LPDOCSETTINGS.pl.

e Type lpmake all. This should create the 1pdoc executable and compile related libraries.

e Type lpmake install. This should install it in the BINDIR directory, install the 1pdoc
library in a separate directory in the LIBDIR directory, and install the 1pdoc documentation
in the DOCDIR directory.

e In order for the lpdoc documentation to be available to users automatically, certain
environment variables have to be set. The installation leaves files suitable for inclusion
in initialization scripts (e.g., DOTcshrc for csh) in the 1pdoc library.

14.2 Other software packages required (Ipdoc)

The most basic functionality of 1pdoc (generating manuals in .texi format, short manual
entries in .manl format, generating indexr files) is essentially self contained. However, using
the full capabilities of 1pdoc requires having several other software packages installed in the
system. Fortunately, all of these packages are public domain software and they will normally be
already installed in, e.g., a standard Linux distribution. It should be relatively easy to get and
install the required packages in other Unix-like packages or even in Windows, under the Cygwin
environment.

e Basic requirements: the Makefiles used by lpdoc require GNU Make (gmake), and for
now have only been designed for UN*X-like operating systems.

102

The Ipdoc Documentation Generator

Generating .dvi files: 1pdoc normally generates .texi files (actually, a number of .texic
files). From the .texi files, .dvi files are generated using the standard tex package di-
rectly. The .dvi files can also be generated with the GNU Texinfo package, which provides,
among others, the texi2dvi command. However, Texinfo itself requires the standard tex
document processing package. In order to use texi2dvi instead of tex when processing
documents you should change the variable TEX in the Makefile.skel file in the 1ib direc-
tory before installing 1pdoc. Generating the .dvi file requires that the texinfo.tex file
(containing the relevant macros) be available to tex. This file is normally included with
modern tex distributions, although it may be obsolete. An appropriate and up-to-date one
for 1pdoc is provided with the 1pdoc distribution, stored in the 1pdoc library during instal-
lation, and used automatically when 1lpdoc runs tex. The texindex package is required in
order to process the indices. If you use references in your manual, then the bibtex package
is also needed. texindex and bibtex are included with most tex distributions.

Generating .ps files: .ps files are generated from the .dvi files using the dvips command
(this, again, can be changed in the Makefile.skel file in the 1ib directory). This command
is included with standard tex distributions.

Generating .pdf files: .pdf files are currently generated from the .texi file using the
pdftex command (this, again, can be changed in the Makefile.skel file in the 1ib direc-
tory). This command is included in current Linux distributions.

Generating .html files: .html files are generated directly from the .texi file using the
texi2html command (this, again, can be changed in the Makefile.skel file in the 1ib
directory). This command is a perl script and is included with the 1lpdoc distribution,
and installed in the library (so that it does not overwrite other existing versions). It is also
typically included in the Texinfo distribution. A required intermediate step is to resolve
the link references which appear in the .texi file (the .texi file includes all the .texic
files and has all references resolved). This is done using the emacs editor in batch mode,
calling functions in the emacs-library.el file included in the 1ib directory of the 1lpdoc
distribution. Thus, a recent version of emacs is required for this purpose.

Generating .info files: .info files are also generated directly from the .texi file using
the makeinfo command (this, again, can be changed in the Makefile.skel file in the 1ib
directory). This command is included in the Texinfo distribution. Resolving the link
references in the .texi file is also required as above.

If pictures are used in the manual, and html output is selected, the commands pstogif
and cjpeg are also required, in order to convert the figures from .eps to . jpg format.

PART II - LPdoc Internals Manual

PART 1II - LPdoc Internals Manual

103

104 The Ipdoc Documentation Generator

Chapter 15: Documentation Generation Library 105

15 Documentation Generation Library

Author(s): Manuel Hermenegildo, Jose F. Morales.

This library provides some predicates which generate documentation automatically for a
given module or application, using the declarations and assertions used in the module itself as
input (see the assertions library). By default, only the exported predicates of the module
appear in the documentation. The predicates will be documented in the order in which they
appear in the module/1 or module/2 declaration.

The idea of this package is on one hand to reuse the information present in the assertions
and on the other to help ensure that code and documentation are kept as coherent as possible.
Hopefully, keeping them close together should help in this always difficult task. The resulting
documentation is somewhat rigidly structured, but generally sufficient for a reference manual,
provided a little effort is put into the assertions and comments. The end product understandably
depends heavily on how much work is put into adding additional comments to the source. Some
documentation will be generated in any case, but it is recommended that, at the minimum, a
module title and a comment for each of the exported predicates be provided.

[Note: This part is obsolete. — JFMC j

The output format in which the documentation is generated is defined by the backend modules
(autodoc_texinfo, autodoc_html, autodoc_man, etc.).

The main output format supported is texinfo (see The GNU Texinfo Documentation System
manual for more info), from which printed manuals and several other printing and on-line formats
can be easily generated automatically (including info, html, etc.). There is also some limited
support for direct output in unix man format and direct html (but note that html can also
be generated in a better way by first generating texinfo and then using one of the available
converters). For texinfo, the documentation for a module is a texinfo chapter, suitable for
inclusion in a wrapper “main” document file. A simple example of the use of this library
for generating a texinfo reference manual (including a driver script, useful Makefiles, etc.) is
included with the library source code. Other examples can be found in the Ciao documentation
directory (i.e., the Ciao manuals themselves).

A simple example of the use of this library for generating a texinfo reference manual (in-
cluding a driver script, useful Makefiles, etc.) is included with the library source code. Other
examples can be found in the Ciao documentation directory (i.e., the Ciao manuals themselves).

106 The Ipdoc Documentation Generator

15.1 Usage and interface (autodoc)

N
e Library usage:
:- use_module(library (autodoc)) .
e Exports:
— Predicates:
index_comment/2, reset_output_dir_db/0, ensure_output_dir_prepared/2,
get_autodoc_opts/3, autodoc_gen_doctree/5, fmt_infodir_entry/3, autodoc_
compute_grefs/3, autodoc_translate_doctree/3, autodoc_finish/1, autodoc_
gen_alternative/2.
— Multifiles:
autodoc_finish_hook/1, autodoc_gen_alternative_hook/2.
e Other modules used:
— Application modules:
lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_settings)),
lpdocsrc(src(autodoc_filesystem)), 1lpdocsrc(src(autodoc_structure)),
lpdocsrc(src(autodoc_doctree)), lpdocsrc(src(autodoc_refsdb)),
lpdocsrc(src(autodoc_parse)), lpdocsrc(src(autodoc_
index)), lpdocsrc(src(comments)), lpdocsrc(src(autodoc_html_resources)),
lpdocsrc(src(autodoc_texinfo)).
— System library modules:
format, ttyout, aggregates, read,
make/make_rt, dict, compiler/compiler, assertions/assrt_lib, compiler/c_itf,
assertions/assertions_props, messages, filenames, 1lists, terms, make/system_
extra, system.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.
)
15.2 Documentation on exports (autodoc)
index_comment /2: PREDICATE
Usage: index_comment (Index,Text)
— Description: Type is a type of index which is supported. Text describes the index
contents.
— The following properties should hold upon exit:
Index is currently instantiated to an atom. (atom/1)
Text is a string (a list of character codes). (string/1)
reset_output_dir_db/0: PREDICATE

No further documentation available for this predicate.

Chapter 15: Documentation Generation Library 107

ensure_output_dir_prepared/2: PREDICATE
Usage: ensure_output_dir_prepared(Backend,Opts)

— Description: Ensure that the output directories for backend Backend are prepared.

get_autodoc_opts/3: PREDICATE
Usage: get_autodoc_opts(Backend,Mod,Opts)

— Description: Get the list of documentation options Opts for the FileBase file.
— The following properties should hold at call time:

Backend is an atom. (atm/1)

Mod is an atom. (atm/1)

Opts is a list of supported_options. (1list/2)
autodoc_gen_doctree/5: PREDICATE

Usage: autodoc_gen_doctree(Backend,FileBase,SourceSuffix,Opts,Mod)

— Description: FileBase is the module specifier of the source file being documented
(without extension, SourceSuffix is the suffix of the source). The output is a file
whose contents document the main file, based on any assertions present in that file.
The documentation is produced in the format given by Backend (the name of the
output file also depends on Backend). The formats supported are given by backend_

id/1.
— Call and exit should be compatible with.:
Backend is a supported backend. (backend_id/1)
FileBase is the base name of a file (without extension). (basename/1)
SourceSuffix is an atom. (atm/1)
Opts is a list of supported_options. (1list/2)
Mod is an atom. (atm/1)
fmt_infodir_entry/3: PREDICATE

Usage: fmt_infodir_entry(DocSt,Version,Mod)

— Description: Generates a one line description (ASCII) of the application or library
in a file for the directory of emacs info manuals.

— The following properties should hold at call time:

docstate(DocSt) (docstate/1)
Version is any term. (term/1)
Mod is the base name of a file (without extension). (basename/1)
autodoc_compute_grefs/3: PREDICATE
Usage:

— Description: Compute the globally resolved references (including bibliography)

108 The Ipdoc Documentation Generator

autodoc_translate_doctree/3: PREDICATE
Usage:

— Description: Translate the doctree using the specific backend

autodoc_finish/1: PREDICATE
No further documentation available for this predicate.

autodoc_gen_alternative/2: PREDICATE
No further documentation available for this predicate.

15.3 Documentation on multifiles (autodoc)

autodoc_finish_hook/1: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

autodoc_gen_alternative_hook/2: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

Chapter 16: Internal State for Documentation Generation 109

16 Internal State for Documentation Generation

Author(s): Manuel Hermenegildo, Jose F. Morales.
This module defines the internal state of the documentation generation (for a single module).

16.1 Usage and interface (autodoc_state)

N
e Library usage:
:- use_module (1library(autodoc_state)).
o Exports:
— Predicates:
option_comment/2, backend_ignores_components/1, backend_alt_format/2, top_
suffix/2, docst_backend/2, docst_currmod/2, docst_set_currmod/3, docst_
opts/2, docst_set_opts/3, docst_inputfile/2, docst_new_no_src/4, docst_new_
with_src/6, docst_new_sub/3, docst_message/2, docst_message/3, docst_opt/2,
docst_currmod_is_main/1, docst_no_components/1, docst_modname/2, labgen_
init/1, labgen_clean/1, labgen_
get/2, docst_mvar_lookup/3, docst_mvar_replace/4, docst_mvar_get/3, docst_
mdata_clean/1, docst_mdata_assertz/2, docst_mdata_save/1, docst_gdata/3,
docst_gdata_query/2, docst_gdata_query/3, docst_gdata_restore/1, docst_
gdata_clean/1, docst_gvar_save/2, docst_gvar_restore/2, docst_has_index/2,
all_indices/2, get_doc/4, get_doc_field/3, get_doc_field_dict/3, bind_dict_
varnames/1, get_mod_doc/3, docst_modtype/2, get_first_loc_for_pred/3.
— Properties:
supported_option/1.
— Regular Types:
backend_id/1, docstate/1, modtype/1.
e Other modules used:
— Application modules:
lpdocsrc(src(autodoc_settings)), 1lpdocsrc(src(autodoc_filesystem)),
lpdocsrc(src(autodoc_structure)), lpdocsrc(src(autodoc_
doctree)), lpdocsrc(src(autodoc_refsdb)), lpdocsrc(src(autodoc_parse)),
lpdocsrc(src(autodoc_index)), 1pdocsrc(src(comments)).
— System library modules:
make/make_rt, dict, compiler/compiler, assertions/assrt_lib, compiler/c_itf,
assertions/assertions_props, messages, filenames, 1lists, terms, make/system_
extra, write, read, system, aggregates.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.
N J
16.2 Documentation on exports (autodoc_state)
supported_option/1: PROPERTY

Usage: supported_option(Option)

110

The Ipdoc Documentation Generator

— Description: Option is a supported documentation option.

option_comment /2: PREDICATE
Usage: option_comment (Option,Text)

— Description: Option is a documentation option which is supported. Text describes

the effect of selecting that option. Currently supported options are:

option_comment(’-v’,"Verbose output (good for debugging). .1
option_comment (’-nobugs’,"Do not include information on bugs. ") .1
option_comment (’-noauthors’,"Do not include author names. ")
option_comment (’-nostability’,"Do not include stability comment. '
option_comment (’-noversion’,"Do not include version information. ")
option_comment (’--no-versioned-output’,"Do not include version in the outpu
option_comment (’-nochangelog’,"Do not include change log. '
option_comment (’-nopatches’,"Do not include comments for patches. ")
option_comment (’-modes’,"Do not translate modes and their arguments
(except for properties)
option_comment (’-headprops’,"Do not move head properties to body. ")
option_comment(’-literalprops’,"Do not use text to document properties.
option_comment (’-nopropnames’,"Do not include property names in prop text. '
option_comment (’-noundefined’,"Do not signal undefined properties in text. '
option_comment (’-nopropsepln’,"Do not put each property in a separate line.'
option_comment (’-nobiblio’,"Do not include a bibliographical ’References’ aj
option_comment (’-nosysmods’,"Do not include system modules in list off}
libraries used.").
option_comment (’-noengmods’,"Do not include system engine modules in list]]
of libraries used.").
option_comment (’-noisoline’,"Do not include *textual* description that af]
given usage conforms to the IS0 standard.").
option_comment (’-propmods’,"Include module name to which props belong.") .|}
option_comment (’-nopropuses’,"Do not Include property uses (from assertions’
option_comment (’-shorttoc’,"Produce shorter table of contents (no entries|]
for individual defs of preds, props, etc.).'
option_comment (’-regtypeprops’,"Include in the doc for regtypes the globall]
prop stating that they are indeed regtypes.'
option_comment (’-onesided’,"For printing on one side (default is two).").J}
option_comment (’-nomath’,"Disable mathematical environments.").

The following properties should hold upon exit:
Option is a supported documentation option. (supported_option/1)
Text is a string (a list of character codes). (string/1)

backend_id/1: REGTYPE
Usage: backend_id(Id)

— Description: 1d is a supported backend.

backend_ignores_components/1: PREDICATE
Usage: backend_ignores_components(Id)

— Description: 1Id does not take into account components (only documents the mainfile)

Chapter 16: Internal State for Documentation Generation 111

backend_alt_format/2: PREDICATE
Usage: backend_alt_format(Id,Ext)

— Description: Ext is an alternative file format that can be generated by the backend
Id

top_suffix/2: PREDICATE
Usage: top_suffix(FileFormat,PrincipalExt)

— Description: PrincipalExt is extension of the target file that will generate the file
with FileFormat extension.

docstate/1: REGTYPE
A regular type, defined as follows:

docstate(docstate (Backend,Name,Opts,MVarDic,I)) :-
backend_id(Backend),
atom(Name),
list(Opts,supported_option),
dictionary(MVarDic),
filename(I).

docst_backend /2: PREDICATE
No further documentation available for this predicate.

docst_currmod/2: PREDICATE
No further documentation available for this predicate.

docst_set_currmod/3: PREDICATE
No further documentation available for this predicate.

docst_opts/2: PREDICATE
No further documentation available for this predicate.

docst_set_opts/3: PREDICATE
No further documentation available for this predicate.

docst_inputfile/2: PREDICATE
No further documentation available for this predicate.

112 The Ipdoc Documentation Generator

docst_new_no_src/4: PREDICATE
No further documentation available for this predicate.

docst_new_with_src/6: PREDICATE
No further documentation available for this predicate.

docst_new_sub/3: PREDICATE
No further documentation available for this predicate.

docst_message/2: PREDICATE
No further documentation available for this predicate.

docst_message/3: PREDICATE
No further documentation available for this predicate.

docst_opt/2: PREDICATE

No further documentation available for this predicate.

docst_currmod_is_main/1: PREDICATE
No further documentation available for this predicate.

docst_no_components/1: PREDICATE
Usage: docst_no_components(DocSt)

— Description: DocSt specify an empty list of components

docst_modname/2: PREDICATE
Usage: docst_modname (DocSt ,ModName)

— Description: ModName is the name of the module that we are documenting.

labgen_init /1: PREDICATE

No further documentation available for this predicate.

labgen_clean/1: PREDICATE
No further documentation available for this predicate.

Chapter 16: Internal State for Documentation Generation

labgen_get /2:

No further documentation available for this predicate.

docst_mvar_lookup/3:

No further documentation available for this predicate.

docst_mvar_replace/4:

No further documentation available for this predicate.

docst_mvar_get/3:

No further documentation available for this predicate.

docst_mdata_clean/1:

No further documentation available for this predicate.

docst_mdata_assertz/2:

No further documentation available for this predicate.

docst_mdata_save/1:

No further documentation available for this predicate.

docst_gdata/3:

No further documentation available for this predicate.

The predicate is of type data.

docst_gdata_query/2:

No further documentation available for this predicate.

docst_gdata_query/3:

No further documentation available for this predicate.

docst_gdata_restore/1:

No further documentation available for this predicate.

docst_gdata_clean/1:

No further documentation available for this predicate.

113

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

114 The Ipdoc Documentation Generator

docst_gvar_save/2:
No further documentation available for this predicate.

docst_gvar_restore/2:
No further documentation available for this predicate.

docst_has_index/2:
No further documentation available for this predicate.

all_indices/2:
No further documentation available for this predicate.

get_doc/4:
No further documentation available for this predicate.

get_doc_field/3:

No further documentation available for this predicate.

get_doc_field _dict/3:

No further documentation available for this predicate.

bind_dict_varnames/1:
Usage: bind_dict_varnames(Dict)

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

— Description: Binds the variables in Dict to the corresponding names (i.e., the names

that appeared in the source during read.

get_mod_doc/3:
No further documentation available for this predicate.

modtype/1:
modtype (part) .
modtype (application).
modtype (documentation) .
modtype (module) .
modtype (user) .
modtype (include) .
modtype (package) .

Usage:

— Description: Represents the type of file being documented.

PREDICATE

REGTYPE

Chapter 16: Internal State for Documentation Generation 115

docst_modtype/2: PREDICATE
No further documentation available for this predicate.

get_first_loc_for_pred/3: PREDICATE
No further documentation available for this predicate.

116 The Ipdoc Documentation Generator

Chapter 17: Documentation Abstract Syntax Tree 117

17 Documentation Abstract Syntax Tree

Author(s): Manuel Hermenegildo (original version), Jose F. Morales.

This module defines the intermediate tree representation doctree/1 for documentation and
its related operations.

[Note: This part needs better documentation. — JFMC }

17.1 Usage and interface (autodoc_doctree)

N
e Library usage:
:- use_module (1ibrary(autodoc_doctree)) .
o Exports:
— Predicates:
cmd_type/1, doctree_is_empty/l, is_nonempty_doctree/1, empty_doctree/1,
doctree_insert_end/3, doctree_insert_before_section/3, doctree_concat/3,
doclink_at/2, doclink_is_local/1, section_prop/2, section_select_prop/3,
doctree_save/2, doctree_restore/2, doctree_simplify/2, doctree_putvars/5,
doctree_scan_and_save_refs/2, doctree_prepare_docst_translate_
and_write/3, doctree_to_rawtext/3, doctree_translate_and write/3, escape_
string/4, is_version/1, version_patch/2, version_date/2, version_numstr/2,
version_string/2, insert_show_toc/3.
— Regular Types:
doctree/1, doclink/1, doclabel/1, doctokens/1.
— Multifiles:
autodoc_rw_command_hook/4, autodoc_escape_string_hook/5.
e Other modules used:
— Application modules:
lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_
refsdb)), lpdocsrc(src(autodoc_index)), lpdocsrc(src(autodoc_structure)),
lpdocsrc(src(autodoc_filesystem)), lpdocsrc(src(autodoc_
settings)), 1pdocsrc(src(comments)), lpdocsrc(src(autodoc_texinfo)),
lpdocsrc(src(autodoc_man)), lpdocsrc(src(autodoc_html)).
— System library modules:
write, operators, format, lists, make/system_extra, read, terms, make/make_rt.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.
- J
17.2 Documentation on exports (autodoc_doctree)
cmd_type/1: PREDICATE

No further documentation available for this predicate.

118 The Ipdoc Documentation Generator

doctree/1:
Usage:

— Description: Intermediate tree representation for documentation

doctree_is_empty/1:
Usage: doctree_is_empty (+R)

— Description: Emptiness test
— The following properties should hold at call time:
Intermediate tree representation for documentation

is_nonempty_doctree/1:
Usage: is_nonempty_doctree (+R)

— Description: Not empty test
— The following properties should hold at call time:
Intermediate tree representation for documentation

empty_doctree/1:
Usage: empty_doctree(-R)

— Description: Empty
— The following properties should hold at call time:
Intermediate tree representation for documentation

doctree_insert_end/3:
Usage: doctree_insert_end(AO,Elem,A)

— Description: Insert Elem in AO at the end, obtaining A

— Call and exit should be compatible with:
Intermediate tree representation for documentation
Intermediate tree representation for documentation
Intermediate tree representation for documentation

doctree_insert_before_section/3:
Usage: doctree_insert_before_section(A0,Elem,A)

— Description: Insert Elem in AO before the first section, obtaining A

— Call and exit should be compatible with:
Intermediate tree representation for documentation
Intermediate tree representation for documentation
Intermediate tree representation for documentation

doctree_concat/3:
No further documentation available for this predicate.

REGTYPE

PREDICATE

(doctree/1)

PREDICATE

(doctree/1)

PREDICATE

(doctree/1)

PREDICATE

(doctree/1)
(doctree/1)
(doctree/1)

PREDICATE

(doctree/1)
(doctree/1)
(doctree/1)

PREDICATE

Chapter 17: Documentation Abstract Syntax Tree 119

doclink/1: REGTYPE
Usage:

— Description: A link to a document label

doclabel/1: REGTYPE
Usage:

— Description: An internal label

doclink_at/2: PREDICATE
No further documentation available for this predicate.

doclink_is_local/1: PREDICATE
No further documentation available for this predicate.

doctokens/1: REGTYPE
Usage:

— Description: Primitive doctree subset (ready for output, not further reducible)

section_prop/2: PREDICATE
No further documentation available for this predicate.

section_select_prop/3: PREDICATE
No further documentation available for this predicate.

doctree_save/2: PREDICATE
doctree_restore/2: PREDICATE
doctree_simplify /2: PREDICATE

No further documentation available for this predicate.

doctree_putvars/5: PREDICATE
Usage: doctree_putvars(RO,DocSt,PDict,VarDict,R)
— Description: Traverse RO and replace each var (Name) doctree item with a fresh vari-
able B. For each replacement, the term B=Var is introduced in VarDict, where Var is
the associated value to Name in the dictionary PDict.

120 The Ipdoc Documentation Generator

— The following properties should hold at call time:
Intermediate tree representation for documentation
docstate (DocSt)

— The following properties should hold upon exit:
Intermediate tree representation for documentation

doctree_scan_and_save_refs/2:
Usage: doctree_scan_and_save_refs(R,DocSt)

— Description: Scan and save the references of the doctree

— The following properties should hold at call time:
Intermediate tree representation for documentation
docstate (DocSt)

doctree_prepare_docst_translate_and_write/3:
No further documentation available for this predicate.

doctree_to_rawtext/3:
Usage: doctree_to_rawtext(X,DocSt,Y)

— Description: Y is a simplified raw text representation of the X
— Call and exit should be compatible with:
Intermediate tree representation for documentation
docstate(DocSt)
Y is a string (a list of character codes).

doctree_translate_and_write/3:
No further documentation available for this predicate.

escape_string/4:
Usage:

(doctree/1)
(docstate/1)

(doctree/1)

PREDICATE

(doctree/1)
(docstate/1)

PREDICATE

PREDICATE

(doctree/1)
(docstate/1)
(string/1)

PREDICATE

PREDICATE

— Description: Escapes needed characters in input string as needed for the target for-

mat.

— The following properties should hold upon exit:
Argl is currently instantiated to an atom.
Arg?2 is a string (a list of character codes).
docstate (Arg3)

Arg4 is a string (a list of character codes).

is_version/1:
No further documentation available for this predicate.

(atom/1

(string/1

(docstate/1
(string/1

)
)
)
)

PREDICATE

Chapter 17: Documentation Abstract Syntax Tree 121

version_patch/2: PREDICATE
No further documentation available for this predicate.

version_date/2: PREDICATE
No further documentation available for this predicate.

version_numstr/2: PREDICATE
Usage: version_numstr(Version,Str)

— Description: Obtain the string Str representation of version Version (except date)

version_string/2: PREDICATE

Usage: version_string(Version,Str)
— Description: Obtain the string Str representation of version Version (including date)

insert_show_toc/3: PREDICATE
Usage: insert_show_toc(RO,DocSt,R)

— Description: Insert the command to show the table of contents in a given doctree/1.
The right place may be different depending on the chosen backend.

17.3 Documentation on multifiles (autodoc_doctree)

autodoc_rw_command_hook/4: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

autodoc_escape_string_hook/5: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

122 The Ipdoc Documentation Generator

Chapter 18: Handling the Document Structure 123

18 Handling the Document Structure

Author(s): Jose F. Morales.

18.1 Usage and interface (autodoc_structure)

-~

e Library usage:
:- use_module (library(autodoc_structure)).
e Exports:
— Predicates:

e Other modules used:

— Application modules:

docstr_node/4, clean_docstr/0, parse_structure/0, standalone_docstr/1, get_
mainmod/1, get_mainmod_spec/1, all_component_specs/1.

lpdocsrc(src(autodoc_settings)).

System library modules:

filenames, aggregates, terms, make/make_rt.
Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

J

18.2 Documentation on exports (autodoc_structure)

docstr_node/4: PREDICATE
No further documentation available for this predicate.
The predicate is of type data.

clean_docstr/0: PREDICATE
No further documentation available for this predicate.

parse_structure/0: PREDICATE
No further documentation available for this predicate.

standalone_docstr/1: PREDICATE
No further documentation available for this predicate.

get_mainmod/1: PREDICATE

No further documentation available for this predicate.

124 The Ipdoc Documentation Generator

get_mainmod_spec/1: PREDICATE
No further documentation available for this predicate.

all_component_specs/1: PREDICATE
No further documentation available for this predicate.

Chapter 19: Access to Default Settings 125

19 Access to Default Settings

Author(s): Jose F. Morales.
This module defines the setting values with some default values.

[Note: This part needs better documentation. — JFMC }

19.1 Usage and interface (autodoc_settings)

e Library usage:
:- use_module (library(autodoc_settings)).
e Exports:
— Predicates:
lpdoc_option/1, verify_settings/0, check_setting/1, setting_value_
or_default/2, setting value_or_default/3, setting value/2, all_setting_
values/2, get_command_option/1, requested_file_formats/1, load_vpaths/0,
viewer/3, xdvi/1, xdvisize/1, pdfview/1, psview/1, htmlview/1, bibtex/1, tex/1,
texindex/1, dvips/1, ps2pdf/1, makeinfo/1, makertf/1, rtftohlp/1, convertc/1.
e Other modules used:
— System library modules:
make/system_extra, make/make_rt, aggregates, distutils/distutils.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

19.2 Documentation on exports (autodoc_settings)

lpdoc_option/1: PREDICATE
Defines the global options of Ipdoc.

The predicate is of type data.

verify_settings/0: PREDICATE
No further documentation available for this predicate.

check_setting/1: PREDICATE
No further documentation available for this predicate.

setting_value_or_default /2: PREDICATE
Usage: setting_value_or_default(Var,Value)

126 The Ipdoc Documentation Generator

— Description: Returns in Value the value of the variable Var. In case this variable
does not exists, it returns a default value. If there is no default value for the variable

Var it fails.

setting_value_or_default/3:

No further documentation available for this predicate.

setting_value/2:

No further documentation available for this predicate.

all_setting_values/2:

No further documentation available for this predicate.

get_command_option/1:

No further documentation available for this predicate.

requested_file_formats/1:
Usage: requested_file_formats(F)

— Description: F is a requested file format

load_vpaths/0:

No further documentation available for this predicate.

viewer/3:

No further documentation available for this predicate.

xdvi/1:

No further documentation available for this predicate.

xdvisize/1:

No further documentation available for this predicate.

pdfview/1:

No further documentation available for this predicate.

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

Chapter 19: Access to Default Settings

psview/1:

No further documentation available for this predicate.

htmlview /1:

No further documentation available for this predicate.

bibtex/1:

No further documentation available for this predicate.

tex/1:

No further documentation available for this predicate.

texindex/1:

No further documentation available for this predicate.

dvips/1:

No further documentation available for this predicate.

ps2pdf/1:

No further documentation available for this predicate.

makeinfo/1:

No further documentation available for this predicate.

makertf/1:

No further documentation available for this predicate.

rtftohlp/1:

No further documentation available for this predicate.

convertc/1:

No further documentation available for this predicate.

127

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

128 The Ipdoc Documentation Generator

LPdoc Backends

LPdoc Backends

129

130 The Ipdoc Documentation Generator

Chapter 20: Texinfo Backend 131

20 Texinfo Backend

Author(s): Manuel Hermenegildo, Jose F. Morales.

20.1 Usage and interface (autodoc_texinfo)

e ™
e Library usage:
:- use_module (library(autodoc_texinfo)).
e Exports:
— Predicates:
infodir_base/2.
— Multifiles:

autodoc_escape_string_hook/5, autodoc_rw_command_hook/4, autodoc_finish_
hook/1, autodoc_gen_alternative_hook/2.
e Other modules used:
— Application modules:

lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_filesystem)),
lpdocsrc(src(autodoc_structure)), lpdocsrc(src(autodoc_
index)), lpdocsrc(src(autodoc_doctree)), lpdocsrc(src(autodoc_images)),
lpdocsrc(src(autodoc_settings)), fastformat, lpdocsrc(src(comments)),
ciaodesrc(makedir(ConfigValues)), 1lpdocsrc(src(autodoc_aux)).

— System library modules:

lists, terms, format, messages, system, make/make_rt, file_utils, make/system_
extra.

— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

20.2 Documentation on exports (autodoc_texinfo)

infodir_base/2: PREDICATE
No further documentation available for this predicate.

20.3 Documentation on multifiles (autodoc_texinfo)

autodoc_escape_string_hook/5: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

autodoc_rw_command_hook/4: PREDICATE
The predicate is multifile.

Usage: autodoc_rw_command_hook (Backend,DocSt,Command , NewCommand)

132

— The following properties should hold at call time:
Backend is a supported backend.

docstate(DocSt)
Intermediate tree representation for documentation

Intermediate tree representation for documentation

autodoc_finish_hook/1:
No further documentation available for this predicate.

The predicate is multifile.

autodoc_gen_alternative_hook/2:
No further documentation available for this predicate.

The predicate is multifile.

The Ipdoc Documentation Generator

(backend_id/1)
(docstate/1)

(doctree/1)

(doctree/1)

PREDICATE

PREDICATE

Chapter 21: HTML Backend 133

21 HTML Backend

Author(s): Jose F. Morales.

21.1 Usage and interface (autodoc_html)

~
e Library usage:
:- use_module(library(autodoc_html)) .
e Other modules used:
— Application modules:
lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_structure)),
lpdocsrc(src(autodoc_filesystem)), lpdocsrc(src(autodoc_doctree)),
lpdocsrc(src(autodoc_index)), lpdocsrc(src(autodoc_
refsdb)), lpdocsrc(src(autodoc_images)), lpdocsrc(src(autodoc_settings)),
lpdocsrc(src(comments)), fastformat, 1pdocsrc(src(autodoc_html_template)),
lpdocsrc(src(distpkg_download)), lpdocsrc(src(autodoc_html_resources)).
— System library modules:
lists, dict, system, file_utils.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.
N

21.2 Documentation on multifiles (autodoc_html)

autodoc_escape_string_hook/5: PREDICATE
No further documentation available for this predicate.
The predicate is multifile.
autodoc_rw_command_hook/4: PREDICATE
The predicate is multifile.
Usage: autodoc_rw_command_hook (Backend,DocSt,Command , NewCommand)
— The following properties should hold at call time:
Backend is a supported backend. (backend_id/1)
docstate(DocSt) (docstate/1)
Intermediate tree representation for documentation (doctree/1)
Intermediate tree representation for documentation (doctree/1)
autodoc_finish_hook/1: PREDICATE

No

further documentation available for this predicate.

The predicate is multifile.

134 The Ipdoc Documentation Generator

autodoc_gen_alternative_hook/2: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

Chapter 22: Resource Handling for the HTML Backend

22 Resource Handling for the HTML Backend

Author(s): Jose F. Morales.

22.1 Usage and interface (autodoc_html_resources)

135

~
e Library usage:
:- use_module (library(autodoc_html_resources)) .

e Exports:

— Predicates:

prepare_web_skel/1, prepare_mathjax/0, using_mathjax/1.

e Other modules used:

— Application modules:

lpdocsrc(src(autodoc)), lpdocsrc(src(autodoc_settings)),
lpdocsrc(src(autodoc_filesystem)).

— System library modules:
messages, file_utils, make/system_extra, distutils/dirutils, terms.
— Internal (engine) modules:

system_info, term_compare, term_typing, hiord_rt, debugger_support.

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,

22.2 Documentation on exports (autodoc_html_resources)

prepare_web_skel /1: PREDICATE

No further documentation available for this predicate.

prepare_mathjax/0: PREDICATE

No further documentation available for this predicate.

using_mathjax/1: PREDICATE

No further documentation available for this predicate.

136 The Ipdoc Documentation Generator

Chapter 23: Template Support for the HTML Backend 137

23 Template Support for the HTML Backend

Author(s): Jose F. Morales.

23.1 Usage and interface (autodoc_html_template)

e D
e Library usage:
:- use_module (library(autodoc_html_template)).
e Exports:
— Predicates:
img_url/2, fmt_html_template/3.
e Other modules used:
— Application modules:
lpdocsrc(src(autodoc_settings)).
— System library modules:

component_registry/component_registry, messages, aggregates, system, file_
utils, make/system_extra, distutils/dirutils, lists, terms, make/make_rt,
pillow/html.

— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

23.2 Documentation on exports (autodoc_html_template)

img_url/2: PREDICATE
Usage: img_url(Name,Url)
— Description: Obtain the URL where image Name is or will be found.
— Clall and exit should be compatible with:

Name is an atom. (atm/1)
Url is a string (a list of character codes). (string/1)
fmt_html_template/3: PREDICATE

No further documentation available for this predicate.

138 The Ipdoc Documentation Generator

Chapter 24: Man Pages (man) Backend 139

24 Man Pages (man) Backend

Author(s): Jose F. Morales, Manuel Hermenegildo.

24.1 Usage and interface (autodoc_man)

e Library usage:
:- use_module (library(autodoc_man)) .

e Other modules used:

Application modules:

lpdocsrc(src(autodoc_
state)), lpdocsrc(src(autodoc_doctree)), lpdocsrc(src(autodoc_images)),
lpdocsrc(src(autodoc_aux)), lpdocsrc(src(comments)), fastformat.

System library modules:
lists.
Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

24.2 Documentation on multifiles (autodoc_man)

autodoc_rw_command_hook/4: PREDICATE
The predicate is multifile.

Usage: autodoc_rw_command_hook (Backend,DocSt,Command ,NewCommand)

The following properties should hold at call time:

Backend is a supported backend. (backend_id/1)
docstate(DocSt) (docstate/1)
Intermediate tree representation for documentation (doctree/1)
Intermediate tree representation for documentation (doctree/1)
autodoc_finish_hook/1: PREDICATE

No

further documentation available for this predicate.

The predicate is multifile.

autodoc_gen_alternative_hook/2: PREDICATE
No further documentation available for this predicate.

The predicate is multifile.

140 The Ipdoc Documentation Generator

Chapter 25: Filesystem Abstraction 141

25 Filesystem Abstraction
Author(s): Jose F. Morales.

This module provides definitions to assign unique file-system paths and names for each of
the intermediate and final results of documentation generation.

25.1 Usage and interface (autodoc_filesystem)

e Library usage:
:— use_module(library(autodoc_filesystem)) .
o Exports:
— Predicates:
file_format_name/2,
supported_file_format/1, file_format_provided_by_backend/3, clean_fs_db/0,
get_output_dir/2, get_cache_dir/2, ensure_output_dir/1, ensure_cache_dir/1,
main_absfile_in_format/2, main_absfile_for_subtarget/3, absfile_for_aux/3,
absfile_for_subtarget/4, main_output_name/2, get_subbase/3, absfile_to_
relfile/3, clean_all/0, clean_docs_no_texi/0, clean_all_temporal/0, clean_
intermediate/0, clean_tex_intermediate/0.
— Regular Types:
filename/1, basename/1, subtarget/1.
e Other modules used:
— Application modules:
lpdocsrc(src(autodoc_settings)), lpdocsrc(src(autodoc_structure)),
lpdocsrc(src(autodoc_state)), lpdocsrc(src(component_versions)).
— System library modules:
aggregates, make/system_extra, terms, distutils/dirutils, system, component_
registry/component_registry.
— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

J
25.2 Documentation on exports (autodoc_filesystem)
filename/1: REGTYPE
Usage: filename (X)
— Description: X is the name of a file.
basename/1: REGTYPE

Usage: basename (X)
— Description: X is the base name of a file (without extension).

142 The Ipdoc Documentation Generator

subtarget /1: REGTYPE
Usage:
— Description: The kind of intermediate/final results for a single documentation pro-
cessing unit (module).

file_format_name/2: PREDICATE
No further documentation available for this predicate.

supported_file_format/1: PREDICATE
No further documentation available for this predicate.

file_format_provided_by_backend/3: PREDICATE
Usage: file_format_provided_by_backend (Ext,Backend,Subtarget)

— Description: Backend is the backend that generates files with format Ext
— Call and exit should be compatible with:

Ext is an atom. (atm/1)
Backend is a supported backend. (backend_id/1)
Subtarget is an atom. (atm/1)
clean_fs_db/0: PREDICATE
Usage:

— Description: Clean the cached information for the filesystem mapping of the docu-
mentaton generation.

get_output_dir/2: PREDICATE
Usage: get_output_dir(Backend,Dir)

— Description: Obtain the Dir directory where final documentation files will be stored

get_cache_dir/2: PREDICATE
Usage: get_cache_dir (Backend,Dir)

— Description: Obtain the Dir directory where final documentation files will be stored

ensure_output_dir/1: PREDICATE
No further documentation available for this predicate.

ensure_cache_dir/1: PREDICATE
No further documentation available for this predicate.

Chapter 25: Filesystem Abstraction 143

main_absfile_in_format /2: PREDICATE
Usage: main_absfile_in_format (Ext,File)

— Description: File is the absolute file name for the documentation in Ext format of
the main module

main_absfile_for_subtarget/3: PREDICATE
No further documentation available for this predicate.

absfile_for_aux/3: PREDICATE
Usage: absfile_for_aux(AuxName,Backend,AbsFile)

— Description: Absolute file for an auxiliary output file (e.g. CSS, images, etc.)

absfile_for_subtarget /4: PREDICATE
No further documentation available for this predicate.

main_output_name/2: PREDICATE
No further documentation available for this predicate.

get_subbase/3: PREDICATE
Usage: get_subbase(Base,Sub,SubBase)

— Description: SubBase is the name for the sub-file (Sub) associated with Base
— The following properties should hold upon exit:

Base is the base name of a file (without extension). (basename/1)

Sub is an atom. (atm/1)

SubBase is the base name of a file (without extension). (basename/1)
absfile_to_relfile/3: PREDICATE

Usage: absfile_to_relfile(A,Backend,B)

— Description: Obtain the relative path, w.r.t. the output directory, of an absolute file.
This is useful, e.g., for URLs.

clean_all/0: PREDICATE

No further documentation available for this predicate.

clean_docs_no_texi/0: PREDICATE
No further documentation available for this predicate.

144 The Ipdoc Documentation Generator

clean_all_temporal/0:

No further documentation available for this predicate.

clean_intermediate/0:

No further documentation available for this predicate.

clean_tex_intermediate/0:

No further documentation available for this predicate.

PREDICATE

PREDICATE

PREDICATE

Chapter 26: Indexing Commands (Definition and Formatting) 145

26 Indexing Commands (Definition and Formatting)

Author(s): Jose F. Morales.
This module defines index commands and formatting.

[Note: This part needs better documentation. — JFMC }

26.1 Usage and interface (autodoc_index)

e ™
e Library usage:
:- use_module (library(autodoc_index)) .
e Exports:
— Predicates:

get_idxsub/2, get_idxbase/3, typeindex/5, idx_get_indices/3, is_index_cmd/1,
codetype/1, normalize_index_cmd/3, fmt_idx_env/7, fmt_index/3.

e Other modules used:
— Application modules:

lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_filesystem)),
lpdocsrc(src(autodoc_doctree)), lpdocsrc(src(autodoc_structure)),
lpdocsrc(src(autodoc_refsdb)).

— System library modules:
dict, lists, aggregates.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

26.2 Documentation on exports (autodoc_index)

get_idxsub/2: PREDICATE
No further documentation available for this predicate.

get_idxbase/3: PREDICATE
No further documentation available for this predicate.

typeindex/5: PREDICATE
Usage: typeindex(Type,Index,IType,Name,Comment)

— Description: Index is the (info) index name in which objects of type Type go. Name
is the title of the index in the documentation. IType is the type of index; an empty
string means normal. codeComment is a comment to include before the index.

146 The Ipdoc Documentation Generator

— The following properties should hold upon exit:
Type is currently instantiated to an atom.
Index is an atom.

IType is a string (a list of character codes).
Name is a string (a list of character codes).

Intermediate tree representation for documentation

idx_get_indices/3:

No further documentation available for this predicate.

is_index_cmd/1:

No further documentation available for this predicate.

codetype/1:

No further documentation available for this predicate.

normalize_index_cmd/3:

No further documentation available for this predicate.

fmt_idx_env/7:

No further documentation available for this predicate.

fmt_index/3:

No further documentation available for this predicate.

)
)
(string/1)
)
)

(atm/1

(string/1
(doctree/1

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

PREDICATE

Chapter 27: Database of Documentation References 147

27 Database of Documentation References
Author(s): Jose F. Morales.

This module stores and manages all the documentation references (indices, sections, bibliog-
raphy, etc.). It includes the generation of the table of contents.

27.1 Usage and interface (autodoc_refsdb)

~
e Library usage:
:- use_module (library(autodoc_refsdb)) .
e Exports:
— Predicates:

compute_refs_and_biblio/1, prepare_current_refs/1, clean_current_refs/1,
secttree_resolve/3.

— Regular Types:
secttree/1.
e Other modules used:
— Application modules:

lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_doctree)),
lpdocsrc(src(autodoc_structure)), 1lpdocsrc(src(autodoc_filesystem)),
lpdocsrc(src(autodoc_bibrefs)), . (autodoc_structure).

System library modules:
aggregates, lists.
Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,

data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.
J
27.2 Documentation on exports (autodoc_refsdb)
compute_refs_and_biblio/1: PREDICATE
No further documentation available for this predicate.
prepare_current_refs/1: PREDICATE

Usage:
— Description: Prepare references for the translation of the current file.
— Clall and exit should be compatible with:

docstate(Argl)

clean_current_refs/1:
Usage:

(docstate/1)

PREDICATE

148 The Ipdoc Documentation Generator

— Description: Clean the data stored by prepare_current_refs/1.
— Clall and exit should be compatible with.:

docstate(Argl) (docstate/1)
secttree/1: REGTYPE
Usage:

— Description: A tree of sections

secttree_resolve/3: PREDICATE

Usage: secttree_resolve(LabelName,Tree,Link)

— Description: Locate in the section tree Tree the section with label name LabelName
and return the Link to the section.

— Call and exit should be compatible with.:
LabelName is a string (a list of character codes). (string/1)
Intermediate tree representation for documentation (doctree/1)
A link to a document label (doclink/1)

Chapter 28: Error Messages 149

28 Error Messages

Author(s): Manuel Hermenegildo.

28.1 Usage and interface (autodoc_errors)

e D
e Library usage:
:- use_module (library(autodoc_errors)).

e Exports:

— Predicates:

error_text/3.

e Other modules used:

— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

28.2 Documentation on exports (autodoc_errors)

error_text/3: PREDICATE
No further documentation available for this predicate.

150 The Ipdoc Documentation Generator

Chapter 29: Resolution of Bibliographical References 151

29 Resolution of Bibliographical References
Author(s): Manuel Hermenegildo (original version), Jose F. Morales.

This module provides a predicate to resolve the bibliographical references found during the
generation of documentation.

29.1 Usage and interface (autodoc_bibrefs)

e p
e Library usage:
:- use_module (library(autodoc_bibrefs)).

e Exports:

— Predicates:

resolve_bibliography/1.

e Other modules used:

— Application modules:

lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_
doctree)), lpdocsrc(src(autodoc_refsdb)), 1lpdocsrc(src(autodoc_aux)),
lpdocsrc(src(autodoc_settings)), lpdocsrc(src(autodoc_parse)).

— System library modules:
dict, aggregates, terms, file_utils, lists, format, make/make_rt, make/system_
extra.

— Internal (engine) modules:
term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

29.2 Documentation on exports (autodoc_bibrefs)

resolve_bibliography /1: PREDICATE
Usage: resolve_bibliography(DocSt)

— Description: This predicate resolves bibliographical references. The algorithm is as
follows:

e Write all the bibliographical references to a .aux file.
e Invoke BibTeX with a customized .bst file that generates a pseudo-docstring.
e Load the docstring and fix its syntax.
e Parse the docstring as a doctree.
e Extract (Label,Ref) pairs from bibitem commands.
Both the docstring and label/reference pairs are kept in the DocSt, and used later to
map symbolic references to textual labels.
— The following properties should hold at call time:
docstate(DocSt) (docstate/1)

152 The Ipdoc Documentation Generator

Chapter 30: Auxiliary Definitions 153

30 Auxiliary Definitions

Author(s): Manuel Hermenegildo, Jose F. Morales.

30.1 Usage and interface (autodoc_aux)

-~

e Library usage:
:- use_module(library (autodoc_aux)) .
e Exports:
— Predicates:

e Other modules used:

— Application modules:

read_file/2, ascii_blank_lines/2, sh_exec/2.

lpdocsrc(src(autodoc_settings)).

System library modules:

messages, system, make/system_extra, lists.
Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

J
30.2 Documentation on exports (autodoc_aux)
read_file/2: PREDICATE
No further documentation available for this predicate.
ascii_blank_lines/2: PREDICATE
No further documentation available for this predicate.
sh_exec/2: PREDICATE

No further documentation available for this predicate.

154 The Ipdoc Documentation Generator

Chapter 31: Image Handling 155

31 Image Handling

Author(s): Jose F. Morales.

This module defines the handling of image commands. It defines predicates to locate and
convert images in the different formats required for documentation.

[Note: This part needs better documentation. — JFMC j

31.1 Usage and interface (autodoc_images)

e Library usage:
:- use_module (library(autodoc_images)) .
o Exports:
— Predicates:
locate_and_convert_image/4, clean_image_cache/0.
e Other modules used:
— Application modules:

lpdocsrc(src(autodoc_state)), lpdocsrc(src(autodoc_filesystem)),
lpdocsrc(src(autodoc_settings)), lpdocsrc(src(autodoc_aux)).

— System library modules:
terms, make/make_rt, make/system_extra, system, errhandle, messages, format.
— Internal (engine) modules:

term_basic, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_compare, term_typing, hiord_rt, debugger_support.

31.2 Documentation on exports (autodoc_images)

locate_and_convert_image/4: PREDICATE
Usage:
locate_and_convert_image (SrcSpecS,AcceptedFormats,DocSt,TargetFileS)
— Description: The image at SrcSpecS is located (as one of the known formats known_
format/1) and converted to one of the AcceptedFormats. The target file is called

TargetFileS
— Call and exit should be compatible with:
SrcSpecS is a string (a list of character codes). (string/1)
AcceptedFormats is a list of atoms. (1list/2)
docstate(DocSt) (docstate/l)
TargetFileS is a string (a list of character codes). (string/1)
clean_image_cache/0: PREDICATE
Usage:

— Description: Clean the cache for image copy/conversions.

156 The Ipdoc Documentation Generator

References 157

References

[Bue95] F. Bueno.
The CIAO Multiparadigm Compiler: A User’s Manual.
Technical Report CLIP8/95.0, Facultad de Informética, UPM, June 1995.

[Bue98] F. Bueno.
Using Assertions for Static Debugging of CLP: A Manual.
Technical Report CLIP1/98.0, DISCIPL Project/CLIP Group, UPM, June 1998.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni.
Prolog: The Standard.
Springer-Verlag, 1996.

[DL93] S. K. Debray and N. W. Lin.
Cost Analysis of Logic Programs.
ACM Transactions on Programming Languages and Systems, 15(5):826-875,
November 1993.

[DLGH97] S.K. Debray, P. Lopez-Garcia, and M. Hermenegildo.
Non-Failure Analysis for Logic Programs.
In 1997 International Conference on Logic Programming, pages 48—-62, Cambridge,
MA, June 1997. MIT Press, Cambridge, MA.

[DLGHL97]
S. K. Debray, P. Lépez-Garcia, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs.
In 1997 International Logic Programming Symposium, pages 291-305. MIT Press,
Cambridge, MA, October 1997.

[Her99] M. Hermenegildo.
A Documentation Generator for Logic Programming Systems.
Technical Report CLIP10/99.0, Facultad de Informatica, UPM, September 1999.

[Her00] M. Hermenegildo.
A Documentation Generator for (C)LP Systems.
In International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 1345-1361. Springer-Verlag, July 2000.

[JL88| D. Jacobs and A. Langen.
Compilation of Logic Programs for Restricted And-Parallelism.
In European Symposium on Programming, pages 284297, 1988.

[JM94] J. Jaffar and M.J. Maher.
Constraint Logic Programming: A Survey.
Journal of Logic Programming, 19/20:503-581, 1994.

[Knu84] D. Knuth.
Literate programming.
Computer Journal, 27:97-111, 1984.

[LGHDY96] P. Léopez-Garcia, M. Hermenegildo, and S. K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
Journal of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
21(4-6):715-734, 1996.

[MH89] K. Muthukumar and M. Hermenegildo.
Determination of Variable Dependence Information at Compile-Time Through Ab-
stract Interpretation.
In 1989 North American Conference on Logic Programming, pages 166-189. MIT
Press, October 1989.

158 The Ipdoc Documentation Generator

[PBH97] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Debugging of Constraint Logic Programs.
Technical Report CLIP2/97.1, Facultad de Informética, UPM, July 1997.

[PBH98] G. Puebla, F. Bueno, and M. Hermenegildo.
A Framework for Assertion-based Debugging in Constraint Logic Programming.
In Proceedings of the JICSLP’98 Workshop on Types for CLP, pages 3—15, Manch-
ester, UK, June 1998.

[PBHOO] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 23-61.
Springer-Verlag, September 2000.

Library /Module Index

Library /Module Index

A

asSSertions....... ...t 35
assertions_propsc.oiuiiiiiiiii.. 45
QUEOdOC . . ottt 105
AUtOdoC_AUX . ..t ee 153
autodoc_bibrefs 151
autodoc_doctree i 117
AUtOdOC_ETTOTS . oot vttt et et 149
autodoc_filesystem.......................... 141
autodoc_html..............., 133
autodoc_html_resources...................... 135
autodoc_html_template....................... 137
autodoc_images 155
autodoc_dindexi i 145
AQutodoC_Mam.ttt ettt e 139
autodoc_refsdb, 147
autodoc_settings 125
autodoc_state 109
autodoc_structure 123
autodoc_texinfo L Ll 131

B

basic_props.............. ... i 55

C

[T 11115 o K o= P 19

159
E
example_module 89
Genmerating..............., 9
L
lpdoc_examplescoiuiiininniinin.... 83
Ipdoc_install, 101
M
MELA_PLOPS . oottt te e ie et 81
N
native_props.........ccouiiiiiiiiiii 71
R
TegEYPEeS . oot 51
rtchecks 97
unittest......... 99

160 The Ipdoc Documentation Generator

Predicate/Method Index

Predicate/Method Index

A

absfile_for_aux/3ccuuiiiin. 143
absfile_for_subtarget/4..................... 143
absfile_to_relfile/3................cco..... 143
all_component_specs/1.............ciiii.... 124
all_indices/2t 114
all_setting values/2........................ 126
ascii_blank_lines/2............ 153
autodoc_compute_grefs/3..................... 107
autodoc_escape_string_hook/5 121, 131, 133
autodoc_finish/1 108
autodoc_finish_hook/1 108, 132, 133, 139
autodoc_gen_alternative/2 108
autodoc_gen_alternative_hook/2.... 108, 132, 134,
139
autodoc_gen_doctree/5......... 107
autodoc_rw_command_hook/4 121, 131, 133, 139
autodoc_translate_doctree/3 107

B

backend_alt_format/2............c.oi.... 111
backend_ignores_components/1 110
bibtex/1 ... 127
bind_dict_varnames/1..............c. ... 114

C

CAllMe/2 .\ ot 82
check/1 ..o 42
check_setting/1 125
clean_all/O0. ...t 143
clean_all_temporal/O............c.coveeunn... 143
clean_current_refs/1.......... 147
clean_docs_no_texi/O0........... ..., 143
clean_docstr/0 ... 123
clean_fs_db/0 ... 142
clean_image_cache/0......................... 155
clean_intermediate/0..............ccui... 144
clean_tex_intermediate/O0.................... 144
cmd_type/l... ... 117
codetype/l... 146
compute_refs_and_biblio/1 147
convertc/l.o 127

161
D
doc_id_type/3. 26
doclink_at/2. ..o 119
doclink_is_local/l...........cuuuuiiiiii... 119
docst_backend/2 111
docst_currmod/2 ... 111
docst_currmod_is_main/1..................... 112
docst_gdata/3 113
docst_gdata_clean/1............c.ooveinnn.... 113
docst_gdata_query/2......................... 113
docst_gdata_query/3.......... 113
docst_gdata_restore/1....................... 113
docst_gvar_restore/2........... 114
docst_gvar_save/2..............iiiiiii.. 114
docst_has_index/2ciiiii... 114
docst_inputfile/2................. ... 111
docst_mdata_assertz/2.............iiii.. 113
docst_mdata_clean/1............cuviuin.o... 113
docst_mdata_save/1iiiiiiii... 113
docst_message/2 ...t 112
docst_message/3 ... 112
docst_modname/2 ...t 112
docst_modtype/2 115
docst_mvar_get/3l 113
docst_mvar_lookup/3............. 113
docst_mvar_replace/4................oiii.. 113
docst_new_no_src/4 111
docst_new_sub/3 112
docst_new_with_src/6.......cccviviii... 112
docst_no_components/1....................... 112
docSt_Opt/2. oot 112
docSt_OptsS/2. .t 111
docst_set_currmod/3......... 111
docst_set_opts/3 111
docstr_node/4 ... 123
doctree_concat/3t 118
doctree_insert_before_section/3............ 118
doctree_insert_end/3............ 118
doctree_is_empty/1............ 118
doctree_prepare_docst_translate_and_write/S
... 120
doctree_putvars/5................. 119
doctree_restore/2 i 119
doctree_save/2 ... 119
doctree_scan_and_save_refs/2 120
doctree_simplify/2.........., 119
doctree_to_rawtext/3.................... ... 120
doctree_translate_and_write/3.............. 120

Avips/1 ... 127

162

E

empty_doctree/1 118
ensure_cache_dir/1uuiiiiiniiii.. 142
ensure_output_dir/1............. 142
ensure_output_dir_prepared/2 106
error_text/3. 149
escape_string/4 120

F

false/l .. oo 43
file_format_name/2uuiiiiiiin.. 142
file_format_provided_by_backend/3.......... 142
fmt_html_template/3............ 137
fmt_idx_env/7 ... 146
fmt_index/3. 146
fmt_infodir_entry/3........ 107

G

get_autodoc_opts/3 107
get_cache_dir/2 142
get_command_option/1............... 126
get_doc/4 ... 114
get_doc_field/3 il 114
get_doc_field_dict/3......... ..., 114
get_first_loc_for_pred/3.................... 115
get_idxbase/3 145
get_idxsub/2.......... ool 145
get_mainmod/1 123
get_mainmod_spec/1............. 124
get_mod_doc/3 114
get_output_dir/2............ 142
get_subbase/3 143

H

htmlview/1...... ... 0., 127

I

idx_get_indices/3............ 146
img url/2. 137
index_comment/2t 106
infodir_base/2 ... 131
insert_show_toc/3 ..., 121
18/ 96
is_index_cmd/1 146
is_nonempty_doctree/1....................... 118
is_version/l........ ... 120

The Ipdoc Documentation Generator

L

labgen_clean/lovueiiiiiiinunnn... 112
labgen_get/2.t 112
labgen_init/1 112
load_vpaths/0 ...t 126
locate_and_convert_image/4 155
lpdoc_option/1 125

M

main_absfile_for_subtarget/3............... 143
main_absfile_in_format/2.................... 142
main_output_name/2.................iaai.... 143
makeinfo/l...... ... 127
makertf/1 127
mytype/l ..o 92

N

normalize_index_cmd/3............, 146

@)

option_comment/2...................... 110

P/l 91
P/ 94
P/ e 91
parse_structure/0 123
pdfview/1 126
prepare_current_refs/1...................... 147
prepare_mathjax/0............. 135
prepare_web_skel/1 135
PS2pAf/1 ..o 127
psview/1 126
Q

QL 93
Q72 90

T/ 90
read_file/2...... 153
requested_file_formats/1.................... 126
reset_output_dir_db/0....................... 106

resolve_bibliography/1...................... 151

Predicate/Method Index

S/ 92
section_prop/2 119
section_select_prop/3.........ccooiiiiino... 119
secttree_resolve/3 148
setting value/2, 126
setting value_or_default/2 125
setting_value_or_default/3 126
Sh_eXeC/ 2. . oo 153
standalone_docstr/1......... 123
supported_file_format/1..................... 142
T

B/ 92
teX/ Ll o 127
texindex/1. ... 127
top_suffix/2. 111
true/ L o 43
TruSt/ L. o 42

typeindex/5... 145

163
U/ B e 91
using _mathjax/1 135
verify_settings/O0........................... 125
version_date/2 121
version_numstr/2 121
version_patch/2 121
version_string/2 121
VieWwer/3o 126
WL 92
X
XAVI/L o 126
xdvisize/l. 126

164 The Ipdoc Documentation Generator

Property Index

Property Index

B

bind_ins/1 69
call/2 . 81
clique/l ... 71
clique_1/1 .. . 72
compat/2 66
constraint/1........... 72
covered/l 72
covered/2 72
D
deprecated/1.......... i 67
docstring/1 19, 50
E

eqUIV/2 .. 69
error_free/l... 69
eval/l .. 69
exception/1l......... 72
exception/2......... ... i 72
F

fails/1 . .. 73
filter/2 . .o 69
finite_solutions/1 73
H
have_choicepoints/1...................... ... 73
head_pattern/1 46
I

indep/l ..o 73
INAEDP/2 . oot 73
ANSt/2 .o 66
instance/2. ... 80
is_det/d . 73
180/ oo 67
L

linear/1o 74
long/l .o 91

165
M
MEmMbET/2 . .ottt 63
Memo/ 1 .o 69
mshare/1 74
mut_exclusive/1 74
N
nabody/1........... 48
native/l 68
native/2.o 68
no_choicepoints/1 74
no_exception/1 75
no_exception/2 ...t 75
no_rtcheck/1.o 68
no_signal/l........ il 75
no_signal/2.......... ... 75
non_det/1 75
nonground/1........ i 75
not_covered/1. 75
not_fails/1 75
not_further_inst/2........... 67
not_mut_exclusive/1.......................... 76
num_solutions/2 ...t 76
P
Pe_tyPe/L . 70
possibly_fails/1 76
possibly mondet/1 7
PLODP/2 oo 81
prop_abs/1.... 82
R
regtype/l.. 68
Tegtype/2. ... 82
relations/2...... ..ot 77

166

S

sideff/2 . .. 68
sideff _hard/1...... ..., 77
sideff _pure/1....... 7
sideff_soft/1...... ..o 77
signal/l 7
Signal/2. 7
signals/2. 78
S1Z@/2 78
S1Ze/3 . 78
size_1b/2. 78
size_metric/3. 78
size_metric/4.. 78
S1Z@_0/2 ot 78
S1Ze _UD/2 . ot 78
SO1UtionS/2. ..ot 76

The Ipdoc Documentation Generator

StePS/2. .. 79
steps_1b/2. ... 79
SEEPS_0/2 . it 79
Steps_ub/2. ... 79
stringcommand/1 20
supported_option/1................ 109
T

tau/l . 79
terminates/1...... i 80
test_type/2. 80
Throws/2. ..o 80

U

user_output/2............... .. 80

Regular Type Index

Regular Type Index

a0Tb/l . 89
assrt_body/1....... 45
assrt_status/1 50
assrt_type/l..... 50
atm/ 1 .. 58
atm_or_atm_list/1 66
B

backend_id/1....... .. 110
bar/ 1 . 89
basename/1........... ... 141
baz/d . 89
c_assrt_body/1 i, 48
callable/l.ot 60
character_code/1 64
complex_arg_property/l....................... 46
complex_goal _property/l...................... 47
constant/1...... ... 60
D
dictionary/1l........... 48
doclabel/1. ... 119
doclink/1. ... 119
docstate/1 ... 111
doctokens/1....... ..o 119
doctree/l.o 118
F

filename/1o 141
filetype/l. ..o 26
flag values/1..........coiiiiinnnna.. 69
FIE/1 57
g_assrt_body/1 49
gnd/l . 59
gndstr/1.. ... 59
1

ANt/ 56
Y

167

L

1ist/d . 61, 93
List/2. ... 62, 95
list_or_aorb/2 ... 90
M

modtype/l. ... 114
N

N1AiSt/2 . 62
nnegint/1 56
num/l .. 57
num_code/1 65
operator_specifier/1................ 61
P

predfunctor/1......... 50
predname/1........ i 65
property_conjunction/1....................... 47
property_starterm/1.............. 47
propfunctor/1....... 50
s_assrt_body/1 48
secttree/l.... 148
SEQUENCE/2. ...t 63
sequence_or_list/2............... 64
string/1 65
SETUCt/L .o 58
subtarget/1l..... 141
T

term/l ..o 55
time_struct/1.. 33
tree_of/2... 90
version_descriptor/l........... 26
version_maintenance_type/1 33
version_number/1 32

168 The Ipdoc Documentation Generator

Declaration Index

Declaration Index

calls/d ... 37
Calls/2 . 37
comment/2oi 42
comp/L .. 39
COMP/2 .\ttt 39
D

decl/d .o 41
deCl/2 oo 41
AOC/2 et 26, 41
E

entry/l 40
exXit/l . 40
eXAt/ 2 41
M

modedef/1 41

169

P

pred/1 36
pred/2 37
Prop/l ..o 39
PLOD/2 .o 40
R

regtype/l. 54
regtype/2. 54
SUCCESS/ L .t 38
SUCCESS/ 2 . ittt 38
T

test/d . 38
test/2 . 38
texec/ 1 .o 37
teXEC/ 2 it 37

170 The Ipdoc Documentation Generator

Concept Index

Concept Index

bibfiles ..o 10, 23

Q@

Q' command 25
@Q command...........iiiiii 25
Q. command 25
Q.. command.............i i 25
Q=command...............coviiiiiiiii... 25
Q7 command 25
Q' command..............iiii 25
Q~command 25
Q" command 25
@~ command 25
@aa commandiiiii 25
@QAA command 25
@Qaecommand 25
QAE command00 it 25
@Qapl command 22
@author command 23
@b commandoeiii 25
@begin{alert} command 21
@begin{cartouche} command 21
@begin{description} command 20
@begin{displaymath} command 24
@begin{enumerate} command................... 20
@begin{itemize} command...................... 20
@begin{verbatim} command 21
@bfcommand 21
@bullet command 25
Qccommandouiiiiiiiei 25
Qcindex command 22
Qcite command 23
@Qcomment command 20
@concept command, 22
Q@copyright command....................... ..., 25
Qdcommandoiiiiii 25
Qdecl command.................. i 22
@defmathemd /2 command 24
@defmathemd/3 command...................... 24
@Qem command.eiiiii . 21
@email command, 23
@end{alert} command.......................... 21
@end{cartouche} command 21
@end{description} command.................... 21
@end{displaymath} command................... 24
@end{enumerate} command 20
@end{itemize} command 20

@end{verbatim} command...................... 21

171
Qfile command. 23
@footnote command 21
QH command..................iiiiiiian.... 25
Q@hfill command.............. 21
Qicommand..............iiiiiii 25
@image command oo 24
Qinclude command 24
@includedef command 24
@includefact command 24
@includeverbatim command 24
@index command, 22
Qisocommandcoiiiiii 25
Q@item command............. 20, 21
@j command......... ... 25
Q@key command 21
Qlcommand...........cooviiiiieiii 25
QL commandovieiieiinnen... 25
Qlib command 22
@math command 23
@noindent command 21
@Qocommandiiiii 25
QO command.............iiiiiiii 25
Qoecommandoeiiiiiii 25
QOE commandcooiiinerina.... 25
Qopcommandiiiiiii 22
@Qp command 21
Qpred command 22
Qrefcommand, 23
@Qresult command 25
@section command 21
Qspcommandcoiiiiiiiiii 21
@Qsscommand..........ooviiieriiinei ... 25
@subsection command 21
Qt command i 25
Qtoday command 23
Qtt command.............. ... 21
Qucommandouiiiiiii 25
Quref command..................... 23
Qvecommandciiiiiiii 25
Qvar commandc0eeiiia .. 23
@version command, 23
A
Ad PaPET . .ot 11
abstract 28
ACCENES . . v vttt 24
acceptable modes L. 46
acknowledgements.............o 28
AddTeSS . . oot 27

172

APPENdiX ..ot 28
application 4
assertion body syntax 45, 48, 49
ASSETtIONS. . .ottt 19
author 27
automatic documentation...................... 105
automatic documentation library 105
avoiding indentation............................ 21

B

bibliographic citations.......................... 23
bibliographic entries............................ 10
bibliographicentry 23
bibtex ... 10, 23
blank lines........... ... i 21
bold faceoovi 21
bUg .. 30

calls assertion 37, 38
check assertion............ 42
ClA0 o et 9
COMMENtottt 20
comment assertion 42
comments, machine readable.................... 35
comp assertion................iiiiiiiiiia. 39
compatibility properties 51
component files 4
contents area il 12
copyright 28

date...... ... 23
decl assertion 41
description list 20
document structure 10
documentation format............... 105
documentation strings.................. 26

E

emacs Claomode 30
Emacs, accessing info files 13
Emacs, generating manuals from 9
Emacs, LPdocmode................ 9
email address 23

email addresses 23

The Ipdoc Documentation Generator

emphasis face........... 21
encapsulated postscript........... 24
entry assertion.............. il 40
enumerated list 20
€5CAPE SEQUENCESot e e e e 20
example of Ipdocuse 83
exit assertion 40

F

false assertion...............ccouuiininen.... 43
fixed format text............ 21
fixed-width font 21
footnotecovvi 21
formatting commands............... 19, 35
framed box 21

G

generating from Emacs 9
generating manuals. 9

H

hard side-effects................................ 77
html index page........... ... o ... 12

I

imagefile......... 24
images, inserting oL 24
images, scaling................. 24
including a predicate definition.................. 24
including an image 24
includingcode 24
including files........... 24
including images L. 24
including or not authors..................... ... 10
including or not buginfo 10
including or not changelog...................... 10
including or not versions, patches................ 10
indentation, avoiding 21
index pages out of order 12
infopath list.............. .. . i, 14
installation 3
installation, of manuals......................... 12
instantiation properties............... 51
internals manual 16
introduction 28
italics face.......... .. 21

Concept Index

item in an itemized list 20
itemized List 20

K

keyboard key 21

L

LaTeX notation.............. 23
letter size paper............c.oiiiiineia... 11
library ... 3
literate programming 13
log of changes.............. i 30

M

machine readable comments..................... 26
main body....... 28
main file.......... 4
Makefile....... ... 101
module comment 28
module declaration............................ 105

N

new item in description list 21

(@)

one-sided printing L 10

P

page numbering, changing 10
page size, changing............... 11
page style, changing 11
paragraph break o 21
parametric property 82
parametric regular type abstractions............. 82
parametric type functor 54
parts in a large document....................... 17
parts in large documents........................ 32
planned improvement. 30
pred assertion 36, 37
program section................. 29
program subsection................ 29
Prolog, Ciao i 9
prop assertion 39, 40

properties of computations...................... 51

173
properties of execution states 51
properties, basic oo 55
properties, native o oL 71
property abstraction............................ 82
R
references. 23
regtype assertion.............l 54
regular type expression 54
running unit tests........ i L 99
S
SECHiON ..o vt 21
SECHIONS . ..ot 23
SETTINGS.pL ..o 9
sharing pieces of text................. 24
sharing sets....... L. 74
soft side-effects........... 7
space, extra lines............ 21
spcae, horizontal fill............................ 21
special characters 24
strong face 21
subsection i 21
subtitle......... ... 27
success assertiono il 38
supported documentation formats 107
synopsis section of the man page 10
syntax of formatting commands 20
system modules........... L. 10
T
test assertion L. 38, 39, 99
texec assertion.......... il 37
texinfo 105
texinfo files........ 4
textual comments il 19
thesis-like style....... 11
title ... 26, 27
true assertion........ i 43
trust assertion 42
two-sided 10
typewriter-like font........... oo 21

174

U

unit tests.o 99
Universal Resource Locator 23
URL .o 23
Urls ..o 23
usage of a command............. 24

usage of the application......................... 10

The Ipdoc Documentation Generator

vV

verbatim text......... 21
VETSION . oottt 23
version maintenance mode for packages 31
version number i 30

\%\%

WWW address ... 23

Author Index

Author Index

A
Anonymous Author 1........................... 89
Anonymous Author 2........................... 89
D
Daniel Cabeza 55
E
Edison Mera.............. 71, 97, 99
F
Francisco Bueno 35, 51, 71, 81

175
G
German Puebla................................ 35
J

Jose F. Morales. ... 105, 109, 117, 123, 125, 131, 133,
135, 137, 139, 141, 145, 147, 151, 153, 155

M

Manuel Hermenegildo . .. 9, 19, 35, 45, 51, 55, 71, 83,
101, 105, 109, 117, 131, 139, 149, 151, 153

P

Pedro Lopez............. ..o i 51, 71

176 The Ipdoc Documentation Generator

Global Index 177

Global Index

This is a global index containing pointers to places where concepts, predicates, modes, prop-
erties, types, applications, etc., are referred to in the text of the document.

@begin{cartouche} command.................... 21
L 5 63 Obegin{description} command.................. 20

@begin{displaymath} command.................. 24

@begin{enumerate} command 20
(@begin{itemize} command 20

@begin{verbatim} command 21
(PTOP)/2. i 82 @bf commandeeiiniiiai .. 21

@bullet command..............c..iuiniiininian... 25
%k ©C COMMANA .+ o\ vt te et e 25

@cindex commMANdovvtminina 22
K2 47 @cite COmMANGo oo 10, 23

@comment command.iiiiinina. 20

Q@concept command..............ouiiiiiain.... 22
) Qcopyright command 25
- (autodoc_structure) ...l 147 @d commandiii 25
bibfiles. oo 10, 23 @decl COMMANGo ooooooee e 29
LCSRTC . 12 Qdefmathcmd/2 commandooonononono .. 24
profile. ... 12 @defmathcmd/3 commandoooonononrnn .. 24

@em commandiuiiiiii 21
. @email command................iiiiiiin.. 23
: @end{alert} command 21
) 36 Qend{cartouche} commandoovrrrr.... 21

@end{description} command.................... 21
_ Q@end{displaymath} command 24
- @end{enumerate} command 20
=/2 26, 27, 28, 29, 30, 31, 32 @end{itemize} command 20
S 36 Q@end{verbatim} commando...... 21

@filecommand................ . 23
@ @footnote command..................iiiiiia... 21

OH commandouuiirmnmimieneeeneananan. 25
@' command 25 Ohfill commanduuririeinaaannann. 21
@’ commandcutiii e 25 @i commandiiiiii 25
©@. COMMANA . ..\ vttt et e e 25 Q@image commandcouuieiiieeinaa.n. 24
Q.. COMMANA . .\ ottt et et e e et 25 @include command.................oiiirinini.. 24
@=command i 25 @includedef command 24
@7 COMMANA . ..ottt e tee e iee e ie e 25 @includefact command 24
@ commandiiii 25 @includeverbatim command 24
@ commandii 25 @index commandeiieinaiai. 22
@" commandiii 25 @iSO COMMANAottt et 25
@ commandiiiiii 25 @item commandiiiiii. 20, 21
Qaa commandiiiiiiiiiaaa 25 Q@j commandiiiii e 25
@AA commandiiiti 25 Q@key commandiiiiiiiiiiiiia. 21
@ae COmMMANAottt et e e 25 @l commandoutiii 25
@AE commandiutiiintiii. 25 OL commandouinininenannaaanan.. 25
@apl commandiiiiiiaiiia... 22 @libcommand............. ... 22
Q@author command.............. ..., 23 @math commandoinitiiinena... 23
Obcommandcouiuiniiii 25 @noindent command................ 21

@beginfalert} command 21 Qo commanduiiiii e 25

178

@0 commandiuiiiint e 25
©oe COMMANAottt 25
@OE commandouorenimnenteeneneenn.. 25
Qopcommandoiiiiiiiaii.. 22
@pcommandiiiiiiiiii 21
@pred command..............c..iuuiiiniiiainain.. 22
@ref command 23
@result command................... ... 25
@section command.t 21
@sp commandouiiiii 21
@SS COMMANA . . . oottt et et e 25
@subsection commandi.a.... 21
Ot commandintirit e 25
@today commandiiiiiii... 23
Ott commandouiiiiii 21
Qucommandc.oiiiiniiti 25
Quref command............. 23
OV commanduutiiintit e 25
O@var commandouiiiiti . 23
@version command..................iuiiianan... 23
+

2 46
F 46

Adpaper ... 11
absfile_for_aux/3....................... 141, 143
absfile_for_subtarget/4................ 141, 143
absfile_to_relfile/3 141, 143
abstract.............. i 28
ACCENES . vttt 24
acceptablemodes................. 46
acknowledgements 28
address......... ... i 23, 27
aggregates... 106, 109, 123, 125, 137, 141, 145, 147
151
all_component_specs/1 123, 124
all_indices/2..........oiiiiiiiii, 109, 114
all_setting values/2 125, 126
analyzer output................., 43
Anonymous Author 1............................ 89
Anonymous Author 2............................ 89
A0TD/L 89
appendiX............... 28

application.......... il 4

The Ipdoc Documentation Generator

arithexpression/1 96

arithmetic ... 19, 36, 37, 45, 55, 71, 81, 89, 98, 100,
106, 109, 117, 123, 125, 131, 133, 135, 137, 139
141, 145, 147, 149, 151, 153, 155

ascii_blank_lines/2..............ciiiii... 153
assertion body syntax.................. 45, 48, 49
assertion status 37, 38, 39, 41
assertions............ 3, 16, 17, 19, 35, 36, 45, 105
assertions/assertions_props..... 36, 53, 106, 109
assertions/assrt_lib 106, 109
assertions/native_props 55, 89
asSertionsS_Propsc..iiniiiiiii. 45
assrt_body/1................. 36, 37, 40, 41, 45, 54
assrt_status/1........ 37, 38, 39, 40, 41, 45, 50, 54
assrt_type/l............ ... 45, 50
atm/1............ 32, 55, 58, 107, 137, 142, 143, 146
atm_or_atm_list/1.......... 55, 66
atom/1 106, 120, 146
atomic_basic..... 19, 36, 45, 55, 71, 81, 89, 98, 100,

106, 109, 117, 123, 125, 131, 133, 135, 137, 139,
141, 145, 147, 149, 151, 153, 155

attributes .. 19, 36, 45, 55, 71, 81, 89, 98, 100, 106,
109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

author 27
author indexing............................... 27
autodoc Ll 3, 10, 105
AQutodoC_auXovitii e 153
autodoc_bibrefs 151
autodoc_compute_grefs/3 106, 107
autodoc_doctree, 117
AUtOdOC_EXTOrS .« .ottt e ittt 149
autodoc_escape_string_hook/5.. 117, 121, 131, 133
autodoc_filesystem.......................... 141
autodoc_finish/1........................ 106, 108
autodoc_finish_hook/1 106, 108, 131, 132, 133
139
autodoc_gen_alternative/2.............. 106, 108

autodoc_gen_alternative_hook/2.... 106, 108, 131,
132, 134, 139

autodoc_gen_doctree/5 106, 107
autodoc_html 105, 133
autodoc_html_resources...................... 135
autodoc_html_template....................... 137
autodoc_images 155
autodoc_dindexi i 145
autodoC_Manouiiiiiiin... 105, 139
autodoc_refsdb L 147

Global Index

autodoc_rw_command_hook/4..... 117, 121, 131, 133,
139

autodoc_settings 125
autodoc_state i 109
autodoc_structure 123
autodoc_texinfo............. 105, 131
autodoc_translate_doctree/3............ 106, 107
autodocformats L, 3
automatic documentation..................... 105
automatic documentation library 3, 105
avoiding indentation 21
B

backend_alt_format/2 109, 111
backend_id/1...... 107, 109, 110, 132, 133, 139, 142
backend_ignores_components/1........... 109, 110
DAL/ L e 89, 94
basename/1......... 107, 141, 143
bash 12

basic_props ... 3,19, 36, 45, 55, 71, 81, 89, 98, 100,
106, 109, 117, 123, 125, 131, 133, 135, 137, 139
141, 145, 147, 149, 151, 153, 155

basic_props.pl 97
basic_props:regtype/l........... 51
basiccontrol..... 19, 36, 45, 55, 71, 81, 89, 98, 100,

106, 109, 117, 123, 125, 131, 133, 135, 137, 139
141, 145, 147, 149, 151, 153, 155

baz(Arg3) 94
baz/1l.... ... 89, 94
bibliographic citations...................... 23
bibliographic entries 10
bibliographicentry 23
bibtex i 10, 23, 102
bibtex/1o 125, 127
bind_dict_varnames/1 109, 114
bind_ins/1.......................... 55, 57, 63, 69
blank lines i 21
boldface............ ... i 21
bug 30

c_assrt_body/1.................. 37, 38, 40, 45, 48
Call(T,A) o 96
Call/l o 48
CALL/ 2 81
callable/1..........ccovuno... 55, 60, 76, 81, 82

179
callme/2. ..ot 81, 82
callsassertion........................... 37, 38
calls/1. ... 36, 37, 38, 40
Calls/2. o 36, 37
character string................... 35
character_code/1 55, 64, 65
check assertion................oiiniinin... 42
Check(X) oo vt 76
check/1 ..o 36, 42, 43
check_setting/1 125
Ciao ..., 3,9, 13, 14, 83, 101
Ciao Emacsmode, 9
ciaodesrc(makedir (ConfigValues)) 131
ClaoPD « v 71
CI P - e vt 102
clean_all/0 ..., 141, 143
clean_all_temporal/O 141, 143
clean_current_refs/1........................ 147
clean_docs_no_texi/0 141, 143
clean_docstr/0 ... 123
clean_fs_db/0........ 141, 142
clean_image_cache/0......................... 155
clean_intermediate/0 141, 144
clean_tex_intermediate/0............... 141, 144
clique/l 71
clique_1/1o 71, 72
CLP . 3
cmd_type/l. 117
codetype/1 145, 146
COMMENT . .o v ettt et 20
comment assertion............................. 42
comment string......................... 46, 48, 49
comment/2 ... 36, 42
[} 11115+ = S 3,17, 19
comments, machine readable 35
CommentType=ack 28
CommentType=addresscoouvenn... 27
CommentType=appendix......................... 29
CommentType=author 27
CommentType=bug 30
CommentType=copyright........................ 28
CommentType=doinclude........................ 31
CommentType=filetype......................... 32
CommentType=hide.......................... 31, 32
CommentType=10gOcoiiuiiunon... 27
CommentType=module 28
CommentType=nodoc 32

CommentType=section.......................... 29

180

CommentType=subsection....................... 29
CommentType=subtitle......................... 27
CommentType=subtitle_extra 27
CommentType=summary 28
CommentType=title 26
CommentType=usage 29
CommentType=version_maintenance............. 31
comp assertion...............l 39
comp/L ..o 36, 39, 49
COMP/2. ottt e 36, 39
compat/2............... 55, 66
compatibility properties..................... 51
compatible............. ... i 45
compiler/c_itf.................... 106, 109
compiler/compiler....................... 106, 109
complex argument property....... 45, 46, 47, 48, 49
complex goal property.................. 46, 48, 49
complex_arg_property/1............. 45, 46, 48, 49
complex_goal_property/1 45, 46, 47, 49
component files.............c.iiiiiiiiia... 4
component_registry/component_registry..... 137,
141

compute_refs_and_biblio/1 147
constant/1 55, 60
constraint/1 71, 72
contents area.................iiiiiiiiiiiii... 12
conversion formats............... 3
convertc/1l 125, 127
copyright....... 28
covered/1l i 71, 72
covered/2 ... 71, 72
csh.. ... 12, 14, 15, 101
D

Daniel Cabeza.................ciiiiniinn... 55

data_facts .. 19, 36, 45, 55, 71, 81, 89, 98, 100, 106,
109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

date ... 23

debugger_support..... 19, 36, 45, 55, 71, 81, 89, 98,
100, 106, 109, 117, 123, 125, 131, 133, 135, 137
139, 141, 145, 147, 149, 151, 153, 155

decl @assertion..........c.ovuiriinininanannen.. 41
decl/1 ..o 36, 41, 45
decCl/2. o 36, 41
deprecated/1............... 55, 67

description list............ 20

The Ipdoc Documentation Generator

dict .ot 106, 109, 133, 145, 151
dictionary/1.............. 45, 48
o T 14, 101
distutils/dirutils................. 135, 137, 141
distutils/distutils............ 125
doc/2 13, 16, 17, 19, 26, 30, 32, 36, 41, 42
doc_id_type/3 ... 19, 26
doc_structure/1 i 10
doclabel/1l ..o 117, 119
doclink/1......ooiiii 117, 119, 148
doclink_at/2..........oiiiiiii 117, 119
doclink_is_local/1...................... 117, 119
docst_backend/2........... 109, 111
docst_currmod/2........... i 109, 111
docst_currmod_is_main/1................ 109, 112
docst_gdata/3..........l 109, 113
docst_gdata_clean/1..................... 109, 113
docst_gdata_query/2..................... 109, 113
docst_gdata_query/3..................... 109, 113
docst_gdata_restore/1 109, 113
docst_gvar_restore/2 109, 114
docst_gvar_save/2............ 109, 114
docst_has_index/2....................... 109, 114
docst_inputfile/2....................... 109, 111
docst_mdata_assertz/2 109, 113
docst_mdata_clean/1..................... 109, 113
docst_mdata_save/1...................... 109, 113
docst_message/2........... 109, 112
docst_message/3.......... 109, 112
docst_modname/2.................aii.... 109, 112
docst_modtype/2............ 109, 115
docst_mvar_get/3........................ 109, 113
docst_mvar_lookup/3..................... 109, 113
docst_mvar_replace/4 109, 113
docst_new_no_src/4............. ... 109, 111
docst_new_sub/3.......... 109, 112
docst_new_with_src/6 109, 112
docst_no_components/1 109, 112
docst_opt/2 ... 109, 112
doCSt_optsS/2 ..ot 109, 111
docst_set_currmod/3..................... 109, 111
docst_set_opts/3......... 109, 111
docstate(Argl) 147, 148
docstate(Arg3) ...l 120

docstate(DocSt) ... 107, 120, 132, 133, 139, 151, 155

docstate/1... 107, 109, 111, 120, 132, 133, 139, 147,
148, 151, 155

docstr_node/4 ... 123

Global Index

docstring/1 ... 19, 26, 27, 28, 29, 30, 35, 42, 45, 46,

48, 49, 50
doctokens/1 ..ot 117, 119
doctree/1.... 117,118, 120, 121, 132, 133, 139, 146,

148
doctree_concat/3............iiii... 117, 118
doctree_insert_before_section/3........ 117, 118
doctree_insert_end/3 117, 118
doctree_is_empty/1...................... 117, 118
doctree_prepare_docst_translate_and_write/3

..................................... 117, 120
doctree_putvars/5....................... 117, 119
doctree_restore/2. ..., 117, 119
doctree_save/2, 117, 119
doctree_scan_and_save_refs/2........... 117, 120
doctree_simplify/2...................... 117, 119
doctree_to_rawtext/3 117, 120
doctree_translate_and_write/3.......... 117, 120
document structure 10
documentation format 105
documentation strings 26
DOTCShIC ..ottt e 101
AVips ... 102
AVIPS/L 125, 127
dynamic/1...... ... 13
E
EdisonMeracoviineieunnnn... 71, 97, 99
EMACS . .ot e e 30, 33, 101, 102
Emacs........... il 9,12, 13, 14
emacs Ciaomode 30
Emacs, accessing info files................... 13
Emacs, generating manuals from................ 9
Emacs, LPdocmode 9
emacs-library.el 102
email address............ il 23
email addresses.............. 23
emphasis face..........., 21
empty_doctree/1......................... 117, 118
encapsulated postscript...................... 24
engine/basic_props.............c.oiiiiiiaii... 89
ensure_cache_dir/1...................... 141, 142
ensure_loaded/1.......... 16, 32
ensure_output_dir/1..................... 141, 142
ensure_output_dir_prepared/2 106
entry assertion............. 40

entry/l 36, 40, 48

181
enumerated 1ist............ 20
environment variables 101
eqUIV/2. ... 55, 69
errhandle.......... ... i 155
error(a,b) ... 99
error_free/l 55, 69
error_text/3. 149
©SCAPE SEQUENCES . .. vttt e e iee e 20
escape_string/4......................... 117, 120

eval/1l.. 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 69, 93, 95

example of Ipdocuse.......................... 83

example_module 89

exception(error(a,b)) 99

exception/1 il 71, 72

exception/2l 71, 72

exceptions .. 19, 36, 45, 55, 71, 81, 89, 98, 100, 106,
109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

exit assertion.............. 40, 41
exit/1l 36, 40, 41
eXit/ 2. 36, 41
exported predicates 105
@XPOTES oottt 97

F

fails/1. ..o 71, 73
false @assertion.............ouviiinniinann... 43
false/l.. .o 36, 43
fastformat................ 131, 133, 139
file_format_name/2..............c. ... 141, 142
file_format_provided_by_backend/3 141, 142
file_utils 71, 131, 133, 135, 137, 151
filename/1. 141
filenames...............ciii. 106, 109, 123
filetype/1 ... 19, 26, 32
Filter/2. . 55, 69
finite_solutions/1........................ 71,73
FirefoXo 13
fixed format text......... 21
fixed-width font......... 21
flag_values/1........, 55, 69
I 55, 57
fmt_html_template/3............ ... 137
fmt_didx_env/7o 145, 146
fmt_index/3 145, 146
fmt_infodir_entry/3............. 106, 107

182

£00 oo 89
foo(Argl) ... o 94
footnote 21
format 106, 117, 131, 151, 155
formatting commands..................... 3, 19, 35
framed box i 21
FranciscoBueno..................... 35, 51, 71, 81
func/l ..o 49

G

g_assrt_body/1......................... 39, 45, 49
Generating............, 9
generating fromEmacs.......................... 9
generatingmanuals............................. 9
German Puebla..................iiiiiiia.. 35
get_autodoc_opts/3...................... 106, 107
get_cache_dir/2...................... ... 141, 142
get_command_option/1 125, 126
get_doC/4 ... 109, 114
get_doc_field/3......................... 109, 114
get_doc_field dict/3 109, 114
get_first_loc_for_pred/3............... 109, 115
get_idxbase/3 145
get_idxsub/2........... ool 145
get_mainmod/1 123
get_mainmod_spec/1...................... 123, 124
get_mod_doc/3......... 109, 114
get_output_dir/2............. 141, 142
get_subbase/3......... 141, 143
gmake 101
gnd/1................. 55, 59, 90, 91, 92, 93, 94, 96
gndstr/1 ... 55, 59, 60
GNU general public license..................... 1
GNUMake ... 101
ground/1 ... 59, 60, 62, 63, 64, 65, 66, 67, 71, 72, 74,
91, 93, 95

GUNZID . ..o 101
H

hard side-effects............................. 7
have_choicepoints/1....................... 71,73
head pattern........................... 45, 46, 49
head_pattern/1..................... 42, 45, 46, 49
hiord_rt..... 19, 36, 45, 55, 71, 81, 89, 98, 100, 106,

109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

The Ipdoc Documentation Generator

html ... 4
HTML .. 1
html indexpage............. ..., 12
htmlview/1 125, 127
I

idx_get_indices/3....................... 145, 146
image filel 24
images, inserting............... 24
images, scaling............couuiiiiineinn... 24
img url/2...... ... 137
include files, 16, 32
include/1 ..ot 16, 32
including a predicate definition............. 24
including an image............ 24
including code..........ciiiiiiiniiin. 24
including files........ ..., 24
including images.............. ... 24
including or not authors...................... 10
including or not bug info..................... 10
including or not changelog.................... 10
including or not versions, patches 10
indentation, avoiding 21
indep/l. ..o 71, 72,73, 74
indep/2. .ot 71,72, 73, 74
index pages out of order 12
index_comment/2........... 10, 106
info................... 1, 4, 13, 14, 15, 18, 21, 101
infopathlist............iiniiii... 14
infodir_base/2 ... 131
INNET . oo 97
insert_show_toc/3.......... 117, 121
INStE/2. 55, 66
installation............... L, 3
installation, of manuals 12
INSTALLATION.1pdoC ..o 17
instance/2. 80
instantiation properties..................... 51
int/1o oL 55, 56, 76, 90, 91, 92, 94, 95
integer/1...... ... i 47
internals...........iiiiiiiiii e 71
internals manual 3, 16
introduction...........l 28
io_aux .. 19, 36, 45, 55, 71, 81, 89, 98, 100, 106, 109,

117, 123, 125, 131, 133, 135, 137, 139, 141, 145
147, 149, 151, 153, 155

Global Index

io_basic..... 19, 36, 45, 55, 71, 81, 89, 98, 100, 106
109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

18/ e 96
is_det/1....... 56, 57, 58, 59, 60, 61, 62, 71, 73, 93
is_index_cmd/1.........., 145, 146
is_nonempty_doctree/1 117, 118
is_version/1 i 117, 120
180/1 o 55, 67, 94
italics faceot 21
item in an itemized list 20
itemized list........ ... 20
J

Jose F. Morales... 105, 109, 117, 123, 125, 131, 133
135, 137, 139, 141, 145, 147, 151, 153, 155

K

keyboard key i 21
known_format/1 L. 155
L

labgen_clean/1..............covveennnn.. 109, 112
labgen_get/2....... il 109, 112
labgen_init/1........... 109, 112
LaTeX ..o 20
LaTeX notation................................ 23
letter size paper...........c.ovuviunennennn... 11
1ibrary ..o 3
library(basicmodes) 46
library(isomodes)cooviueeiian... 46
linear/l. ..o 71, 74
Linux......ooinnii i 101, 102
list/1... 55, 61, 62, 63, 66, 76, 90, 91, 92, 93, 94, 95
list/2....... 31, 32, 47, 55, 62, 91, 92, 95, 107, 155
list_or_aorb/2........ ..., 89, 90

lists.... 36, 39, 71, 89, 106, 109, 117, 131, 133, 137
139, 145, 147, 151, 153

literal 98
literate programming 13
load_vpaths/O ...t 125, 126
locate_and_convert_image/4 155
logofchanges................................ 30
1Ong oo 98

183

lpdoc.. 1, 3,4, 5,9, 10, 11, 12, 13, 14, 15, 16, 17, 18
19, 23, 31, 35, 42, 46, 50, 83, 101, 102

Ipdoc -help.......... ... 10
lpdocall 10, 11, 13
lpdoc_examplesiiiiia... 83
Ipdoc_install, 101
lpdoc_option/1t 125
lpdocsrc(src(autodoc)) ..o .. 135
lpdocsrc(src(autodoc_aux)) 131, 139, 151, 155
lpdocsrc(src(autodoc_bibrefs)) 147
lpdocsrc(src(autodoc_doctree)).... 106, 109, 131,
133, 139, 145, 147, 151
lpdocsrc(src(autodoc_filesystem)) 106, 109,
117, 131, 133, 135, 145, 147, 155
lpdocsrc(src(autodoc_html)) 117
lpdocsrc(src(autodoc_html_resources)) 106,
133
lpdocsrc(src(autodoc_html_template))....... 133
lpdocsrc(src(autodoc_images)) 131, 133, 139
lpdocsrc(src(autodoc_index)) 106, 109, 117,
131, 133
lpdocsrc(src(autodoc_man)) 117
lpdocsrc(src(autodoc_parse)) 106, 109, 151
lpdocsrc(src(autodoc_refsdb)) 106, 109, 117

133, 145, 151
lpdocsrc(src(autodoc_settings)) .. 106, 109, 117
123, 131, 133, 135, 137, 141, 151, 153, 155

lpdocsrc(src(autodoc_state)) 106, 117, 131,
133, 139, 141, 145, 147, 151, 155
lpdocsrc(src(autodoc_structure)) 106, 109,
117, 131, 133, 141, 145, 147
lpdocsrc(src(autodoc_texinfo))......... 106, 117
lpdocsrc(src(comments)) .. 106, 109, 117, 131, 133
139
lpdocsrc(src(component_versions)) 141
lpdocsrc(src(distpkg_download)) 133
M
machine readable comments................. 19, 26
mainbody 28
main fileo 4
Main/O. ..o 3,4
main/l.. ... 3,4
main_absfile_for_subtarget/3........... 141, 143
main_absfile_in_format/2............... 141, 142
main_output_name/2...................... 141, 143

184

make/make_rt 106, 109, 117, 123, 125, 131, 137,
151, 155

make/system_extra 106, 109, 117, 125, 131, 135,
137, 141, 151, 153, 155

Makefile 12, 101
makeinfo.......... i 102
makeinfo/1 125, 127
makertf/1 125, 127
11T 13, 14

Manuel Hermenegildo ... 9, 19, 35, 45, 51, 55, 71, 83,
101, 105, 109, 117, 131, 139, 149, 151, 153

master index 4
member/2 ... 55, 63, 68
memo/l. ... 55, 69
messages 106, 109, 131, 135, 137, 153, 155
meta_predicate/1 13
MELA_PTOPS .\t ove e eie e 3, 81
modeo 36, 46
modedef/1..... 36, 41, 46
modtype/1l ... 109, 114
module comment, 28
module declaration 105
module/1 105
module/2. 105
mshare/l...ot 71, 74
mut_exclusive/1........ 71, 74
mytype/l. 89, 92
N

n_assrt_body/5......... 48, 49
nabody/1............... .. i 45, 48
native/1 ... 55, 56, 57, 58, 59, 60, 68, 72, 73, 74, 76,

79, 80

native/2 55, 68, 71, 72, 73, 74, 75
native_propsiiiiiiiiiii 3,71
nativeprops.pl 97
new item in description list.................. 21
NLASt/L oo 63
N1AiSt/2. 55, 62
nnegint/1 i 55, 56
TLO oottt e e 97, 98
no_choicepoints/1.............. 71, 74
no_exception/1......... 71, 75
no_exception/2.......... ..., 71, 75
no_rtcheck/1 55, 68
no_signal/l 71, 75

no_signal/2 71, 75

The Ipdoc Documentation Generator

non_det/1 71, 75
nonground/1 71, 75
nonvar/1........... 56, 57, 58, 59, 60, 61, 64, 91, 92
normalize_index_cmd/3 145, 146
not_covered/1, 71, 75
not_fails........ ...t 99
not_fails/1.............. 71, 75, 91, 92, 93, 94, 95
not_further_inst/1........................... 48
not_further_inst/2................. 55, 67, 91, 92
not_mut_exclusive/1....................... 71, 76
num/l ... 55, 57, 58, 96
num_code/1 55, 65
num_solutions/2 ... 71, 76

OB/ 2 95
one-sided printing, 10
OP/ B 13
operator_specifier/1...................... 55, 61
OPETALOTS . .ottt 117
option_comment/2 10, 109, 110
P

P/ 89, 91
P/ 89, 94
P/ G e 89, 91
packages.............. i 16, 32
page numbering, changing 10
page size, changing............ 11
page style, changing.......................... 11
paragraph break................ 21
parametric property 82
parametric regular type abstractions......... 82
parametric type functor 54
parse_structure/0 123
parts in a large document 17
parts in large documents...................... 32
pdftex...... 102
pdfview/1 125, 126
pe_type/l ... 55, 70
PedroLopez............. 51, 71
Perl .o 102
pillow/html........cooviiiinniiiiii... 137
planned improvement 30
possibly_fails/1.......................... 71, 76
possibly_nondet/1......................... 71,77

Global Index

pred assertion 36, 37
pred/1 23, 36, 37, 38, 39, 41, 45, 49
Pred/2. 36, 37
predfunctor/1........ 45, 50
predicate.......... il 98
predicate/m.............. 99
predname/1................... 30, 31, 46, 55, 65, 66
prepare_current_refs/1 147, 148
prepare_mathjax/0........................... 135
prepare_web_skel/1 135
program assertions 35
program section................ 29
program subsection 29
Prolog.........coiiiiiiiiiiiiii.. 3, 10, 16, 101
Prolog source files............................ 3
Prolog, Ciao........... ... 9
prolog_flags..... 19, 36, 45, 55, 71, 81, 89, 98, 100,

106, 109, 117, 123, 125, 131, 133, 135, 137, 139,
141, 145, 147, 149, 151, 153, 155

propassertion 39, 40
PTOP/l o 36, 39, 40
PLOP/2 i 36, 40, 81
prop_abs/l 82
properties........... i 3
properties of computations 51
properties of execution states 51
properties, basic................. 55
properties, native 71
PTOPEIEY oottt 39
property abstraction 82
property compatibility....................... 66
property_conjunction/1............. 42, 43, 45, 47
property_starterm/1....................... 45, 47
propfunctor/1........... 45, 50
providing information to the compiler..... 40, 43
ps2pdf/1 125, 127
pstogif 102
psview/1 il 125, 126
Q

QL 89, 93
Q/2. 89, 90

o 89, 90
Tead . .. ovii i 106, 109, 117

185
read_file/2. ... 153
references 23, 102
regtype assertion.................. 54
regtype/l.. 53, 54, 55, 68
regtype/2. 53, 54, 81, 82
TegtypPesS . ..o 3, 51
regular type.......... .. 54
regular type definitions 51
regular type expression 54
regular types..............iiiiii 51
relations/2..........oiiiiiiiiii.. 61, 71, 77
requested_file_formats/1............... 125, 126
reset_output_dir_db/0....................... 106
resolve_bibliography/1...................... 151
rtchecks........ i 97
rtchecks_asrloCviiiiii .. 97
rtchecks_callloCcoviiiiinennnnnn. 98
rtchecks_entry 97
rtchecks_exit......covii i, 97
rtchecks_inline 97
rtchecks_level ...t 97
rtchecks_namefmt 98
rtchecks_predloc.............. 97
rtchecks_rt.pl L, 97
rtchecks_test........ooviii i, 97
rtchecks_trustiiiiiin... 97
rtftohlp/1 .. 125, 127
run-time checks.......... 39
running unit tests........... 99
S
S/ 89, 92
s_assrt_body/1 38, 39, 40, 41, 45, 48
scribe.... 20
SECTION . ..ot 21
section_prop/2..................., 117, 119
section_select_prop/3 117, 119
SECTIONS . . oottt 23
secttree/1l 147, 148
secttree_resolve/3...................... 147, 148
SeqUeNCe/2 55, 63
sequence_or_list/2........................ 55, 64
setting value/2............ ... 125, 126
setting_value_or_default/2 125
setting_value_or_default/3............. 125, 126
SETTINGS. . ..ottt et 5, 23

SETTINGS.pl 9, 10, 12, 13, 14, 15, 17

186

SETTINGS.pl.generated......................... 9
Sh_eXeC/2 . .o 153
sharing pieces of text........................ 24
sharing sets......... ..., 74
short 98

sideff/2 ... 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 68, 69, 93, 95

sideff_hard/1......... 71,77
sideff _pure/1...... ... 71,77
sideff_soft/1....... 71, 77
signal/l..... i 71,77
signal/2. 71,77
signals/2 71, 78
S1Ze/2. 71,78
S1Ze/3 . 71,78
Size_1b/2 . i 71, 78
size_metric/3 71,78
size_metric/4...... 71, 78
S1Z@_0/ 2. i 71, 78
S1zZe_Uub/2 .. 71, 78
soft side-effects............. et
solutions/2 ... 71, 76
SOTE Lttt e e 71
space, extralines............. 21
spcae, horizontal fill........................ 21
special characters 24
specifications L. 35
standalone_docstr/1......................... 123
Steps/2. 71,79
steps_1b/2. 71, 79, 91
StepPS_0/2 .t 71, 79
steps_ub/2 71, 79
SEreamsS . ..ottt 71

streams_basic.... 19, 36, 45, 55, 71, 81, 89, 98, 100,
106, 109, 117, 123, 125, 131, 133, 135, 137, 139,
141, 145, 147, 149, 151, 153, 155

string/1 ... 55, 65, 106, 110, 120, 137, 146, 148, 155

stringcommand/1.......... 19, 20, 42, 46, 48, 49, 50
strings....... ... 19
strong face........ i 21
struct/1 55, 58, 59
subsection...........o i 21
subtarget/1l...... 141
subtitlet 27
success assertion................ 38
success/1 ... 36, 38, 40
SUCCESS/2 ottt 36, 38

supported documentation formats............. 107

The Ipdoc Documentation Generator

supported_file_format/1................ 141, 142
supported_option/1...................... 109, 110
synopsis section of themanpage.............. 10
syntax of formatting commands 20
system.... 71, 106, 109, 131, 133, 137, 141, 153, 155

systemmodules................., 10

system_info.. 19, 36, 45, 55, 71, 81, 89, 98, 100, 106,
109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

T

772> P 89, 92
AT 101
tau/l. . 71, 79
term/1. 27, 55, 63, 107

term_basic ... 19, 36, 45, 53, 55, 71, 81, 89, 98, 100,
106, 109, 117, 123, 125, 131, 133, 135, 137, 139,
141, 145, 147, 149, 151, 153, 155

term_compare. 19, 36, 45, 55, 71, 81, 89, 98, 100,
106, 109, 117, 123, 125, 131, 133, 135, 137, 139,
141, 145, 147, 149, 151, 153, 155

term_typing.. 19, 36, 45, 55, 71, 81, 89, 98, 100, 106,
109, 117, 123, 125, 131, 133, 135, 137, 139, 141,
145, 147, 149, 151, 153, 155

terminates/1 71, 80

terms.... 106, 109, 117, 123, 131, 135, 137, 141, 151,
155
terms_check 55, 71
BOTMS _ VAT S . .ttt ettt 71
test assertion............. 38, 39, 99
test/1 .o 36, 38, 39
test/ 2. 36, 38
test_type/2.................. 56, 57, 58, 59, 71, 80
1= 18, 102
tex/ 1. 125, 127
texec assertion...............iiiiii.. 37
texeC/l. 36, 37
TeXEC/ 2. it 36, 37
texi2dvi........ . 102
texi2html. 102
texindeX 102
texindex/1o 125, 127
texinfo................. 1, 3, 4, 10, 11, 15, 18, 105
Texinfo....... i 102
texinfo files....... ... 4
textual comments.......... ..., 19
thesis-like style............................. 11

Global Index

ThrowsS/2. . oot 71, 80
time_struct/1. 33
times(N) ..ot 99
title. ... 26, 27
top_suffix/2....... i 109, 111
tree_of/2 .. 89, 90
troubleshooting 9
true assertion............. 43
true/l. . 36, 43
trust assertion............. ..., 42
trust/L. .o 36, 42
try_sols(N) ...t 99
ttyout 106
two-sided...... 10
typeindex/5... 145
BYPeS oo 3
typewriter-like font 21

W/ 89, 91
unit tests 99
unittest 99
Universal Resource Locator 23
L0 14
URL .. e 23
ULLS oottt 23
L =T = 36
usage of acommandiiiiina... 24
usage of the application...................... 10
usage tips ... 9
usage_message/1 10
use_module/1.. 17
use_package/1 16, 32
user_output/2 ... 71, 80
using citations................. 10

using_mathjax/1 135

187
V
var/1l ... 47, 90, 91, 92, 94, 95
variable names..............ouiiiiiitaia 35
verbatimtext.......... 21
verify_settings/O0........................... 125
Version......... ... 23
version maintenance mode for packages........ 31
versionnumber............... 30
version_date/2............ i 117, 121
version_descriptor/1.................. 19, 26, 30
version_maintenance_type/1............ 30, 31, 33
version_number/1 32
version_numstr/2...........iiiii... 117, 121
version_patch/2......................... 117, 121
version_string/2........................ 117, 121
viewer/3 125, 126
W
W/l 89, 92
word-help...........oiiuiiiiii 14
word-help-setup.el........................... 14
word-help.el..........oouuniiinniiinnia.. 14
Write...... ... 109, 117
WWW e 1, 13
WWW addressoiin e 23
X
KAVL © ot 11
XAVI/ L. o 125, 126
xdvisize/1 ... 125, 126
Y
O et 97, 98
ymd_date/1... ... 32

188 The Ipdoc Documentation Generator

