
The Ciao System
A New Generation, Multi-Paradigm Programming Language and Environment

(Including a State-of-the-Art ISO-Prolog)
REFERENCE MANUAL

The Ciao Documentation Series
http://www.ciaohome.org/

Generated/Printed on: 12 June 2011
Technical Report CLIP 3/97-1.13#1

Version 1.13#1 (2011/3/15, 20:8:35 CEST)

Edited by:

Francisco Bueno
Daniel Cabeza
Manuel Carro
Manuel Hermenegildo
Pedro López
Germán Puebla

The Computational logic, Languages,
Implementation, and Parallelism (CLIP) Lab
http://www.cliplab.org/

webmaster@clip.dia.fi.upm.es

School of CS, T. U. of Madrid (UPM)
IMDEA Software Institute

Copyright c© 1997-2011 Francisco Bueno, Daniel Cabeza, Manuel Carro, Manuel Hermenegildo,
P. López, and Germán Puebla This document may be freely read, stored, reproduced, dissemi-
nated, translated or quoted by any means and on any medium provided the following conditions
are met:

1. Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and
fitness for any purpose.

2. No modification is made other than cosmetic, change of representation format, translation,
correction of obvious syntactic errors, or as permitted by the clauses below.

3. Comments and other additions may be inserted, provided they clearly appear as such;
translations or fragments must clearly refer to an original complete version, preferably one
that is easily accessed whenever possible.

4. Translations, comments and other additions or modifications must be dated and their au-
thor(s) must be identifiable (possibly via an alias).

5. This licence is preserved and applies to the whole document with modifications and additions
(except for brief quotes), independently of the representation format.

6. Any reference to the "official version", "original version" or "how to obtain original versions"
of the document is preserved verbatim. Any copyright notice in the document is preserved
verbatim. Also, the title and author(s) of the original document should be clearly mentioned
as such.

7. In the case of translations, verbatim sentences mentioned in (6.) are preserved in the
language of the original document accompanied by verbatim translations to the language
of the traslated document. All translations state clearly that the author is not responsible
for the translated work. This license is included, at least in the language in which it is
referenced in the original version.

8. Whatever the mode of storage, reproduction or dissemination, anyone able to access a
digitized version of this document must be able to make a digitized copy in a format directly
usable, and if possible editable, according to accepted, and publicly documented, public
standards.

9. Redistributing this document to a third party requires simultaneous redistribution of this
licence, without modification, and in particular without any further condition or restriction,
expressed or implied, related or not to this redistribution. In particular, in case of inclusion
in a database or collection, the owner or the manager of the database or the collection re-
nounces any right related to this inclusion and concerning the possible uses of the document
after extraction from the database or the collection, whether alone or in relation with other
documents.

Any incompatibility of the above clauses with legal, contractual or judiciary decisions or con-
straints implies a corresponding limitation of reading, usage, or redistribution rights for this
document, verbatim or modified.

i

Table of Contents

Summary. 1

1 Introduction. 3
1.1 About this manual . 3
1.2 About the Ciao development system . 3
1.3 ISO-Prolog compliance versus extensibility . 4
1.4 About the name of the System . 5
1.5 Referring to Ciao . 5
1.6 Syntax terminology and notational conventions 5

1.6.1 Predicates and their components . 5
1.6.2 Characters and character strings . 6
1.6.3 Predicate specs . 6
1.6.4 Modes . 6
1.6.5 Properties and types . 6
1.6.6 Declarations . 6
1.6.7 Operators . 7

1.7 A tour of the manual . 7
1.7.1 PART I - The program development environment 7
1.7.2 PART II - The Ciao basic language (engine) 8
1.7.3 PART III - ISO-Prolog library (iso) 8
1.7.4 PART IV - Classic Prolog library (classic) 8
1.7.5 PART V - Assertions, Properties, Types, Modes,

Comments (assertions) . 8
1.7.6 PART VI - Ciao library miscellanea 8
1.7.7 PART VII - Ciao extensions . 8
1.7.8 PART VIII - Interfaces to other languages and systems

. 9
1.7.9 PART IX - Abstract data types . 9
1.7.10 PART X - Miscellaneous standalone utilities 9
1.7.11 PART XI - Contributed libraries . 9
1.7.12 PART XII - Appendices . 9

1.8 Acknowledgments . 9
1.9 Version/Change Log . 10

2 Getting started on Un*x-like machines 21
2.1 Testing your Ciao Un*x installation . 21
2.2 Un*x user setup . 21
2.3 Using Ciao from a Un*x command shell . 22

2.3.1 Starting/exiting the top-level shell (Un*x) 22
2.3.2 Getting help (Un*x) . 22
2.3.3 Compiling and running programs (Un*x) 22
2.3.4 Generating executables (Un*x) . 23
2.3.5 Running Ciao scripts (Un*x) . 23
2.3.6 The Ciao initialization file (Un*x) 24
2.3.7 Printing manuals (Un*x) . 24

2.4 An introduction to the Ciao emacs environment (Un*x) 24
2.5 Keeping up to date (Un*x) . 25

ii The Ciao System

3 Getting started on Windows machines 27
3.1 Testing your Ciao Win32 installation. 27
3.2 Using Ciao from the Windows explorer and command shell 27

3.2.1 Starting/exiting the top-level shell (Win32) 27
3.2.2 Getting help (Win32) . 28
3.2.3 Compiling and running programs (Win32) 28
3.2.4 Generating executables (Win32) . 28
3.2.5 Running Ciao scripts (Win32) . 29
3.2.6 The Ciao initialization file (Win32) 29
3.2.7 Printing manuals (Win32) . 29

3.3 An introduction to the Ciao emacs environment (Win32) 29
3.4 Keeping up to date (Win32) . 30

PART I - The program development environment
. 31

4 The stand-alone command-line compiler 33
4.1 Introduction to building executables . 33
4.2 Paths used by the compiler during compilation 34
4.3 Running executables from the command line 34
4.4 Types of executables generated . 35
4.5 Environment variables used by Ciao executables 37
4.6 Intermediate files in the compilation process 37
4.7 Usage (ciaoc) . 38
4.8 Known bugs and planned improvements (ciaoc) 40

5 The interactive top-level shell 41
5.1 Shell invocation and startup . 41
5.2 Shell interaction . 41
5.3 Entering recursive (conjunctive) shell levels 42
5.4 Usage and interface (toplevel_doc) . 43
5.5 Documentation on exports (toplevel_doc). 43

use module/1 (pred) . 43
use module/2 (pred) . 44
ensure loaded/1 (pred). 44
make exec/2 (pred) . 44
include/1 (pred) . 44
use package/1 (pred) . 45
consult/1 (pred) . 45
compile/1 (pred) . 45
./2 (pred) . 45
make po/1 (pred) . 45
unload/1 (pred) . 45
set debug mode/1 (pred) . 46
set nodebug mode/1 (pred) . 46
make actmod/2 (pred) . 46
force lazy/1 (pred) . 46
undo force lazy/1 (pred) . 46
dynamic search path/1 (pred) . 46
(multifile)/1 (pred) . 47

5.6 Documentation on internals (toplevel_doc) 47
sourcenames/1 (prop). 47

iii

6 The interactive debugger . 49
6.1 Marking modules and files for debugging in the top-level debugger

. 49
6.2 The debugging process . 50
6.3 Marking modules and files for debugging with the embedded

debugger . 50
6.4 The procedure box control flow model. 52
6.5 Format of debugging messages . 53
6.6 Options available during debugging . 54
6.7 Calling predicates that are not exported by a module 56
6.8 Acknowledgements (debugger) . 56

7 Predicates controlling the interactive debugger
. 59
7.1 Usage and interface (debugger) . 59
7.2 Documentation on exports (debugger) . 59

call in module/2 (pred) . 59
breakpt/6 (udreexp) . 59
debug/0 (udreexp) . 59
debug module/1 (udreexp) . 59
debug module source/1 (udreexp) 60
debugging/0 (udreexp) . 60
debugrtc/0 (udreexp) . 60
get debugger state/1 (udreexp) . 60
get debugger state/1 (udreexp) . 60
leash/1 (udreexp) . 60
list breakpt/0 (udreexp) . 60
maxdepth/1 (udreexp) . 60
nobreakall/0 (udreexp) . 60
nobreakpt/6 (udreexp) . 60
nodebug/0 (udreexp) . 60
nodebug module/1 (udreexp) . 60
nodebugrtc/0 (udreexp) . 61
nospy/1 (udreexp) . 61
nospyall/0 (udreexp) . 61
notrace/0 (udreexp) . 61
spy/1 (udreexp) . 61
trace/0 (udreexp) . 61
tracertc/0 (udreexp) . 61

7.3 Documentation on multifiles (debugger) . 61
define flag/3 (pred) . 61

7.4 Known bugs and planned improvements (debugger) 61

8 The script interpreter . 63
8.1 How it works . 63
8.2 Command line arguments in scripts . 64

9 Customizing library paths and path aliases 65
9.1 Usage and interface (libpaths) . 65
9.2 Documentation on exports (libpaths) . 65

get alias path/0 (pred) . 65
9.3 Documentation on multifiles (libpaths) . 65

file search path/2 (pred) . 65
library directory/1 (pred) . 66

iv The Ciao System

10 Using Ciao inside GNU emacs 67
10.1 Conventions for writing Ciao programs under Emacs 67
10.2 Checking the installation . 68
10.3 Functionality and associated key sequences (bindings) 68
10.4 Syntax coloring and syntax-based editing . 68
10.5 Getting on-line help . 68
10.6 Loading and compiling programs . 69
10.7 Commands available in toplevel and preprocessor buffers 70
10.8 Locating errors and checking the syntax of assertions 72
10.9 Commands which help typing in programs 72
10.10 Debugging programs . 72
10.11 Preprocessing programs . 73
10.12 Version control . 74
10.13 Generating program documentation . 77
10.14 Setting top level preprocessor and documenter executables . . . 78
10.15 Other commands . 78
10.16 Traditional Prolog Mode Commands . 79
10.17 Coexistence with other Prolog-like interfaces 79
10.18 Getting the Ciao mode version . 79
10.19 Using Ciao mode capabilities in standard shells 79
10.20 Customization . 80

10.20.1 Ciao general variables . 80
10.20.2 CiaoPP variables . 81
10.20.3 LPdoc variables . 81
10.20.4 Faces used in syntax-based highlighting (coloring) . . 82

10.21 Installation of the Ciao emacs interface . 85
10.22 Emacs version compatibility . 87
10.23 Acknowledgments (ciao.el) . 87

PART II - The Ciao basic language (engine) 89

11 The module system . 91
11.1 Usage and interface (modules) . 91
11.2 Documentation on internals (modules) . 91

module/3 (decl) . 91
module/2 (decl) . 92
package/1 (decl) . 92
export/1 (decl) . 92
use module/2 (decl) . 93
use module/1 (decl) . 93
import/2 (decl) . 93
reexport/2 (decl) . 93
reexport/1 (decl) . 94
(meta predicate)/1 (decl) . 94
modulename/1 (regtype) . 94
metaspec/1 (regtype) . 94

12 Directives for using code in other files 97
12.1 Usage and interface (loading_code) . 97
12.2 Documentation on internals (loading_code) 97

ensure loaded/1 (decl) . 97
include/1 (decl) . 97
use package/1 (decl) . 97

v

13 Control constructs/predicates 99
13.1 Usage and interface (basiccontrol) . 99
13.2 Documentation on exports (basiccontrol) 99

,/2 (pred) . 99
;/2 (pred) . 99
-> /2 (pred) . 100
!/0 (pred). 100
(\+)/1 (pred) . 100
if/3 (pred) . 100
true/0 (pred) . 101
fail/0 (pred) . 101
repeat/0 (pred) . 101
false/0 (pred) . 102
otherwise/0 (pred) . 102

13.3 Known bugs and planned improvements (basiccontrol) 102

14 Basic builtin directives. 103
14.1 Usage and interface (builtin_directives) 103
14.2 Documentation on internals (builtin_directives) 103

(multifile)/1 (decl) . 103
(discontiguous)/1 (decl). 103
impl defined/1 (decl) . 103
redefining/1 (decl) . 104
initialization/1 (decl) . 104
on abort/1 (decl) . 104

15 Basic data types and properties 105
15.1 Usage and interface (basic_props) . 105
15.2 Documentation on exports (basic_props). 105

term/1 (regtype) . 105
int/1 (regtype) . 106
nnegint/1 (regtype) . 106
flt/1 (regtype) . 107
num/1 (regtype) . 107
atm/1 (regtype) . 108
struct/1 (regtype) . 108
gnd/1 (regtype) . 109
gndstr/1 (regtype) . 109
constant/1 (regtype). 110
callable/1 (regtype) . 110
operator specifier/1 (regtype) . 110
list/1 (regtype). 111
list/2 (regtype). 112
nlist/2 (regtype) . 112
member/2 (prop) . 113
sequence/2 (regtype) . 113
sequence or list/2 (regtype) . 113
character code/1 (regtype) . 114
string/1 (regtype) . 114
num code/1 (regtype) . 115
predname/1 (regtype) . 115
atm or atm list/1 (regtype) . 115
compat/2 (prop) . 116
inst/2 (prop) . 116
iso/1 (prop). 116

vi The Ciao System

deprecated/1 (prop) . 117
not further inst/2 (prop) . 117
sideff/2 (prop) . 117
(regtype)/1 (prop) . 118
native/1 (prop) . 118
native/2 (prop) . 118
no rtcheck/1 (prop) . 118
eval/1 (prop) . 118
equiv/2 (prop) . 118
bind ins/1 (prop). 119
error free/1 (prop) . 119
memo/1 (prop) . 119
filter/2 (prop) . 119
flag values/1 (regtype) . 119
pe type/1 (prop) . 119

15.3 Known bugs and planned improvements (basic_props) 119

16 Extra-logical properties for typing 121
16.1 Usage and interface (term_typing) . 121
16.2 Documentation on exports (term_typing). 121

var/1 (prop) . 121
nonvar/1 (prop) . 122
atom/1 (prop) . 122
integer/1 (prop) . 123
float/1 (prop) . 124
number/1 (prop) . 125
atomic/1 (prop) . 125
ground/1 (prop). 126
type/2 (prop) . 127

16.3 Known bugs and planned improvements (term_typing) 127

17 Basic term manipulation 129
17.1 Usage and interface (term_basic) . 129
17.2 Documentation on exports (term_basic) 129

= /2 (prop) . 129
\= /2 (pred) . 129
arg/3 (pred) . 130
functor/3 (pred) . 131
=.. /2 (pred) . 132
non empty list/1 (regtype) . 132
copy term/2 (pred) . 132
copy term nat/2 (pred) . 133
C/3 (pred) . 133
const head/1 (prop) . 133
list functor/1 (regtype) . 134

17.3 Known bugs and planned improvements (term_basic) 134

vii

18 Comparing terms . 135
18.1 Usage and interface (term_compare) . 135
18.2 Documentation on exports (term_compare) 135

== /2 (prop) . 135
\== /2 (pred) . 136
@< /2 (pred) . 136
@=< /2 (pred) . 137
@> /2 (pred) . 137
@>= /2 (pred) . 137
compare/3 (pred) . 138
comparator/1 (regtype) . 138

18.3 Known bugs and planned improvements (term_compare) 139

19 Basic predicates handling names of constants
. 141
19.1 Usage and interface (atomic_basic) . 141
19.2 Documentation on exports (atomic_basic) 141

name/2 (pred) . 141
atom codes/2 (pred) . 142
number codes/2 (pred) . 143
atom number/2 (pred) . 143
atom number/3 (pred) . 146
atom length/2 (pred) . 147
atom concat/3 (pred) . 147
sub atom/4 (pred) . 149
valid base/1 (regtype) . 149

19.3 Known bugs and planned improvements (atomic_basic) 149

20 Arithmetic . 151
20.1 Usage and interface (arithmetic) . 151
20.2 Documentation on exports (arithmetic) 151

is/2 (pred) . 151
< /2 (pred) . 153
=< /2 (pred) . 153
> /2 (pred) . 154
>= /2 (pred) . 155
=:= /2 (pred). 155
=\= /2 (pred) . 156
arithexpression/1 (regtype) . 156
intexpression/1 (regtype) . 158

20.3 Known bugs and planned improvements (arithmetic) 158

viii The Ciao System

21 Basic file/stream handling 159
21.1 Usage and interface (streams_basic) . 159
21.2 Documentation on exports (streams_basic) 159

open/3 (pred) . 159
open/4 (pred) . 160
open option list/1 (regtype) . 160
close/1 (pred) . 160
set input/1 (pred) . 161
current input/1 (pred) . 161
set output/1 (pred). 161
current output/1 (pred) . 162
character count/2 (pred) . 162
line count/2 (pred) . 162
line position/2 (pred) . 163
flush output/1 (pred) . 163
flush output/0 (pred) . 163
clearerr/1 (pred) . 163
current stream/3 (pred) . 163
stream code/2 (pred) . 164
absolute file name/2 (pred) . 164
absolute file name/7 (pred) . 165
pipe/2 (pred) . 165
sourcename/1 (regtype) . 165
stream/1 (regtype) . 166
stream alias/1 (regtype) . 166
io mode/1 (regtype) . 167
atm or int/1 (regtype) . 167

21.3 Documentation on multifiles (streams_basic) 167
file search path/2 (pred) . 167
library directory/1 (pred) . 167

21.4 Known bugs and planned improvements (streams_basic) . . . 168

22 Basic input/output . 169
22.1 Usage and interface (io_basic) . 169
22.2 Documentation on exports (io_basic) . 169

get code/2 (pred) . 169
get code/1 (pred) . 169
get1 code/2 (pred) . 170
get1 code/1 (pred) . 170
peek code/2 (pred) . 170
peek code/1 (pred) . 171
skip code/2 (pred) . 171
skip code/1 (pred) . 171
skip line/1 (pred) . 171
skip line/0 (pred) . 171
put code/2 (pred) . 171
put code/1 (pred) . 172
nl/1 (pred) . 172
nl/0 (pred) . 172
tab/2 (pred) . 173
tab/1 (pred) . 173
code class/2 (pred) . 173
getct/2 (pred). 173
getct1/2 (pred) . 174
display/2 (pred) . 174

ix

display/1 (pred) . 175
displayq/2 (pred). 175
displayq/1 (pred). 175

22.3 Known bugs and planned improvements (io_basic) 175

23 Exception and Signal handling 177
23.1 Usage and interface (exceptions) . 177
23.2 Documentation on exports (exceptions) 177

catch/3 (pred) . 177
intercept/3 (pred) . 177
throw/1 (pred) . 178
send signal/1 (pred) . 178
send silent signal/1 (pred) . 178
halt/0 (pred) . 179
halt/1 (pred) . 179
abort/0 (pred) . 179

23.3 Known bugs and planned improvements (exceptions) 179

24 Changing system behaviour and various flags
. 181
24.1 Usage and interface (prolog_flags) . 182
24.2 Documentation on exports (prolog_flags) 182

set prolog flag/2 (pred) . 182
current prolog flag/2 (pred) . 182
prolog flag/3 (pred) . 182
push prolog flag/2 (pred) . 183
pop prolog flag/1 (pred) . 183
set ciao flag/2 (pred) . 184
current ciao flag/2 (pred) . 184
ciao flag/3 (pred) . 184
push ciao flag/2 (pred) . 184
pop ciao flag/1 (pred) . 184
prompt/2 (pred) . 184
gc/0 (pred) . 185
nogc/0 (pred) . 185
fileerrors/0 (pred) . 185
nofileerrors/0 (pred) . 185

24.3 Documentation on multifiles (prolog_flags) 186
define flag/3 (pred) . 186

24.4 Documentation on internals (prolog_flags) 186
set prolog flag/1 (pred) . 186

24.5 Known bugs and planned improvements (prolog_flags) 186

x The Ciao System

25 Fast/concurrent update of facts 187
25.1 Usage and interface (data_facts) . 187
25.2 Documentation on exports (data_facts) 187

asserta fact/1 (pred). 187
asserta fact/2 (pred). 187
assertz fact/1 (pred) . 188
assertz fact/2 (pred) . 188
current fact/1 (pred) . 188
current fact/2 (pred) . 189
retract fact/1 (pred) . 189
retractall fact/1 (pred) . 190
current fact nb/1 (pred) . 190
retract fact nb/1 (pred) . 190
close predicate/1 (pred) . 190
open predicate/1 (pred) . 191
set fact/1 (pred) . 191
erase/1 (pred). 191
reference/1 (regtype) . 192

25.3 Documentation on internals (data_facts). 192
(data)/1 (decl) . 192
(concurrent)/1 (decl) . 192

25.4 Known bugs and planned improvements (data_facts) 192

26 Extending the syntax . 193
26.1 Usage and interface (syntax_extensions) 193
26.2 Documentation on internals (syntax_extensions) 193

op/3 (decl) . 193
new declaration/1 (decl) . 193
new declaration/2 (decl) . 193
load compilation module/1 (decl) 194
add sentence trans/2 (decl) . 194
add term trans/2 (decl) . 194
add goal trans/2 (decl) . 195
add clause trans/2 (decl) . 195
translation predname/1 (regtype) 195

27 Message printing primitives 197
27.1 Usage and interface (io_aux) . 197
27.2 Documentation on exports (io_aux) . 197

message/2 (pred) . 197
message lns/4 (pred) . 198
messages/1 (pred) . 198
error/1 (pred) . 198
warning/1 (pred) . 198
note/1 (pred) . 199
message/1 (pred) . 199
debug/1 (pred) . 199
inform user/1 (pred). 199
display string/1 (pred) . 199
display list/1 (pred) . 199
display term/1 (pred). 199
message info/1 (regtype) . 199
message type/1 (regtype) . 200
add lines/4 (pred) . 200

27.3 Known bugs and planned improvements (io_aux) 200

xi

28 Attributed variables . 201
28.1 Usage and interface (attributes) . 201
28.2 Documentation on exports (attributes) 201

attach attribute/2 (pred) . 201
get attribute/2 (pred) . 201
update attribute/2 (pred) . 201
detach attribute/1 (pred) . 202

28.3 Documentation on multifiles (attributes) 202
verify attribute/2 (pred) . 202
combine attributes/2 (pred) . 202

28.4 Other information (attributes) . 203
28.5 Known bugs and planned improvements (attributes) 203

29 Internal Runtime Information 205
29.1 Usage and interface (system_info) . 205
29.2 Documentation on exports (system_info). 205

get arch/1 (pred) . 205
get os/1 (pred) . 205
get platform/1 (pred) . 206
get debug/1 (pred) . 206
get eng location/1 (pred) . 206
get ciao ext/1 (pred) . 206
get exec ext/1 (pred) . 206
get so ext/1 (pred) . 207
this module/1 (pred) . 207
current module/1 (pred) . 207
ciao c headers dir/1 (pred) . 207
ciao lib dir/1 (pred) . 208
internal module id/1 (regtype) . 208

29.3 Known bugs and planned improvements (system_info) 208

30 Conditional Compilation 209
30.1 Usage and interface (condcomp_doc) . 209
30.2 Known bugs and planned improvements (condcomp_doc) 209

31 Other predicates and features defined by default
. 211
31.1 Usage and interface (default_predicates) 211
31.2 Documentation on exports (default_predicates) 211

op/3 (udreexp) . 211
current op/3 (udreexp) . 211
append/3 (udreexp) . 211
delete/3 (udreexp) . 211
select/3 (udreexp) . 211
nth/3 (udreexp) . 212
last/2 (udreexp) . 212
reverse/2 (udreexp). 212
length/2 (udreexp) . 212
use module/1 (udreexp) . 212
use module/2 (udreexp) . 212
ensure loaded/1 (udreexp) . 212
(^)/2 (udreexp) . 212
findnsols/5 (udreexp) . 212
findnsols/4 (udreexp) . 212

xii The Ciao System

findall/4 (udreexp) . 212
findall/3 (udreexp) . 212
bagof/3 (udreexp) . 213
setof/3 (udreexp) . 213
wellformed body/3 (udreexp) . 213
(data)/1 (udreexp) . 213
(dynamic)/1 (udreexp) . 213
current predicate/2 (udreexp) . 213
current predicate/1 (udreexp) . 213
clause/3 (udreexp) . 213
clause/2 (udreexp) . 213
abolish/1 (udreexp) . 213
retractall/1 (udreexp) . 213
retract/1 (udreexp) . 213
assert/2 (udreexp) . 214
assert/1 (udreexp) . 214
assertz/2 (udreexp) . 214
assertz/1 (udreexp) . 214
asserta/2 (udreexp). 214
asserta/1 (udreexp). 214
read option/1 (udreexp) . 214
second prompt/2 (udreexp) . 214
read top level/3 (udreexp) . 214
read term/3 (udreexp) . 214
read term/2 (udreexp) . 214
read/2 (udreexp) . 214
read/1 (udreexp) . 215
write attribute/1 (udreexp) . 215
printable char/1 (udreexp) . 215
prettyvars/1 (udreexp). 215
numbervars/3 (udreexp) . 215
portray clause/1 (udreexp) . 215
portray clause/2 (udreexp) . 215
write list1/1 (udreexp). 215
print/1 (udreexp) . 215
print/2 (udreexp) . 215
write canonical/1 (udreexp) . 215
write canonical/2 (udreexp) . 215
writeq/1 (udreexp) . 216
writeq/2 (udreexp) . 216
write/1 (udreexp) . 216
write/2 (udreexp) . 216
write option/1 (udreexp) . 216
write term/2 (udreexp) . 216
write term/3 (udreexp) . 216
put char/2 (udreexp) . 216
put char/1 (udreexp) . 216
peek char/2 (udreexp) . 216
peek char/1 (udreexp) . 216
get char/2 (udreexp) . 216
get char/1 (udreexp) . 217
put byte/2 (udreexp) . 217
put byte/1 (udreexp) . 217
peek byte/2 (udreexp) . 217
peek byte/1 (udreexp) . 217
get byte/2 (udreexp) . 217

xiii

get byte/1 (udreexp) . 217
char codes/2 (udreexp) . 217
number chars/2 (udreexp) . 217
atom chars/2 (udreexp) . 217
char code/2 (udreexp) . 217
unify with occurs check/2 (udreexp) 217
sub atom/5 (udreexp) . 218
compound/1 (udreexp) . 218
once/1 (udreexp) . 218
format control/1 (udreexp) . 218
format to string/3 (udreexp) . 218
sformat/3 (udreexp) . 218
format/3 (udreexp) . 218
format/2 (udreexp) . 218
keypair/1 (udreexp) . 218
keylist/1 (udreexp) . 218
keysort/2 (udreexp) . 218
sort/2 (udreexp) . 218
between/3 (udreexp) . 219
system error report/1 (udreexp) 219
replace characters/4 (udreexp) . 219
no swapslash/3 (udreexp) . 219
cyg2win/3 (udreexp) . 219
winpath c/3 (udreexp) . 219
winpath/3 (udreexp) . 219
winpath/2 (udreexp) . 219
using windows/0 (udreexp) . 219
rename file/2 (udreexp) . 219
delete directory/1 (udreexp) . 219
delete file/1 (udreexp) . 219
set exec mode/2 (udreexp) . 220
chmod/3 (udreexp) . 220
chmod/2 (udreexp) . 220
fmode/2 (udreexp) . 220
modif time0/2 (udreexp) . 220
modif time/2 (udreexp) . 220
file properties/6 (udreexp) . 220
file property/2 (udreexp) . 220
file exists/2 (udreexp) . 220
file exists/1 (udreexp) . 220
mktemp in tmp/2 (udreexp) . 220
mktemp/2 (udreexp) . 220
directory files/2 (udreexp) . 221
wait/3 (udreexp) . 221
exec/8 (udreexp) . 221
exec/3 (udreexp) . 221
exec/4 (udreexp) . 221
popen mode/1 (udreexp) . 221
popen/3 (udreexp) . 221
system/2 (udreexp) . 221
system/1 (udreexp) . 221
shell/2 (udreexp) . 221
shell/1 (udreexp) . 221
shell/0 (udreexp) . 221
cd/1 (udreexp) . 222
working directory/2 (udreexp) . 222

xiv The Ciao System

make dirpath/1 (udreexp) . 222
make dirpath/2 (udreexp) . 222
make directory/1 (udreexp) . 222
make directory/2 (udreexp) . 222
umask/2 (udreexp) . 222
current executable/1 (udreexp) . 222
current host/1 (udreexp) . 222
get address/2 (udreexp) . 222
get tmp dir/1 (udreexp) . 222
get grnam/1 (udreexp) . 222
get pwnam/1 (udreexp) . 223
get gid/1 (udreexp) . 223
get uid/1 (udreexp) . 223
get pid/1 (udreexp) . 223
file dir name/3 (udreexp) . 223
extract paths/2 (udreexp) . 223
dir path/2 (udreexp) . 223
copy file/3 (udreexp) . 223
copy file/2 (udreexp) . 223
c errno/1 (udreexp) . 223
del env/1 (udreexp) . 223
set env/2 (udreexp) . 223
current env/2 (udreexp) . 224
setenvstr/2 (udreexp) . 224
getenvstr/2 (udreexp) . 224
datime struct/1 (udreexp) . 224
datime/9 (udreexp) . 224
datime/1 (udreexp) . 224
time/1 (udreexp) . 224
pause/1 (udreexp) . 224
garbage collect/0 (udreexp) . 224
current atom/1 (udreexp) . 224
predicate property/3 (udreexp) . 224
predicate property/2 (udreexp) . 224
time option/1 (udreexp) . 225
tick option/1 (udreexp) . 225
clockfreq option/1 (udreexp) . 225
memory option/1 (udreexp) . 225
garbage collection option/1 (udreexp) 225
symbol option/1 (udreexp) . 225
time result/1 (udreexp) . 225
memory result/1 (udreexp) . 225
gc result/1 (udreexp) . 225
symbol result/1 (udreexp) . 225
new atom/1 (udreexp) . 225
tick result/1 (udreexp). 225
clockfreq result/1 (udreexp) . 226
statistics/2 (udreexp) . 226
statistics/0 (udreexp) . 226
close file/1 (udreexp) . 226
told/0 (udreexp) . 226
telling/1 (udreexp) . 226
tell/1 (udreexp) . 226
seen/0 (udreexp) . 226
seeing/1 (udreexp) . 226
see/1 (udreexp) . 226

xv

current key/2 (udreexp) . 226
recorded/3 (udreexp) . 226
recordz/3 (udreexp) . 227
recorda/3 (udreexp) . 227
ttydisplay string/1 (udreexp) . 227
ttyskipeol/0 (udreexp) . 227
ttydisplayq/1 (udreexp) . 227
ttydisplay/1 (udreexp) . 227
ttyflush/0 (udreexp) . 227
ttytab/1 (udreexp) . 227
ttyskip/1 (udreexp) . 227
ttyput/1 (udreexp) . 227
ttynl/0 (udreexp) . 227
ttyget1/1 (udreexp) . 227
ttyget/1 (udreexp) . 227

PART III - ISO-Prolog library (iso) 229

32 ISO-Prolog package . 231
32.1 Usage and interface (iso_doc) . 231

33 All solutions predicates . 233
33.1 Usage and interface (aggregates) . 233
33.2 Documentation on exports (aggregates) 233

setof/3 (pred) . 233
bagof/3 (pred) . 234
findall/3 (pred) . 234
findall/4 (pred) . 235
findnsols/4 (pred) . 235
findnsols/5 (pred) . 236
(^)/2 (pred) . 236

33.3 Known bugs and planned improvements (aggregates) 237

34 Dynamic predicates. 239
34.1 Usage and interface (dynamic_rt) . 239
34.2 Documentation on exports (dynamic_rt) 239

asserta/1 (pred) . 239
asserta/2 (pred) . 240
assertz/1 (pred) . 240
assertz/2 (pred) . 240
assert/1 (pred) . 240
assert/2 (pred) . 241
retract/1 (pred) . 241
retractall/1 (pred) . 241
abolish/1 (pred) . 242
clause/2 (pred) . 242
mfclause/2 (pred) . 242
current predicate/1 (pred) . 242
current predicate/2 (pred) . 243
(dynamic)/1 (pred) . 243
(data)/1 (pred) . 243
erase/1 (pred). 244
wellformed body/3 (pred) . 244

34.3 Documentation on multifiles (dynamic_rt) 244

xvi The Ciao System

do on abolish/1 (pred) . 244
34.4 Known bugs and planned improvements (dynamic_rt) 244

35 Term input . 245
35.1 Usage and interface (read) . 245
35.2 Documentation on exports (read) . 245

read/1 (pred) . 245
read/2 (pred) . 245
read term/2 (pred) . 246
read term/3 (pred) . 246
read top level/3 (pred) . 246
second prompt/2 (pred) . 246
read option/1 (regtype) . 246

35.3 Documentation on multifiles (read) . 247
define flag/3 (pred) . 247

35.4 Known bugs and planned improvements (read) 247

36 Term output . 249
36.1 Usage and interface (write) . 249
36.2 Documentation on exports (write) . 249

write term/3 (pred) . 249
write term/2 (pred) . 249
write option/1 (prop) . 250
write/2 (pred) . 250
write/1 (pred) . 251
writeq/2 (pred) . 251
writeq/1 (pred) . 251
write canonical/2 (pred) . 251
write canonical/1 (pred) . 252
print/2 (pred) . 252
print/1 (pred) . 252
write list1/1 (pred) . 252
portray clause/2 (pred) . 252
portray clause/1 (pred) . 253
numbervars/3 (pred) . 253
prettyvars/1 (pred) . 253
printable char/1 (pred) . 253
write attribute/1 (pred) . 253

36.3 Documentation on multifiles (write) . 254
define flag/3 (pred) . 254
portray attribute/2 (pred) . 254
portray/1 (pred) . 254

36.4 Known bugs and planned improvements (write) 254

37 Defining operators . 255
37.1 Usage and interface (operators) . 255
37.2 Documentation on exports (operators) . 255

op/3 (pred) . 255
current op/3 (pred) . 256
current prefixop/3 (pred) . 256
current infixop/4 (pred) . 256
current postfixop/3 (pred) . 257
standard ops/0 (pred) . 257

xvii

38 The Iso Byte Char module 259
38.1 Usage and interface (iso_byte_char) . 259
38.2 Documentation on exports (iso_byte_char) 259

char code/2 (pred) . 259
atom chars/2 (pred) . 259
number chars/2 (pred) . 260
char codes/2 (pred) . 260
get byte/1 (pred) . 261
get byte/2 (pred) . 261
peek byte/1 (pred) . 261
peek byte/2 (pred) . 261
put byte/1 (pred) . 262
put byte/2 (pred) . 262
get char/1 (pred) . 262
get char/2 (pred) . 262
peek char/1 (pred) . 263
peek char/2 (pred) . 263
put char/1 (pred) . 263
put char/2 (pred) . 263

39 Miscellaneous ISO Prolog predicates 265
39.1 Usage and interface (iso_misc) . 265
39.2 Documentation on exports (iso_misc) . 265

once/1 (pred) . 265
compound/1 (pred) . 265
sub atom/5 (pred) . 265
unify with occurs check/2 (pred) 266

39.3 Known bugs and planned improvements (iso_misc) 266

40 Incomplete ISO Prolog predicates 267
40.1 Usage and interface (iso_incomplete) . 267
40.2 Documentation on exports (iso_incomplete) 267

close/2 (pred) . 267
stream property/2 (pred) . 267

PART IV - Classic Prolog library (classic) 269

41 Definite clause grammars 271
41.1 Usage and interface (dcg_doc) . 273

42 Definite Clause Grammars (expansion) 275
42.1 Usage and interface (dcg_tr) . 275
42.2 Documentation on exports (dcg_tr) . 275

phrase/2 (pred) . 275
phrase/3 (pred) . 275
dcg translation/2 (pred) . 275

42.3 Known bugs and planned improvements (dcg_tr) 275

xviii The Ciao System

43 Formatted output . 277
43.1 Usage and interface (format) . 277
43.2 Documentation on exports (format) . 277

format/2 (pred) . 277
format/3 (pred) . 278
sformat/3 (pred) . 278
format to string/3 (pred) . 278
format control/1 (regtype) . 279

43.3 Known bugs and planned improvements (format) 281

44 List processing . 283
44.1 Usage and interface (lists) . 283
44.2 Documentation on exports (lists) . 283

nonsingle/1 (pred). 283
append/3 (pred) . 283
reverse/2 (pred) . 286
reverse/3 (pred) . 286
delete/3 (pred) . 287
delete non ground/3 (pred) . 287
select/3 (pred) . 288
length/2 (pred) . 288
nth/3 (pred) . 289
add after/4 (pred) . 290
add before/4 (pred) . 290
list1/2 (prop) . 290
dlist/3 (pred) . 290
list concat/2 (pred). 291
list insert/2 (pred) . 291
insert last/3 (pred) . 291
contains ro/2 (pred) . 291
contains1/2 (pred) . 291
nocontainsx/2 (pred) . 291
last/2 (pred) . 291
list lookup/3 (pred) . 292
list lookup/4 (pred) . 292
intset insert/3 (pred) . 292
intset delete/3 (pred) . 292
intset in/2 (pred) . 292
intset sequence/3 (pred) . 292
intersection/3 (pred) . 292
union/3 (pred) . 293
difference/3 (pred) . 293
sublist/2 (prop) . 293
subordlist/2 (prop) . 293
equal lists/2 (pred) . 293
list to list of lists/2 (pred) . 294
powerset/2 (pred) . 294
cross product/2 (pred) . 294
sequence to list/2 (pred) . 294
list of lists/1 (regtype) . 294

xix

45 Sorting lists . 295
45.1 Usage and interface (sort) . 295
45.2 Documentation on exports (sort) . 295

sort/2 (pred) . 295
keysort/2 (pred) . 296
keylist/1 (regtype) . 296
keypair/1 (regtype) . 296

45.3 Known bugs and planned improvements (sort) 296

46 compiler (library) . 297
46.1 Usage and interface (compiler) . 297
46.2 Documentation on exports (compiler) . 297

make po/1 (pred) . 297
make wam/1 (pred) . 297
ensure loaded/1 (pred) . 297
ensure loaded/2 (pred) . 297
use module/1 (pred) . 297
use module/2 (pred) . 297
use module/3 (pred) . 297
unload/1 (pred) . 298
set debug mode/1 (pred) . 298
set nodebug mode/1 (pred) . 298
set debug module/1 (pred) . 298
set nodebug module/1 (pred) . 298
set debug module source/1 (pred) 298
mode of module/2 (pred) . 298
module of/2 (pred) . 298

47 Enumeration of integers inside a range 299
47.1 Usage and interface (between) . 299
47.2 Documentation on exports (between) . 299

between/3 (pred) . 299

48 Operating system utilities 301
48.1 Usage and interface (system) . 301
48.2 Documentation on exports (system) . 301

pause/1 (pred) . 301
time/1 (pred) . 301
datime/1 (pred) . 302
datime/9 (pred) . 302
datime struct/1 (regtype) . 304
getenvstr/2 (pred) . 304
setenvstr/2 (pred) . 304
current env/2 (pred) . 304
set env/2 (pred) . 304
del env/1 (pred) . 305
c errno/1 (pred) . 305
copy file/2 (pred) . 305
copy file/3 (pred) . 305
dir path/2 (pred). 305
extract paths/2 (pred) . 306
file dir name/3 (pred) . 306
get pid/1 (pred) . 306
get uid/1 (pred) . 307

xx The Ciao System

get gid/1 (pred) . 307
get pwnam/1 (pred) . 307
get grnam/1 (pred) . 307
get tmp dir/1 (pred) . 307
get address/2 (pred) . 308
current host/1 (pred) . 308
current executable/1 (pred) . 308
umask/2 (pred) . 308
make directory/2 (pred) . 309
make directory/1 (pred) . 309
make dirpath/2 (pred) . 309
make dirpath/1 (pred) . 309
working directory/2 (pred) . 309
cd/1 (pred) . 310
shell/0 (pred) . 310
shell/1 (pred) . 310
shell/2 (pred) . 310
system/1 (pred) . 311
system/2 (pred) . 311
popen/3 (pred) . 311
popen mode/1 (regtype) . 311
exec/4 (pred) . 312
exec/3 (pred) . 312
exec/8 (pred) . 312
wait/3 (pred) . 313
directory files/2 (pred). 313
mktemp/2 (pred) . 314
mktemp in tmp/2 (pred) . 314
file exists/1 (pred). 314
file exists/2 (pred). 314
file property/2 (pred) . 315
file properties/6 (pred) . 315
modif time/2 (pred) . 316
modif time0/2 (pred) . 316
fmode/2 (pred) . 316
chmod/2 (pred) . 317
chmod/3 (pred) . 317
set exec mode/2 (pred) . 317
delete file/1 (pred) . 317
delete directory/1 (pred) . 318
rename file/2 (pred) . 318
using windows/0 (pred) . 318
winpath/2 (pred) . 318
winpath/3 (pred) . 319
winpath c/3 (pred) . 319
cyg2win/3 (pred) . 319
no swapslash/3 (pred) . 320
replace characters/4 (pred). 320
system error report/1 (pred) . 320

48.3 Documentation on multifiles (system) . 320
define flag/3 (pred) . 320

48.4 Known bugs and planned improvements (system) 321

xxi

49 Prolog system internal predicates. 323
49.1 Usage and interface (prolog_sys) . 323
49.2 Documentation on exports (prolog_sys) 323

statistics/0 (pred) . 323
statistics/2 (pred) . 323
clockfreq result/1 (regtype) . 325
tick result/1 (regtype) . 325
new atom/1 (pred) . 325
symbol result/1 (regtype) . 326
gc result/1 (regtype) . 326
memory result/1 (regtype) . 326
time result/1 (regtype) . 326
symbol option/1 (regtype) . 326
garbage collection option/1 (regtype) 326
memory option/1 (regtype) . 326
clockfreq option/1 (regtype) . 326
tick option/1 (regtype) . 327
time option/1 (regtype) . 327
predicate property/2 (pred) . 327
predicate property/3 (pred) . 327
current atom/1 (pred) . 327
garbage collect/0 (pred) . 327

49.3 Known bugs and planned improvements (prolog_sys) 328

50 DEC-10 Prolog file IO . 329
50.1 Usage and interface (dec10_io) . 329
50.2 Documentation on exports (dec10_io) . 329

see/1 (pred) . 329
seeing/1 (pred) . 329
seen/0 (pred) . 329
tell/1 (pred) . 329
telling/1 (pred) . 329
told/0 (pred) . 329
close file/1 (pred) . 330

51 Quintus-like internal database 331
51.1 Usage and interface (old_database) . 331
51.2 Documentation on exports (old_database) 331

recorda/3 (pred) . 331
recordz/3 (pred) . 331
recorded/3 (pred) . 332
current key/2 (pred) . 332

xxii The Ciao System

52 ttyout (library) . 333
52.1 Usage and interface (ttyout) . 333
52.2 Documentation on exports (ttyout) . 333

ttyget/1 (pred) . 333
ttyget1/1 (pred) . 333
ttynl/0 (pred) . 333
ttyput/1 (pred) . 333
ttyskip/1 (pred) . 333
ttytab/1 (pred) . 333
ttyflush/0 (pred) . 334
ttydisplay/1 (pred) . 334
ttydisplayq/1 (pred) . 334
ttyskipeol/0 (pred) . 334
ttydisplay string/1 (pred) . 334

53 Enabling operators at run-time 335
53.1 Usage and interface (runtime_ops_doc) . 335

PART V - Assertions, Properties, Types, Modes,
Comments (assertions). 337

54 The Ciao assertion package 339
54.1 More info . 339
54.2 Some attention points . 339
54.3 Usage and interface (assertions_doc) . 340
54.4 Documentation on new declarations (assertions_doc) 340

(pred)/1 (decl) . 340
(pred)/2 (decl) . 341
(texec)/1 (decl) . 341
(texec)/2 (decl) . 341
(calls)/1 (decl) . 341
(calls)/2 (decl) . 341
(success)/1 (decl) . 342
(success)/2 (decl) . 342
(test)/1 (decl). 342
(test)/2 (decl). 342
(comp)/1 (decl) . 343
(comp)/2 (decl) . 343
(prop)/1 (decl) . 343
(prop)/2 (decl) . 344
(entry)/1 (decl) . 344
(exit)/1 (decl) . 344
(exit)/2 (decl) . 344
(modedef)/1 (decl) . 345
(decl)/1 (decl) . 345
(decl)/2 (decl) . 345
doc/2 (decl) . 345
comment/2 (decl) . 346

54.5 Documentation on exports (assertions_doc) 346
check/1 (pred) . 346
trust/1 (pred) . 346
true/1 (pred) . 347
false/1 (pred) . 347

xxiii

55 Types and properties related to assertions . . 349
55.1 Usage and interface (assertions_props) 349
55.2 Documentation on exports (assertions_props) 349

assrt body/1 (regtype) . 349
head pattern/1 (prop) . 350
complex arg property/1 (regtype) 350
property conjunction/1 (regtype) 351
property starterm/1 (regtype) . 351
complex goal property/1 (regtype) 351
nabody/1 (prop) . 352
dictionary/1 (regtype) . 352
c assrt body/1 (regtype) . 352
s assrt body/1 (regtype) . 352
g assrt body/1 (regtype) . 353
assrt status/1 (regtype) . 353
assrt type/1 (regtype) . 354
predfunctor/1 (regtype) . 354
propfunctor/1 (regtype) . 354
docstring/1 (prop) . 354

56 Declaring regular types . 355
56.1 Defining properties . 355
56.2 Usage and interface (regtypes_doc) . 357
56.3 Documentation on new declarations (regtypes_doc) 358

(regtype)/1 (decl) . 358
(regtype)/2 (decl) . 358

57 Properties which are native to analyzers 359
57.1 Usage and interface (native_props) . 359
57.2 Documentation on exports (native_props) 359

clique/1 (prop) . 359
clique 1/1 (prop) . 359
constraint/1 (prop) . 360
covered/1 (prop) . 360
covered/2 (prop) . 360
exception/1 (prop) . 360
exception/2 (prop) . 360
fails/1 (prop) . 361
finite solutions/1 (prop) . 361
have choicepoints/1 (prop) . 361
indep/1 (prop) . 361
indep/2 (prop) . 361
is det/1 (prop) . 361
linear/1 (prop) . 362
mshare/1 (prop) . 362
mut exclusive/1 (prop) . 362
no choicepoints/1 (prop) . 362
no exception/1 (prop) . 363
no exception/2 (prop) . 363
no signal/1 (prop) . 363
no signal/2 (prop) . 363
non det/1 (prop) . 363
nonground/1 (prop) . 363
not covered/1 (prop) . 363
not fails/1 (prop) . 364

xxiv The Ciao System

not mut exclusive/1 (prop) . 364
num solutions/2 (prop) . 364
solutions/2 (prop) . 364
possibly fails/1 (prop) . 365
possibly nondet/1 (prop) . 365
relations/2 (prop) . 365
sideff hard/1 (prop) . 365
sideff pure/1 (prop) . 365
sideff soft/1 (prop) . 366
signal/1 (prop) . 366
signal/2 (prop) . 366
signals/2 (prop) . 366
size/2 (prop) . 366
size/3 (prop) . 366
size lb/2 (prop) . 366
size o/2 (prop) . 366
size ub/2 (prop) . 367
size metric/3 (prop) . 367
size metric/4 (prop) . 367
steps/2 (prop) . 367
steps lb/2 (prop) . 367
steps o/2 (prop) . 367
steps ub/2 (prop) . 368
tau/1 (prop) . 368
terminates/1 (prop) . 368
test type/2 (prop) . 368
throws/2 (prop) . 368
user output/2 (prop) . 369
instance/2 (prop) . 369

57.3 Known bugs and planned improvements (native_props) 369

58 ISO-Prolog modes . 371
58.1 Usage and interface (isomodes_doc) . 371
58.2 Documentation on new modes (isomodes_doc) 371

(+)/1 (modedef) . 371
(@)/1 (modedef) . 371
(-)/1 (modedef) . 371
(?)/1 (modedef) . 371
* /1 (modedef) . 371
(+)/2 (modedef) . 371
(@)/2 (modedef) . 372
(-)/2 (modedef) . 372
(?)/2 (modedef) . 372
* /2 (modedef) . 372

xxv

59 Classical Prolog modes . 373
59.1 Usage and interface (basicmodes_doc) . 373
59.2 Documentation on new modes (basicmodes_doc) 373

(+)/1 (modedef) . 373
(-)/1 (modedef) . 373
(?)/1 (modedef) . 373
(@)/1 (modedef) . 373
in/1 (modedef) . 374
out/1 (modedef) . 374
go/1 (modedef) . 374
(+)/2 (modedef) . 374
(-)/2 (modedef) . 374
(?)/2 (modedef) . 374
(@)/2 (modedef) . 375
in/2 (modedef) . 375
out/2 (modedef) . 375
go/2 (modedef) . 375

60 Run-time checking of assertions 377
60.1 Usage and interface (rtchecks_doc) . 378

61 Unit Testing Library. 379
61.1 Additional notes . 379
61.2 Usage and interface (unittest_doc) . 380

PART VI - Ciao library miscellanea 381

62 Library Paths for Ciao Components 383
62.1 Usage and interface (ciaopaths_doc) . 383
62.2 Known bugs and planned improvements (ciaopaths_doc) . . . 383

63 Analytic benchmarks . 385
63.1 Testing Calls . 385
63.2 Testing non-deterministic behavior. 385
63.3 Testing environment handling . 385
63.4 Testing indexing mechanisms . 386
63.5 Testing unification . 386
63.6 Testing dereferencing . 386
63.7 Testing the cut . 387
63.8 Assorted small programs . 387
63.9 Usage and interface (ecrc) . 388
63.10 Documentation on exports (ecrc) . 388

main/1 (pred). 388
benchmark usage/1 (regtype) . 388
just benchmarks/0 (pred) . 389
generate human file/0 (pred) . 389
generate machine file/0 (pred) . 389
send info to developers/0 (pred) 389
arithm average/2 (pred) . 390
geom average/2 (pred) . 390

63.11 Known bugs and planned improvements (ecrc) 390

xxvi The Ciao System

64 Parse and return command-line options 391
64.1 Usage and interface (getopts) . 391
64.2 Documentation on exports (getopts) . 391

getopts/4 (pred) . 391
cl option/2 (pred) . 392

64.3 Documentation on internals (getopts) . 393
spec/1 (regtype) . 393

65 llists (library) . 395
65.1 Usage and interface (llists) . 395
65.2 Documentation on exports (llists) . 395

append/2 (pred) . 395
flatten/2 (pred) . 395
collect singletons/2 (pred) . 395
transpose/2 (pred) . 396

66 Structured stream handling 397
66.1 Usage and interface (streams) . 397
66.2 Documentation on exports (streams) . 397

open null stream/1 (pred) . 397
open input/2 (pred) . 397
close input/1 (pred) . 397
open output/2 (pred) . 397
close output/1 (pred) . 398

67 Dictionaries . 399
67.1 Usage and interface (dict) . 399
67.2 Documentation on exports (dict) . 399

dictionary/1 (regtype) . 399
dictionary/5 (pred) . 399
dic node/2 (pred) . 399
dic lookup/3 (pred) . 399
dic lookup/4 (pred) . 400
dic get/3 (pred) . 400
dic replace/4 (pred) . 400
old or new/1 (regtype) . 400
non empty dictionary/1 (regtype) 400

67.3 Known bugs and planned improvements (dict) 400

68 String processing . 401
68.1 Usage and interface (strings) . 401
68.2 Documentation on exports (strings) . 401

get line/2 (pred) . 401
get line/1 (pred) . 401
line/1 (regtype) . 401
write string/2 (pred) . 402
write string/1 (pred) . 402
whitespace/2 (pred) . 402
whitespace0/2 (pred) . 402
string/3 (pred) . 403

xxvii

69 Printing status and error messages 405
69.1 Usage and interface (messages) . 405
69.2 Documentation on exports (messages) . 405

error message/1 (pred) . 405
error message/2 (pred) . 405
error message/3 (pred) . 405
warning message/1 (pred) . 406
warning message/2 (pred) . 406
warning message/3 (pred) . 406
note message/1 (pred) . 407
note message/2 (pred) . 407
note message/3 (pred) . 407
simple message/1 (pred) . 407
simple message/2 (pred) . 407
optional message/2 (pred) . 408
optional message/3 (pred) . 408
debug message/1 (pred) . 408
debug message/2 (pred) . 408
debug goal/2 (pred) . 408
debug goal/3 (pred) . 409
show message/2 (pred) . 409
show message/3 (pred) . 409
show message/4 (pred) . 409
message t/1 (regtype) . 410
location t/1 (udreexp) . 410

69.3 Documentation on multifiles (messages) 410
issue debug messages/1 (pred) . 410

69.4 Known bugs and planned improvements (messages) 410

70 Accessing and redirecting the stream aliases
. 411
70.1 Usage and interface (io_alias_redirection) 411
70.2 Documentation on exports (io_alias_redirection) 411

set stream/3 (pred). 411
get stream/2 (pred) . 411

71 Atom to term conversion 413
71.1 Usage and interface (atom2term) . 413
71.2 Documentation on exports (atom2term) . 413

atom2term/2 (pred) . 413
string2term/2 (pred) . 414
parse term/3 (pred) . 414
parse term/4 (pred) . 415

71.3 Known bugs and planned improvements (atom2term) 416

72 ctrlcclean (library) . 417
72.1 Usage and interface (ctrlcclean) . 417
72.2 Documentation on exports (ctrlcclean) 417

ctrlc clean/1 (pred) . 417
delete on ctrlc/2 (pred) . 417
ctrlcclean/0 (pred) . 417

xxviii The Ciao System

73 errhandle (library) . 419
73.1 Usage and interface (errhandle) . 419
73.2 Documentation on exports (errhandle) . 419

error protect/1 (pred) . 419
handle error/2 (pred) . 419

74 Fast reading and writing of terms 421
74.1 Usage and interface (fastrw) . 421
74.2 Documentation on exports (fastrw) . 421

fast read/1 (pred) . 421
fast write/1 (pred) . 421
fast read/2 (pred) . 421
fast write/2 (pred) . 421
fast write to string/3 (pred) . 422

74.3 Known bugs and planned improvements (fastrw) 422

75 File name manipulation . 423
75.1 Usage and interface (filenames) . 423
75.2 Documentation on exports (filenames) . 423

no path file name/2 (pred) . 423
file directory base name/3 (pred) 424
file name extension/3 (pred) . 424
basename/2 (pred) . 425
atom or str/1 (regtype) . 425
extension/2 (pred) . 425

76 Symbolic filenames . 427
76.1 Usage and interface (symfnames) . 427
76.2 Documentation on exports (symfnames) . 427

open/3 (pred) . 427
76.3 Documentation on multifiles (symfnames) 428

alias file/1 (pred). 428
file alias/2 (pred). 428

76.4 Other information (symfnames). 428

77 File I/O utilities . 429
77.1 Usage and interface (file_utils) . 429
77.2 Documentation on exports (file_utils) 429

file terms/2 (pred) . 429
copy stdout/1 (pred) . 429
file to string/2 (pred) . 429
file to string/3 (pred) . 430
string to file/2 (pred) . 430
stream to string/2 (pred) . 430
stream to string/3 (pred) . 431
output to file/2 (pred) . 431

78 File locks . 433
78.1 Usage and interface (file_locks) . 433
78.2 Documentation on exports (file_locks) 433

lock file/3 (pred) . 433
unlock file/2 (pred) . 433

78.3 Known bugs and planned improvements (file_locks) 433

xxix

79 Lists and conjunctions and disjunctions 435
79.1 Usage and interface (formulae) . 435
79.2 Documentation on exports (formulae) . 435

list to conj/3 (pred) . 435
list to conj/2 (pred) . 435
conj to list/2 (pred) . 436
list to disj/2 (pred) . 436
disj to list/2 (pred) . 437
conj to llist/2 (pred) . 437
llist to conj/2 (pred) . 437
disj to llist/2 (pred) . 438
llist to disj/2 (pred) . 438
body2list/2 (pred) . 438
asbody to conj/2 (pred) . 438
assert body type/1 (prop) . 438
conj disj type/1 (regtype) . 438
t conj/1 (regtype) . 438
t disj/1 (regtype). 439
list to disj2/2 (pred) . 439

80 Term manipulation utilities 441
80.1 Usage and interface (terms) . 441
80.2 Documentation on exports (terms) . 441

term size/2 (pred) . 441
copy args/3 (pred) . 441
arg/2 (pred) . 442
atom concat/2 (pred) . 442

81 Term checking utilities . 445
81.1 Usage and interface (terms_check) . 445
81.2 Documentation on exports (terms_check). 445

ask/2 (pred) . 445
instance/2 (prop) . 445
variant/2 (pred) . 445
most general instance/3 (pred) . 445
most specific generalization/3 (pred) 445

81.3 Other information (terms_check) . 446
81.4 Known bugs and planned improvements (terms_check) 446

82 Sets of variables in terms 447
82.1 Usage and interface (terms_vars) . 447
82.2 Documentation on exports (terms_vars) 447

varset/2 (pred) . 447
intersect vars/3 (pred) . 447
member var/2 (pred) . 447
diff vars/3 (pred) . 447
varsbag/3 (pred) . 447
varset in args/2 (pred) . 447

xxx The Ciao System

83 Cyclic terms handling . 449
83.1 Usage and interface (cyclic_terms) . 449
83.2 Documentation on exports (cyclic_terms) 449

cyclic term/1 (pred) . 449
acyclic term/1 (pred) . 449
uncycle term/2 (pred) . 449
recycle term/2 (pred) . 449

84 A simple pretty-printer for Ciao programs . . 451
84.1 Usage and interface (pretty_print) . 451
84.2 Documentation on exports (pretty_print) 451

pretty print/2 (pred) . 451
pretty print/3 (pred) . 451
pretty print/4 (pred) . 451

84.3 Documentation on internals (pretty_print) 452
clauses/1 (regtype) . 452
clause/1 (regtype) . 452
clterm/1 (regtype) . 452
body/1 (regtype) . 452
flag/1 (regtype) . 452

84.4 Known bugs and planned improvements (pretty_print) 453

85 Pretty-printing assertions 455
85.1 Usage and interface (assrt_write) . 455
85.2 Documentation on exports (assrt_write). 455

write assertion/6 (pred). 455
write assertion/7 (pred). 455
write assertion as comment/6 (pred) 455
write assertion as comment/7 (pred) 456
write assertion as double comment/6 (pred) 456
write assertion as double comment/7 (pred) 456

86 The Ciao library browser 457
86.1 Usage and interface (librowser) . 457
86.2 Documentation on exports (librowser) . 458

update/0 (pred) . 458
browse/2 (pred) . 458
where/1 (pred) . 458
describe/1 (pred) . 459
system lib/1 (pred) . 459
apropos/1 (pred) . 459

86.3 Documentation on internals (librowser) 460
apropos spec/1 (regtype) . 460

87 Code translation utilities 461
87.1 Usage and interface (expansion_tools) . 461
87.2 Documentation on exports (expansion_tools) 461

imports meta pred/3 (pred) . 461
body expander/6 (pred) . 461
arg expander/6 (pred) . 462

87.3 Documentation on internals (expansion_tools) 462
expander pred/1 (prop) . 462

87.4 Known bugs and planned improvements (expansion_tools)
. 463

xxxi

88 Low-level concurrency/multithreading primitives
. 465
88.1 Usage and interface (concurrency) . 465
88.2 Documentation on exports (concurrency). 465

eng call/4 (pred) . 465
eng call/3 (pred) . 466
eng backtrack/2 (pred) . 466
eng cut/1 (pred) . 466
eng release/1 (pred) . 467
eng wait/1 (pred) . 467
eng kill/1 (pred) . 467
eng killothers/0 (pred) . 467
eng self/1 (pred) . 467
goal id/1 (pred) . 468
eng goal id/1 (pred) . 468
eng status/0 (pred) . 468
lock atom/1 (pred) . 468
unlock atom/1 (pred) . 468
atom lock state/2 (pred) . 469
(concurrent)/1 (pred) . 469

88.3 Known bugs and planned improvements (concurrency) 470

89 All solutions concurrent predicates 471
89.1 Usage and interface (conc_aggregates) . 471
89.2 Documentation on exports (conc_aggregates) 471

findall/3 (pred) . 471
setof/3 (pred) . 471
bagof/3 (pred) . 472

89.3 Known bugs and planned improvements (conc_aggregates)
. 472

90 The socket interface . 473
90.1 Usage and interface (sockets) . 473
90.2 Documentation on exports (sockets) . 473

connect to socket type/4 (pred) 473
connect to socket/3 (pred) . 474
bind socket/3 (pred) . 474
socket accept/2 (pred) . 474
select socket/5 (pred) . 475
socket send/2 (pred) . 475
socket recv code/3 (pred) . 475
socket recv/2 (pred) . 476
socket shutdown/2 (pred) . 476
hostname address/2 (pred) . 476
socket type/1 (regtype) . 477
shutdown type/1 (regtype) . 477

91 Sockets I/O . 479
91.1 Usage and interface (sockets_io) . 479
91.2 Documentation on exports (sockets_io) 479

serve socket/3 (pred) . 479
safe write/2 (pred) . 479

xxxii The Ciao System

92 The Ciao Make Package 481
92.1 Usage and interface (make_doc) . 481
92.2 Other information (make_doc) . 481

92.2.1 The Dependency Rules . 481
92.2.2 Specifying Paths . 483
92.2.3 Documenting Rules . 483
92.2.4 An Example of a Makefile . 483

93 Predicates Available When Using The Make
Package . 487
93.1 Usage and interface (make_rt) . 487
93.2 Documentation on exports (make_rt) . 487

make/1 (pred) . 487
target/1 (regtype) . 487
make option/1 (pred) . 488
verbose message/1 (pred) . 488
verbose message/2 (pred) . 488
dot concat/2 (pred) . 488
call unknown/1 (pred) . 488
all values/2 (pred). 488
get value/2 (pred) . 488
get value def/3 (pred) . 488
get all values/2 (pred) . 488
name value/2 (pred) . 489
set name value/2 (pred) . 489
cp name value/2 (pred) . 489
get name value/3 (pred) . 489
get name value string/3 (pred) . 489
add name value/2 (pred) . 489
del name value/1 (pred) . 489
check var exists/1 (pred) . 489
find file/2 (pred) . 489
vpath/1 (pred) . 490
add vpath/1 (pred) . 490
vpath mode/3 (pred) . 490
add vpath mode/3 (pred) . 490
bold message/1 (pred) . 490
bold message/2 (pred) . 490
normal message/2 (pred) . 490
bolder message/1 (pred) . 490
bolder message/2 (pred) . 490
newer/2 (pred) . 490
register module/1 (pred) . 490
unregister module/1 (pred) . 490
push name value/3 (pred) . 491
pop name value/1 (pred) . 491
push active config/1 (pred) . 491
pop active config/0 (pred) . 491
get active config/1 (pred) . 491
dyn load cfg module into make/1 (pred) 491
get settings nvalue/1 (pred) . 491
apply vpath mode/4 (pred) . 491
get name/2 (pred) . 492
up to date/2 (udreexp) . 492

93.3 Known bugs and planned improvements (make_rt). 492

xxxiii

94 Additional operating system utilities. 493
94.1 Usage and interface (system_extra) . 493
94.2 Documentation on exports (system_extra) 493

del dir if empty/1 (pred) . 493
move files/2 (pred) . 493
move file/2 (pred) . 494
copy files/2 (pred) . 494
copy files/3 (pred) . 494
copy files nofail/3 (pred) . 494
cat/2 (pred) . 494
cat append/2 (pred) . 494
symbolic link/2 (pred) . 494
symbolic link/3 (pred) . 494
delete files/1 (pred) . 495
del files nofail/1 (pred) . 495
del file nofail/1 (pred) . 495
del file nofail/2 (pred) . 495
del endings nofail/2 (pred) . 495
ls/3 (pred) . 495
ls/2 (pred) . 495
filter alist pattern/3 (pred) . 495
(-)/1 (pred) . 496
(–)/1 (pred) . 496
do/2 (pred) . 496
do/3 (pred) . 496
do/4 (pred) . 496
do/5 (pred) . 497
try finally/3 (pred) . 497
set owner/2 (pred) . 497
readf/2 (pred) . 497
datime string/1 (pred) . 498
datime string/2 (pred) . 498
datime atom/1 (pred) . 498
datime atom/2 (pred) . 498
no tr nl/2 (pred) . 498
replace strings/3 (pred) . 498
replace strings in file/3 (pred) . 498
writef/3 (pred) . 498
writef/2 (pred) . 498
add suffix/3 (pred) . 498
add preffix/3 (pred) . 498
writef list/3 (pred) . 498
writef list/2 (pred) . 499
etags/2 (pred) . 499
any to term/2 (pred) . 499
touch/1 (pred) . 499
get perms/2 (pred) . 499
set perms/2 (pred) . 499
set exec perms/2 (pred) . 499
mkdir perm/2 (pred) . 499
convert permissions/2 (pred) . 499
convert permissions/4 (pred) . 499
execute permissions/2 (pred) . 499
execute permissions/4 (pred) . 499
pattern/1 (regtype) . 500
do options/1 (regtype) . 500

xxxiv The Ciao System

do str/3 (pred) . 500
do str without nl/3 (pred) . 500
do str without nl popen/2 (pred) 500
do atmlist popen/2 (pred) . 500
system error report/1 (udreexp) 500
replace characters/4 (udreexp) . 500
no swapslash/3 (udreexp) . 500
cyg2win/3 (udreexp) . 501
winpath c/3 (udreexp) . 501
winpath/3 (udreexp) . 501
winpath/2 (udreexp) . 501
using windows/0 (udreexp) . 501
rename file/2 (udreexp) . 501
delete directory/1 (udreexp) . 501
delete file/1 (udreexp) . 501
set exec mode/2 (udreexp) . 501
chmod/3 (udreexp) . 501
chmod/2 (udreexp) . 501
fmode/2 (udreexp) . 502
modif time0/2 (udreexp) . 502
modif time/2 (udreexp) . 502
file properties/6 (udreexp) . 502
file property/2 (udreexp) . 502
file exists/2 (udreexp) . 502
file exists/1 (udreexp) . 502
mktemp in tmp/2 (udreexp) . 502
mktemp/2 (udreexp) . 502
directory files/2 (udreexp) . 502
wait/3 (udreexp) . 502
exec/8 (udreexp) . 502
exec/3 (udreexp) . 503
exec/4 (udreexp) . 503
popen mode/1 (udreexp) . 503
popen/3 (udreexp) . 503
system/2 (udreexp) . 503
system/1 (udreexp) . 503
shell/2 (udreexp) . 503
shell/1 (udreexp) . 503
shell/0 (udreexp) . 503
cd/1 (udreexp) . 503
working directory/2 (udreexp) . 503
make dirpath/1 (udreexp) . 503
make dirpath/2 (udreexp) . 504
make directory/1 (udreexp) . 504
make directory/2 (udreexp) . 504
umask/2 (udreexp) . 504
current executable/1 (udreexp) . 504
current host/1 (udreexp) . 504
get address/2 (udreexp) . 504
get tmp dir/1 (udreexp) . 504
get grnam/1 (udreexp) . 504
get pwnam/1 (udreexp) . 504
get gid/1 (udreexp) . 504
get uid/1 (udreexp) . 504
get pid/1 (udreexp) . 505
file dir name/3 (udreexp) . 505

xxxv

extract paths/2 (udreexp) . 505
dir path/2 (udreexp) . 505
copy file/3 (udreexp) . 505
copy file/2 (udreexp) . 505
c errno/1 (udreexp) . 505
del env/1 (udreexp) . 505
set env/2 (udreexp) . 505
current env/2 (udreexp) . 505
setenvstr/2 (udreexp) . 505
getenvstr/2 (udreexp) . 505
datime struct/1 (udreexp) . 506
datime/9 (udreexp) . 506
datime/1 (udreexp) . 506
time/1 (udreexp) . 506
pause/1 (udreexp) . 506

PART VII - Ciao extensions . 507

95 Pure Prolog package . 509
95.1 Usage and interface (pure_doc) . 510
95.2 Known bugs and planned improvements (pure_doc) 510

96 Multiple Argument Indexing 511
96.1 Usage and interface (indexer_doc) . 511
96.2 Documentation on exports (indexer_doc). 511

hash term/2 (pred) . 511
96.3 Documentation on internals (indexer_doc) 512

index/1 (decl) . 512
indexspecs/1 (regtype) . 512
argspec/1 (regtype) . 513

97 Higher-order . 515
97.1 Usage and interface (hiord_rt) . 515
97.2 Documentation on exports (hiord_rt) . 515

call/1 (pred) . 515
call/2 (pred) . 515
SYSCALL/1 (pred) . 516
$nodebug call/1 (pred) . 516
$meta call/1 (pred) . 516

97.3 Known bugs and planned improvements (hiord_rt) 516

98 Higher-order predicates . 517
98.1 Usage and interface (hiordlib) . 517
98.2 Documentation on exports (hiordlib) . 517

map/3 (pred) . 517
map/4 (pred) . 518
foldl/4 (pred) . 518
minimum/3 (pred) . 518
split/4 (pred) . 519

xxxvi The Ciao System

99 Terms with named arguments -records/feature
terms . 521
99.1 Usage and interface (argnames_doc) . 521
99.2 Documentation on new declarations (argnames_doc) 521

(argnames)/1 (decl) . 521
99.3 Documentation on exports (argnames_doc) 522

$~ /3 (pred) . 522
99.4 Other information (argnames_doc) . 522

99.4.1 Using argument names in a toy database 523
99.4.2 Complete code for the zebra example 523

99.5 Known bugs and planned improvements (argnames_doc) 524

100 Functional notation . 525
100.1 Function applications . 525
100.2 Predefined evaluable functors . 525
100.3 Functional definitions . 526
100.4 Quoting functors . 526
100.5 Some scoping issues . 527
100.6 Other functionality . 527
100.7 Combining with higher order . 527
100.8 Usage and interface (fsyntax_doc) . 528
100.9 Other information (fsyntax_doc) . 528
100.10 Some examples using functional syntax 528
100.11 Examples of combining with higher order 532
100.12 Some additional examples using functional syntax 533
100.13 Known bugs and planned improvements (fsyntax_doc) . . . 535

101 global (library) . 537
101.1 Usage and interface (global) . 537
101.2 Documentation on exports (global) . 537

set global/2 (pred) . 537
get global/2 (pred) . 537
push global/2 (pred) . 537
pop global/2 (pred) . 537
del global/1 (pred) . 537

102 Andorra execution. 539
102.1 Usage and interface (andorra_doc) . 539
102.2 Documentation on new declarations (andorra_doc) 539

determinate/2 (decl) . 539
102.3 Documentation on exports (andorra_doc) 540

detcond/1 (regtype) . 540
path/1 (regtype) . 541

102.4 Other information (andorra_doc) . 541

103 And-parallel execution . 543
103.1 Usage and interface (andprolog_doc) . 543

xxxvii

104 Low-level concurrency primitives for
and-parallelism support . 545
104.1 Usage and interface (apll) . 546
104.2 Documentation on new declarations (apll) 547

(regtype)/1 (udreexp) . 547
(regtype)/2 (decl) . 547

104.3 Documentation on new modes (apll) . 547
(+)/1 (modedef) . 547
(@)/1 (modedef) . 547
(-)/1 (modedef) . 547
(?)/1 (modedef) . 547
* /1 (modedef) . 547
(+)/2 (modedef) . 547
(@)/2 (modedef) . 548
(-)/2 (modedef) . 548
(?)/2 (modedef) . 548
* /2 (modedef) . 549
in/1 (modedef) . 549
out/1 (modedef) . 549
go/1 (modedef) . 549
in/2 (modedef) . 549
out/2 (modedef) . 549
go/2 (modedef) . 550

104.4 Documentation on exports (apll) . 550
initial/0 (pred) . 550
$start thread/1 (pred) . 550
$number agents/1 (pred) . 550
$push goal/3 (pred) . 551
$find goal/3 (pred) . 551
$goal available/1 (pred) . 551
$cancellation/1 (pred) . 551
$retrieve goal/2 (pred) . 552
$goal det/1 (pred) . 552
$set goal det/1 (pred) . 552
$set goal nondet/1 (pred) . 552
$goal not executed/1 (pred) . 552
$set goal not executed/1 (pred) 553
$goal rem executing/1 (pred). 553
$set goal rem executing/1 (pred) 553
$goal finished/1 (pred) . 553
$set goal finished/1 (pred) . 554
$goal tobacktrack/1 (pred) . 554
$set goal tobacktrack/1 (pred) . 554
$goal toreexecute/1 (pred) . 554
$set goal toreexecute/1 (pred) . 554
$goal failed/1 (pred) . 555
$set goal failed/1 (pred) . 555
$goal cancelled/1 (pred) . 555
$show handler/1 (pred) . 555
$set goal cancelled/1 (pred) . 555
$send event/1 (pred) . 556
$read event/1 (pred) . 556
$save init execution/1 (pred) . 556
$save end execution/1 (pred) . 556
$more solutions/1 (pred) . 556
$move execution top/1 (pred) . 557

xxxviii The Ciao System

$waiting/1 (pred) . 557
$suspend/0 (pred) . 557
$release/1 (pred) . 557
$release remote/1 (pred) . 557
$release some suspended thread/0 (pred) 558
$release all for unwinding/0 (pred) 558
$enter mutex/1 (pred) . 558
$enter mutex self/0 (pred) . 558
$enter mutex remote/1 (pred) . 558
$exit mutex/1 (pred) . 559
$exit mutex self/0 (pred) . 559
$exit mutex remote/1 (pred) . 559
$clean measures/0 (pred) . 559
$print measures/0 (pred) . 559
$new measure/0 (pred) . 560
$not measure/0 (pred) . 560
$incr num local backtr/0 (pred) 560
start thread/1 (pred) . 560
number agents/1 (pred) . 560
push goal/3 (pred) . 560
push goal/1 (pred) . 561
find goal/2 (pred) . 561
find det goal/2 (pred) . 561
goal available/1 (pred) . 561
cancellation/1 (pred) . 562
retrieve goal/2 (pred) . 562
goal det/1 (pred) . 562
set goal det/1 (pred) . 562
set goal nondet/1 (pred) . 562
goal not executed/1 (pred) . 563
set goal not executed/1 (pred) . 563
goal rem executing/1 (pred) . 563
set goal rem executing/1 (pred) 563
goal finished/1 (pred) . 563
set goal finished/1 (pred) . 563
goal tobacktrack/1 (pred) . 564
set goal tobacktrack/1 (pred) . 564
goal toreexecute/1 (pred) . 564
set goal toreexecute/1 (pred) . 564
goal failed/1 (pred) . 564
set goal failed/1 (pred) . 565
show handler/1 (pred) . 565
goal cancelled/1 (pred) . 565
set goal cancelled/1 (pred) . 565
send event/1 (pred) . 565
read event/1 (pred) . 566
save init execution/1 (pred) . 566
save end execution/1 (pred) . 566
more solutions/1 (pred) . 566
move execution top/1 (pred) . 566
waiting/1 (pred) . 566
suspend/0 (pred) . 567
release/1 (pred) . 567
release remote/1 (pred) . 567
release some suspended thread/0 (pred) 567
release all for unwinding/0 (pred) 567

xxxix

enter mutex/1 (pred) . 567
enter mutex self/0 (pred) . 568
enter mutex remote/1 (pred) . 568
exit mutex/1 (pred) . 568
exit mutex self/0 (pred) . 568
exit mutex remote/1 (pred) . 568
clean measures/0 (pred) . 568
print measures/0 (pred) . 569
new measure/0 (pred) . 569
not measure/0 (pred) . 569
incr num local backtr/0 (pred) . 569

105 Call on determinate . 571
105.1 Usage and interface (det_hook_doc) . 571
105.2 Documentation on new modes (det_hook_doc) 571

(+)/1 (modedef) . 571
(@)/1 (modedef) . 571
(-)/1 (modedef) . 571
(?)/1 (modedef) . 571
* /1 (modedef) . 572
(+)/2 (modedef) . 572
(@)/2 (modedef) . 572
(-)/2 (modedef) . 572
(?)/2 (modedef) . 572
* /2 (modedef) . 572

105.3 Other information (det_hook_doc) . 573
105.4 Known bugs and planned improvements (det_hook_doc) . . . 573

106 Runtime predicates for call on determinate
. 575
106.1 Usage and interface (det_hook_rt) . 575
106.2 Documentation on exports (det_hook_rt) 575

det try/3 (pred) . 575

107 Miscellaneous predicates 577
107.1 Usage and interface (odd) . 577
107.2 Documentation on exports (odd) . 577

setarg/3 (pred) . 577
undo/1 (pred). 577

108 Delaying predicates (freeze) 579
108.1 Usage and interface (freeze) . 579
108.2 Documentation on exports (freeze) . 579

freeze/2 (pred) . 579
frozen/2 (pred). 579

108.3 Known bugs and planned improvements (freeze) 579

109 Delaying predicates (when) 581
109.1 Usage and interface (when) . 582
109.2 Documentation on exports (when) . 582

when/2 (pred) . 582
wakeup exp/1 (regtype) . 582

109.3 Known bugs and planned improvements (when) 583

xl The Ciao System

110 Active modules (high-level distributed
execution) . 585
110.1 Active modules as agents . 586
110.2 Usage and interface (actmods_doc) . 586
110.3 Documentation on new declarations (actmods_doc) 587

use active module/2 (decl) . 587
110.4 Other information (actmods_doc) . 587
110.5 Active module name servers (webbased protocol) 587
110.6 Platforms (platformbased protocol) . 588
110.7 Known bugs and planned improvements (actmods_doc) 588

111 Agents. 589
111.1 Usage and interface (agent_doc) . 589
111.2 Documentation on new declarations (agent_doc) 589

protocol/1 (decl) . 589
111.3 Documentation on multifiles (agent_doc) 590

save addr actmod/1 (pred) . 590
111.4 Documentation on internals (agent_doc) 590

module address/2 (pred) . 590
:: /2 (pred) . 590
self/1 (pred) . 590

111.5 Other information (agent_doc) . 590
111.5.1 Platforms . 590

111.6 Known bugs and planned improvements (agent_doc) 591

112 Breadth-first execution 593
112.1 Usage and interface (bf_doc) . 594
112.2 Known bugs and planned improvements (bf_doc) 594

113 Iterative-deepening execution 595
113.1 Usage and interface (id_doc) . 596

114 Constraint programming over rationals 597
114.1 Usage and interface (clpq_doc) . 597
114.2 Other information (clpq_doc) . 597

114.2.1 Some CLP(Q) examples . 597
114.2.2 Meta-programming with CLP(Q) 598

114.3 Known bugs and planned improvements (clpq_doc) 599

115 Constraint programming over reals 601
115.1 Usage and interface (clpr_doc) . 601
115.2 Other information (clpr_doc) . 601

115.2.1 Some CLP(R) examples . 601
115.2.2 Meta-programming with CLP(R) 603

115.3 Known bugs and planned improvements (clpr_doc) 603

xli

116 Fuzzy Prolog . 605
116.1 Usage and interface (fuzzy_doc) . 605
116.2 Documentation on new declarations (fuzzy_doc) 606

aggr/1 (decl) . 606
116.3 Documentation on exports (fuzzy_doc) 606

:# /2 (pred) . 606
fuzzy predicate/1 (pred) . 606
fuzzy/1 (pred) . 606
fnot/1 (pred) . 607
:~ /2 (pred) . 607
fuzzybody/1 (prop) . 608
faggregator/1 (regtype) . 608
=> /4 (pred) . 608

116.4 Other information (fuzzy_doc) . 609
116.5 Known bugs and planned improvements (fuzzy_doc) 609

117 Object Oriented Programming 611
117.1 Early examples. 611
117.2 Recommendations on when to use objects 615
117.3 Limitations on object usage . 615

118 Declaring classes and interfaces 617
118.1 Usage and interface (class_doc) . 617
118.2 Documentation on new declarations (class_doc) 618

export/1 (decl) . 618
public/1 (decl) . 618
inheritable/1 (decl) . 618
(data)/1 (decl) . 618
(dynamic)/1 (decl) . 619
(concurrent)/1 (decl) . 619
inherit class/1 (decl) . 619
implements/1 (decl) . 620
virtual/1 (decl) . 620

118.3 Documentation on exports (class_doc) 621
inherited/1 (pred) . 621
self/1 (pred) . 621
constructor/0 (pred) . 621
destructor/0 (pred) . 622

118.4 Other information (class_doc) . 622
118.4.1 Class and Interface error reporting at compile time

. 623
118.4.2 Class and Interface error reporting at run time 626
118.4.3 Normal Prolog module system interaction 626

118.5 Known bugs and planned improvements (class_doc) 627

119 Compile-time usage of objects 629
119.1 Usage and interface (objects_doc) . 629
119.2 Documentation on new declarations (objects_doc) 629

use class/1 (decl) . 629
instance of/2 (decl) . 629
new/2 (decl) . 630

119.3 Other information (objects_doc) . 630
119.3.1 Error reporting at compile time (objects) 631
119.3.2 Error reporting at run time (objects) 632

xlii The Ciao System

120 Run time usage of objects 635
120.1 Usage and interface (objects_rt) . 635
120.2 Documentation on exports (objects_rt) 635

new/2 (pred) . 635
instance of/2 (pred) . 636
derived from/2 (pred) . 637
interface/2 (pred) . 637
instance codes/2 (pred) . 637
destroy/1 (pred) . 638
use class/1 (pred) . 638
constructor/1 (prop). 638
class name/1 (prop) . 638
interface name/1 (prop) . 639
instance id/1 (prop) . 639
class source/1 (prop) . 639
interface source/1 (prop) . 639
method spec/1 (prop) . 639
virtual method spec/1 (prop) . 639

120.3 Known bugs and planned improvements (objects_rt) 639

121 Declaring abstract interfaces for classes 641
121.1 Usage and interface (interface_doc) . 641

PART VIII - Interfaces to other languages and
systems . 643

122 Foreign Language Interface 645
122.1 Declaration of Types . 645
122.2 Equivalence between Ciao Prolog and C types 645
122.3 Equivalence between Ciao Prolog and C modes 646
122.4 Custom access to Prolog from C . 646

122.4.1 Term construction . 647
122.4.2 Testing the Type of a Term . 648
122.4.3 Term navigation . 648
122.4.4 Testing for Equality and Performing Unification . . . 649
122.4.5 Raising Exceptions . 649
122.4.6 Creating and disposing of memory chunks 650
122.4.7 Calling Prolog from C. 650

122.5 Examples . 650
122.5.1 Mathematical functions . 651
122.5.2 Addresses and C pointers . 651
122.5.3 Lists of bytes and buffers . 652
122.5.4 Lists of integers . 653
122.5.5 Strings and atoms . 654
122.5.6 Arbitrary Terms . 655
122.5.7 Exceptions . 657
122.5.8 Testing number types and using unbound length

integers . 657
122.6 Usage and interface (foreign_interface_doc) 659

xliii

123 Foreign Language Interface Properties 661
123.1 Usage and interface (foreign_interface_properties) 661
123.2 Documentation on exports (foreign_interface_properties)

. 661
int list/1 (regtype) . 661
double list/1 (regtype) . 661
byte list/1 (regtype) . 661
byte/1 (regtype) . 661
null/1 (regtype) . 661
address/1 (regtype). 662
any term/1 (regtype) . 662
foreign low/1 (prop) . 662
foreign low/2 (prop) . 662
size of/3 (prop) . 662
foreign/1 (prop) . 662
foreign/2 (prop) . 662
returns/2 (prop) . 662
do not free/2 (prop) . 663
needs state/1 (prop) . 663
ttr/3 (prop). 663

123.3 Documentation on internals (foreign_interface_properties)
. 663

use foreign source/1 (decl) . 663
use foreign source/2 (decl) . 663
use foreign library/1 (decl) . 663
use foreign library/2 (decl) . 663
extra compiler opts/1 (decl) . 664
extra compiler opts/2 (decl) . 664
use compiler/1 (decl) . 664
use compiler/2 (decl) . 664
extra linker opts/1 (decl) . 664
extra linker opts/2 (decl) . 665
use linker/1 (decl) . 665
use linker/2 (decl) . 665
foreign inline/2 (decl) . 665

123.4 Known bugs and planned improvements
(foreign_interface_properties) . 665

124 Utilities for on-demand compilation of foreign
files. 667
124.1 Usage and interface (foreign_compilation) 667
124.2 Documentation on exports (foreign_compilation) 667

compiler and opts/2 (pred) . 667
linker and opts/2 (pred) . 667

125 Foreign Language Interface Builder 669
125.1 Usage and interface (build_foreign_interface) 669
125.2 Documentation on exports (build_foreign_interface) . . . 669

build foreign interface/1 (pred) . 669
rebuild foreign interface/1 (pred) 669
build foreign interface explicit decls/2 (pred) 670
rebuild foreign interface explicit decls/2 (pred) 670
build foreign interface object/1 (pred) 670
rebuild foreign interface object/1 (pred). 671
do interface/1 (pred) . 671

xliv The Ciao System

126 Interactive Menus . 673
126.1 Usage and interface (menu_doc) . 673
126.2 Documentation on multifiles (menu_doc) 673

menu default/3 (pred) . 673
menu opt/6 (pred) . 673
hook menu flag values/3 (pred). 673
hook menu check flag value/3 (pred) 673
hook menu flag help/3 (pred) . 673
hook menu default option/3 (pred) 674

127 menu generator (library). 675
127.1 Usage and interface (menu_generator) . 675
127.2 Documentation on exports (menu_generator) 675

menu/1 (pred) . 675
menu/2 (pred) . 675
menu/3 (pred) . 675
menu/4 (pred) . 675
get menu flag/3 (pred) . 676
set menu flag/3 (pred) . 676
space/1 (pred) . 676
get menu configs/1 (pred) . 676
save menu config/1 (pred) . 676
remove menu config/1 (pred) . 677
restore menu config/1 (pred) . 677
show menu configs/0 (pred) . 677
show menu config/1 (pred) . 677
get menu options/2 (pred) . 677
get menu flags/1 (pred) . 677
restore menu flags list/1 (pred) . 678
get menu flags/2 (pred) . 678
restore menu flags/2 (pred) . 678
generate js menu/1 (pred) . 678
eq/3 (pred) . 681
neq/3 (pred) . 681
uni type/2 (pred) . 681
vmember/2 (pred) . 681
menu flag values/1 (regtype) . 681

127.3 Documentation on multifiles (menu_generator) 681
$is persistent/2 (pred) . 681
persistent dir/2 (pred) . 681
persistent dir/4 (pred) . 682
menu default/3 (pred) . 682
menu opt/6 (pred) . 682
hook menu flag values/3 (pred). 683
hook menu check flag value/3 (pred) 683
hook menu flag help/3 (pred) . 684
hook menu default option/3 (pred) 684

127.4 Known bugs and planned improvements (menu_generator)
. 684

xlv

128 Interface to daVinci . 685
128.1 Usage and interface (davinci) . 685
128.2 Documentation on exports (davinci) . 685

davinci/0 (pred) . 685
topd/0 (pred) . 685
davinci get/1 (pred) . 685
davinci get all/1 (pred) . 685
davinci put/1 (pred) . 686
davinci quit/0 (pred) . 686
davinci ugraph/1 (pred) . 686
davinci lgraph/1 (pred) . 686
ugraph2term/2 (pred) . 686
formatting/2 (pred) . 686

128.3 Documentation on internals (davinci) . 686
davinci command/1 (prop) . 686
ugraph/1 (prop). 687
lgraph/1 (prop) . 687

129 The Tcl/Tk interface . 689
129.1 Usage and interface (tcltk) . 692
129.2 Documentation on exports (tcltk) . 692

tcl new/1 (pred) . 692
tcl eval/3 (pred) . 692
tcl delete/1 (pred) . 693
tcl event/3 (pred) . 693
tclInterpreter/1 (regtype) . 693
tclCommand/1 (regtype) . 694
tk event loop/1 (pred) . 694
tk main loop/1 (pred) . 694
tk new/2 (pred) . 694
tk next event/2 (pred) . 695

130 Low level interface library to Tcl/Tk 697
130.1 Usage and interface (tcltk_low_level). 697
130.2 Documentation on exports (tcltk_low_level) 697

new interp/1 (pred) . 697
new interp/2 (pred) . 697
new interp file/2 (pred) . 698
tcltk/2 (pred) . 698
tcltk raw code/2 (pred) . 698
receive result/2 (pred) . 698
send term/2 (pred) . 699
receive event/2 (pred) . 699
receive list/2 (pred) . 699
receive confirm/2 (pred) . 699
delete/1 (pred) . 700

130.3 Documentation on internals (tcltk_low_level) 700
core/1 (pred) . 700

131 The PiLLoW Web programming library . . . 701
131.1 Installing PiLLoW . 701
131.2 Usage and interface (pillow_doc) . 701

xlvi The Ciao System

132 HTML/XML/CGI programming 703
132.1 Usage and interface (html) . 703
132.2 Documentation on exports (html) . 703

output html/1 (pred) . 703
html2terms/2 (pred) . 703
xml2terms/2 (pred) . 704
html template/3 (pred) . 704
html report error/1 (pred) . 706
get form input/1 (pred) . 706
get form value/3 (pred) . 706
form empty value/1 (pred) . 706
form default/3 (pred) . 706
set cookie/2 (pred) . 707
get cookies/1 (pred) . 707
url query/2 (pred) . 707
url query amp/2 (pred) . 707
url query values/2 (pred) . 708
my url/1 (pred) . 708
url info/2 (pred) . 708
url info relative/3 (pred) . 709
form request method/1 (pred) . 710
icon address/2 (pred) . 710
html protect/1 (pred) . 710
http lines/3 (pred) . 710

132.3 Documentation on multifiles (html) . 711
define flag/3 (pred) . 711
html expansion/2 (pred) . 711

132.4 Other information (html) . 711

133 HTTP conectivity . 713
133.1 Usage and interface (http) . 713
133.2 Documentation on exports (http) . 713

fetch url/3 (pred) . 713

134 PiLLoW types . 715
134.1 Usage and interface (pillow_types) . 715
134.2 Documentation on exports (pillow_types) 715

canonic html term/1 (regtype) . 715
canonic xml term/1 (regtype) . 716
html term/1 (regtype) . 717
form dict/1 (regtype) . 719
form assignment/1 (regtype) . 719
form value/1 (regtype) . 719
value dict/1 (regtype) . 720
url term/1 (regtype) . 720
http request param/1 (regtype) 720
http response param/1 (regtype) 720
http date/1 (regtype) . 721
weekday/1 (regtype) . 721
month/1 (regtype) . 721
hms time/1 (regtype) . 721

xlvii

135 Persistent predicate database 723
135.1 Introduction to persistent predicates . 723
135.2 Persistent predicates, files, and relational databases 723
135.3 Using file-based persistent predicates . 724
135.4 Implementation Issues . 724
135.5 Defining an initial database . 725
135.6 Using persistent predicates from the top level 725
135.7 Usage and interface (persdbrt) . 725
135.8 Documentation on exports (persdbrt) . 726

passerta fact/1 (pred) . 726
passertz fact/1 (pred) . 726
pretract fact/1 (pred) . 726
pretractall fact/1 (pred) . 726
asserta fact/1 (pred). 726
assertz fact/1 (pred) . 727
retract fact/1 (pred) . 727
retractall fact/1 (pred) . 727
initialize db/0 (pred) . 727
make persistent/2 (pred) . 728
update files/0 (pred) . 728
update files/1 (pred) . 728
create/2 (pred) . 728
meta predname/1 (regtype) . 728
directoryname/1 (regtype) . 728

135.9 Documentation on multifiles (persdbrt) 729
$is persistent/2 (pred) . 729
persistent dir/2 (pred) . 729
persistent dir/4 (pred) . 729

135.10 Documentation on internals (persdbrt) 729
persistent/2 (decl) . 729
keyword/1 (pred) . 730

135.11 Known bugs and planned improvements (persdbrt) 730

136 Using the persdb library 731
136.1 An example of persistent predicates (static version) 731
136.2 An example of persistent predicates (dynamic version) 731
136.3 A simple application / a persistent queue 731

137 Filed predicates . 733
137.1 Usage and interface (factsdb_doc) . 733
137.2 Documentation on multifiles (factsdb_doc) 733

$factsdb$cached goal/3 (pred) . 733
137.3 Known bugs and planned improvements (factsdb_doc) 733

xlviii The Ciao System

138 Filed predicates (runtime) 735
138.1 Usage and interface (factsdb_rt) . 735
138.2 Documentation on exports (factsdb_rt) 735

asserta fact/1 (pred). 735
assertz fact/1 (pred) . 735
call/1 (pred) . 736
current fact/1 (pred) . 736
retract fact/1 (pred) . 736

138.3 Documentation on multifiles (factsdb_rt) 736
$factsdb$cached goal/3 (pred) . 736
persistent dir/2 (pred) . 736
file alias/2 (pred). 737

138.4 Documentation on internals (factsdb_rt) 737
facts/2 (decl) . 737
keyword/1 (pred) . 737

139 sqltypes (library) . 739
139.1 Usage and interface (sqltypes) . 739
139.2 Documentation on exports (sqltypes) . 739

sqltype/1 (regtype) . 739
accepted type/2 (pred) . 739
get type/2 (pred) . 739
type compatible/2 (pred) . 740
type union/3 (pred) . 740
sybasetype/1 (regtype) . 740
sybase2sqltypes list/2 (pred) . 740
sybase2sqltype/2 (pred). 741
postgrestype/1 (regtype) . 741
postgres2sqltypes list/2 (pred) . 741
postgres2sqltype/2 (pred) . 741

140 persdbtr sql (library) . 743
140.1 Usage and interface (persdbtr_sql) . 743
140.2 Documentation on exports (persdbtr_sql) 743

sql persistent tr/2 (pred) . 743
sql goal tr/2 (pred) . 743
dbId/2 (pred) . 743

141 pl2sqlinsert (library). 745
141.1 Usage and interface (pl2sqlinsert) . 745
141.2 Documentation on exports (pl2sqlinsert) 745

pl2sqlInsert/2 (pred) . 745
141.3 Documentation on multifiles (pl2sqlinsert) 745

sql relation/3 (pred) . 745
sql attribute/4 (pred) . 745

142 Prolog/Java Bidirectional Interface 747
142.1 Distributed Programming Model . 747

xlix

143 Prolog to Java interface 749
143.1 Prolog to Java Interface Structure . 749

143.1.1 Prolog side of the Java interface 749
143.1.2 Java side . 749

143.2 Java event handling from Prolog. 750
143.3 Java exception handling from Prolog . 752
143.4 Usage and interface (javart) . 752
143.5 Documentation on exports (javart) . 752

java start/0 (pred) . 752
java start/1 (pred) . 752
java start/2 (pred) . 753
java stop/0 (pred) . 753
java connect/2 (pred) . 753
java disconnect/0 (pred) . 753
machine name/1 (regtype) . 753
java constructor/1 (regtype) . 754
java object/1 (regtype) . 754
java event/1 (regtype) . 754
prolog goal/1 (regtype) . 754
java field/1 (regtype) . 754
java use module/1 (pred) . 754
java create object/2 (pred) . 754
java delete object/1 (pred) . 755
java invoke method/2 (pred) . 755
java method/1 (regtype) . 755
java get value/2 (pred) . 756
java set value/2 (pred) . 756
java add listener/3 (pred) . 756
java remove listener/3 (pred) . 757

144 Java to Prolog interface 759
144.1 Usage and interface (jtopl) . 759
144.2 Documentation on exports (jtopl) . 759

prolog server/0 (pred) . 759
prolog server/1 (pred) . 760
prolog server/2 (pred) . 760
shell s/0 (pred) . 760
query solutions/2 (pred) . 760
query requests/2 (pred) . 760
running queries/2 (pred) . 760

l The Ciao System

145 Low-level Prolog to Java socket connection
. 763
145.1 Usage and interface (javasock) . 763
145.2 Documentation on exports (javasock) . 763

bind socket interface/1 (pred) . 763
start socket interface/2 (pred) . 763
stop socket interface/0 (pred) . 764
join socket interface/0 (pred) . 764
java query/2 (pred) . 764
java response/2 (pred) . 764
prolog query/2 (pred) . 764
prolog response/2 (pred) . 765
is connected to java/0 (pred) . 765
java debug/1 (pred) . 765
java debug redo/1 (pred) . 765
start threads/0 (pred) . 765

146 Calling emacs from Prolog 767
146.1 Usage and interface (emacs) . 768
146.2 Documentation on exports (emacs) . 768

emacs edit/1 (pred) . 768
emacs edit nowait/1 (pred) . 768
emacs eval/1 (pred) . 768
emacs eval nowait/1 (pred) . 768
elisp string/1 (regtype) . 769

147 linda (library) . 771
147.1 Usage and interface (linda) . 771
147.2 Documentation on exports (linda) . 771

linda client/1 (pred) . 771
close client/0 (pred) . 771
in/1 (pred) . 771
in/2 (pred) . 771
in noblock/1 (pred) . 771
out/1 (pred) . 771
rd/1 (pred) . 772
rd/2 (pred) . 772
rd noblock/1 (pred) . 772
rd findall/3 (pred) . 772
linda timeout/2 (pred) . 772
halt server/0 (pred) . 772
open client/2 (pred) . 772
in stream/2 (pred) . 772
out stream/2 (pred) . 772

PART IX - Abstract data types. 773

li

148 Extendable arrays with logarithmic access time
. 775
148.1 Usage and interface (arrays) . 775
148.2 Documentation on exports (arrays) . 775

new array/1 (pred) . 775
is array/1 (pred) . 775
aref/3 (pred) . 775
arefa/3 (pred) . 775
arefl/3 (pred) . 776
aset/4 (pred) . 776
array to list/2 (pred) . 776

149 Association between key and value 777
149.1 Usage and interface (assoc) . 777
149.2 Documentation on exports (assoc) . 777

empty assoc/1 (pred) . 777
assoc to list/2 (pred) . 777
is assoc/1 (pred) . 778
min assoc/3 (pred) . 778
max assoc/3 (pred) . 778
gen assoc/3 (pred) . 778
get assoc/3 (pred) . 779
get assoc/5 (pred) . 779
get next assoc/4 (pred) . 780
get prev assoc/4 (pred) . 780
list to assoc/2 (pred) . 780
ord list to assoc/2 (pred) . 781
map assoc/2 (pred) . 781
map assoc/3 (pred) . 781
map/3 (pred) . 781
foldl/4 (pred) . 782
put assoc/4 (pred) . 782
put assoc/5 (pred) . 782
add assoc/4 (pred) . 783
update assoc/5 (pred) . 783
del assoc/4 (pred) . 783
del min assoc/4 (pred) . 784
del max assoc/4 (pred) . 784

150 counters (library) . 785
150.1 Usage and interface (counters) . 785
150.2 Documentation on exports (counters) . 785

setcounter/2 (pred) . 785
getcounter/2 (pred) . 785
inccounter/2 (pred) . 785

lii The Ciao System

151 Identity lists . 787
151.1 Usage and interface (idlists) . 787
151.2 Documentation on exports (idlists) . 787

member 0/2 (pred) . 787
memberchk/2 (pred) . 787
list insert/2 (pred) . 787
add after/4 (pred) . 787
add before/4 (pred) . 788
delete/3 (pred) . 788
subtract/3 (pred) . 788
union idlists/3 (pred) . 788

152 Lists of numbers . 789
152.1 Usage and interface (numlists) . 789
152.2 Documentation on exports (numlists) . 789

get primes/2 (pred) . 789
intlist/1 (regtype) . 789
numlist/1 (regtype) . 789
sum list/2 (pred) . 789
sum list/3 (pred) . 790
sum list of lists/2 (pred) . 790
sum list of lists/3 (pred) . 790

153 Pattern (regular expression) matching
-deprecated version . 791
153.1 Usage and interface (patterns) . 791
153.2 Documentation on exports (patterns) . 791

match pattern/2 (pred) . 791
match pattern/3 (pred) . 791
case insensitive match/2 (pred) . 791
letter match/2 (pred) . 792
pattern/1 (regtype) . 792
match pattern pred/2 (pred) . 792

154 Graphs . 793
154.1 Usage and interface (graphs) . 793
154.2 Documentation on exports (graphs) . 793

dgraph/1 (regtype) . 793
dlgraph/1 (regtype) . 793
dgraph to ugraph/2 (pred) . 793
dlgraph to lgraph/2 (pred) . 794
edges to ugraph/2 (pred) . 794
edges to lgraph/2 (pred) . 794

154.3 Documentation on internals (graphs) . 795
pair/1 (regtype) . 795
triple/1 (regtype) . 795

liii

155 Unweighted graph-processing utilities 797
155.1 Usage and interface (ugraphs) . 797
155.2 Documentation on exports (ugraphs) . 797

vertices edges to ugraph/3 (pred) 797
neighbors/3 (pred) . 797
edges/2 (pred) . 797
del edges/3 (pred) . 798
add edges/3 (pred) . 798
vertices/2 (pred) . 798
del vertices/3 (pred) . 798
add vertices/3 (pred) . 798
transpose/2 (pred) . 799
rooted subgraph/3 (pred) . 799
point to/3 (pred) . 799
ugraph/1 (regtype) . 799

156 wgraphs (library). 801
156.1 Usage and interface (wgraphs) . 801
156.2 Documentation on exports (wgraphs) . 801

vertices edges to wgraph/3 (pred) 801

157 Labeled graph-processing utilities 803
157.1 Usage and interface (lgraphs) . 803
157.2 Documentation on exports (lgraphs) . 803

lgraph/2 (regtype) . 803
vertices edges to lgraph/3 (pred) 803

158 queues (library) . 805
158.1 Usage and interface (queues) . 805
158.2 Documentation on exports (queues) . 805

q empty/1 (pred) . 805
q insert/3 (pred) . 805
q member/2 (pred) . 805
q delete/3 (pred) . 805

159 Random numbers . 807
159.1 Usage and interface (random) . 807
159.2 Documentation on exports (random) . 807

random/1 (pred) . 807
random/3 (pred) . 807
srandom/1 (pred) . 808

liv The Ciao System

160 Set Operations . 809
160.1 Usage and interface (sets) . 809
160.2 Documentation on exports (sets) . 809

insert/3 (pred) . 809
ord delete/3 (pred) . 809
ord member/2 (pred) . 809
ord test member/3 (pred) . 810
ord subtract/3 (pred) . 810
ord intersection/3 (pred) . 810
ord intersection diff/4 (pred) . 810
ord intersect/2 (pred) . 810
ord subset/2 (pred). 811
ord subset diff/3 (pred) . 811
ord union/3 (pred) . 811
ord union diff/4 (pred) . 811
ord union symdiff/4 (pred) . 812
ord union change/3 (pred) . 812
merge/3 (pred) . 812
ord disjoint/2 (pred) . 812
setproduct/3 (pred) . 812

161 Variable name dictionaries 813
161.1 Usage and interface (vndict) . 813
161.2 Documentation on exports (vndict) . 813

null dict/1 (regtype) . 813
create dict/2 (pred) . 813
create pretty dict/2 (pred) . 813
complete dict/3 (pred) . 814
complete vars dict/3 (pred) . 814
prune dict/3 (pred) . 814
sort dict/2 (pred) . 814
dict2varnamesl/2 (pred) . 814
varnamesl2dict/2 (pred) . 815
find name/4 (pred) . 815
prettyvars/2 (pred) . 815
rename/2 (pred) . 815
varnamedict/1 (regtype) . 815
vars names dict/3 (pred) . 815

PART X - Miscellaneous standalone utilities 817

162 A Program to Help Cleaning your Directories
. 819
162.1 Usage (cleandirs) . 819
162.2 Known bugs and planned improvements (cleandirs) 819

163 Printing the declarations and code in a file
. 821
163.1 Usage (fileinfo) . 821
163.2 More detailed explanation of options (fileinfo) 821

164 Printing the contents of a bytecode file 823
164.1 Usage (viewpo) . 823

lv

165 callgraph (library) . 825
165.1 Usage and interface (callgraph) . 825
165.2 Documentation on exports (callgraph) 825

call graph/2 (pred) . 825
reachability/4 (pred) . 825

166 Gathering the dependent files for a file 827
166.1 Usage (get deps) . 827

167 Finding differences between two Prolog files
. 829
167.1 Usage (pldiff) . 829
167.2 Known bugs and planned improvements (pldiff) 829

168 The Ciao lpmake scripting facility 831
168.1 General operation . 831
168.2 Format of the Configuration File . 831
168.3 lpmake usage . 832
168.4 Acknowledgments (lpmake) . 833
168.5 Known bugs and planned improvements (lpmake) 833

169 Find out which architecture we are running on
. 835
169.1 Usage (ciao get arch) . 835
169.2 More details (ciao get arch) . 835

170 Print out WAM code . 837
170.1 Usage (compiler output) . 837

171 Compile Ciao in an arbitrary subdirectory
. 839
171.1 Usage (auto compile ciao). 839
171.2 More details (auto compile ciao). 839

172 Gathering all modules in a directory 841
172.1 Usage (collect modules) . 841
172.2 More details (collect modules) . 841

PART XI - Contributed libraries 843

173 Block Declarations . 845
173.1 Usage and interface (block_doc) . 845
173.2 Documentation on new declarations (block_doc) 845

block/1 (decl) . 845

lvi The Ciao System

174 A Chart Library . 847
174.1 Bar charts . 847
174.2 Line graphs . 849
174.3 Scatter graphs . 849
174.4 Tables . 850
174.5 Overview of widgets . 851
174.6 Usage and interface (chartlib) . 852
174.7 Documentation on exports (chartlib) . 852

barchart1/7 (udreexp) . 852
barchart1/9 (udreexp) . 852
percentbarchart1/7 (udreexp) . 852
barchart2/7 (udreexp) . 852
barchart2/11 (udreexp) . 852
percentbarchart2/7 (udreexp) . 852
barchart3/7 (udreexp) . 852
barchart3/9 (udreexp) . 852
percentbarchart3/7 (udreexp) . 853
barchart4/7 (udreexp) . 853
barchart4/11 (udreexp) . 853
percentbarchart4/7 (udreexp) . 853
multibarchart/8 (udreexp) . 853
multibarchart/10 (udreexp) . 853
tablewidget1/4 (udreexp) . 853
tablewidget1/5 (udreexp) . 853
tablewidget2/4 (udreexp) . 853
tablewidget2/5 (udreexp) . 853
tablewidget3/4 (udreexp) . 853
tablewidget3/5 (udreexp) . 853
tablewidget4/4 (udreexp) . 854
tablewidget4/5 (udreexp) . 854
graph b1/9 (udreexp) . 854
graph b1/13 (udreexp) . 854
graph w1/9 (udreexp) . 854
graph w1/13 (udreexp) . 854
scattergraph b1/8 (udreexp) . 854
scattergraph b1/12 (udreexp) . 854
scattergraph w1/8 (udreexp) . 854
scattergraph w1/12 (udreexp) . 854
graph b2/9 (udreexp) . 854
graph b2/13 (udreexp) . 854
graph w2/9 (udreexp) . 855
graph w2/13 (udreexp) . 855
scattergraph b2/8 (udreexp) . 855
scattergraph b2/12 (udreexp) . 855
scattergraph w2/8 (udreexp) . 855
scattergraph w2/12 (udreexp) . 855
chartlib text error protect/1 (udreexp) 855
chartlib visual error protect/1 (udreexp) 855

174.8 Known bugs and planned improvements (chartlib) 855

lvii

175 Low level Interface between Prolog and blt
. 857
175.1 Usage and interface (bltclass) . 857
175.2 Documentation on exports (bltclass) . 857

new interp/1 (pred) . 857
tcltk raw code/2 (pred) . 857
bltwish interp/1 (regtype) . 857
interp file/2 (pred) . 858

176 Error Handler for Chartlib 859
176.1 Usage and interface (chartlib_errhandle) 859
176.2 Documentation on exports (chartlib_errhandle) 859

chartlib text error protect/1 (pred) 859
chartlib visual error protect/1 (pred) 859

176.3 Documentation on internals (chartlib_errhandle) 860
handler type/1 (regtype) . 860
error message/2 (pred) . 860
error file/2 (pred) . 860

177 Color and Pattern Library 861
177.1 Usage and interface (color_pattern) . 861
177.2 Documentation on exports (color_pattern) 861

color/1 (regtype) . 861
color/2 (pred) . 862
pattern/1 (regtype) . 863
pattern/2 (pred) . 863
random color/1 (pred) . 863
random lightcolor/1 (pred) . 863
random darkcolor/1 (pred) . 864
random pattern/1 (pred) . 864

178 Barchart widgets - 1 . 865
178.1 Usage and interface (genbar1) . 865
178.2 Documentation on exports (genbar1) . 865

barchart1/7 (pred) . 865
barchart1/9 (pred) . 866
percentbarchart1/7 (pred) . 867
yelement/1 (regtype) . 867
axis limit/1 (regtype) . 868
header/1 (regtype) . 869
title/1 (regtype) . 869
footer/1 (regtype) . 869

178.3 Documentation on internals (genbar1) . 869
xbarelement1/1 (regtype) . 869

178.4 Known bugs and planned improvements (genbar1) 870

179 Barchart widgets - 2 . 871
179.1 Usage and interface (genbar2) . 871
179.2 Documentation on exports (genbar2) . 871

barchart2/7 (pred) . 871
barchart2/11 (pred) . 872
percentbarchart2/7 (pred) . 873
xbarelement2/1 (regtype) . 873

lviii The Ciao System

180 Depict barchart widgets - 3 875
180.1 Usage and interface (genbar3) . 875
180.2 Documentation on exports (genbar3) . 875

barchart3/7 (pred) . 875
barchart3/9 (pred) . 876
percentbarchart3/7 (pred) . 876

180.3 Documentation on internals (genbar3) . 877
xbarelement3/1 (regtype) . 877

181 Depict barchart widgets - 4 879
181.1 Usage and interface (genbar4) . 879
181.2 Documentation on exports (genbar4) . 879

barchart4/7 (pred) . 879
barchart4/11 (pred) . 880
percentbarchart4/7 (pred) . 880

181.3 Documentation on internals (genbar4) . 881
xbarelement4/1 (regtype) . 881

182 Depic line graph . 883
182.1 Usage and interface (gengraph1) . 884
182.2 Documentation on exports (gengraph1) 884

graph b1/9 (pred) . 884
graph b1/13 (pred) . 885
graph w1/9 (pred) . 885
graph w1/13 (pred) . 886
scattergraph b1/8 (pred) . 887
scattergraph b1/12 (pred) . 887
scattergraph w1/8 (pred) . 888
scattergraph w1/12 (pred) . 889
vector/1 (regtype) . 889
smooth/1 (regtype) . 890
attributes/1 (regtype) . 890
symbol/1 (regtype) . 890
size/1 (regtype) . 891

183 Line graph widgets . 893
183.1 Usage and interface (gengraph2) . 893
183.2 Documentation on exports (gengraph2) 893

graph b2/9 (pred) . 893
graph b2/13 (pred) . 894
graph w2/9 (pred) . 895
graph w2/13 (pred) . 896
scattergraph b2/8 (pred) . 896
scattergraph b2/12 (pred) . 897
scattergraph w2/8 (pred) . 898
scattergraph w2/12 (pred) . 898

lix

184 Multi barchart widgets 901
184.1 Usage and interface (genmultibar) . 901
184.2 Documentation on exports (genmultibar) 902

multibarchart/8 (pred) . 902
multibarchart/10 (pred) . 902

184.3 Documentation on internals (genmultibar) 903
multibar attribute/1 (regtype) . 903
xelement/1 (regtype) . 904

185 table widget1 (library) . 905
185.1 Usage and interface (table_widget1) . 905
185.2 Documentation on exports (table_widget1) 905

tablewidget1/4 (pred) . 905
tablewidget1/5 (pred) . 905
table/1 (regtype) . 906
image/1 (regtype) . 906

185.3 Documentation on internals (table_widget1) 906
row/1 (regtype) . 906
row/1 (regtype) . 906
cell value/1 (regtype) . 907

186 table widget2 (library) . 909
186.1 Usage and interface (table_widget2) . 909
186.2 Documentation on exports (table_widget2) 909

tablewidget2/4 (pred) . 909
tablewidget2/5 (pred) . 909

187 table widget3 (library) . 911
187.1 Usage and interface (table_widget3) . 911
187.2 Documentation on exports (table_widget3) 911

tablewidget3/4 (pred) . 911
tablewidget3/5 (pred) . 911

188 table widget4 (library) . 913
188.1 Usage and interface (table_widget4) . 913
188.2 Documentation on exports (table_widget4) 913

tablewidget4/4 (pred) . 913
tablewidget4/5 (pred) . 913

189 test format (library) . 915
189.1 Usage and interface (test_format) . 915
189.2 Documentation on exports (test_format) 915

equalnumber/3 (pred) . 915
not empty/4 (pred) . 915
not empty/3 (pred) . 916
check sublist/4 (pred) . 916
valid format/4 (pred) . 916
vectors format/4 (pred) . 916
valid vectors/4 (pred) . 917
valid attributes/2 (pred) . 917
valid table/2 (pred) . 917

lx The Ciao System

190 Doubly linked lists . 919
190.1 Usage and interface (ddlist) . 919
190.2 Documentation on exports (ddlist) . 919

null ddlist/1 (pred) . 919
create from list/2 (pred) . 919
to list/2 (pred) . 920
next/2 (pred) . 920
prev/2 (pred) . 920
insert/3 (pred) . 920
insert top/3 (pred) . 920
insert after/3 (pred) . 921
insert begin/3 (pred) . 921
insert end/3 (pred) . 921
delete/2 (pred) . 921
delete top/2 (pred) . 921
delete after/2 (pred) . 921
remove all elements/3 (pred) . 922
top/2 (pred) . 922
rewind/2 (pred) . 922
forward/2 (pred) . 922
length/2 (pred) . 922
length next/2 (pred) . 923
length prev/2 (pred) . 923
ddlist/1 (regtype) . 923
ddlist member/2 (pred) . 923

190.3 Other information (ddlist) . 923
190.3.1 Using insert after . 924
190.3.2 More Complex example . 924

Ciao DHT Implementation . 927

191 Top-level user interface to DHT 929
191.1 Usage and interface (dht_client) . 929
191.2 Documentation on exports (dht_client) 929

dht connect/2 (pred) . 929
dht connect/3 (pred) . 929
dht disconnect/1 (pred) . 930
dht consult b/4 (pred) . 930
dht consult nb/4 (pred) . 931
dht extract b/4 (pred) . 931
dht extract nb/4 (pred) . 931
dht store/4 (pred) . 932
dht hash/3 (pred) . 932

192 Top-level interface to a DHT server 935
192.1 Usage and interface (dht_server) . 935
192.2 Documentation on exports (dht_server) 935

dht server/1 (pred) . 935
dht prolog/1 (pred) . 935

193 Server to client communication module 937
193.1 Usage and interface (dht_s2c) . 937
193.2 Documentation on exports (dht_s2c) . 937

dht s2c main/0 (pred) . 937

lxi

194 Server to server communication module . . . 939
194.1 Usage and interface (dht_s2s) . 939
194.2 Documentation on exports (dht_s2s) . 939

dht s2s main/0 (pred) . 939

195 DHT-related logics . 941
195.1 Usage and interface (dht_logic) . 941
195.2 Documentation on exports (dht_logic) 941

dht init/1 (pred) . 941
dht finger/2 (pred) . 941
dht successor/1 (pred) . 942
dht check predecessor/1 (pred) . 942
dht closest preceding finger/2 (pred) 942
dht find predecessor/2 (pred) . 943
dht find successor/2 (pred) . 944
dht join/1 (pred) . 944
dht notify/1 (pred) . 944
dht stabilize/0 (pred) . 945
dht fix fingers/0 (pred) . 945
dht id by node/2 (pred) . 946
dht find and consult b/2 (pred) 946
dht consult server b/3 (pred) . 946
dht find and consult nb/2 (pred) 947
dht consult server nb/3 (pred) . 948
dht find and extract b/2 (pred) 948
dht extract from server b/3 (pred) 949
dht find and extract nb/2 (pred) 950
dht extract from server nb/3 (pred) 950
dht find and store/2 (pred) . 951
dht store to server/4 (pred) . 951

196 Finger table and routing information 953
196.1 Usage and interface (dht_routing) . 953
196.2 Documentation on exports (dht_routing) 953

dht finger table/2 (pred) . 953
dht finger start/2 (pred) . 954
dht update finger/2 (pred) . 955
dht set finger/4 (pred) . 955
dht predecessor/1 (pred) . 956
dht set predecessor/1 (pred) . 956
dht reset predecessor/0 (pred) . 956

197 Various wrappers for DHT logics module . . 957
197.1 Usage and interface (dht_logic_misc) . 957
197.2 Documentation on exports (dht_logic_misc) 957

hash size/1 (pred) . 957
highest hash number/1 (pred) . 957
consistent hash/2 (pred) . 958
next on circle/2 (pred) . 958
not in circle oc/3 (pred) . 958
in circle oo/3 (pred) . 959
in circle oc/3 (pred) . 959

lxii The Ciao System

198 Remote predicate calling utilities 961
198.1 Usage and interface (dht_rpr) . 961
198.2 Documentation on exports (dht_rpr) . 961

dht rpr register node/1 (pred) . 961
dht rpr register node/2 (pred) . 961
dht rpr node by id/2 (pred) . 962
dht rpr id by node/2 (pred) . 962
dht rpr node id/1 (regtype) . 963
dht rpr compose id/3 (pred) . 964
dht rpr clear by node/1 (pred) . 964
dht rpr node/1 (pred) . 965
dht rpr call/2 (pred) . 965
dht rpr call/3 (pred) . 968
node id/2 (pred) . 969

199 Underlying data-storage module 971
199.1 Usage and interface (dht_storage) . 971
199.2 Documentation on exports (dht_storage) 971

dht store/3 (pred) . 971
dht extract b/2 (pred) . 971
dht extract nb/2 (pred) . 972
dht consult b/2 (pred) . 972
dht consult nb/2 (pred) . 973
dht key hash/2 (pred) . 973

200 Configuration module. 975
200.1 Usage and interface (dht_config) . 975
200.2 Documentation on exports (dht_config) 975

hash power/1 (pred) . 975
dht set hash power/1 (pred) . 975
dht s2c port/1 (pred) . 975
dht set s2c port/1 (pred) . 976
dht s2c threads/1 (pred) . 976
dht set s2c threads/1 (pred) . 976
dht s2s port/1 (pred) . 976
dht set s2s port/1 (pred) . 976
dht s2s threads/1 (pred) . 976
dht set s2s threads/1 (pred) . 976
dht join host/1 (pred) . 976
dht set join host/1 (pred) . 977
dht server id/1 (pred) . 977
dht set server id/1 (pred) . 977
dht server host/1 (pred) . 977
dht set server host/1 (pred) . 977

201 Tiny module with miscellaneous functions . . 979
201.1 Usage and interface (dht_misc) . 979
201.2 Documentation on exports (dht_misc) . 979

write pr/2 (pred) . 979
read pr/2 (pred) . 979

lxiii

202 Constraint programming over finite domains
. 981
202.1 Usage and interface (fd_doc) . 982
202.2 Documentation on exports (fd_doc) . 982

fd item/1 (regtype) . 982
fd range/1 (regtype) . 982
fd subrange/1 (regtype) . 982
fd store/1 (regtype) . 983
fd store entity/1 (regtype) . 983
labeling/1 (pred) . 983
pitm/2 (pred) . 983
choose var/3 (pred) . 983
choose free var/2 (pred) . 984
choose var nd/2 (pred) . 984
choose value/2 (pred) . 984
retrieve range/2 (pred) . 984
retrieve store/2 (pred) . 984
glb/2 (pred) . 985
lub/2 (pred) . 985
bounds/3 (pred) . 985
retrieve list of values/2 (pred) . 986

203 Dot generator . 987
203.1 Usage and interface (gendot) . 987
203.2 Documentation on exports (gendot) . 987

gendot/3 (pred) . 987

204 Printing graphs using gnuplot as auxiliary tool
. 989
204.1 Usage and interface (gnuplot) . 989
204.2 Documentation on exports (gnuplot) . 989

get general options/1 (pred) . 989
set general options/1 (pred) . 989
generate plot/2 (pred) . 990
generate plot/3 (pred) . 990

205 Lazy evaluation . 993
205.1 Usage and interface (lazy_doc) . 995
205.2 Other information (lazy_doc) . 995

206 Programming MYCIN rules. 997
206.1 Usage and interface (mycin_doc) . 997
206.2 Documentation on new declarations (mycin_doc) 997

export/1 (decl) . 997
206.3 Known bugs and planned improvements (mycin_doc) 997

207 The Ciao Profiler . 999
207.1 Usage and interface (profiler_doc) . 999

lxiv The Ciao System

208 ProVRML - a Prolog interface for VRML
. 1001
208.1 Usage and interface (provrml) . 1001
208.2 Documentation on exports (provrml) . 1001

vrml web to terms/2 (pred) . 1001
vrml file to terms/2 (pred) . 1001
vrml web to terms file/2 (pred) 1002
vrml file to terms file/2 (pred) 1002
terms file to vrml/2 (pred) . 1002
terms file to vrml file/2 (pred) 1003
terms to vrml file/2 (pred) . 1003
terms to vrml/2 (pred) . 1003
vrml to terms/2 (pred) . 1003
vrml in out/2 (pred) . 1004
vrml http access/2 (pred) . 1004

208.3 Documentation on internals (provrml) 1004
read page/2 (pred) . 1004

209 boundary (library) . 1005
209.1 Usage and interface (boundary) . 1005
209.2 Documentation on exports (boundary) 1005

boundary check/3 (pred) . 1005
boundary rotation first/2 (pred) 1005
boundary rotation last/2 (pred) 1006
reserved words/1 (pred) . 1006
children nodes/1 (pred) . 1006

210 dictionary (library) . 1007
210.1 Usage and interface (dictionary) . 1007
210.2 Documentation on exports (dictionary). 1007

dictionary/6 (pred) . 1007

211 dictionary tree (library) 1009
211.1 Usage and interface (dictionary_tree) 1009
211.2 Documentation on exports (dictionary_tree) 1009

create dictionaries/1 (pred) . 1009
is dictionaries/1 (pred) . 1009
get definition dictionary/2 (pred) 1009
get prototype dictionary/2 (pred) 1010
dictionary insert/5 (pred) . 1010
dictionary lookup/5 (pred) . 1010
merge tree/2 (pred) . 1011

212 provrmlerror (library) 1013
212.1 Usage and interface (provrmlerror) . 1013
212.2 Documentation on exports (provrmlerror) 1013

error vrml/1 (pred). 1013
output error/1 (pred) . 1013

213 field type (library) . 1015
213.1 Usage and interface (field_type) . 1015
213.2 Documentation on exports (field_type). 1015

fieldType/1 (pred) . 1015

lxv

214 field value (library) . 1017
214.1 Usage and interface (field_value) . 1017
214.2 Documentation on exports (field_value) 1017

fieldValue/6 (pred) . 1017
mfstringValue/5 (pred) . 1017
parse/1 (prop) . 1018

215 field value check (library) 1019
215.1 Usage and interface (field_value_check) 1019
215.2 Documentation on exports (field_value_check) 1019

fieldValue check/8 (pred) . 1019
mfstringValue/7 (pred) . 1020

216 generator (library) . 1021
216.1 Usage and interface (generator) . 1021
216.2 Documentation on exports (generator) 1021

generator/2 (pred) . 1021
nodeDeclaration/4 (pred) . 1021

217 generator util (library) 1023
217.1 Usage and interface (generator_util) 1023
217.2 Documentation on exports (generator_util) 1023

reading/4 (pred) . 1023
reading/5 (pred) . 1025
reading/6 (pred) . 1029
open node/6 (pred) . 1029
close node/5 (pred) . 1029
close nodeGut/4 (pred) . 1030
open PROTO/4 (pred) . 1030
close PROTO/6 (pred) . 1030
open EXTERNPROTO/5 (pred) 1031
close EXTERNPROTO/6 (pred) 1031
open DEF/5 (pred) . 1031
close DEF/5 (pred). 1032
open Script/5 (pred) . 1032
close Script/5 (pred) . 1033
decompose field/3 (pred) . 1033
indentation list/2 (pred) . 1033
start vrmlScene/4 (pred) . 1033
remove comments/4 (pred) . 1034

217.3 Known bugs and planned improvements (generator_util)
. 1034

218 internal types (library) 1035
218.1 Usage and interface (internal_types) 1035
218.2 Documentation on exports (internal_types) 1035

bound/1 (regtype) . 1035
bound double/1 (regtype) . 1035
dictionary/1 (regtype) . 1035
environment/1 (regtype) . 1036
parse/1 (regtype) . 1036
tree/1 (regtype) . 1036
whitespace/1 (regtype) . 1036

lxvi The Ciao System

219 provrml io (library) . 1039
219.1 Usage and interface (provrml_io) . 1039
219.2 Documentation on exports (provrml_io). 1039

out/1 (pred) . 1039
out/3 (pred) . 1039
convert atoms to string/2 (pred) 1039
read terms file/2 (pred) . 1040
write terms file/2 (pred) . 1040
read vrml file/2 (pred) . 1040
write vrml file/2 (pred) . 1040

220 lookup (library) . 1041
220.1 Usage and interface (lookup) . 1041
220.2 Documentation on exports (lookup) . 1041

create proto element/3 (pred) . 1041
get prototype interface/2 (pred) 1041
get prototype definition/2 (pred) 1042
lookup check node/4 (pred) . 1042
lookup check field/6 (pred) . 1042
lookup check interface fieldValue/8 (pred) 1043
lookup field/4 (pred) . 1043
lookup route/5 (pred) . 1044
lookup fieldTypeId/1 (pred). 1044
lookup get fieldType/4 (pred) . 1044
lookup field access/4 (pred) . 1044
lookup set def/3 (pred) . 1045
lookup set prototype/4 (pred) . 1045
lookup set extern prototype/4 (pred) 1046

221 provrml parser (library) 1047
221.1 Usage and interface (provrml_parser) 1047
221.2 Documentation on exports (provrml_parser) 1047

parser/2 (pred) . 1047
nodeDeclaration/4 (pred) . 1047
field Id/1 (prop) . 1048

222 parser util (library) . 1049
222.1 Usage and interface (parser_util) . 1049
222.2 Documentation on exports (parser_util) 1049

at least one/4 (pred) . 1049
at least one/5 (pred) . 1049
fillout/4 (pred) . 1050
fillout/5 (pred) . 1050
create node/3 (pred) . 1051
create field/3 (pred) . 1051
create field/4 (pred) . 1051
create field/5 (pred) . 1051
create directed field/5 (pred) . 1052
correct commenting/4 (pred) . 1052
create parse structure/1 (pred) 1053
create parse structure/2 (pred) 1053
create parse structure/3 (pred) 1053
create environment/4 (pred) . 1054
insert comments in beginning/3 (pred) 1054

lxvii

get environment name/2 (pred) 1054
get environment type/2 (pred) 1055
get row number/2 (pred) . 1055
add environment whitespace/3 (pred) 1055
get indentation/2 (pred) . 1056
inc indentation/2 (pred) . 1056
dec indentation/2 (pred) . 1056
add indentation/3 (pred) . 1056
reduce indentation/3 (pred) . 1057
push whitespace/3 (pred) . 1057
push dictionaries/3 (pred) . 1057
get parsed/2 (pred) . 1057
get environment/2 (pred) . 1058
inside proto/1 (pred) . 1058
get dictionaries/2 (pred) . 1058
strip from list/2 (pred) . 1058
strip from term/2 (pred) . 1059
strip clean/2 (pred) . 1059
strip exposed/2 (pred) . 1059
strip restricted/2 (pred) . 1059
strip interface/2 (pred) . 1059
set parsed/3 (pred) . 1060
set environment/3 (pred) . 1060
insert parsed/3 (pred) . 1060
reverse parsed/2 (pred) . 1061
stop parse/2 (pred) . 1061
look first parsed/2 (pred) . 1061
get first parsed/3 (pred) . 1061
remove code/3 (pred) . 1062
look ahead/3 (pred) . 1062

223 possible (library) . 1063
223.1 Usage and interface (possible) . 1063
223.2 Documentation on exports (possible) 1063

continue/3 (pred) . 1063

224 tokeniser (library) . 1065
224.1 Usage and interface (tokeniser) . 1065
224.2 Documentation on exports (tokeniser) 1065

tokeniser/2 (pred) . 1065
token read/3 (pred) . 1065

225 Pattern (regular expression) matching 1069
225.1 Usage and interface (regexp_doc) . 1069
225.2 Documentation on internals (regexp_doc) 1069

match shell/3 (pred) . 1069
match shell/2 (pred) . 1070
match posix/2 (pred) . 1070
match posix/4 (pred) . 1070
match posix rest/3 (pred) . 1070
match posix matches/3 (pred) . 1070
match struct/4 (pred) . 1071
match pred/2 (pred) . 1071
replace first/4 (pred) . 1071
replace all/4 (pred) . 1071

lxviii The Ciao System

226 regexp code (library) . 1073
226.1 Usage and interface (regexp_code) . 1073
226.2 Documentation on exports (regexp_code) 1073

match shell/3 (pred) . 1073
match shell/2 (pred) . 1073
match posix/2 (pred) . 1073
match posix/4 (pred) . 1074
match posix rest/3 (pred) . 1074
match posix matches/3 (pred) . 1074
match struct/4 (pred) . 1075
match pred/2 (pred) . 1075
replace first/4 (pred) . 1075
replace all/4 (pred) . 1075
shell regexp/1 (regtype) . 1075
posix regexp/1 (regtype) . 1075
struct regexp/1 (regtype) . 1076

226.3 Documentation on multifiles (regexp_code) 1076
define flag/3 (pred) . 1076

227 Automatic tester . 1077
227.1 Usage and interface (tester) . 1077
227.2 Documentation on exports (tester) . 1077

run tester/10 (pred) . 1077
227.3 Other information (tester) . 1078

227.3.1 Understanding run test predicate 1078
227.3.2 More complex example . 1079

228 Measuring features from predicates (time cost
or memory used) . 1083
228.1 Usage and interface (time_analyzer) . 1083
228.2 Documentation on exports (time_analyzer) 1083

performance/3 (pred) . 1083
benchmark/6 (pred) . 1084
compare benchmark/7 (pred) . 1084
generate benchmark list/7 (pred) 1085
benchmark2/6 (pred) . 1085
compare benchmark2/7 (pred) 1085
generate benchmark list2/7 (pred) 1086
sub times/3 (pred) . 1086
div times/2 (pred) . 1086
cost/3 (pred) . 1086
generate plot/3 (udreexp) . 1087
generate plot/2 (udreexp) . 1087
set general options/1 (udreexp) 1087
get general options/1 (udreexp) 1087

lxix

229 XDR handle library . 1089
229.1 Usage and interface (xdr_handle) . 1089
229.2 Documentation on exports (xdr_handle). 1089

xdr tree/3 (pred) . 1089
xdr tree/1 (pred) . 1089
xdr node/1 (regtype) . 1090
xdr2html/4 (pred) . 1090
xdr2html/2 (pred) . 1090
unfold tree/2 (pred) . 1090
unfold tree dic/3 (pred) . 1091
xdr xpath/2 (pred) . 1091

230 XML query library . 1093
230.1 Usage and interface (xml_path_doc) . 1093
230.2 Documentation on exports (xml_path_doc) 1094

xml search/3 (pred) . 1094
xml parse/3 (pred) . 1094
xml parse match/3 (pred) . 1094
xml search match/3 (pred) . 1095
xml index query/3 (pred) . 1095
xml index to file/2 (pred) . 1095
xml index/1 (pred) . 1095
xml query/3 (pred) . 1096

230.3 Documentation on internals (xml_path_doc) 1096
canonic xml term/1 (regtype) . 1096
canonic xml item/1 (regtype) . 1096
tag attrib/1 (regtype) . 1096
canonic xml query/1 (regtype) 1096
canonic xml subquery/1 (regtype) 1097

PART XII - Appendices. 1099

231 Installing Ciao from the source distribution
. 1101
231.1 Un*x installation summary . 1101
231.2 Un*x full installation instructions . 1102
231.3 Checking for correct installation on Un*x 1105
231.4 Cleaning up the source directory . 1106
231.5 Multiarchitecture support . 1106
231.6 Installation and compilation under Windows 1107
231.7 Porting to currently unsupported operating systems 1107
231.8 Troubleshooting (nasty messages and nifty workarounds) . . 1108

232 Installing Ciao from a Win32 binary
distribution . 1111
232.1 Win32 binary installation summary . 1111
232.2 Checking for correct installation on Win32 1112
232.3 Compiling the miscellaneous utilities under Windows 1113
232.4 Server installation under Windows . 1113
232.5 CGI execution under IIS . 1113
232.6 Uninstallation under Windows . 1114

lxx The Ciao System

233 Beyond installation . 1115
233.1 Architecture-specific notes and limitations. 1115
233.2 Keeping up to date with the Ciao users mailing list 1115
233.3 Downloading new versions . 1115
233.4 Reporting bugs . 1116

References . 1117

Library/Module Index . 1125

Predicate/Method Index . 1127

Property Index . 1129

Regular Type Index . 1131

Declaration Index . 1133

Concept Index. 1135

Author Index. 1137

Global Index . 1139

Summary 1

Summary

Ciao is a public domain, next generation multi-paradigm programming environment with a
unique set of features:

• Ciao offers a complete Prolog system, supporting ISO-Prolog, but its novel modular design
allows both restricting and extending the language. As a result, it allows working with
fully declarative subsets of Prolog and also to extend these subsets (or ISO-Prolog) both
syntactically and semantically. Most importantly, these restrictions and extensions can be
activated separately on each program module so that several extensions can coexist in the
same application for different modules.

• Ciao also supports (through such extensions) programming with functions, higher-order
(with predicate abstractions), constraints, and objects, as well as feature terms (records),
persistence, several control rules (breadth-first search, iterative deepening, ...), concurrency
(threads/engines), a good base for distributed execution (agents), and parallel execution.
Libraries also support WWW programming, sockets, external interfaces (C, Java, TclTk,
relational databases, etc.), etc.

• Ciao offers support for programming in the large with a robust module/object system,
module-based separate/incremental compilation (automatically –no need for makefiles), an
assertion language for declaring (optional) program properties (including types and modes,
but also determinacy, non-failure, cost, etc.), automatic static inference and static/dynamic
checking of such assertions, etc.

• Ciao also offers support for programming in the small producing small executables (including
only those libraries actually used by the program) and support for writing scripts.

• The Ciao programming environment includes a classical top-level and a rich emacs interface
with an embeddable source-level debugger and a number of execution visualization tools.

• The Ciao compiler (which can be run outside the top level shell) generates several forms of
architecture-independent and stand-alone executables, which run with speed, efficiency, and
executable size which are very competitive with other commercial and academic languages
(including other Prolog/CLP systems). Library modules can be compiled into compact
bytecode or C source files, and linked statically, dynamically, or autoloaded.

• The novel modular design of Ciao enables, in addition to modular program development,
effective global program analysis and static debugging and optimization via source to source
program transformation. These tasks are performed by the Ciao preprocessor (ciaopp,
distributed separately).

• The Ciao programming environment also includes lpdoc, an automatic documentation gen-
erator for LP/CLP programs. It processes source files adorned with (Ciao) assertions and
machine-readable comments and generates manuals in many formats including postscript,
pdf, texinfo, info, HTML, man, etc. , as well as on-line help, ascii README files, entries for
indices of manuals (info, WWW, ...), and maintains WWW distribution sites.

Ciao is distributed under the GNU Library General Public License (LGPL).

This documentation corresponds to version 1.13#1 (2011/3/15, 20:8:35 CEST).

2 The Ciao System

Chapter 1: Introduction 3

1 Introduction

1.1 About this manual

This is the Reference Manual for the Ciao development system. It contains basic information
on how to install Ciao and how to write, debug, and run Ciao programs from the command line,
from inside GNU emacs, or from a windowing desktop. It also documents all the libraries
available in the standard distribution.

This manual has been generated using the LPdoc semi-automatic documentation generator
for LP/CLP programs [HC97,Her00]. lpdoc processes Ciao files (and files in Prolog and other
CLP languages) adorned with assertions and machine-readable comments, which should be
written in the Ciao assertion language [PBH97,PBH00]. From these, it generates manuals in
many formats including postscript, pdf, texinfo, info, HTML, man, etc., as well as on-line
help, ascii README files, entries for indices of manuals (info, WWW, ...), and maintains WWW
distribution sites.

The big advantage of this approach is that it is easier to keep the on-line and printed docu-
mentation in sync with the source code [Knu84]. As a result, this manual changes continually as
the source code is modified. Because of this, the manual has a version number. You should make
sure the manual you are reading, whether it be printed or on-line, coincides with the version of
the software that you are using.

The approach also implies that there is often a variability in the degree to which different
libraries or system components are documented. Many libraries offer abundant documentation,
but a few will offer little. The latter is due to the fact that we tend to include libraries in the
manual if the code is found to be useful, even if they may still contain sparse documentation.
This is because including a library in the manual will at the bare minimum provide formal
information (such as the names of exported predicates and their arity, which other modules
it loads, etc.), create index entries, pointers for on-line help in the electronic versions of the
manuals, and command-line completion capabilities inside emacs. Again, the manual is being
updated continuously as the different libraries (and machine-readable documentation in them)
are improved.

1.2 About the Ciao development system

The Ciao system is a full programming environment for developing programs in the Pro-
log language and in several other languages which are extensions and modifications of Prolog
and (Constraint) Logic Programming in several interesting and useful directions. The program-
ming environment offers a number of tools such as the Ciao standalone compiler (ciaoc), a
traditional-style top-level interactive shell (ciaosh or ciao), an interpreter of scripts written in
Ciao (ciao-shell), a Ciao (and Prolog) emacs mode (which greatly helps the task of devel-
oping programs with support for editing, debugging, version/change tracking, etc.), numerous
libraries, a powerful program preprocessor (ciaopp [BGH99,BLGPH04,HBPLG99], which sup-
ports static debugging and optimization from program analysis via source to source program
transformation), and an automatic documentation generator (lpdoc) [HC97,Her00]. A number
of execution visualization tools [CGH93,CH00d,CH00c] are also available.

This manual documents the first four of the tools mentioned above [see PART I - The program
development environment], and the Ciao language and libraries. The ciaopp and lpdoc tools
are documented in separate manuals.

The Ciao language [see PART II - The Ciao basic language (engine)] has been designed from
the ground up to be small, but to also allow extensions and restrictions in a modular way. The
first objective allows producing small executables (including only those builtins used by the
program), providing basic support for pure logic programming, and being able to write scripts

4 The Ciao System

in Ciao. The second one allows supporting standard ISO-Prolog [see PART III - ISO-Prolog
library (iso)], as well as powerful extensions such as constraint logic programming, functional
logic programming, and object-oriented logic programming [see PART VII - Ciao extensions],
and restrictions such as working with pure horn clauses.

The design of Ciao has also focused on allowing modular program development, as well
as automatic program manipulation and optimization. Ciao includes a robust module system
[CH00a], module-based automatic incremental compilation [CH99b], and modular global pro-
gram analysis, debugging and optimization [PH99], based on a rich assertion language [see PART
V - Assertions, Properties, Types, Modes, Comments (assertions)] for declaring (optional) pro-
gram properties (including types and modes), which can be checked either statically or dynami-
cally. The program analysis, static debugging and optimization tasks related to these assertions
are performed by the ciaopp preprocessor, as mentioned above. These assertions (together with
special comment-style declarations) are also the ones used by the lpdoc autodocumenter to
generate documentation for programs (the comment-style declarations are documented in the
lpdoc manual).

Ciao also includes several other features and utilities, such as support for several forms of
executables, concurrency (threads), distributed and parallel execution, higher-order, WWW
programming (PiLLoW [CHV96b]), interfaces to other languages like C and Java, database
interfaces, graphical interfaces, etc., etc. [see PARTS VI to XI].

1.3 ISO-Prolog compliance versus extensibility

One of the innovative features of Ciao is that it has been designed to subsume ISO-Prolog
(International Standard ISO/IEC 13211-1, PROLOG: Part 1–General Core [DEDC96]), while
at the same time extending it in many important ways. The intention is to ensure that all
ISO-compliant Prolog programs run correctly under Ciao. At the same time, the Ciao module
system (see [PART II - The Ciao basic language (engine)] and [CH00a] for a discussion of the
motivations behind the design) allows selectively avoiding the loading of most ISO-builtins (and
changing some other ISO characteristics) when not needed, so that it is possible to work with
purer subsets of Prolog and also to build small executables. Also, this module system makes
it possible to develop extensions using these purer subsets (or even the full ISO-standard) as a
starting point. Using these features, the Ciao distribution includes libraries which significantly
extend the language both syntactically and semantically.

Compliance with ISO is still not complete: currently there are some minor deviations in,
e.g., the treatment of characters, the syntax, some of the arithmetic functions, and part of the
error system. On the other hand, Ciao has been reported by independent sources (members
of the standarization body) to be one of the most conforming Prologs at the moment of this
writing, and the first one to be able to compile all the standard-conforming test cases. Also,
Ciao does not offer a strictly conforming mode which rejects uses of non-ISO features. However,
in order to aid programmers who wish to write standard compliant programs, library predicates
that correspond to those in the ISO-Prolog standard are marked specially in the manuals, and
differences between the Ciao and the prescribed ISO-Prolog behaviours, if any, are commented
appropriately.

The intention of the Ciao developers is to progressively complete the compliance of Ciao
with the published parts of the ISO standard as well as with other reasonable extensions of the
standard may be published in the future. However, since one of the design objectives of Ciao is
to address some shortcomings of previous implementations of Prolog and logic programming in
general, we also hope that some of the better ideas present in the system will make it eventually
into other systems and the standards.

Chapter 1: Introduction 5

1.4 About the name of the System

Ciao is often referred to as “Ciao Prolog,” a name which has an interesting (and not unin-
tended) interpretation. Ciao is an interesting word which means both hello and goodbye. ’Ciao
Prolog’ intends to be a really good, all-round, freely available ISO-Prolog system which can be
used as a classical Prolog, in both academic and industrial environments (and, in particular, to
introduce users to Prolog and to constraint and logic programming –the hello part). An indeed
many programmers use it just that way. But Ciao is also a new-generation, multiparadigm
programming language and program development system which goes well beyond Prolog and
other classical logic programming languages. And it has the advantage (when compared to other
new-generation LP systems) that it does so while keeping full Prolog compatibility when needed.

1.5 Referring to Ciao

If you find Ciao or any of its components useful, we would appreciate very much if you added
a reference to this manual (i.e., the Ciao reference manual [BCC97]) in your work. The following
is an appropriate BiBTeX entry with the relevant data:

@techreport{ciao-reference-manual-tr,
author = {F. Bueno and D. Cabeza and M. Carro and M. Hermenegildo

and P. L\’{o}pez-Garc\’{\i}a and G. Puebla},
title = {The Ciao System. Reference Manual},
institution = {School of Computer Science, T. U. of Madrid (UPM)

and IMDEA Software Institute},
year = 1997,
month = {August},
number = {{CLIP}3/1997.2011},
note = {Available from http://www.cliplab.org/}

}

1.6 Syntax terminology and notational conventions

This manual assumes some familiarity with logic programming and the Prolog language.
The reader is referred to standard textbooks on logic programming and Prolog (such as, e.g.,
[SS86,CM81,Apt97,Hog84]) for background. However, we would like to refresh herein some
concepts for the sake of establishing terminology. Also, we will briefly introduce a few of the
extensions that Ciao brings to the Prolog language.

1.6.1 Predicates and their components

Procedures are called predicates and predicate calls literals. They all have the classical syntax
of procedures (and of logic predications and of mathematical functions). Predicates are identified
in this manual by a keyword ’PREDICATE’ at the right margin of the place where they are
documented.

Program instructions are expressions made up of control constructs (Chapter 13 [Control
constructs/predicates], page 99) and literals, and are called goals. Literals are also (atomic)
goals.

A predicate definition is a sequence of clauses. A clause has the form “H :- B.” (ending in
’.’), where H is syntactically the same as a literal and is called the clause head, and B is a goal
and is called the clause body. A clause with no body is written “H.” and is called a fact. Clauses
with body are also called rules. A program is a sequence of predicate definitions.

6 The Ciao System

1.6.2 Characters and character strings

We adopt the following convention for delineating character strings in the text of this manual:
when a string is being used as an atom it is written thus: user or ’user’; but in all other
circumstances double quotes are used (as in "hello").

When referring to keyboard characters, printing characters are written thus: 〈a〉, while control
characters are written like this: 〈̂ A〉. Thus 〈̂ C〉 is the character you get by holding down the
〈CTL〉 key while you type 〈c〉. Finally, the special control characters carriage-return, line-feed and
space are often abbreviated to 〈RET〉, 〈LFD〉 and 〈SPC〉 respectively.

1.6.3 Predicate specs

Predicates are distinguished by their name and their arity. We will call name/arity a
predicate spec. The notation name/arity is therefore used when it is necessary to refer to a
predicate unambiguously. For example, concatenate/3 specifies the predicate which is named
“concatenate” and which takes 3 arguments.

(Note that different predicates may have the same name and different arity. Conversely, of
course, they may have the same arity and different name.)

1.6.4 Modes

When documenting a predicate, we will often describe its usage with a mode spec which
has the form name(Arg1, ..., ArgN) where each Arg may be preceded by a mode. A mode
is a functor which is wrapped around an argument (or prepended if defined as an operator).
Such a mode allows documenting in a compact way the instantiation state on call and exit of
the argument to which it is applied. The set of modes which can be used in Ciao is not fixed.
Instead, arbitrary modes can be defined by in programs using the modedef/1 declarations of the
Ciao assertion language (Chapter 54 [The Ciao assertion package], page 339 for details). Modes
are identified in this manual by a keyword ’MODE’.

Herein, we will use the set of modes defined in the Ciao isomodes library, which is essentially
the same as those used in the ISO-Prolog standard (Chapter 58 [ISO-Prolog modes], page 371).

1.6.5 Properties and types

Although Ciao is not a typed language, it allows writing (and using) types, as well as (more
general) properties. There may be properties of the states and of the computation. Properties
of the states allow expressing characteristics of the program variables during computation, like
in sorted(X) (X is a sorted list). Properties of the computation allow expressing characteristics
of a whole computation, like in is_det(p(X,Y)) (such calls yield only one solution). Properties
are just a special form of predicates (Chapter 56 [Declaring regular types], page 355) and are
identified in this manual by a keyword ’PROPERTY’.

Ciao types are regular types (Chapter 56 [Declaring regular types], page 355), which are a
special form of properties themselves. They are identified in this manual by a keyword ’REG-
TYPE’.

1.6.6 Declarations

A declaration provides information to one of the Ciao environment tools. Declarations are
interspersed in the code of a program. Usually the target tool is either the compiler (telling
it that a predicate is dynamic, or a meta-predicate, etc.), the preprocessor (which understands
declarations of properties and types, assertions, etc.), or the autodocumenter (which understands
the previous declarations and also certain “comment” declarations).

Chapter 1: Introduction 7

A declaration has the form :- D. where D is syntactically the same as a literal. Declarations
are identified in this manual by a keyword ’DECLARATION’.

In Ciao users can define (and document) new declarations. New declarations are typically
useful when defining extensions to the language (which in Ciao are called packages). Such exten-
sions are often implemented as expansions (see Chapter 26 [Extending the syntax], page 193).
There are many such extensions in Ciao. The functions library, which provides fuctional syn-
tax, is an example. The fact that in Ciao expansions are local to modules (as operators, see
below) makes it possible to use a certain language extension in one module without affecting
other modules.

1.6.7 Operators

An operator is a functor (or predicate name) which has been declared as such, thus allowing
its use in a prefix, infix, or suffix fashion, instead of the standard procedure-like fashion. E.g.,
declaring + as an infix operator allows writing X+Y instead of ’+’(X,Y) (which may still, of
course, be written).

Operators in Ciao are local to the module/file where they are declared. However, some opera-
tors are standard and allowed in every program (see Chapter 37 [Defining operators], page 255).
This manual documents the operator declarations in each (library) module where they are in-
cluded. As with expansions, the fact that in Ciao operators are local to modules makes it
possible to use a certain language extension in one module without affecting other modules.

1.7 A tour of the manual

The rest of the introductory chapters after this one provide a first “getting started” intro-
duction for newcomers to the Ciao system. The rest of the chapters in the manual are organized
into a sequence of major parts as follows:

1.7.1 PART I - The program development environment

This part documents the components of the basic Ciao program development environment.
They include:

ciaoc: the standalone compiler, which creates executables without having to enter the
interactive top-level.

ciaosh: (also invoked simply as ciao) is an interactive top-level shell, similar to the one
found on most Prolog systems (with some enhancements).

debugger.pl:
a Byrd box-type debugger, similar to the one found on most Prolog systems (also
with some enhancements, such as source-level debugging). This is not a standalone
application, but is rather included in ciaosh, as is done in other systems supporting
the Prolog language. However, it is also embeddable, in the sense that it can be
included as a library in executables, and activated dynamically and conditionally
while such executables are running.

ciao-shell: an interpreter/compiler for Ciao scripts (i.e., files containing Ciao code which run
without needing explicit compilation).

ciao.el: a complete program development enviroment, based on GNU emacs, with syntax
coloring, direct access to all the tools described above (as well as the preprocessor
and the documenter), atomatic location of errors, source-level debugging, context-
sensitive access to on-line help/manuals, etc. The use of this environment is very
highly recommended !

The Ciao program development environment also includes ciaopp, the preprocessor, and
lpdoc, the documentation generator, which are described in separate manuals.

8 The Ciao System

1.7.2 PART II - The Ciao basic language (engine)

This part documents the Ciao basic builtins. These predefined predicates and declarations are
available in every program, unless the pure package is used (by using a :- module(_,_,[pure]).
declaration or :- use_package(pure).). These predicates are contained in the engine directory
within the lib library. The rest of the library predicates, including the packages that provide
most of the ISO-Prolog builtins, are documented in subsequent parts.

1.7.3 PART III - ISO-Prolog library (iso)

This part documents the iso package which provides to Ciao programs (most of) the ISO-
Prolog functionality, including the ISO-Prolog builtins not covered by the basic library.

1.7.4 PART IV - Classic Prolog library (classic)

This part documents some Ciao libraries which provide additional predicates and function-
alities that, despite not being in the ISO standard, are present in many popular Prolog systems.
This includes definite clause grammars (DCGs), “Quintus-style” internal database, list pro-
cessing predicates, DEC-10 Prolog-style input/output, formatted output, dynamic loading of
modules, activation of operators at run-time, etc.

1.7.5 PART V - Assertions, Properties, Types, Modes, Comments
(assertions)

Ciao allows annotating the program code with assertions. Such assertions include type
and instantiation mode declarations, but also more general properties as well as comments for
autodocumentation in the literate programming style. These assertions document predicates
(and modules and whole applications) and can be used by the Ciao preprocessor/compiler while
debugging and optimizing the program or library, and by the Ciao documenter to build program
or library reference manuals.

1.7.6 PART VI - Ciao library miscellanea

This part documents several Ciao libraries which provide different useful additional func-
tionality. Such functionality includes performing operating system calls, gathering statistics
from the Ciao engine, file and filename manipulation, error and exception handling, fast reading
and writing of terms (marshalling and unmarshalling), file locking, issuing program and error
messages, pretty-printing programs and assertions, a browser of the system libraries, additional
expansion utilities, concurrent aggregates, graph visualization, etc.

1.7.7 PART VII - Ciao extensions

The libraries documented in this part extend the Ciao language in several different ways.
The extensions include:

• pure Prolog programming (well, this can be viewed more as a restriction than an extension);

• feature terms or records (i.e., structures with names for each field);

• parallel programming (e.g., &-Prolog style);

• functional syntax;

• higher-order;

• global variables;

• setarg and undo;

• delaying predicate execution;

Chapter 1: Introduction 9

• active modules;

• breadth-first execution;

• iterative deepening-based execution;

• constraint logic programming;

• object oriented programming.

1.7.8 PART VIII - Interfaces to other languages and systems

The following interfaces to/from Ciao are documented in this part:

• External interface (e.g., to C).

• Socket interface.

• Tcl/tk interface.

• Web interface (http, html, xml, etc.);

• Persistent predicate databases (interface between the Ciao internal database and the exter-
nal file system).

• SQL-like database interface (interface between the Ciao internal database and external
SQL/ODBC systems).

• Java interface.

• Calling emacs from Ciao.

1.7.9 PART IX - Abstract data types

This part includes libraries which implement some generic data structures (abstract data
types) that are used frequently in programs or in the Ciao system itself.

1.7.10 PART X - Miscellaneous standalone utilities

This is the documentation for a set of miscellaneous standalone utilities contained in the etc
directory of the Ciao distribution.

1.7.11 PART XI - Contributed libraries

This part includes a number of libraries which have contributed by users of the Ciao system.
Over time, some of these libraries are moved to the main library directories of the system.

1.7.12 PART XII - Appendices

These appendices describe the installation of the Ciao environment on different systems and
some other issues such as reporting bugs, signing up on the Ciao user’s mailing list, downloading
new versions, limitations, etc.

1.8 Acknowledgments

The Ciao system is a joint effort on one side of some present (Francisco Bueno, Manuel
Carro, Manuel Hermenegildo, Pedro López, and Germán Puebla) and past (Daniel Cabeza,
Maŕıa José Garćıa de la Banda) members of the CLIP group at the School of Computer Science,
Technical University of Madrid and at the IMDEA Software Institute, and on the other side of
several colleagues and students that have collaborated with us over the years of its development.
The following is an (inevitably incomplete) list of those that have contributed most significantly
to the development of Ciao:

10 The Ciao System

• The Ciao engine, compiler, preprocessor, libraries, and documentation, although completely
rewritten at this point, have their origins in the &-Prolog parallel Prolog engine and
parallelizing compiler, developed by Manuel Hermenegildo, Kevin Greene, Kalyan Muthuku-
mar, and Roger Nasr atMCC and later at UPM. The &-Prolog engine and low-level (WAM)
compilers in turn were derived from early versions (0.5 to 0.7) of SICStus Prolog [Car88].
SICStus is an excellent, high performance Prolog system, developed by Mats Carlsson and
colleagues at the Swedish Institute of Computer Science (SICS), that every user of Prolog
should check out [Swe95,AAF91]. Very special thanks are due to Seif Haridi, Mats Carls-
son, and colleagues at SICS for allowing the SICStus 0.5-0.7 components in &-Prolog and
its successor, Ciao, to be distributed freely. Parts of the parallel abstract machine have
been developed in collaboration with Gopal Gupta and Enrico Pontelli (New Mexico State
University).

• Many aspects of the analyzers in the Ciao preprocessor (ciaopp) have been developed in
collaboration with Peter Stuckey (Melbourne U.), Kim Marriott (Monash U.), Maurice
Bruynooghe, Gerda Janssens, Anne Mulkers, and Veroniek Dumortier (K.U. Leuven), and
Saumya Debray (U. of Arizona). The assertion system has been developed in collaboration
with Jan Maluzynski and Wlodek Drabent (Linkoping U.) and Pierre Deransart (INRIA).
The core of type inference system derives from the system developed by John Gallagher
[GdW94] (Bristol University) and later adapted to CLP(FD) by Pawel Pietrzak (Linkoping
U.).

• The constraint solvers for R and Q are derived from the code developed by Christian
Holzbauer (Austrian Research Institute for AI in Vienna) [Hol94,Hol90,Hol92].

• The Ciao manuals include material from the DECsystem-10 Prolog User’s Manual by D.L.
Bowen (editor), L. Byrd, F.C.N. Pereira, L.M. Pereira, and D.H.D. Warren [BBP81]. They
also contain material from the SICStus Prolog user manuals for SICStus versions 0.5-0.7
by Mats Carlsson and Johan Widen [Car88], as well as from the Prolog ISO standard
documentation [DEDC96].

• Ciao is designed to be highly extendable in a modular way. Many of the libraries distributed
with Ciao have been developed by other people all of which is impossible to mention here.
Individual author names are included in the documentation of each library and appear in
the indices.

• The development of the Ciao system has been supported in part by European research
projects PEPMA, ACCLAIM, PARFORCE, DISCIPL, AMOS, ASAP, MOBIUS, and
SCUBE; by MICYT projects IPL-D, ELLA, EDIPIA, CUBICO, MERIT, and DOVES;
and by CM projects PROMESAS and PROMETIDOS.

If you feel you have contributed to the development of Ciao and we have forgotten to add
your name to this list or to the acknowledgements given in the different chapters and indices,
please let us know and we will be glad to give proper credits.

1.9 Version/Change Log

Version 1.12 (2005/7/3, 18:50:50 CEST)
Temporary version before transition to SVN log comments. (Jose Morales)

Version 1.10 (2004/7/29, 16:12:3 CEST)
• Classical prolog mode as default behavior.

• Emacs-based environment improved.

• Improved emacs inferior (interaction) mode for Ciao and CiaoPP.

• Xemacs compatibility improved (thanks to A. Rigo).

• New icons and modifications in the environment for the preprocessor.

• Icons now installed in a separate dir.

Chapter 1: Introduction 11

• Compatibility with newer versions of Cygwin.

• Changes to programming environment:

• Double-click startup of programming environment.

• Reorganized menus: help and customization grouped in separate
menus.

• Error location extended.

• Automatic/Manual location of errors produced when running Ciao
tools now customizable.

• Presentation of CiaoPP preprocessor output improved.

• Faces and coloring improved:

• Faces for syntax-based highlighting more customizable.

• Syntax-based coloring greatly improved. Literal-level assertions also
correctly colored now.

• Syntax-based coloring now also working on ASCII terminals (for newer
versions of emacs).

• Listing user-defined directives allowed to be colored in special face.

• Syntax errors now colored also in inferior buffers.

• Customizable faces now appear in the documentation.

• Added new tool bar button (and binding) to refontify block/buffer.

• Error marks now cleared automatically also when generating docs.

• Added some fixes to hooks in lpdoc buffer.

• Bug fixes in compiler.

• Replication of clauses in some cases (thanks to S. Craig).

• Improvements related to supported platforms

• Compilation and installation in different palatforms have been improved.

• New Mac OS X kernels supported.

• Improvement and bugs fixes in the engine:

• Got rid of several segmentation violation problems.

• Number of significant decimal digits to be printed now computed accu-
rately.

• Added support to test conversion of a Ciao integer into a machine int.

• Unbound length atoms now always working.

• C interface .h files reachable through a more standard location (thanks to
R. Bagnara).

• Compatibility with newer versions of gcc.

• New libraries and utilities added to the system:

• Factsdb: facts defined in external files can now be automatically cached
on-demand.

• Symfnames: File aliasing to internal streams added.

• New libraries added (in beta state):

• fd: clp(FD)

• xml path: XML querying and transformation to Prolog.

• xdr handle: XDR schema to HTML forms utility.

• ddlist: Two-way traversal list library.

• gnuplot: Interface to GnuPlot.

12 The Ciao System

• time analyzer: Execution time profiling.

• Some libraries greatly improved:

• Interface to Tcl/Tk very improved.

• Corrected many bugs in both interaction Prolog to Tcl/Tk and vicev-
ersa.

• Execution of Prolog goals from TclTk revamped.

• Treatment of Tcl events corrected.

• Predicate tcl_eval/3 now allows the execution of Tcl procedures run-
ning multiple Prolog goals.

• Documentation heavily reworked.

• Fixed unification of prolog goals run from the Tcl side.

• Pillow library improved in many senses.

• HTTP media type parameter values returned are always strings now,
not atoms.

• Changed verbatim() pillow term so that newlines are translated to

.

• Changed management of cookies so that special characters in values
are correctly handled.

• Added predicate url_query_values/2, reversible. Predicate url_
query/2 now obsolete.

• Now attribute values in tags are escaped to handle values which have
double quotes.

• Improved get_form_input/1 and url_query/2 so that names of pa-
rameters having unusual characters are always correctly handled.

• Fixed bug in tokenizer regarding non-terminated single or multiple-line
comments. When the last line of a file has a single-line comment and does
not end in a newline, it is accepted as correct. When an open-comment /*
sequence is not terminated in a file, a syntax error exception is thrown.

• Other libraries improved:

• Added native props to assertions package and included nonground/1.

• In atom2terms, changed interpretation of double quoted strings so that
they are not parsed to terms.

• Control on exceptions improved.

• Added native/1,2 to basic props.

• Davinci error processing improved.

• Foreign predicates are now automatically declared as implementation-
defined.

• In lists, added cross_product/2 to compute the cartesian product of a list
of lists. Also added delete_non_ground/3, enabling deletion of nonground
terms from a list.

• In llists added transpose/2 and changed append/2 implementation with
a much more efficient code.

• The make library has been improved.

• In persdb, added pretractall_fact/1 and retractall_fact/1 as persdb
native capabilities.

• Improved behavior with user environment from persdb.

Chapter 1: Introduction 13

• In persdb, added support for persistent_dir/4, which includes argu-
ments to specify permission modes for persistent directory and files.

• Some minor updates in persdb sql.

• Added treatment of operators and module:pred calls to pretty-printer.

• Updated report of read of syntax errors.

• File locking capabilities included in open/3.

• Several improvements in library system.

• New input/output facilities added to sockets.

• Added most_specific_generalization/3 and
most_general_instance/3 to terms check.

• Added sort_dict/2 to library vndict.

• The xref library now treats also empty references.

• Miscellaneous updates:

• Extended documentation in libraries actmods, arrays, foreign interface,
javall, persdb mysql, prolog sys, old database, and terms vars.

Version 1.9 (2002/5/16, 23:17:34 CEST)
New development version after stable 1.8p0 (MCL, DCG)

Version 1.8 (2002/5/16, 21:20:27 CEST)
• Improvements related to supported platforms:

• Support for Mac OS X 10.1, based on the Darwin kernel.

• Initial support for compilation on Linux for Power PC (contributed by
Paulo Moura).

• Workaround for incorrect C compilation while using newer (> 2.95) gcc
compilers.

• .bat files generated in Windows.

• Changes in compiler behavior and user interface:

• Corrected a bug which caused wrong code generation in some cases.

• Changed execution of initialization directives. Now the initialization of a
module/file never runs before the initializations of the modules from which
the module/file imports (excluding circular dependences).

• The engine is more intelligent when looking for an engine to execute byte-
code; this caters for a variety of situations when setting explicitly the
CIAOLIB environment variable.

• Fixed bugs in the toplevel: behaviour of module:main calls and initializa-
tion of a module (now happens after related modules are loaded).

• Layout char not needed any more to end Prolog files.

• Syntax errors now disable .itf creation, so that they show next time the
code is used without change.

• Redefinition warnings now issued only when an unqualified call is seen.

• Context menu in Windows can now load a file into the toplevel.

• Updated Windows installation in order to run CGI executables under Win-
dows: a new information item is added to the registry.

• Added new directories found in recent Linux distributions to INFOPATH.

• Emacs-based environment and debugger improved:

• Errors located immediataly after code loading.

• Improved ciao-check-types-modes (preprocessor progress now visible).

14 The Ciao System

• Fixed loading regions repeatedly (no more predicate redefinition warn-
ings).

• Added entries in ciaopp menu to set verbosity of output.

• Fixed some additional xemacs compatibility issues (related to
searches).

• Errors reported by inferior processes are now explored in forward order
(i.e., the first error rewported is the first one highlighted). Improved
tracking of errors.

• Specific tool bar now available, with icons for main fuctions (works
from emacs 21.1 on). Also, other minor adaptations for working with
emacs 21.1 and later.

• Debugger faces are now locally defined (and better customization).
This also improves comtability with xemacs (which has different faces).

• Direct access to a common use of the preprocessor (checking
modes/types and locating errors) from toolbar.

• Inferior modes for Ciao and CiaoPP improved: contextual help turned
on by default.

• Fixes to set-query. Also, previous query now appears in prompt.

• Improved behaviour of stored query.

• Improved behaviour of recentering, finding errors, etc.

• Wait for prompt has better termination characteristics.

• Added new interactive entry points (M-x): ciao, prolog, ciaopp.

• Better tracking of last inferior buffer used.

• Miscellanous bugs removed; some colors changed to adapt to different
Emacs versions.

• Fixed some remaining incompatibilities with xemacs.

• :- doc now also supported and highlighted.

• Eliminated need for calendar.el

• Added some missing library directives to fontlock list, organized this
better.

• New libraries added to the system:

• hiord: new library which needs to be loaded in order to use higher-order
call/N and P(X) syntax. Improved model for predicate abstractions.

• fuzzy: allows representing fuzzy information in the form or Prolog rules.

• use url: allows loading a module remotely by using a WWW address of
the module source code

• andorra: alternative search method where goals which become determinis-
tic at run time are executed before others.

• iterative deepening (id): alternative search method which makes a depth-
first search until a predetermined depth is reached. Complete but in general
cheaper than breadth first.

• det hook: allows making actions when a deterministic situation is reached.

• ProVRML: read VRML code and translate it into Prolog terms, and the
other way around.

• io alias redirection: change where stdin/stdout/stderr point to from within
Ciao programs.

• tcl tk: an interface to Tcl/Tk programs.

Chapter 1: Introduction 15

• tcl tk obj: object-based interface to Tcl/Tk graphical objects.

• CiaoPP: options to interface with the CiaoPP Prolog preprocessor.

• Some libraries greatly improved:

• WebDB: utilities to create WWW-based database interfaces.

• Improved java interface implementation (this forced renaming some inter-
face primitives).

• User-transparent persistent predicate database revamped:

• Implemented passerta fact/1 (asserta fact/1).

• Now it is never necessary to explicitly call init persdb, a call to ini-
tialize db is only needed after dynamically defining facts of persis-
tent dir/2. Thus, pcurrent fact/1 predicate eliminated.

• Facts of persistent predicates included in the program code are now in-
cluded in the persistent database when it is created. They are ignored
in successive executions.

• Files where persistent predicates reside are now created inside a direc-
tory named as the module where the persistent predicates are defined,
and are named as F A* for predicate F/A.

• Now there are two packages: persdb and ’persdb/ll’ (for low level).
In the first, the standard builtins asserta fact/1, assertz fact/1, and
retract fact/1 are replaced by new versions which handle persistent
data predicates, behaving as usual for normal data predicates. In the
second package, predicates with names starting with ’p’ are defined,
so that there is not overhead in calling the standard builtins.

• Needed declarations for persistent dir/2 are now included in the pack-
ages.

• SQL now works with mysql.

• system: expanded to contain more predicates which act as interface to the
underlying system / operating system.

• Other libraries improved:

• xref: creates cross-references among Prolog files.

• concurrency: new predicates to create new concurrent predicates on-the-fly.

• sockets: bugs corrected.

• objects: concurrent facts now properly recognized.

• fast read/write: bugs corrected.

• Added ’webbased’ protocol for active modules: publication of active mod-
ule address can now be made through WWW.

• Predicates in library(dynmods) moved to library(compiler).

• Expansion and meta predicates improved.

• Pretty printing.

• Assertion processing.

• Module-qualified function calls expansion improved.

• Module expansion calls goal expansion even at runtime.

• Updates to builtins (there are a few more; these are the most relevant):

• Added a prolog flag to retrieve the version and patch.

• current predicate/1 in library(dynamic) now enumerates non-engine mod-
ules, prolog sys:current predicate/2 no longer exists.

• exec/* bug fixed.

16 The Ciao System

• srandom/1 bug fixed.

• Updates for C interface:

• Fixed bugs in already existing code.

• Added support for creation and traversing of Prolog data structures from
C predicates.

• Added support for raising Prolog exceptions from C predicates.

• Preliminary support for calling Prolog from C.

• Miscellaneous updates:

• Installation made more robust.

• Some pending documentation added.

• ’ciao’ script now adds (locally) to path the place where it has been in-
stalled, so that other programs can be located without being explicitly in
the $PATH.

• Loading programs is somewhat faster now.

• Some improvement in printing path names in Windows.

Version 1.7 (2000/7/12, 19:1:20 CEST)
Development version following even 1.6 distribution.

Version 1.6 (2000/7/12, 18:55:50 CEST)
• Source-level debugger in emacs, breakpts.

• Emacs environment improved, added menus for Ciaopp and LPDoc.

• Debugger embeddable in executables.

• Stand-alone executables available for UNIX-like operating systems.

• Many improvements to emacs interface.

• Menu-based interface to autodocumenter.

• Threads now available in Win32.

• Many improvements to threads.

• Modular clp(R) / clp(Q).

• Libraries implementing And-fair breadth-first and iterative deepening included.

• Improved syntax for predicate abstractions.

• Library of higher-order list predicates.

• Better code expansion facilities (macros).

• New delay predicates (when/2).

• Compressed object code/executables on demand.

• The size of atoms is now unbound.

• Fast creation of new unique atoms.

• Number of clauses/predicates essentially unbound.

• Delayed goals with freeze restored.

• Faster compilation and startup.

• Much faster fast write/read.

• Improved documentation.

• Other new libraries.

• Improved installation/deinstallation on all platforms.

• Many improvements to autodocumenter.

• Many bug fixes in libraries and engine.

Chapter 1: Introduction 17

Version 1.5 (1999/11/29, 16:16:23 MEST)
Development version following even 1.4 distribution.

Version 1.4 (1999/11/27, 19:0:0 MEST)
• Documentation greatly improved.

• Automatic (re)compilation of foreign files.

• Concurrency primitives revamped; restored &Prolog-like multiengine capability.

• Windows installation and overall operation greatly improved.

• New version of O’Ciao class/object library, with improved performance.

• Added support for "predicate abstractions" in call/N.

• Implemented reexportation through reexport declarations.

• Changed precedence of importations, last one is now higher.

• Modules can now implicitly export all predicates.

• Many minor bugs fixed.

Version 1.3 (1999/6/16, 17:5:58 MEST)
Development version following even 1.2 distribution.

Version 1.2 (1999/6/14, 16:54:55 MEST)
Temporary version distributed locally for extensive testing of reexportation and
other 1.3 features.

Version 1.1 (1999/6/4, 13:30:37 MEST)
Development version following even 1.0 distribution.

Version 1.0 (1999/6/4, 13:27:42 MEST)
• Added Tcl/Tk interface library to distribution.

• Added push prolog flag/2 and pop prolog flag/1 declarations/builtins.

• Filename processing in Windows improved.

• Added redefining/1 declaration to avoid redefining warnings.

• Changed syntax/1 declaration to use package/1.

• Added add clause trans/1 declaration.

• Changed format of .itf files such that a ’+’ stands for all the standard im-
ports from engine, which are included in c itf source internally (from en-
gine(builtin exports)). Further changes in itf data handling, so that once an .itf
file is read in a session, the file is cached and next time it is needed no access
to the file system is required.

• Many bugs fixed.

Version 0.9 (1999/3/10, 17:3:49 CET)
• Test version before 1.0 release. Many bugs fixed.

Version 0.8 (1998/10/27, 13:12:36 MET)
• Changed compiler so that only one pass is done, eliminated .dep files.

• New concurrency primitives.

• Changed assertion comment operator to #.

• Implemented higher-order with call/N.

• Integrated SQL-interface to external databases with persistent predicate con-
cept.

• First implementation of object oriented programming package.

• Some bugs fixed.

Version 0.7 (1998/9/15, 12:12:33 MEST)

18 The Ciao System

• Improved debugger capabilities and made easier to use.

• Simplified assertion format.

• New arithmetic functions added, which complete all ISO functions.

• Some bugs fixed.

Version 0.6 (1998/7/16, 21:12:7 MET DST)
• Defining other path aliases (in addition to ’library’) which can be loaded dy-

namically in executables is now possible.

• Added the posibility to define multifile predicates in the shell.

• Added the posibility to define dynamic predicates dynamically.

• Added addmodule meta-argument type.

• Implemented persistent data predicates.

• New version of PiLLoW WWW library (XML, templates, etc.).

• Ported active modules from “distributed Ciao” (independent development ver-
sion of Ciao).

• Implemented lazy loading in executables.

• Modularized engine(builtin).

• Some bugs fixed.

Version 0.5 (1998/3/23)
• First Windows version.

• Integrated debugger in toplevel.

• Implemented DCG’s as (Ciao-style) expansions.

• Builtins renamed to match ISO-Prolog.

• Made ISO the default syntax/package.

Version 0.4 (1998/2/24)
• First version with the new Ciao emacs mode.

• Full integration of concurrent engine and compiler/library.

• Added new declaration/1 directive.

• Added modular syntax enhancements.

• Shell script interpreter separated from toplevel shell.

• Added new compilation warnings.

Version 0.3 (1997/8/20)
• Ciao builtins modularized.

• New prolog flags can be defined by libraries.

• Standalone comand-line compiler available, with automatic "make".

• Added assertions and regular types.

• First version using the automatic documentation generator.

Version 0.2 (1997/4/16)
• First module system implemented.

• Implemented exceptions using catch/3 and throw/1.

• Added functional & record syntax.

• Added modular sentence, term, and goal translations.

• Implemented attributed variables.

• First CLPQ/CLPR implementation.

• Added the posibility of linking external .so files.

Chapter 1: Introduction 19

• Changes in syntax to allow P(X) and "string"||L.

• Changed to be closer to ISO-Prolog.

• Implemented Prolog shell scripts.

• Implemented data predicates.

Version 0.1 (1997/2/13)
First fully integrated, standalone Ciao distribution. Based on integrating into
an evolution of the &-Prolog engine/libraries/preprocessor [Her86,HG91] many
functionalities from several previous independent development versions of Ciao
[HC93,HC94,HCC95,Bue95,CLI95,HBdlBP95,HBC96,CHV96b,HBC99].

20 The Ciao System

Chapter 2: Getting started on Un*x-like machines 21

2 Getting started on Un*x-like machines

Author(s): Manuel Hermenegildo.

This part guides you through some very basic first steps with Ciao on a Un*x-like system. It
assumes that Ciao is already installed correctly on your Un*x system. If this is not the case, then
follow the instructions in Chapter 231 [Installing Ciao from the source distribution], page 1101
first.

We start with by describing the basics of using Ciao from a normal command shell such
as sh/bash, csh/tcsh, etc. We strongly recommend reading also Section 2.4 [An introduction
to the Ciao emacs environment (Un*x)], page 24 for the basics on using Ciao under emacs,
which is a much simpler and much more powerful way of developing Ciao programs, and has
the advantage of offering an almost identical environment under Un*x and Windows.

2.1 Testing your Ciao Un*x installation

It is a good idea to start by performing some tests to check that Ciao is installed correctly on
your system (these are the same tests that you are instructed to do during installation, so you
can obviously skip them if you have done them already at that time). If any of these tests do
not succeed either your environment variables are not set properly (see Section 2.2 [Un*x user
setup], page 21 for how to fix this):

• Typing ciao (or ciaosh) should start the typical Prolog-style top-level shell.

• In the top-level shell, Ciao library modules should load correctly. Type for example use_
module(library(dec10_io)) –you should get back a prompt with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

• Typing ciaoc should produce the help message from the Ciao standalone compiler.

• Typing ciao-shell should produce a message saying that no code was found. This is a
Ciao application which can be used to write scripts written in Ciao, i.e., files which do not
need any explicit compilation to be run.

Also, the following documentation-related actions should work:

• If the info program is installed, typing info should produce a list of manuals which should
include Ciao manual(s) in a separate area (you may need to log out and back in so that
your shell variables are reinitialized for this to work).

• Opening with a WWW browser (e.g., netscape) the directory or URL corresponding to the
DOCDIR setting should show a series of Ciao-related manuals. Note that style sheets should
be activated for correct formatting of the manual.

• Typing man ciao should produce a man page with some very basic general information on
Ciao (and pointing to the on-line manuals).

• The DOCDIR directory should contain the manual also in the other formats such as
postscript or pdf which specially useful for printing. See Section 2.3.7 [Printing man-
uals (Un*x)], page 24 for instructions.

2.2 Un*x user setup

If the tests above have succeeded, the system is probably installed correctly and your envi-
ronment variables have been set already. In that case you can skip to the next section.

Otherwise, if you have not already done so, make the following modifications in your startup
scripts, so that these files are used (<LIBROOT> must be replaced with the appropriate value,
i.e., where the Ciao library is installed):

• For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

22 The Ciao System

if (-e <v>libroot</v>/ciao/DOTcshrc) then
source <v>libroot</v>/ciao/DOTcshrc

endif

Note: while this is recognized by the terminal shell, and therefore by the text-mode Emacs
which comes with Mac OS X, the Aqua native Emacs 21 does not recognize that initial-
ization. It is thus necessary, at this moment, to set manually the Ciao shell (ciaosh) and
Ciao library location by hand. This can be done from the Ciao menu within Emacs after a
Ciao file has been loaded. We believe that the reason is that Mac OS X does not actually
consult the per-user initialization files on startup. It should also be possible to put the right
initializations in the .emacs file using the setenv function of Emacs-lisp, as in

(setenv "CIAOLIB" "<v>libroot</v>/ciao")

The same can be done for the rest of the variables initialized in
<v>libroot</v>/ciao/DOTcshrc

• For users of an sh-compatible shell (sh, bash, ...), the installer will add to ~/.bashrc the
next lines:

if [-f <v>libroot</v>/ciao/DOTprofile]; then
. <v>libroot</v>/ciao/DOTprofile

fi

This will set up things so that the Ciao executables are found and you can access the Ciao
system manuals using the info command. Note that, depending on your shell, you may
have to log out and back in for the changes to take effect.

• Also, if you use emacs (highly recommended) the install will add the next line to your
~/.emacs file:

(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")
(if (file-exists-p "<v>libroot</v>/ciao/ciao-mode-init.el")
(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")

)

If after following these steps things do not work properly, then the installation was probably
not completed properly and you may want to try reinstalling the system.

2.3 Using Ciao from a Un*x command shell

2.3.1 Starting/exiting the top-level shell (Un*x)

The basic methods for starting/exiting the top-level shell have been discussed above. If upon
typing ciao you get a “command not found” error or you get a longer message from Ciao before
starting, it means that either Ciao was not installed correctly or you environment variables are
not set up properly. Follow the instructions on the message printed by Ciao or refer to the
installation instructions regarding user-setup for details.

2.3.2 Getting help (Un*x)

The basic methods for accessing the manual on-line have also been discussed above. Use
the table of contents and the indices of predicates, libraries, concepts, etc. to find what you are
looking for. Context-sensitive help is available within the emacs environment (see below).

2.3.3 Compiling and running programs (Un*x)

Once the shell is started, you can compile and execute modules inside the interactive top-
level shell in the standard way. E.g., type use_module(file)., use_module(library(file)). for

Chapter 2: Getting started on Un*x-like machines 23

library modules, ensure_loaded(file). for files which are not modules, and use_package(file).
for library packages (these are syntactic/semantic packages that extend the Ciao language in
many different ways). Note that the use of compile/1 and consult/1 is discouraged in Ciao.

For example, you may want to type use_package(iso) to ensure Ciao has loaded all the ISO
builtins (whether this is done by default or not depends on your .ciaorc file). Do not worry
about any “module already in executable” messages –these are normal and simply mean that a
certain module is already pre-loaded in the top-level shell. At this point, typing write(hello).
should work.

Note that some predicates that may be built-ins in typical Prolog implementations are avail-
able through libraries in Ciao. This facilitates making small executables.

To change the working directory to, say, the examples directory in the Ciao root directory,
first do:

?- use_module(library(system)).

(loading the system library makes a number of system-related predicates such as cd/1 accessible)
and then:

?- cd(’$/examples’).

(in Ciao the sequence $/ at the beginning of a path name is replaced by the path of the Ciao
root directory).

For more information see Chapter 5 [The interactive top-level shell], page 41.

2.3.4 Generating executables (Un*x)

Executables can be generated from the top-level shell (using make_exec/2) or using the
standalone compiler (ciaoc). To be able to make an executable, the file should define the
predicate main/1 (or main/0), which will be called upon startup (see the corresponding manual
section for details). In its simplest use, given a top-level foo.pl file for an application, the
compilation process produces an executable foo, automatically detecting which other files used
by foo.pl need recompilation.

For example, within the examples directory, you can type:

?- make_exec(hw,_).

which should produce an executable. Typing hw in a shell (or double-clicking on the icon from
a graphical window) should execute it.

For more information see Chapter 5 [The interactive top-level shell], page 41 and Chapter 4
[The stand-alone command-line compiler], page 33.

2.3.5 Running Ciao scripts (Un*x)

Ciao allows writing scripts. These are files containing Ciao source but which get executed
without having to explicitly compile them (in the same way as, e.g., .bat files or programs in
scripting languages). As an example, you can run the file hw in the examples directory of the
Ciao distribution and look at the source with an editor. You can try changing the Hello world
message and running the program again (no need to recompile!).

As you can see, the file should define the predicate main/1 (not main/0), which will be called
upon startup. The two header lines are necessary in Un*x in. In Windows you can leave them
in or you can take them out, but you need to rename the script to hw.pls. Leaving the lines in
has the advantage that the script will also work in Un*x without any change.

For more information see Chapter 8 [The script interpreter], page 63.

24 The Ciao System

2.3.6 The Ciao initialization file (Un*x)

The Ciao toplevel can be made to execute upon startup a number of commands (such as,
e.g., loading certain files or setting certain Ciao flags) contained in an initialization file. This
file should be called .ciaorc and placed in your home directory (e.g., ~, the same in which
the .emacs file is put). You may need to set the environment variable HOME to the path of this
directory for the Ciao toplevel shell to be able to locate this file on startup.

2.3.7 Printing manuals (Un*x)

As mentioned before, the manual is available in several formats in the reference directory
within the doc directory in the Ciao distribution, including postscript or pdf, which are
specially useful for printing. These files are also available in the DOCDIR directory specified during
installation. Printing can be done using an application such as ghostview (freely available from
http://www.cs.wisc.edu/~ghost/index.html) or acrobat reader (http://www.adobe.com,
only pdf).

2.4 An introduction to the Ciao emacs environment (Un*x)

While it is easy to use Ciao with any editor of your choice, using it within the emacs edi-
tor/program development system is highly recommended: Ciao includes an emacs mode which
provides a very complete application development environment which greatly simplifies many
program development tasks. See Chapter 10 [Using Ciao inside GNU emacs], page 67 for details
on the capabilities of ciao/ emacs combination.

If the (freely available) emacs editor/environment is not installed in your system, we highly
recommend that you also install it at this point (there are instructions for where to find emacs
and how to install it in the Ciao installation instructions). After having done this you can try
for example the following things:

• A few basic things:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should
open a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Ciao file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename
(or using the menus) the code should appear highlighted according to syntax (e.g.,
comments in red), and Ciao/Prolog menus should appear in the menu bar on top of
the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch
the the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not
very useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to
do this is explained in the emacs frequently asked questions FAQs (see the emacs download
instructions for their location).

(if these things do not work the system or emacs may not be installed properly).

• You can go to the location of most of the errors that may be reported during compilation
by typing 〈̂ C〉 〈‘〉.

• You can also, e.g., create executables from the Ciao/Prolog menu, as well as compile
individual files, or generate active modules.

• Loading a file for source-level debugging using the Ciao/Prolog menu (or typing 〈̂ C〉 〈d〉)
and then issuing a query should start the source-level debugger and move a marker on the
code in a window while execution is stepped through in the window running the Ciao top
level.

Chapter 2: Getting started on Un*x-like machines 25

• You can add the lines needed in Un*x for turning any file defining main/1 into a script from
the Ciao/Prolog menu or by typing 〈̂ C〉 〈I〉 〈S〉.

• You can also work with the preprocessor and auto-documenter directly from emacs: see
their manuals or browse through the corresponding menus that appear when editing .pl
files.

We encourage you once more to read Chapter 10 [Using Ciao inside GNU emacs], page 67 to
discover the many other functionalities of this environment.

2.5 Keeping up to date (Un*x)

You may want to read Chapter 233 [Beyond installation], page 1115 for instructions on how to
sign up on the Ciao user’s mailing list, receive announcements regarding new versions, download
new versions, report bugs, etc.

26 The Ciao System

Chapter 3: Getting started on Windows machines 27

3 Getting started on Windows machines

Author(s): Manuel Hermenegildo.

This part guides you through some very basic first steps with Ciao on an MSWindows
(“Win32”) system. It assumes that Ciao is already installed correctly on your Windows system.
If this is not the case, then follow the instructions in Chapter 232 [Installing Ciao from a Win32
binary distribution], page 1111 (or Chapter 231 [Installing Ciao from the source distribution],
page 1101) first.

We start with by describing the basics of using Ciao from the Windows explorer and/or a
DOS command shell. We strongly recommend reading also Section 3.3 [An introduction to the
Ciao emacs environment (Win32)], page 29 for the basics on using Ciao under emacs, which is a
much simpler and much more powerful way of developing Ciao programs, and has the advantage
of offering an almost identical environment under Windows and Un*x.

3.1 Testing your Ciao Win32 installation

It is a good idea to start by performing some tests to check that Ciao is installed correctly on
your system (these are the same tests that you are instructed to do during installation, so you
can obviously skip them if you have done them already at that time):

• Ciao-related file types (.pl source files, .cpx executables, .itf,.po,.asr interface files,
.pls scripts, etc.) should have specific icons associated with them (you can look at the files
in the folders in the Ciao distribution to check).

• Double-clicking on the shortcut to ciaosh(.cpx) on the desktop should start the typical
Prolog-style top-level shell in a window. If this shortcut has not been created on the
desktop, then double-clicking on the ciaosh(.cpx) icon inside the shell folder within the
Ciao source folder should have the same effect.

• In the top-level shell, Ciao library modules should load correctly. Type for example use_
module(library(dec10_io)). at the Ciao top-level prompt –you should get back a prompt
with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

Also, the following documentation-related actions should work:

• Double-clicking on the shortcut to ciao(.html) which appears on the desktop should show
the Ciao manual in your default WWW browser. If this shortcut has not been created you
can double-click on the ciao(.html) file in the doc\reference\ciao_html folder inside the
Ciao source folder. Make sure you configure your browser to use style sheets for correct
formatting of the manual (note, however, that some older versions of Explorer did not
support style sheets well and will give better results turning them off).

• The doc\reference folder contains the manual also in the other formats present in the dis-
tribution, such as info (very convenient for users of the emacs editor/program development
system) and postscript or pdf, which are specially useful for printing. See Section 3.2.7
[Printing manuals (Win32)], page 29 for instructions.

3.2 Using Ciao from the Windows explorer and command shell

3.2.1 Starting/exiting the top-level shell (Win32)

The basic methods for starting/exiting the top-level shell have been discussed above. The
installation script also leaves a ciaosh(.bat) file inside the shell folder of the Ciao distribution
which can be used to start the top-level shell from the command line in Windows systems.

28 The Ciao System

3.2.2 Getting help (Win32)

The basic methods for accessing the manual on-line have also been discussed above. Use
the table of contents and the indices of predicates, libraries, concepts, etc. to find what you are
looking for. Context-sensitive help is available within the emacs environment (see below).

3.2.3 Compiling and running programs (Win32)

Once the shell is started, you can compile and execute Ciao modules inside the interactive
toplevel shell in the standard way. E.g., type use_module(file)., use_module(library(file)).
for library modules, ensure_loaded(file). for files which are not modules, and use_
package(file). for library packages (these are syntactic/semantic packages that extend the Ciao
language in many different ways). Note that the use of compile/1 and consult/1 is discouraged
in Ciao.

For example, you may want to type use_package(iso) to ensure Ciao has loaded all the ISO
builtins (whether this is done by default or not depends on your .ciaorc file). Do not worry
about any “module already in executable” messages –these are normal and simply mean that a
certain module is already pre-loaded in the toplevel shell. At this point, typing write(hello).
should work.

Note that some predicates that may be built-ins in typical Prolog implementations are avail-
able through libraries in Ciao. This facilitates making small executables.

To change the working directory to, say, the examples directory in the Ciao source directory,
first do:

?- use_module(library(system)).

(loading the system library makes a number of system-related predicates such as cd/1 accessible)
and then:

?- cd(’$/examples’).

(in Ciao the sequence $/ at the beginning of a path name is replaced by the path of the Ciao
root directory).

For more information see Chapter 5 [The interactive top-level shell], page 41.

3.2.4 Generating executables (Win32)

Executables can be generated from the toplevel shell (using make_exec/2) or using the stan-
dalone compiler (ciaoc(.cpx), located in the ciaoc folder). To be able to make an executable,
the file should define the predicate main/1 (or main/0), which will be called upon startup (see
the corresponding manual section for details).

For example, within the examples directory, you can type:

?- make_exec(hw,_).

which should produce an executable. Double-clicking on this executable should execute it.

Another way of creating Ciao executables from source files is by right-clicking on .pl files
and choosing “make executable”. This uses the standalone compiler (this has the disadvantage,
however, that it is sometimes difficult to see the error messages).

For more information see Chapter 5 [The interactive top-level shell], page 41 and Chapter 4
[The stand-alone command-line compiler], page 33.

Chapter 3: Getting started on Windows machines 29

3.2.5 Running Ciao scripts (Win32)

Double-clicking on files ending in .pls, Ciao scripts, will also execute them. These are files
containing Ciao source but which get executed without having to explicitly compile them (in
the same way as, e.g., .bat files or programs in scripting languages). As an example, you can
double-click on the file hw.pls in the examples folder and look at the source with an editor. You
can try changing the Hello world message and double-clicking again (no need to recompile!).

As you can see, the file should define the predicate main/1 (not main/0), which will be called
upon startup. The two header lines are only necessary in Un*x. In Windows you can leave
them in or you can take them out, but leaving them in has the advantage that the script will
also work in Un*x without any change.

For more information see Chapter 8 [The script interpreter], page 63.

3.2.6 The Ciao initialization file (Win32)

The Ciao toplevel can be made to execute upon startup a number of commands (such as,
e.g., loading certain files or setting certain Ciao flags) contained in an initialization file. This file
should be called .ciaorc and placed in your home folder (e.g., the same in which the .emacs
file is put). You may need to set the environment variable HOME to the path of this folder for
the Ciao toplevel shell to be able to locate this file on startup.

3.2.7 Printing manuals (Win32)

As mentioned before, the manual is available in several formats in the reference folder
within Ciao’s doc folder, including postscript or pdf, which are specially useful for print-
ing. This can be done using an application such as ghostview (freely available from
http://www.cs.wisc.edu/~ghost/index.html) or acrobat reader (http://www.adobe.com,
only pdf).

3.3 An introduction to the Ciao emacs environment (Win32)

While it is easy to use Ciao with any editor of your choice, using it within the emacs edi-
tor/program development system is highly recommended: Ciao includes an emacs mode which
provides a very complete application development environment which greatly simplifies many
program development tasks. See Chapter 10 [Using Ciao inside GNU emacs], page 67 for details
on the capabilities of ciao/ emacs combination.

If the (freely available) emacs editor/environment is not installed in your system, we highly
recommend that you also install it at this point (there are instructions for where to find emacs
and how to install it in the Ciao installation instructions). After having done this you can try
for example the following things:

• A few basic things:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should
open a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Ciao file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename
(or using the menus) the code should appear highlighted according to syntax (e.g.,
comments in red), and Ciao/Prolog menus should appear in the menu bar on top of
the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch
the the toplevel shell and make queries from within emacs.

30 The Ciao System

Note: when using emacs it is very convenient to swap the locations of the (normally not
very useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to
do this is explained in the emacs frequently asked questions FAQs (see the emacs download
instructions for their location).

(if these things do not work the system or emacs may not be installed properly).

• You can go to the location of most of the errors that may be reported during compilation
by typing 〈̂ C〉 〈‘〉.

• You can also, e.g., create executables from the Ciao/Prolog menu, as well as compile
individual files, or generate active modules.

• Loading a file for source-level debugging using the Ciao/Prolog menu (or typing 〈̂ C〉 〈d〉)
and then issuing a query should start the source-level debugger and move a marker on the
code in a window while execution is stepped through in the window running the Ciao top
level.

• You can add the lines needed in Un*x for turning any file defining main/1 into a script from
the Ciao/Prolog menu or by typing 〈̂ C〉 〈I〉 〈S〉.

• You can also work with the preprocessor and auto-documenter directly from emacs: see
their manuals or browse through the corresponding menus that appear when editing .pl
files.

We encourage you once more to read Chapter 10 [Using Ciao inside GNU emacs], page 67 to
discover the many other functionalities of this environment.

3.4 Keeping up to date (Win32)

You may want to read Chapter 233 [Beyond installation], page 1115 for instructions on how to
sign up on the Ciao user’s mailing list, receive announcements regarding new versions, download
new versions, report bugs, etc.

PART I - The program development environment 31

PART I - The program development environment

� �

Author(s): The CLIP Group.

This part documents the components of the basic Ciao program development environment.
They include:

ciaoc: the standalone compiler, which creates executables without having to enter the
interactive top-level.

ciaosh: (also invoked simply as ciao) is an interactive top-level shell, similar to the one
found on most Prolog systems (with some enhancements).

debugger.pl:
a Byrd box-type debugger, similar to the one found on most Prolog systems (also
with some enhancements, such as source-level debugging). This is not a standalone
application, but is rather included in ciaosh, as is done in other systems supporting
the Prolog language. However, it is also embeddable, in the sense that it can be
included as a library in executables, and activated dynamically and conditionally
while such executables are running.

ciao-shell: an interpreter/compiler for Ciao scripts (i.e., files containing Ciao code which run
without needing explicit compilation).

ciao.el: a complete program development enviroment, based on GNU emacs, with syntax
coloring, direct access to all the tools described above (as well as the preprocessor
and the documenter), atomatic location of errors, source-level debugging, context-
sensitive access to on-line help/manuals, etc. The use of this environment is very
highly recommended !

The Ciao program development environment also includes ciaopp, the preprocessor, and
lpdoc, the documentation generator, which are described in separate manuals.

 	

32 The Ciao System

Chapter 4: The stand-alone command-line compiler 33

4 The stand-alone command-line compiler

Author(s): Daniel Cabeza, Edison Mera, The CLIP Group.

ciaoc [CH00b] is the Ciao stand-alone command-line compiler. ciaoc can be used to create
executables or to compile individual files to object code (to be later linked with other files).
ciaoc is specially useful when working from the command line. Also, it can be called to compile
Ciao programs from other tools such as, e.g., shell scripts, Makefiles, or project files. All the
capabilities of ciaoc are also available from the interactive top-level shell, which uses the ciaoc
modules as its components.

4.1 Introduction to building executables

An executable can be built from a single file or from a collection of inter-related files. In the
case of only one file, this file must define the predicate main/0 or main/1. This predicate is the
one which will be called when the executable is started. As an example, consider the following
file, called hello.pl:

main :-
write(’Hello world’),
nl.

To compile it from the command line using the ciaoc standalone compiler it suffices to type
“ciaoc hello” (in Win32 you may have to put the complete path to the ciaoc folder of the
Ciao distribution, where the installation process leaves a ciaoc.bat file):

/herme@clip:/tmp
[60]> ciaoc hello

/herme@clip:/tmp
[61]>

This produces an executable called hello in Un*x-like systems and hello.cpx under Win32
systems. This executable can then be run in Win32 by double-clicking on it and on Un*x systems
by simply typing its name (see for Section 4.3 [Running executables from the command line],
page 34 for how to run executables from the command line in Win32):

/herme@clip:/tmp
[61]> hello
Hello world

If the application is composed of several files the process is identical. Assume hello.pl is
now:

:- use_module(aux, [p/1]).

main :-
p(X),
write(X),
nl.

where the file aux.pl contains:

:- module(aux,[p/1]).

p(’Hello world’).

This can again be compiled using the ciaoc standalone compiler as before:

34 The Ciao System

/herme@clip:/tmp
[60]> ciaoc hello

/herme@clip:/tmp
[61]> hello
Hello world

The invocation of ciaoc hello compiles the file hello.pl and all connected files that may
need recompilation – in this case the file aux.pl. Also, if any library files used had not been
compiled previously they would be compiled at this point (See Section 4.6 [Intermediate files
in the compilation process], page 37). Also, if, say, hello.pl is changed and recompiled, the
object code resulting from the previous compilation of aux.pl will be reused. This is all done
without any need for Makefiles, and considerably accelerates the development process for large
applications. This process can be observed by selecting the -v option when invoking ciaoc
(which is equivalent to setting the verbose_compilation Prolog flag to on in the top-level
interpreter).

If main/1 is defined instead of main/0 then when the executable is started the argument of
main/1 will be instantiated to a list of atoms, each one of them corresponding to a command
line option. Consider the file say.pl:

main(Argv) :-
write_list(Argv), nl.

write_list([]).
write_list([Arg|Args]) :-

write(Arg),
write(’ ’),
write_list(Args).

Compiling this program and running it results in the following output:

/herme@clip:/tmp
[91]> ciaoc say

/herme@clip:/tmp
[91]> say hello dolly
hello dolly

The name of the generated executable can be controlled with the -o option (See Section 4.7
[Usage (ciaoc)], page 38).

4.2 Paths used by the compiler during compilation

The compiler will look for files mentioned in commands such as use_module/1 or ensure_
loaded/1 in the current directory. Other paths can be added by including them in a file whose
name is given to ciaoc using the -u option. This file should contain facts of the predicates
file_search_path/2 and library_directory/1 (see the documentation for these predicates
and also Chapter 9 [Customizing library paths and path aliases], page 65 for details).

4.3 Running executables from the command line

As mentioned before, what the ciaoc compiler generates and how it is started varies some-
what from OS to OS. In general, the product of compiling an application with ciaoc is a file
that contains the bytecode (the product of the compilation) and invokes the Ciao engine on it.

Chapter 4: The stand-alone command-line compiler 35

• Un Un*x this is a script (see the first lines of the file) which invokes the ciao engine on this
file. To run the generated executable from a Un*x shell, or from the bash shell that comes
with the Cygwin libraries (see Section 231.6 [Installation and compilation under Windows],
page 1107) it suffices to type its name at the shell command line, as in the examples above.

• In a Win32 system, the compiler produces a similar file with a .cpx ending. The Ciao
installation process typically makes sure that the Windows registry contains the right entries
so that this executable will run upon double-cliking on it.

In you want to run the executable from the command line an additional .bat file is typically
needed. To help in doing this, the Win32 installation process creates a .bat skeleton
file called bat_skel in the Win32 folder of the distribution) which allows running Ciao
executables from the command line. If you want to run a Ciao executable file.cpx from
the command line, you normally copy the skeleton file to the folder were the executable is
and rename it to file.bat, then change its contents as explained in a comment inside the
file itself.

Note that this .bat file is usually not necessary in NT, as its command shell understands
file extension associations. I.e., in windows NT it is possible to run the file.cpx executable
directly. Due to limitations of .bat files in Windows 95/98, in those OSs no more than 9
command line arguments can be passed to the executable (in NT there is no such restriction).

Finally, in a system in which Cygnus Win32 is installed executables can also be used directly
from the bash shell command line, without any associated .bat files, by simply typing their
name at the bash shell command line, in the same way as in Un*x. This only requires that
the bash shell which comes with Cygnus Win32 be installed and accessible: simply, make
sure that /bin/sh.exe exists.

Except for a couple of header lines, the contents of executables are almost identical un-
der different OSs (except for self-contained ones). The bytecode they contain is architecture-
independent. In fact, it is possible to create an executable under Un*x and run it on Windows
or viceversa, by making only minor modifications (e.g., creating the .bat file and/or setting
environment variables or editing the start of the file to point to the correct engine location).

4.4 Types of executables generated

While the default options used by ciaoc are sufficient for normal use, by selecting other
options ciaoc can generate several different types of executables, which offer interesting tradeoffs
among size of the generated executable, portability, and startup time [CH00b]:

Dynamic executables:
ciaoc produces by default dynamic executables. In this case the executable pro-
duced is a platform-independent file which includes in compiled form all the user de-
fined files. On the other hand, any system libraries used by the application are loaded
dynamically at startup. More precisely, any files that appear as library(...) in
use_module/1 and ensure_loaded/1 declarations will not be included explicitly in
the executable and will instead be loaded dynamically. Is is also possible to mark
other path aliases (see the documentation for file_search_path/2) for dynamic
loading by using the -d option. Files accessed through such aliases will also be
loaded dynamically.

Dynamic loading allows making smaller executables. Such executables may be used
directly in the same machine in which they were compiled, since suitable paths to
the location of the libraries will be included as default in the executable by ciaoc
during compilation.

The executable can also be used in another machine, even if the architecture and
OS are different. The requirement is that the Ciao libraries (which will also include
the appropriate Ciao engine for that architecture and OS) be installed in the target

36 The Ciao System

machine, and that the CIAOLIB and CIAOENGINE environment variables are set ap-
propriately for the executable to be able to find them (see Section 4.5 [Environment
variables used by Ciao executables], page 37). How to do this differs slightly from
OS to OS.

Static executables:
Selecting the -s option ciaoc produces a static executable. In this case the exe-
cutable produced (again a platform-independent file) will include in it all the aux-
iliary files and any system libraries needed by the application. Thus, such an exe-
cutable is almost complete, needing in order to run only the Ciao engine, which is
platform-specific.1 Again, if the executable is run in the same machine in which it
was compiled then the engine is found automatically. If the executable is moved to
another machine, the executable only needs access to a suitable engine (which can
be done by setting the CIAOENGINE environment variable to point to this engine).

This type of compilation produces larger executables, but has the advantage that
these executables can be installed and run in a different machine, with different
architecture and OS, even if Ciao is not installed on that machine. To install (or
distribute) such an executable, one only needs to copy the executable file itself
and the appropriate engine for the target platform (See Chapter 231 [Installing
Ciao from the source distribution], page 1101 or Chapter 232 [Installing Ciao from a
Win32 binary distribution], page 1111 and Section 231.5 [Multiarchitecture support],
page 1106), and to set things so that the executable can find the engine.2

Dynamic executables, with lazy loading:
Selecting the -l option is very similar to the case of dynamic executables above,
except that the code in the library modules is not loaded when the program is
started but rather it is done during execution, the first time a predicate defined in
that file is called. This is advantageous if a large application is composed of many
parts but is such that typically only some of the parts are used in each invocation.
The Ciao preprocessor, ciaopp, is a good example of this: it has many capabilitites
but typically only some of them are used in a given session. An executable with
lazy load has the advantage that it starts fast, loading a minimal functionality on
startup, and then loads the different modules automatically as needed.

Self-contained executables:
Self-contained executables are static executables (i.e., this option also implies static
compilation) which include a Ciao engine along with the bytecode, so they do not
depend on an external one for their execution. This is useful to create executables
which run even if the machine where the program is to be executed does not have a
Ciao engine installed and/or libraries. The disadvantage is that such execuatbles are
platform-dependent (as well as larger than those that simply use an external library).
This type of compilation is selected with the -S option. Cross-compilation is also
possible with the -SS option, so you can specify the target OS and architecture (e.g.

1 Currently there is an exception to this related to libraries which are written in languages
other than Prolog, as, e.g., C. C files are currently always compiled to dynamically loadable
object files (.so files), and they thus need to be included manually in a distribution of an
application. This will be automated in upcoming versions of the Ciao system.

2 It is also possible to produce real standalone executables, i.e., executables that do not need
to have an engine around. However, this is not automated yet, although it is planned for an
upcoming version of the compiler. In particular, the compiler can generate a .c file for each
.pl file. Then all the .c files can be compiled together into a real executable (the engine
is added one more element during link time) producing a complete executable for a given
architecture. The downside of course is that such an executable will not be portable to other
architectures without recompilation.

Chapter 4: The stand-alone command-line compiler 37

LINUXi86). To be able to use the latter option, it is necessary to have installed a
ciaoengine for the target machine in the Ciao library (this requires compiling the
engine in that OS/architecture and installing it, so that it is available in the library).

Compressed executables:
In compressed executables the bytecode is compressed. This allows producing
smaller executables, at the cost of a slightly slower startup time. This is selected
with the -z option. You can also produce compressed libraries if you use -zl along
with the -c option. If you select -zl while generating an executable, any library
which is compiled to accomplish this will be also compressed.

Active modules:
The compiler can also compile (via the -a option) a given file into an active module
(see Chapter 110 [Active modules (high-level distributed execution)], page 585 for
a description of this).

4.5 Environment variables used by Ciao executables

The executables generated by the Ciao compiler (including the ciao development tools them-
selves) locate automatically where the Ciao engine and libraries have been installed, since those
paths are stored as defaults in the engine and compiler at installation time. Thus, there is
no need for setting any environment variables in order to run Ciao executables (on a single
architecture – see Section 231.5 [Multiarchitecture support], page 1106 for running on multiple
architectures).

However, the default paths can be overridden by using the environment variables CIAOENGINE
and CIAOLIB. The first one will tell the Ciao executables where to look for an engine, and the
second will tell them where to look for the libraries. Thus, it is possible to actually use the Ciao
system without installing it by setting these variables to the following values:

• CIAOENGINE: $(CIAOSRC)/build/bin/$(CIAOARCH)/ciaoengine

• CIAOLIB: $(CIAOSRC)

where $(CIAOARCH) is the string echoed by the command CIAOSRC/etc/ciao_get_arch (or
BINROOT/ciao_get_arch, after installation).

This allows using alternate engines or libraries, which can be very useful for system develop-
ment and experimentation.

4.6 Intermediate files in the compilation process

Compiling an individual source (i.e., .pl) file produces a .itf file and a .po file. The .itf
file contains information of the modular interface of the file, such as information on exported and
imported predicates and on the other modules used by this module. This information is used to
know if a given file should be recompiled at a given point in time and also to be able to detect
more errors statically including undefined predicates, mismatches on predicate charaterictics
across modules, etc. The .po file contains the platform-independent object code for a file, ready
for linking (statically or dynamically).

It is also possible to use ciaoc to explicitly generate the .po file for one or more .pl files by
using the -c option.

If you want to view the wam instructions of one or more .pl files you can use the -w option.
That will generate a .wam file with such instructions in a pretty format per each .pl file.

38 The Ciao System

4.7 Usage (ciaoc)

The following provides details on the different command line options available when invoking
ciaoc:

ciaoc <MiscOpts> <ExecOpts> [-o <execname>] <file> ...

Make an executable from the listed files. If there is
more than one file, they must be non-module, and the
first one must include the main predicate. The -o
option allows generating an arbitrary executable name.

ciaoc <MiscOpts> <ExecOpts> -a <publishmod> <module>

Make an active module executable from <module> with
address publish module <publishmod>.

ciaoc <MiscOpts> -c <file> ...

Compile listed files (make .po objects).

ciaoc <MiscOpts> -w <file> ...

Generate WAM code of listed files (in .wam files).

<MiscOpts> can be: [-v] [-ri] [-u <file>] [-rc] [-op <suffix>] [-L <LibDir>]

<ExecOpts> can be: [-s|-S|-SS <target>|-z|-zl|-e|-l|(-ll <module>)*]
(-d <alias>)* [-x]

default extension for files is ’.pl’

-h, --help
Show this help.
-u use <file> for compilation, often used to include LibDir paths, etc.
-op use <suffix> as the suffix for optimized (or otherwise tuned) code
-L look for libraries also in the <LibDir> directory
-c Compile listed files (make .po objects)
-w Generate WAM code of listed files (in .wam files).
-S
make standalone executable for the current OS and architecture, implies -s
-SS make standalone executable for <target> OS and architecture
valid <target> values may be: LINUXi86, SolarisSparc..., implies -s
-ll force <module> to be loaded lazily, implies -l
-ac All the modules will be compiled using <Packages>
-acm <Modules> will be compiled using <Packages>
-d files using this path alias are dynamic (default: library)
-o Make an executable from the listed files.
-a Make an active module
-v, --verbose-compilation
verbose mode

Chapter 4: The stand-alone command-line compiler 39

-ri, --itf-format-r
Generate human readable .itf files
-x, --check-libraries
extended recompilation: only useful for Ciao standard library developers
-s, --executables-static
make a static executable (otherwise dynamic files are not included)
-z, --compress-exec
Generate executables with compressed bytecode
-zl, --compress-lib
generate libraries with compressed bytecode - any library (re)compiled as
consequence of normal executable compilation will also be affected
-l, --executables-lazyload
Idem with lazy load of dynamic files (except insecure cases)
-np, --use-compile-packages-no
Do not use compile packages
-na, --read-assertions-no
Do not read the assertions in the code
-rc, --runtime-checks
Generate code with runtime checks, requires to read assertions
--rtchecks-trust-no
Disable rtchecks for trust assertions
--rtchecks-entry-no
Disable rtchecks for entry assertions
--rtchecks-exit-no
Disable rtchecks for exit assertions
--rtchecks-test
enable rtchecks for test assertions. Used for debugging
purposes, but is better to use the unittest library
--rtchecks-level-exports
Use rtchecks only for external calls of the exported predicates
--rtchecks-inline
Expand library predicates inline as far as possible
--rtchecks-asrloc-no
Do not use assertion locators in the error messages
--rtchecks-predloc-no
Do not use predicate locators in the error messages
--rtchecks-namefmt-short
Show the name of predicates and properties in a reduced format
--rtchecks-callloc-no
Do not show the stack of predicates that caused the failure
--rtchecks-callloc-literal
Show the stack of predicates that caused the failure. Instrument it
in the literal. This mode provides more information, because reports
also the literal in the body of the predicate
--unused-pred-warnings
Show warnings about unused predicates. Note that a predicate is
being used if it is exported, it appears in clause body of a
predicate being used, in a multifile predicate, in a predicate
used in :- initialization(...) or :- on_abort(...)
declarations, or if it is the meta-argument of a metapredicate.

40 The Ciao System

4.8 Known bugs and planned improvements (ciaoc)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

• Also if appears in the body of an assertion referred to a predicate being used, but that is
not implemented, because the assertion reader is not included in the compiler yet – EMM.

Chapter 5: The interactive top-level shell 41

5 The interactive top-level shell

Author(s): Daniel Cabeza, The CLIP Group.

ciaosh is the Ciao interactive top-level shell. It provides the user with an interactive pro-
gramming environment with tools for incrementally building programs, debugging programs by
following their executions, and modifying parts of programs without having to start again from
scratch. If available, it is strongly recommended to use it with the emacs interface provided, as
it greatly simplifies the operation. This chapter documents general operation in the shell itself.

5.1 Shell invocation and startup

When invoked, the shell responds with a message of identification and the prompt ?- as
soon as it is ready to accept input, thus:

Ciao-Prolog X.Y #PP: Thu Mar 25 17:20:55 MET 1999
?-

When the shell is initialized it looks for a file .ciaorc in the HOME directory and makes
an include of it, if it exists. This file is useful for including use_module/1 declarations for
the modules one wants to be loaded by default, changing prolog flags, etc. (Note that the
.ciaorc file can only contain directives, not actual code; to load some code at startup put it in
a separate file and load it using e.g. a use_module/1 declaration.) If the initialization file does
not exist, the default package default_for_ciaosh is included, to provide more or less what
other prologs define by default. Thus, if you want to have available all builtins you had before
adding the initialization file, you have to include :- use_package(default_for_ciaosh) in it.
Two command-line options control the loading of the initialization file:

-f Fast start, do not load any initialization file.

-l File Look for initialization file File instead of ~/.ciaorc. If it does not exist, include
the default package.

5.2 Shell interaction

After the shell outputs the prompt, it is expecting either an internal command (see the
following sections) or a query (a goal or sequence of goals). When typing in the input, which
must be a valid prolog term, if the term does not end in the first line, subsequent lines are
indented. For example:

?- X =
f(a,
b).

X = f(a,b) ?

yes
?-

The queries are executed by the shell as if they appeared in the user module. Thus, in
addition to builtin predicates, predicates available to be executed directly are all predicates
defined by loaded user files (files with no module declaration), and imported predicates from
modules by the use of use_module.

The possible answers of the shell, after executing an internal command or query, are:

• If the execution failed (or produced an error), the answer is no.

42 The Ciao System

• If the execution was successful and bindings where made (or constraints where imposed)
on answer variables, then the shell outputs the values of answer variables, as a sequence of
bindings (or constraints), and then prints a ? as a prompt. At this point it is expecting an
input line from the user. By entering a carriage-return (〈RET〉) or any line starting with y,
the query terminates and the shell answer yes. Entering a ‘,’ the shell enters a recursive
level (see below). Finally, any other answer forces the system to backtrack and look for the
next solution (answering as with the first solution).

• If the execution was successful, but no answer variable was bound or constrained, the
answer is simply yes. This behavior can be changed by setting the prolog flag prompt_
alternatives_no_bindings to on, so that if there are more solutions the user will be
consulted as explained in the previous point (useful if the solutions produce side effects).

To allow using connection variables in queries without having to report their results, variables
whose name starts with _ are not considered in answers, the rest being the answer variables.
This example illustrates the previous points:

?- member(a, [b, c]).

no
?- member(a, [a, b]).

yes
?- member(X, [a|L]).

X = a ? ;

L = [X|_] ?

yes
?- atom_codes(ciao, _C), member(L, _C).

L = 99 ? ;

L = 105 ? ;

L = 97 ? ;

L = 111 ? ;

no
?-

5.3 Entering recursive (conjunctive) shell levels

As stated before, when the user answers with ‘,’ after a solution is presented, the shell enters
a recursive level, changing its prompt to N ?- (where N is the recursion level) and keeping the
bindings or constraints of the solution (this is inspired by the LogIn language developed by H.
Ait-Kaci, P. Lincoln and Roger Nasr [AKNL86]). Thus, the following queries will be executed
within that context, and all variables in the lower level solutions will be reported in subsequent
solutions at this level. To exit a recursive level, input an 〈EOF〉 character or the command up.
The last solution after entering the level is repeated, to allow asking for more solutions. Use
command top to exit all recursive levels and return to the top level. Example interaction:

?- directory_files(’.’,_Fs), member(F,_Fs).

Chapter 5: The interactive top-level shell 43

F = ’file_utils.po’ ? ,

1 ?- file_property(F, mod_time(T)).

F = ’file_utils.po’,
T = 923497679 ?

yes
1 ?- up.

F = ’file_utils.po’ ? ;

F = ’file_utils.pl’ ? ;

F = ’file_utils.itf’ ? ,

1 ?- file_property(F, mod_time(T)).

F = ’file_utils.itf’,
T = 923497679 ?

yes
1 ?- ^D
F = ’file_utils.itf’ ?

yes
?-

5.4 Usage and interface (toplevel_doc)
� �

• Library usage:

The following predicates can be used at the top-level shell natively (but see also the com-
mands available in Chapter 6 [The interactive debugger], page 49 which are also available
within the top-level shell).

• Exports:

− Predicates:

use_module/1, use_module/2, ensure_loaded/1, make_exec/2, include/1, use_
package/1, consult/1, compile/1, ./2, make_po/1, unload/1, set_debug_
mode/1, set_nodebug_mode/1, make_actmod/2, force_lazy/1, undo_force_lazy/1,
dynamic_search_path/1, multifile/1.

• Other modules used:

− System library modules:

toplevel/toplevel, libpaths, compiler/compiler, compiler/exemaker,
compiler/c_itf, debugger/debugger.

 	

5.5 Documentation on exports (toplevel_doc)

44 The Ciao System

PREDICATEuse module/1:
Usage: use_module(Module)

− Description: Load into the top-level the module defined in Module, importing all the
predicates it exports.

− The following properties should hold at call time:

Module is a source name. (streams basic:sourcename/1)

PREDICATEuse module/2:
Usage: use_module(Module,Imports)

− Description: Load into the top-level the module defined in Module, importing the
predicates in Imports.

− The following properties should hold at call time:

Module is a source name. (streams basic:sourcename/1)

Imports is a list of prednames. (basic props:list/2)

PREDICATEensure loaded/1:
Usage: ensure_loaded(File)

− Description: Load into the top-level the code residing in file (or files) File, which is
user (i.e. non-module) code.

− The following properties should hold at call time:

File is a source name or a list of source names. (toplevel doc:sourcenames/1)

PREDICATEmake exec/2:
Usage: make_exec(File,ExecName)

− Description: Make a Ciao executable from file (or files) File, giving it name
ExecName. If ExecName is a variable, the compiler will choose a default name for
the executable and will bind the variable ExecName to that name. The name is cho-
sen as follows: if the main prolog file has no .pl extension or we are in Windows, the
executable will have extension .cpx; else the executable will be named as the main
prolog file without extension.

− The following properties should hold at call time:

File is a source name or a list of source names. (toplevel doc:sourcenames/1)

− The following properties hold upon exit:

ExecName is an atom. (basic props:atm/1)

PREDICATEinclude/1:
Usage: include(File)

− Description: The contents of the file File are included in the top-level shell. For the
moment, it only works with some directives, which are interpreted by the shell, or
with normal clauses (which are asserted), if library(dynamic) is loaded beforehand.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

Chapter 5: The interactive top-level shell 45

PREDICATEuse package/1:
Usage: use_package(Package)

− Description: Include the package or packages specified in Package. Most package
contents can be handled in the top level, but there are currently still some limitations.

− The following properties should hold at call time:

Package is a source name or a list of source names. (toplevel doc:sourcenames/1)

PREDICATEconsult/1:
Usage: consult(File)

− Description: Provided for backward compatibility. Similar to ensure_loaded/1, but
ensuring each listed file is loaded in consult mode (see Chapter 6 [The interactive
debugger], page 49).

− The following properties should hold at call time:

File is a source name or a list of source names. (toplevel doc:sourcenames/1)

PREDICATEcompile/1:
Usage: compile(File)

− Description: Provided for backward compatibility. Similar to ensure_loaded/1, but
ensuring each listed file is loaded in compile mode (see Chapter 6 [The interactive
debugger], page 49).

− The following properties should hold at call time:

File is a source name or a list of source names. (toplevel doc:sourcenames/1)

PREDICATE./2:
Usage: [File|Files]

− Description: Provided for backward compatibility, obsoleted by ensure_loaded/1.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

Files is a list of sourcenames. (basic props:list/2)

PREDICATEmake po/1:
Usage: make_po(Files)

− Description: Make object (.po) files from Files. Equivalent to executing "ciaoc
-c" on the files.

− The following properties should hold at call time:

Files is a source name or a list of source names. (toplevel doc:sourcenames/1)

PREDICATEunload/1:
Usage: unload(File)

− Description: Unloads dynamically loaded file File.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

46 The Ciao System

PREDICATEset debug mode/1:
Usage: set_debug_mode(File)

− Description: Set the loading mode of File to consult. See Chapter 6 [The interactive
debugger], page 49.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

PREDICATEset nodebug mode/1:
Usage: set_nodebug_mode(File)

− Description: Set the loading mode of File to compile. See Chapter 6 [The interactive
debugger], page 49.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

PREDICATEmake actmod/2:
Usage: make_actmod(ModuleFile,PublishMod)

− Description: Make an active module executable from the module residing in
ModuleFile, using address publish module of name PublishMod (which needs to
be in the library paths).

− The following properties should hold at call time:

ModuleFile is a source name. (streams basic:sourcename/1)

PublishMod is an atom. (basic props:atm/1)

PREDICATEforce lazy/1:
Usage: force_lazy(Module)

− Description: Force module of name Module to be loaded lazily in the subsequent
created executables.

− The following properties should hold at call time:

Module is an atom. (basic props:atm/1)

PREDICATEundo force lazy/1:
Usage: undo_force_lazy(Module)

− Description: Disable a previous force_lazy/1 on module Module (or, if it is unin-
stantiated, all previous force_lazy/1).

− Calls should, and exit will be compatible with:

Module is an atom. (basic props:atm/1)

PREDICATEdynamic search path/1:
Usage: dynamic_search_path(Name)

− Description: Asserting a fact to this data predicate, files using path alias Name will
be treated as dynamic in the subsequent created executables.

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

Chapter 5: The interactive top-level shell 47

PREDICATEmultifile/1:
Usage: multifile Pred

− Description: Dynamically declare predicate Pred as multifile. This is useful at the
top-level shell to be able to call multifile predicates of loaded files.

− The following properties should hold at call time:

Pred is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

5.6 Documentation on internals (toplevel_doc)

PROPERTYsourcenames/1:
Is defined as follows:

sourcenames(File) :-
sourcename(File).

sourcenames(Files) :-
list(Files,sourcename).

See sourcename/1 in Chapter 21 [Basic file/stream handling], page 159

Usage: sourcenames(Files)

− Description: Files is a source name or a list of source names.

48 The Ciao System

Chapter 6: The interactive debugger 49

6 The interactive debugger

Author(s): Daniel Cabeza, Manuel C. Rodriguez, Edison Mera, A. Ciepielewski (first ver-
sion), Mats Carlsson (first version), T. Chikayama (first version), K. Shen (first version).

The Ciao program development environment includes a number of advanced debugging tools,
such as a source-level debugger, the ciaopp preprocessor, and some execution visualizers. Herein
we discuss the interactive debugger available in the standard top-level, which allows tracing the
control flow of programs, in a similar way to other popular Prolog systems. This is a classical
Byrd box-type debugger [Byr80,BBP81], with some enhancements, most notably being able to
track the execution on the source program.

We also discuss the embedded debugger, which is a version of the debugger which can be
embedded into executables. It allows triggering an interactive debugging session at any time
while running an executable, without any need for the top-level shell.

Byrd’s Procedure Box model of debugging execution provides a simple way of visualising
control flow, including backtracking. Control flow is in principle viewed at the predicate level,
rather than at the level of individual clauses. The Ciao debugger has the ability to mark selected
modules and/or files for debugging (traditional and source debugging), rather than having to
exhaustively trace the program. It also allows to selectively set spy-points and breakpoints. Spy-
points allow the programmer to nominate interesting predicates at which program execution is
to pause so that the programmer can interact with the debugger. Breakpoints are similar to
spy-points, but allow pausing at a specific line in the code, corresponding to a particular literal.
There is a wide choice of control and information options available during debugging interaction.

Note: While the debugger described herein can be used in a standalone way (i.e., from
an operating system shell or terminal window) in the same way as other Prolog debuggers, the
most convenient way of debugging Ciao programs is by using the programming environment (see
Chapter 10 [Using Ciao inside GNU emacs], page 67). This environment has many debugging-
related facilities, including displaying the source code for the module(s) corresponding to the
procedure being executed, and higlighting dynamically the code segments corresponding to the
different execution steps.

6.1 Marking modules and files for debugging in the top-level
debugger

The Ciao debugger is module-based. This allows skipping during the debugging process all
files (including system library files) except those in which a bug is suspected. This saves having
to explictily and repetitively skip predicates in unrelated files during the debugging process.
Also, there is an efficieny advantage: in order to be able to run the debugger on a module, it
must be loaded in debug (interpreted) mode, which will execute slower than normal (compiled)
modules. Thus, it is interesting to compile in debug mode only those modules that need to be
traced. Instead of doing this (loading of modules in one mode or another) by hand each time,
in Ciao (re)loading of modules in the appropriate mode is handled automatically by the Ciao
compiler. However, this requires the user to mark explicitly the modules in which debugging is
to be performed. The simplest way of achieving this is by executing in the Ciao shell prompt,
for each suspicious module Module in the program, the command:

?- debug_module(Module).

or, alternatively:

?- debug_module_source(Module).

which in addition instructs the debugger to keep track of the line numbers in the source file and
to report them during debugging. This is most useful when running the top-level inside the
emacs editor since in that case the Ciao emacs mode allows performing full source-level debug-
ging in each module marked as above, i.e., the source lines being executed will be highlighted
dynamically during debugging in a window showing the source code of the module.

50 The Ciao System

Note that, since all files with no module declaration belong to the pseudo-module user,
the command to be issued for debugging a user file, say foo.pl, is debug_module(user) or
debug_module_source(user), and not debug_module(foo).

The two ways of performing source-level debugging are fully compatible between them, i.e.,
Ciao allows having some modules loaded with debug_module/1 and others with debug_module_
source/1. To change from one interpreted mode to the other mode it suffices to select the
module with the new interpreted mode (debugger mode), using the appropiate command, and
reload the module.

The commands above perform in fact two related actions: first, they let the compiler know
that if a file containing a module with this name is loaded, it should be loaded in interpreted
mode (source or traditional). In addition, they instruct the debugger to actually prepare for
debugging the code belonging to that module. After that, the modules which are to be debugged
have to be (re)loaded so that they are compiled or loaded for interpretation in the appropriate
way. The nice thing is that, due to the modular behaviour of the compiler/top-level, if the
modules are part of a bigger application, it suffices to load the main module of the application,
since this will automatically force the dependent modules which have changed to be loaded in
the appropriate way, including those whose loading mode has changed (i.e., changing the loading
mode has the effect of forcing the required re-loading of the module at the appropriate time).

Later in the debugging process, as the bug location is isolated, typically one will want to
restrict more and more the modules where debugging takes place. To this end, and without
the need for reloading, one can tell the debugger to not consider a module for debugging issu-
ing a nodebug_module/1 command, which counteracts a debug_module/1 or debug_module_
source/1 command with the same module name, and reloading it (or the main file).

There are also two top-level commands set_debug_mode/1 and set_nodebug_mode/1, which
accept as argument a file spec (i.e., library(foo) or foo, even if it is a user file) to be able to
load a file in interpreted mode without changing the set of modules that the debugger will try
to spy.

6.2 The debugging process

Once modules or user files are marked for debugging and reloaded, the traditional debugging
shell commands can be used (the documentation of the debugger library following this chapter
contains all the commands and their description), with the same meaning as in other classical
Prolog systems. The differences in their behavior are:

• Debugging takes place only in the modules in which it was activated,

• nospy/1 and spy/1 accept sequences of predicate specs, and they will search for those
predicates only in the modules marked for debugging (traditional or source-level debugging).

• breakpt/6 and nobreakpt/6 allow setting breakpoints at selected clause literals and will
search for those literals only in the modules marked for source-level debugging (modules
marked with debug_module_source/1).

In particular, the system is initially in nodebug mode, in which no tracing is performed. The
system can be put in debug mode by a call to debug/0 in which execution of queries will proceed
until the first spy-point or breakpoint. Alternatively, the system can be put in trace mode by a
call to trace/0 in which all predicates will be trace.

6.3 Marking modules and files for debugging with the
embedded debugger

The embedded debugger, as the interpreted debugger, has three different modes of operation:
debug, trace or nodebug. These debugger modes can be set by adding one of the following
package declarations to the module:

Chapter 6: The interactive debugger 51

:- use_package(debug).
:- use_package(trace).
:- use_package(nodebug).

and recompiling the application. These declarations must appear the last ones of all use_
package declarations used. Also it is possible, as usual, to add the debugging package(s) in the
module declaration using the third argument of the module/3 declaration (and they should also
be the last ones in the list), i.e., using one of:

:- module(..., ..., [..., debug]).
:- module(..., ..., [..., trace]).
:- module(..., ..., [..., nodebug]).

The nodebug mode allows turning off any debugging (and also the corresponding overhead)
but keeping the spy-points and breakpoints in the code. The trace mode will start the debugger
for any predicate in the file.

The embedded debugger has limitations over the interpreted debugger. The most important
is that the “retry” option is not available. But it is possible to add, and remove, spy-points and
breakpoins using the predicates spy/1, nospy/1, breakpt/6 and nobreakpt/6, etc. These can
be used in a clause declaration or as declarations. Also it is possible to add in the code predicates
for issuing the debugger (i.e., use debug mode, and in a clause add the predicate trace/0).
Finally, if a spy declaration is placed on the entry point of an executable (:- spy(main/1)) the
debugger will not start the first time main/1 predicate is called, i.e., at the beginning of program
execution (however, it will if there are any subsequent calls to main/1). Starting the embedded
debugger at the beginning of the execution of a program can be done easily however by simply
adding the in trace mode.

Note that there is a particularly interesting way of using the embedded debugger: if an
application is run in a shell buffer which has been set with Ciao inferior mode (〈M-x〉 ciao-
inferior-mode) and this application starts emitting output from the embedded debugger (i.e.,
which contains the embedded debugger and is debugging its code) then the Ciao emacs mode
will be able to follow these messages, for example tracking execution in the source level code.
This also works if the application is written in a combination of languages, provided the parts
written in Ciao are compiled with the embedded debugger package and is thus a covenient way of
debugging multi-language applications. The only thing needed is to make sure that the output
messages appear in a shell buffer that is in Ciao inferior mode.

See the following as a general example of use of the embedded debugger:

:- module(foo,[main/1],[assertions, debug]).

:- entry main/1.

main(X) :-
display(X),
spy(foo),
foo(X),
notrace,
nl.

foo([]).
foo([X|T]) :-

trace,
bar(X),
foo(T).

bar(X) :-

52 The Ciao System

display(X).

6.4 The procedure box control flow model

During debugging the interpreter prints out a sequence of goals in various states of instan-
tiation in order to show the state that the program has reached in its execution. However, in
order to understand what is occurring it is necessary to understand when and why the inter-
preter prints out goals. As in other programming languages, key points of interest are procedure
entry and return, but in Prolog there is the additional complexity of backtracking. One of the
major confusions that novice Prolog programmers have to face is the question of what actually
happens when a goal fails and the system suddenly starts backtracking. The Procedure Box
model of Prolog execution views program control flow in terms of movement about the program
text. This model provides a basis for the debugging mechanism in the interpreter, and enables
the user to view the behaviour of the program in a consistent way. It also provides the basis
for the visualization performed on the source level program when source level program when
source-level debugging is activated within emacs.

Let us look at an example Prolog procedure:

 descendant(Z,Y).
descendant(X,Y):- offspring(X,Z),

descendant(X,Y):- offspring(X,Y).
Exit

RedoFail

Call

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Y is a descendant of X if Z is an offspring of X and Y is a descendant of Z. In
the diagram a box has been drawn around the whole procedure and labelled arrows indicate the
control flow in and out of this box. There are four such arrows which we shall look at in turn.

• Call

This arrow represents initial invocation of the procedure. When a goal of the form
descendant(X,Y) is required to be satisfied, control passes through the Call port of the
descendant box with the intention of matching a component clause and then satisfying any
subgoals in the body of that clause. Note that this is independent of whether such a match
is possible; i.e. first the box is called, and then the attempt to match takes place. Textually
we can imagine moving to the code for descendant when meeting a call to descendant in
some other part of the code.

• Exit

This arrow represents a successful return from the procedure. This occurs when the initial
goal has been unified with one of the component clauses and any subgoals have been satisfied.
Control now passes out of the Exit port of the descendant box. Textually we stop following
the code for descendant and go back to the place we came from.

• Redo

This arrow indicates that a subsequent goal has failed and that the system is backtracking
in an attempt to find alternatives to previous solutions. Control passes through the Redo
port of the descendant box. An attempt will now be made to resatisfy one of the component
subgoals in the body of the clause that last succeeded; or, if that fails, to completely rematch
the original goal with an alternative clause and then try to satisfy any subgoals in the body
of this new clause. Textually we follow the code backwards up the way we came looking for
new ways of succeeding, possibly dropping down on to another clause and following that if
necessary.

• Fail

This arrow represents a failure of the initial goal, which might occur if no clause is matched,
or if subgoals are never satisfied, or if any solution produced is always rejected by later

Chapter 6: The interactive debugger 53

processing. Control now passes out of the Fail port of the descendant box and the system
continues to backtrack. Textually we move back to the code which called this procedure
and keep moving backwards up the code looking for choice points.

In terms of this model, the information we get about the procedure box is only the control
flow through these four ports. This means that at this level we are not concerned with which
clause matches, and how any subgoals are satisfied, but rather we only wish to know the initial
goal and the final outcome. However, it can be seen that whenever we are trying to satisfy
subgoals, what we are actually doing is passing through the ports of their respective boxes. If
we were following this (e.g., activating source-level debugging), then we would have complete
information about the control flow inside the procedure box.

Note that the box we have drawn around the procedure should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the procedure. Obvi-
ously, with something like a recursive procedure, there will be many different Calls and Exits in
the control flow, but these will be for different invocations. Since this might get confusing each
invocation box is given a unique integer identifier in the messages, as described below.

Note that not all procedure calls are traced; there are a few basic predicates which have been
made invisible since it is more convenient not to trace them. These include debugging directives,
basic control structures, and some builtins. This means that messages will never be printed for
these predicates during debugging.

6.5 Format of debugging messages

This section explains the two formats of the message output by the debugger at a port.
All trace messages are output to the terminal regardless of where the current output stream is
directed (which allows tracing programs while they are performing file I/O). The basic format,
which will be shown in traditional debug and in source-level debugging within Ciao emacs mode,
is as follows:

S 13 7 Call: T user:descendant(dani,_123) ?

S is a spy-point or breakpoint indicator. It is printed as ’+’, indicating that there is a spy-
point on descendant/2 in module user, as ’B’ denoting a breakpoint, or as ’ ’, denoting no
spy-point or breakpoint. If there is a spy-point and a breakpoint in the same predicate the
spy-point indicator takes preference over breakpoint indicator.

T is a subterm trace. This is used in conjunction with the ^ command (set subterm), described
below. If a subterm has been selected, T is printed as the sequence of commands used to select
the subterm. Normally, however, T is printed as ’ ’, indicating that no subterm has been selected.

The first number is the unique invocation identifier. It is always nondecreasing (provided
that the debugger is switched on) regardless of whether or not the invocations are being actually
seen. This number can be used to cross correlate the trace messages for the various ports, since
it is unique for every invocation. It will also give an indication of the number of procedure
calls made since the start of the execution. The invocation counter starts again for every fresh
execution of a command, and it is also reset when retries (see later) are performed.

The number following this is the current depth; i.e., the number of direct ancestors this
goal has. The next word specifies the particular port (Call, Exit, Redo or Fail). The goal is
then printed so that its current instantiation state can be inspected. The final ? is the prompt
indicating that the debugger is waiting for user interaction. One of the option codes allowed
(see below) can be input at this point.

The second format, quite similar to the format explained above, is shown when using source-
level debugging outside the Ciao emacs mode, and it is as follows:

In /home/mcarlos/ciao/foo.pl (5-9) descendant-1
S 13 7 Call: T user:descendant(dani,_123) ?

54 The Ciao System

This format is identical to the format above except for the first line, which contains the
information for location of the point in the source program text where execution is currently
at. The first line contains the name of the source file, the start and end lines where the literal
can be found, the substring to search for between those lines and the number of substrings to
locate. This information for locating the point on the source file is not shown when executing
the source-level debugger from the Ciao emacs mode.

Ports can be “unleashed” by calling the leash/1 predicate omiting that port in the argument.
This means that the debugger will stop but user interaction is not possible for an unleashed port.
Obviously, the ? prompt will not be shown in such messages, since the user has specified that
no interaction is desired at this point.

6.6 Options available during debugging

This section describes the particular options that are available when the debugger prompts
after printing out a debugging message. All the options are one letter mnemonics, some of
which can be optionally followed by a decimal integer. They are read from the terminal with
any blanks being completely ignored up to the next terminator (carriage-return, line-feed, or
escape). Some options only actually require the terminator; e.g., the creep option, only requires
〈RET〉.

The only option which really needs to be remembered is ’h’ (followed by 〈RET〉). This provides
help in the form of the following list of available options.

<cr> creep c creep
l leap s skip
r retry r <i> retry i
f fail f <i> fail i
d display p print
w write v <I> variable(s)
g ancestors g <n> ancestors n
n nodebug = debugging
+ spy this - nospy this
a abort
@ command u unify
< reset printdepth < <n> set printdepth
^ reset subterm ^ <n> set subterm
? help h help

• c (creep)

causes the debugger to single-step to the very next port and print a message. Then if the
port is leashed the user is prompted for further interaction. Otherwise it continues creeping.
If leashing is off, creep is the same as leap (see below) except that a complete trace is printed
on the terminal.

• l (leap)

causes the interpreter to resume running the program, only stopping when a spy-point or
breakpoint is reached (or when the program terminates). Leaping can thus be used to follow
the execution at a higher level than exhaustive tracing. All that is needed to do is to set
spy-points and breakpoints on an evenly spread set of pertinent predicates or lines, and
then follow the control flow through these by leaping from one to the other.

• s (skip)

is only valid for Call and Redo ports, if it is issued in Exit or Fail ports it is equivalent to
creep. It skips over the entire execution of the predicate. That is, no message will be seen
until control comes back to this predicate (at either the Exit port or the Fail port). Skip
is particularly useful while creeping since it guarantees that control will be returned after

Chapter 6: The interactive debugger 55

the (possibly complex) execution within the box. With skip then no message at all will
appear until control returns to the Exit port or Fail port corresponding to this Call port
or Redo port. This includes calls to predicates with spy-points and breakpoints set: they
will be masked out during the skip. There is a way of overriding this: the t option after
a 〈̂ C〉 interrupt will disable the masking. Normally, however, this masking is just what is
required!

• r (retry)

can be used at any of the four ports (although at the Call port it has no effect). It transfers
control back to the Call port of the box. This allows restarting an invocation when, for
example, it has left the programmer with some weird result. The state of execution is
exactly the same as in the original call (unless the invocation has performed side effects,
which will not be undone). When a retry is performed the invocation counter is reset so
that counting will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that execution has, in operational terms,
returned to the state before anything else was called.

If an integer is supplied after the retry command, then this is taken as specifying an invoca-
tion number and the system tries to get to the Call port, not of the current box, but of the
invocation box specified. It does this by continuously failing until it reaches the right place.
Unfortunately this process cannot be guaranteed: it may be the case that the invocation
the programmer is looking for has been cut out of the search space by cuts in the program.
In this case the system fails to the latest surviving Call port before the correct one.

• f (fail)

can be used at any of the four ports (although at the Fail port it has no effect). It transfers
control to the Fail port of the box, forcing the invocation to fail prematurely. If an integer
is supplied after the command, then this is taken as specifying an invocation number and
the system tries to get to the Fail port of the invocation box specified. It does this by
continuously failing until it reaches the right place. Unfortunately, as before, this process
cannot be guaranteed.

• d (display)

displays the current goal using display/1. See w below.

• p (print)

re-prints the current goal using print/1. Nested structures will be printed to the specified
printdepth (see below).

• w (write)

writes the current goal on the terminal using write/1.

• v (variables)

writes the list of the modified variables and their values. If a variable name (identifier) N is
supplied, then the value of variable N is shown.

• g (ancestors)

provides a list of ancestors to the current goal, i.e., all goals that are hierarchically above
the current goal in the calling sequence. It is always possible to jump to any goal in the
ancestor list (by using retry, etc.). If an integer n is supplied, then only n ancestors will be
printed. That is to say, the last n ancestors will be printed counting back from the current
goal. Each entry in the list is preceded by the invocation number followed by the depth
number (as would be given in a trace message).

• n (nodebug)

switches the debugger off. Note that this is the correct way to switch debugging off at a
trace point. The @ option cannot be used because it always returns to the debugger.

• = (debugging)

outputs information concerning the status of the current debugging session.

56 The Ciao System

• + spy

sets a spy-point on the current goal.

• - (nospy)

removes the spy-point from the current goal.

• a (abort)

causes an abort of the current execution. All the execution states built so far are destroyed
and the system is put right back at the top-level of the interpreter. (This is the same as
the built-in predicate abort/0.)

• @ (command)

allows calling arbitrary goals. The initial message | ?- will be output on the terminal, and
a command is then read from the terminal and executed as if it was at top-level.

• u (unify)

is available at the Call port and gives the option of providing a solution to the goal from
the terminal rather than executing the goal. This is convenient, e.g., for providing a “stub”
for a predicate that has not yet been written. A prompt |: will be output on the terminal,
and the solution is then read from the terminal and unified with the goal.

• < (printdepth)

sets a limit for the subterm nesting level that is printed in messages. While in the debugger,
a printdepth is in effect for limiting the subterm nesting level when printing the current
goal. When displaying or writing the current goal, all nesting levels are shown. The limit is
initially 10. This command, without arguments, resets the limit to 10. With an argument
of n the limit is set to n.

• ^ (subterm)

sets the subterm to be printed in messages. While at a particular port, a current subterm
of the current goal is maintained. It is the current subterm which is displayed, printed, or
written when prompting for a debugger command. Used in combination with the printdepth,
this provides a means for navigating in the current goal for focusing on the part which is
of interest. The current subterm is set to the current goal when arriving at a new port.
This command, without arguments, resets the current subterm to the current goal. With
an argument of n (greater than 0 and less or equal to the number of subterms of the current
subterm), the current subterm is replaced by its n’th subterm. With an argument of 0, the
current subterm is replaced by its parent term.

• ? or h (help)

displays the table of options given above.

6.7 Calling predicates that are not exported by a module

The Ciao module system does not allow calling predicates which are not exported during
debugging. However, as an aid during debugging, this is allowed (only from the top-level and
for modules which are in debug mode or source-level debug mode) using the call_in_module/2
predicate.

Note that this does not affect analysis or optimization issues, since it only works on modules
which are loaded in debug mode or source-level debug mode, i.e. unoptimized.

6.8 Acknowledgements (debugger)

Originally written by Andrzej Ciepielewski. Minor modifications by Mats Carlsson. Later
modifications (17 Dec 87) by Takashi Chikayama (making tracer to use print/1 rather than
write/1, temporarily switching debugging flag off while writing trace message and within

Chapter 6: The interactive debugger 57

“break” level). Additional modifications by Kish Shen (May 88): subterm navigation, han-
dle unbound args in spy/1 and nospy/1, trapping arithmetics errors in debug mode. Adapted
then to &-Prolog and Ciao by Daniel Cabeza and included in the Ciao version control sys-
tem. Extended for source-level debugging by Manuel C. Rodŕıguez. Option that shows variable
names and values (v <N>) implemented by Edison Mera (2009). (See changelog if included in the
document or in the version maintenance system for more detailed documentation on changes.)

58 The Ciao System

Chapter 7: Predicates controlling the interactive debugger 59

7 Predicates controlling the interactive debugger

Author(s): A. Ciepielewski, Mats Carlsson, T. Chikayama, K. Shen, Daniel Cabeza, Manuel
C. Rodriguez, Edison Mera.

This library implements predicates which are normally used in the interactive top-level shell
to debug programs. A subset of them are available in the embeddable debugger.

7.1 Usage and interface (debugger)
� �

• Library usage:

:- use_module(library(debugger)).

• Exports:

− Predicates:

call_in_module/2.

− Multifiles:

define_flag/3.

• Other modules used:

− System library modules:

debugger/debugger_lib, format, ttyout.

 	

7.2 Documentation on exports (debugger)

PREDICATEcall in module/2:
Usage: call_in_module(Module,Predicate)

− Description: Calls predicate Predicate belonging to module Module, even if that
module does not export the predicate. This only works for modules which are in
debug (interpreted) mode (i.e., they are not optimized).

− The following properties should hold at call time:

Module is an atom. (basic props:atm/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

(UNDOC REEXPORT)breakpt/6:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)debug/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)debug module/1:
Imported from debugger_lib (see the corresponding documentation for details).

60 The Ciao System

(UNDOC REEXPORT)debug module source/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)debugging/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)debugrtc/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)get debugger state/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)get debugger state/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)leash/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)list breakpt/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)maxdepth/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)nobreakall/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)nobreakpt/6:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)nodebug/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)nodebug module/1:
Imported from debugger_lib (see the corresponding documentation for details).

Chapter 7: Predicates controlling the interactive debugger 61

(UNDOC REEXPORT)nodebugrtc/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)nospy/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)nospyall/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)notrace/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)spy/1:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)trace/0:
Imported from debugger_lib (see the corresponding documentation for details).

(UNDOC REEXPORT)tracertc/0:
Imported from debugger_lib (see the corresponding documentation for details).

7.3 Documentation on multifiles (debugger)

PREDICATEdefine flag/3:
The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

7.4 Known bugs and planned improvements (debugger)

• Add an option to the emacs menu to automatically select all modules in a project.

• Consider the possibility to show debugging messages directly in the source code emacs
buffer.

62 The Ciao System

Chapter 8: The script interpreter 63

8 The script interpreter

Author(s): Daniel Cabeza, Manuel Hermenegildo.

ciao-shell is the Ciao script interpreter. It can be used to write Prolog shell scripts (see
[Her96,CHV96b]), that is, executable files containing source code, which are compiled on de-
mand.

Writing Prolog scripts can sometimes be advantageous with respect to creating binary ex-
ecutables for small- to medium-sized programs that are modified often and perform relatively
simple tasks. The advantage is that no explicit compilation is necessary, and thus changes and
updates to the program imply only editing the source file. The disadvantage is that startup of
the script (the first time after it is modified) is slower than for an application that has been
compiled previously.

An area of application is, for example, writing CGI executables: the slow speed of the network
connection in comparison with that of executing a program makes program execution speed less
important and has made scripting languages very popular for writing these applications. Logic
languages are, a priori, excellent candidates to be used as scripting languages. For example,
the built-in grammars and databases can sometimes greatly simplify many typical script-based
applications.

8.1 How it works

Essentially, ciao-shell is a smaller version of the Ciao top-level, which starts by loading
the file given to it as the first argument and then starts execution at main/1 (the argument is
instantiated to a list containing the command line options, in the usual way). Note that the
Prolog script cannot have a module declaration for this to work. While loading the file, ciao-
shell changes the prolog flag quiet so that no informational or warning messages are printed
(error messages will be reported to user_error, however). The operation of ciao-shell in
Unix-like systems is based in a special compiler feature: when the first character of a file is ’#’,
the compiler skips the first lines until an empty line is found. In Windows, its use is as easy as
naming the file with a .pls extension, which will launch ciao-shell appropriately.

For example, in a Linux/Unix system, assume a file called hello contains the following
program:

#!/bin/sh
exec ciao-shell $0 "$@" # -*- mode: ciao; -*-

main(_) :-
write(’Hello world’), nl.

Then, the file hello can be run by simply making it executable and invoking it from the
command line:

/herme@clip:/tmp
[86]> chmod +x hello

/herme@clip:/tmp
[87]> hello
Hello world

The line:

#!/bin/sh

invokes the /bin/sh shell which will interpret the following line:

exec ciao-shell $0 "$@" # -*- mode: ciao; -*-

64 The Ciao System

and invoke ciao-shell, instructing it to read this same file ($0), passing it the rest of the
arguments to hello as arguments to the prolog program. The second part of the line # -*-
mode: ciao; -*- is simply a comment which is seen by emacs and instructs it to edit this file in
Ciao mode (this is needed because these script files typically do not have a .pl ending). When
ciao-shell starts, if it is the first time, it compiles the program (skipping the first lines, as
explained above), or else at successive runs loads the .po object file, and then calls main/1.

Note that the process of creating Prolog scripts is made very simple by the Ciao emacs mode,
which automatically inserts the header and makes the file executable (See Chapter 10 [Using
Ciao inside GNU emacs], page 67).

8.2 Command line arguments in scripts

The following example illustrates the use of command-line arguments in scripts. Assume that a
file called say contains the following lines:

#!/bin/sh
exec ciao-shell $0 "$@" # -*- mode: ciao; -*-

main(Argv) :-
write_list(Argv), nl.

write_list([]).
write_list([Arg|Args]) :-

write(Arg),
write(’ ’),
write_list(Args).

An example of use is:

/herme@clip:/tmp
[91]> say hello dolly
hello dolly

Chapter 9: Customizing library paths and path aliases 65

9 Customizing library paths and path aliases

Author(s): Daniel Cabeza.

This library provides means for customizing, from environment variables, the libraries and
path aliases known by an executable. Many applications of Ciao, including ciaoc, ciaosh, and
ciao-shell make use of this library. Note that if an executable is created dynamic, it will try
to load its components at startup, before the procedures of this module can be invoked, so in
this case all the components should be in standard locations.

9.1 Usage and interface (libpaths)
� �

• Library usage:

:- use_module(library(libpaths)).

• Exports:

− Predicates:

get_alias_path/0.

− Multifiles:

file_search_path/2, library_directory/1.

• Other modules used:

− System library modules:

system, lists.

 	

9.2 Documentation on exports (libpaths)

PREDICATEget alias path/0:
get_alias_path

Consult the environment variable ’CIAOALIASPATH’ and add facts to predicates
library_directory/1 and file_search_path/2 to define new library paths and path
aliases. The format of ’CIAOALIASPATH’ is a sequence of paths or alias assignments
separated by colons, an alias assignment is the name of the alias, an ’=’ and the path
represented by that alias (no blanks allowed). For example, given

CIAOALIASPATH=/home/bardo/ciao:contrib=/usr/local/lib/ciao

the predicate will define /home/bardo/ciao as a library path and /usr/local/lib/ciao as
the path represented by ’contrib’.

9.3 Documentation on multifiles (libpaths)

PREDICATEfile search path/2:
See Chapter 21 [Basic file/stream handling], page 159.

The predicate is multifile.

The predicate is of type dynamic.

file_search_path(X,Y)

66 The Ciao System

− The following properties hold upon exit:

X is ground. (basic props:gnd/1)

Y is ground. (basic props:gnd/1)

PREDICATElibrary directory/1:
See Chapter 21 [Basic file/stream handling], page 159.

The predicate is multifile.

The predicate is of type dynamic.

library_directory(X)

− The following properties hold upon exit:

X is ground. (basic props:gnd/1)

Chapter 10: Using Ciao inside GNU emacs 67

10 Using Ciao inside GNU emacs

Author(s): Manuel Hermenegildo, Manuel C. Rodriguez, Daniel Cabeza.

The Ciao emacs interface (or mode in emacs terms) provides a rich, integrated user interface
to the Ciao program development environment components, including the ciaosh interactive top
level and the ciaopp preprocessor. While most features of the Ciao development environment
are available from the command line of the preprocessor and the top-level shell, using Ciao inside
emacs is highly recommended. The facilities that this mode provides include:

• Syntax-based highlighting (coloring), auto-indentation, auto-fill, etc. of code. This includes
the assertions used by the preprocessor and the documentation strings used by the Ciao
auto-documenter, lpdoc.

• Providing automatic access to on-line help for all predicates by accessing the Ciao system
manuals in info format.

• Starting and communicating with ciaopp, the Ciao preprocessor, running in its own sub-
shell. This allows easily performing certain kinds of static checks (useful for finding errors
in programs before running them), program analysis tasks, and program transformations
on source programs.

• Starting and communicating with the Ciao top-level, running in its own sub-shell. This
facilitates loading programs, checking the syntax of programs (and of assertions within
programs), marking and unmarking modules for interactive debugging, tracing the source
code during debugging, making stand-alone executables, compiling modules to dynamically
linkable Ciao objects, compiling modules to active objects, etc.

• Syntax highlighting and coloring of the error and warning messages produced by the top
level, preprocessor, or any other tool using the same message format (such as the lpdoc
auto-documenter), and locating automatically the points in the source files where such errors
occur.

• Performing automatic version control and keeping a changelog of individual files or whole
applications. This is done by automatically including changelog entries in source files, which
can then be processed by the lpdoc auto-documenter.

This chapter explains how to use the Ciao emacs interface and how to set up your emacs
environment for correct operation. The Ciao emacs interface can also be used to work with
traditional Prolog or CLP systems.

10.1 Conventions for writing Ciao programs under Emacs

This is particularly important for the source-level debugger and the syntax-based coloring
capabilities. This is due to the fact that it would be unrealistic to write a complete Ciao parser
in Emacs lisp. These conventions are the following, in order of importance:

• Clauses should begin on the first column (this is used to recognize the beginning of a clause).

• C style comments should not be used in a clause, but can be used outside any clause.

The following suggestion is not strictly necessary but can improve operation:

• Body literals should be indented. There should be not more than one literal per line. This
allows more precision in the location of program points during source-level debugging, i.e.,
when marking breakpoints and during line tracing.

Comments which start with %s are indented to the right if indentation is asked for.

For syntax-based highlighting to be performed font-lock must be available and not disabled (the
Ciao mode enables it but it may be disabled elsewhere in, e.g., the .emacs file).

68 The Ciao System

10.2 Checking the installation

Typically, a complete pre-installation of the Ciao emacs interface is completed during Ciao
installation. To check that installation was done and sucessful, open a file with a .pl ending.
You should see that emacs enters Ciao mode: the mode is identified in the status bar below the
buffer and, if the emacs menu bar is enabled, you should see the Ciao menus. You should be
able from the menu-bar, for example, to go to the Ciao manuals in the info or load the .pl file
that you just opened into a Ciao top level.

If things don’t work properly, see the section Section 10.21 [Installation of the Ciao emacs
interface], page 85 later in this chapter.

10.3 Functionality and associated key sequences (bindings)

The following sections summarize the capabilities of the Ciao emacs interface and the (default)
key sequences used to access those capabilities. Most of these functions are accessible also from
the menu bar.

10.4 Syntax coloring and syntax-based editing

Syntax-based highlighting (coloring) of code is provided automatically when opening Ciao
files. This includes also the assertions used by the preprocessor and the documentation strings
used by the Ciao auto-documenter, lpdoc. The mode should be set to Ciao and the Ciao mode
menus should appear on the menu bar. The colors and fonts used can be changed through the
customize options in the help menu (see Section 10.20 [Customization], page 80).

During editing this coloring may be refreshed by calling the appropriate function (see below).

Limited syntax-based auto-indentation and auto-fill of code and comments is also provided.
Syntax highlighting and coloring is also available for the error and warning messages produced
by the top level, preprocessor, and auto-documenter, and, in general, for the output produced
by these tools.

Commands:

〈C-c〉 〈h〉 Undate (recompute) syntax-based highlighting (coloring).

〈TAB〉 Indent current line as Ciao code. With argument, indent any additional lines of the
same clause rigidly along with this one.

10.5 Getting on-line help

The following commands are useful for getting on-line help. This is done by accessing the
info version of the Ciao manuals or the emacs built-in help strings. Note also that the info
standard search command (generally bound to 〈s〉) can be used inside info buffers to search for
a given string.

〈C-c〉 〈TAB〉 Find help for the symbol (e.g., predicate, directive, declaration, type, etc.) that is
currently under the cursor. Opens a (hopefully) relevant part of the Ciao manuals
in info mode. Requires that the Ciao manuals in info format be installed and
accessible to emacs (i.e., they should appear somewhere in the info directory when
typing M-x info). It also requires word-help.el, which is provided with Ciao.
Refer to the installation instructions if this is not the case.

〈C-c〉 〈/〉 Find a completion for the symbol (e.g., predicate, directive, declaration, type, etc.)
that is currently under the cursor. Uses for completion the contents of the indices
of the Ciao manuals. Same requirements as for finding help for the symbol.

〈C-c〉 〈RET〉 Go to the part of the info directory containing the Ciao manuals.

〈C-h〉 〈m〉 Show a short description of the Ciao emacs mode, including all key bindings.

Chapter 10: Using Ciao inside GNU emacs 69

10.6 Loading and compiling programs

These commands allow loading programs, creating executables, etc. by issuing the appropriate
commands to a Ciao top level shell, running in its own buffer as a subprocess. See Chapter 5
[The interactive top-level shell], page 41 for details. The following commands implement the
communication with the Ciao top level:

〈C-c〉 〈t〉 Ensure that an inferior Ciao top-level process is running.

This opens a top-level window (if one did not exist already) where queries can be in-
put directly. Programs can be loaded into this top level by typing the corresponding
commands in this window (such as use module, etc.), or, more typically, by opening
the file to be loaded in an emacs window (where it can be edited) and issuing a load
command (such as C-c l or C-c L) directly from there (see the loading commands
of this mode and their bindings).

Note that many useful commands (e.g., to repeat and edit previous commands,
interrupt jobs, locate errors, automatic completions, etc.) are available in this top-
level window (see Section 10.7 [Commands available in toplevel and preprocessor
buffers], page 70).

Often, it is not necessary to use this function since execution of any of the other
functions related to the top level (e.g., loading buffers into the top level) ensures
that a top level is started (starting one if required).

〈C-c〉 〈l〉 Load the current buffer (and any auxiliary files it may use) into the top level.

The type of compilation performed (compiling or interpreting) is selected automat-
ically depending on whether the buffer has been marked for debugging or not – see
below. In case you try to load a file while in the middle of the debugging process
the debugger is first aborted and then the buffer is loaded. Also, if there is a defined
query, the user is asked whether it should be called.

〈C-c〉 〈f〉 Load CiaoPP and then the current buffer (and any auxiliary files it may use) into the
top level. Use CiaoPP auto check assrt predicate to check current buffer assertions
and then load the buffer if there was no error.

〈C-c〉 〈x〉 Make an executable from the code in the current buffer. The buffer must contain
a main/0 or main/1 predicate. Note that compiler options can be set to determine
whether the libraries and auxiliary files used by the executable will be statically
linked, dynamically linked, auto-loaded, etc.

〈C-c〉 〈o〉 Make a Ciao object (.po) file from the code in the current buffer. This is useful
for example while debugging during development of a very large application which
is compiled into an excutable, and only one or a few files are modified. If the
application executable is dynamically linked, i.e., the component .po files are loaded
dynamically during startup of the application, then this command can be used to
recompile only the file or files which have changed, and the correct version will be
loaded dynamically the next time the application is started. However, note that this
must be done with care since it only works if the inter-module interfaces have not
changed. The recommended, much safer way is to generate the executable again,
letting the Ciao compiler, which is inherently incremental, determine what needs to
be recompiled.

〈C-c〉 〈a〉 Make an active module executable from the code in the current buffer. An active
module is a remote procedure call server (see the activemod library documentation
for details).

〈C-c〉 〈s〉 Set the current buffer as the principal file in a multiple module programming envi-
ronment.

70 The Ciao System

〈C-c〉 〈L〉 Load the module designated as main module (and all related files that it uses) into
the top level. If no main module is defined it will load the current buffer.

The type of compilation performed (compiling or interpreting) is selected automat-
ically depending on whether the buffer has been marked for debugging or not – see
below. In case you try to load a file while in the middle of the debugging process
the debugger is first aborted and then the buffer is loaded. Also, if there is a defined
query, the user is asked whether is should be called.

〈C-c〉 〈q〉 Set a default query. This may be useful specially during debugging sessions. How-
ever, as mentioned elsewhere, note that commands that repeat previous queries are
also available.

This query can be recalled at any time using C-c Q. It is also possible to set things
up so that this query will be issued automatically any time a program is (re)loaded.
The functionality is available in the major mode (i.e., from a buffer containing a
source file) and in the inferior mode (i.e., from the buffer running the top-level shell).
When called from the major mode (i.e., from window containing a source file) then
the user is prompted in the minibuffer for the query. When called from the inferior
mode (i.e., from a top-level window) then the query on the current line, following
the Ciao prompt, is taken as the default query.

To clear the default query use M-x ciao-clear-query or simply set it to an empty
query: i.e., in a source buffer select C-c q and enter an empty query. In an inferior
mode simply select C-c q on a line that contains only the system prompt.

〈C-c〉 〈Q〉 Issue predefined query.

10.7 Commands available in toplevel and preprocessor buffers

The interactive top level and the preprocessor both are typically run in an iteractive buffer,
in which it is possible to communicate with them in the same way as if they had been started
from a standard shell. These interactive buffers run in the so-called Ciao inferior mode. This
is a particular version of the standard emacs shell package (comint) and thus all the commands
typically available when running shells inside emacs also work in these buffers. In addition,
many of the commands and key bindings available in buffers containing Ciao source code are
also available in these interactive buffers, when applicable. The Ciao-specific commands available
include:

〈C-c〉 〈TAB〉 Find help for the symbol (e.g., predicate, directive, declaration, type, etc.) that is
currently under the cursor. Opens a (hopefully) relevant part of the Ciao manuals
in info mode. Requires that the Ciao manuals in info format be installed and
accessible to emacs (i.e., they should appear somewhere in the info directory when
typing M-x info). It also requires word-help.el, which is provided with Ciao.
Refer to the installation instructions if this is not the case.

〈C-c〉 〈/〉 Find a completion for the symbol (e.g., predicate, directive, declaration, type, etc.)
that is currently under the cursor. Uses for completion the contents of the indices
of the Ciao manuals. Same requirements as for finding help for the symbol.

〈C-c〉 〈‘〉 Go to the location in the source file containing the next error reported by the last
Ciao subprocess (preprocessor or toplevel) which was run.

〈C-c〉 〈e〉 Remove error marks from last run (and also debugging marks if present).

〈C-c〉 〈q〉 Set a default query. This may be useful specially during debugging sessions. How-
ever, as mentioned elsewhere, note that commands that repeat previous queries are
also available.

This query can be recalled at any time using C-c Q. It is also possible to set things
up so that this query will be issued automatically any time a program is (re)loaded.

Chapter 10: Using Ciao inside GNU emacs 71

The functionality is available in the major mode (i.e., from a buffer containing a
source file) and in the inferior mode (i.e., from the buffer running the top-level shell).
When called from the major mode (i.e., from window containing a source file) then
the user is prompted in the minibuffer for the query. When called from the inferior
mode (i.e., from a top-level window) then the query on the current line, following
the Ciao prompt, is taken as the default query.

To clear the default query use M-x ciao-clear-query or simply set it to an empty
query: i.e., in a source buffer select C-c q and enter an empty query. In an inferior
mode simply select C-c q on a line that contains only the system prompt.

〈C-c〉 〈Q〉 Issue predefined query.

〈C-c〉 〈C-v〉 Show last output file produced by Ciao preprocessor. The preprocessor works by
producing a file which is a transformed and/or adorned (with assertions) version of
the input file. This command is often used after running the preprocessor in order
to visit the output file and see the results from running the preprocessor.

〈C-c〉 〈v〉 Report the version of the emacs Ciao mode.

The following are some of the commands from the comint shell package which may be specially
useful (type <f1> m while in a Ciao interactive buffer for a complete list of commands):

〈M-p〉 Cycle backwards through input history, saving input.

〈M-n〉 Cycle forwards through input history.

〈M-r〉 Search backwards through input history for match for REGEXP. (Previous history
elements are earlier commands.) With prefix argument N, search for Nth previous
match. If N is negative, find the next or Nth next match.

〈TAB〉 Dynamically find completion of the item at point. Note that this completion com-
mand refers generally to filenames (rather than, e.g., predicate names, as in the
previous functions).

〈M-?〉 List all (filename) completions of the item at point.

〈RET〉 Return at any point of the a line at the end of a buffer sends that line as input.
Return not at end copies the rest of the current line to the end of the buffer and
sends it as input.

〈̂ D〉 Delete ARG characters forward or send an EOF to subprocess. Sends an EOF only
if point is at the end of the buffer and there is no input.

〈̂ C〉 〈̂ U〉 Kill all text from last stuff output by interpreter to point.

〈̂ C〉 〈̂ W〉 Kill characters backward until encountering the beginning of a word. With argument
ARG, do this that many times.

〈̂ C〉 〈̂ C〉 Interrupt the current subjob. This command also kills the pending input between
the process mark and point.

〈̂ C〉 〈̂ Z〉 Stop the current subjob. This command also kills the pending input between the
process mark and point.

WARNING: if there is no current subjob, you can end up suspending the top-level
process running in the buffer. If you accidentally do this, use M-x comint-continue-
subjob to resume the process. (This is not a problem with most shells, since they
ignore this signal.)

〈̂ C〉 〈̂ \〉 Send quit signal to the current subjob. This command also kills the pending input
between the process mark and point.

72 The Ciao System

10.8 Locating errors and checking the syntax of assertions

These commands allow locating quickly the point in the source code corresponding to er-
rors flagged by the compiler or preprocessor as well as performing several syntactic checks of
assertions:

〈C-c〉 〈‘〉 Go to the location in the source file containing the next error reported by the last
Ciao subprocess (preprocessor or toplevel) which was run.

〈C-c〉 〈e〉 Remove error marks from last run (and also debugging marks if present).

〈C-c〉 〈E〉 Check the syntax of the code and assertions in the current buffer, as well as imports
and exports. This uses the standard top level (i.e., does not call the preprocessor
and thus does not require the preprocessor to be installed). Note that full (semantic)
assertion checking must be done with the preprocessor.

10.9 Commands which help typing in programs

The following commands are intended to help in the process of writing programs:

〈C-c〉 〈I〉 〈S〉 Insert a (Unix) header at the top of the current buffer so that the Ciao script
interpreter will be called on this file if run from the command line. It also makes
the file “executable” (e.g., ’chmod +x <file>’ in Unix). See Chapter 8 [The script
interpreter], page 63 for details.

〈C-c〉 〈i〉 Indent a Ciao or Prolog file.

10.10 Debugging programs

These commands allow marking modules for debugging by issuing the appropiate commands
to a Ciao top level shell, running in its own buffer as a subprocess. There are two differents types
of debugging: traditional debugging (using the byrd-box model and spy-points) and source-level
debugging (same as traditional debugging plus source tracing and breakpoints). In order to use
breakpoints, source debugging must be on. The following commands implement comunication
with the Ciao top level:

〈C-c〉 〈d〉 Debug (or stop debugging) buffer source. This is a shortcut which is particularly
useful when using the source debugger on a single module. It corresponds to several
lower-level actions. Those lower-level actions depend on how the module was selected
for debugging. In case the module was not marked for source-level debugging, it
marks the module corresponding to the current buffer for source-level debugging,
reloads it to make sure that it is loaded in the correct way for debugging (same as
C-c l), and sets the debugger in trace mode (i.e., issues the trace. command to
the top-level shell). Conversely, if the module was already marked for source-level
debugging then it will take the opposite actions, i.e., it unmarks the module for
source-level debugging, reloads it, and sets the debugger to non-debug mode.

〈C-c〉 〈m〉 Mark, or unmark, the current buffer for debugging (traditional debugging or source
debugging). Note that if the buffer has already been loaded while it was unmarked
for debugging (and has therefore been loaded in “compile” mode) it has to be loaded
again. The minibuffer shows how the module is loaded now and allows selecting
another mode for it. There are three posibilities: N for no debug, S for source
debug and D for traditional debug.

〈C-c〉 〈M-m〉 Visits all Ciao files which are currently open in a buffer allowing selecting for each
of them whether to debug them or not and the type of debugging performed. When
working on a multiple module program, it is possible to have many modules open

Chapter 10: Using Ciao inside GNU emacs 73

at a time. In this case, you will navigate through all open Ciao files and select the
debug mode for each of them (same as doing C-c m for each).

〈C-c〉 〈S〉 〈b〉 Set a breakpoint on the current literal (goal). This can be done at any time (while
debugging or not). The cursor must be on the predicate symbol of the literal. Break-
points are only useful when using source-level debugging.

〈C-c〉 〈S〉 〈v〉 Remove a breakpoint from the current literal (goal). This can be done at any time
(while debugging or not). The cursor must be on the predicate symbol of the literal.

〈C-c〉 〈S〉 〈n〉 Remove all breakpoints. This can be done at any time (while debugging or not).

〈C-c〉 〈S〉 〈l〉 Redisplay breakpoints in all Ciao buffers. This ensures that the marks in the source
files and the Ciao toplevel are synchronized.

〈C-c〉 〈S〉 〈r〉 Remove breakpoint coloring in all Ciao files.

〈C-c〉 〈S〉 〈t〉 Set the debugger to the trace state. In this state, the program is executed step by
step.

〈C-c〉 〈S〉 〈d〉 Set the debugger to the debug state. In this state, the program will only stop in
breakpoints and spypoints. Breakpoints are specially supported in emacs and using
source debug.

〈C-c〉 〈r〉 Load the current region (between the cursor and a previous mark) into the top
level. Since loading a region of a file is typically done for debugging and/or testing
purposes, this command always loads the region in debugging mode (interpreted).

〈C-c〉 〈p〉 Load the predicate around the cursor into the top level. Since loading a single
predicate is typically done for debugging and/or testing purposes, this command
always loads the predicate in debugging mode (interpreted).

〈C-c〉 〈u〉 Run the test over the current buffer.

The test should be specified using a test assertion in the module.

10.11 Preprocessing programs

These commands allow preprocessing programs with ciaopp, the Ciao preprocessor.

CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm program
development environment. CiaoPP can perform a number of program debugging, analysis, and
source-to-source transformation tasks on (Ciao) Prolog programs. These tasks include:

• Inference of properties of the predicates and literals of the program, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

• Certain kinds of static debugging and verification, finding errors before running the program.
This includes checking how programs call system library predicates and also checking the
assertions present in the program or in other modules used by the program. Such assertions
represent essentially partial specifications of the program.

• Several kinds of source to source program transformations such as program specialization,
slicing, partial evaluation of a program, program parallelization (taking granularity control
into account), inclusion of run-time tests for assertions which cannot be checked completely
at compile-time, etc.

• The abstract model of the program inferred by the analyzers is used in the system to certify
that an untrusted mobile code is safe w.r.t. the given policy (i.e., an abstraction-carrying
code approach to mobile code safety).

74 The Ciao System

The information generated by analysis, the assertions in the system specifications are all writ-
ten in the same assertion language, which is in turn also used by the Ciao system documentation
generator, lpdoc.

CiaoPP is distributed under the GNU general public license.

See the preprocessor manual for details. The following commands implement the communi-
cation with the Ciao preprocessor:

〈C-c〉 〈A〉 Call the preprocessor to perform a number of pre-selected analyses on the current
buffer (and related modules).

〈C-c〉 〈T〉 Call the preprocessor to perform compile-time checking of the assertions (types,
modes, determinacy, nonfailure, cost, ...) in the current buffer (and against those
in related modules).

〈C-c〉 〈O〉 Uses the preprocessor to perform optimizations (partial evaluation, abstract spe-
cialization, parallelization, ...) on the current buffer (and related modules).

〈C-c〉 〈M〉 Browse and select (using the preprocessor menus) the actions to be performed by
the preprocessor when performing analisys used by M-x ciao- C-c A, C-c T, C-c O,
and the corresponding toolbar buttons.

〈C-c〉 〈C-v〉 Show last output file produced by Ciao preprocessor. The preprocessor works by
producing a file which is a transformed and/or adorned (with assertions) version of
the input file. This command is often used after running the preprocessor in order
to visit the output file and see the results from running the preprocessor.

〈C-c〉 〈C-r〉 Ensure that an inferior Ciao preprocessor process is running.

This opens a preprocessor top-level window (if one did not exist already) where
preprocessing commands and preprocessing menu options can be input directly.
Programs can be preprocessed by typing commands in this window, or, more typi-
cally, by opening the file to be preprocessed in an emacs window (where it can be
edited) and issuing a command (such as C-c A, C-c T, C-c O, or C-c M) directly
from there (see the preprocessing commands of this mode and their bindings).

Note that many useful commands (e.g., to repeat and edit previous commands,
interrupt jobs, locate errors, automatic completions, etc.) are available in this top-
level window (see Section 10.7 [Commands available in toplevel and preprocessor
buffers], page 70).

Often, it is not necessary to use this function since execution of any of the other
functions related to the top level (e.g., loading buffers into the top level) ensures
that a top level is started (starting one if required).

10.12 Version control

The following commands can be used to carry out a simple but effective form of version
control by keeping a log of changes on a file or a group of related files. Interestingly, this log is
kept in a format that is understood by lpdoc, the Ciao documenter [Her99]. As a result, if these
version comments are present, then lpdoc will be able to automatically assign up to date version
numbers to the manuals that it generates. This way it is always possible to identify to which
version of the software a manual corresponds. Also, lpdoc can create automatically sections
describing the changes made since previous versions, which are extracted from the comments in
the changelog entries.

The main effect of these commands is to automatically associate the following information
to a set of changes performed in the file and/or in a set of related files:

• a version number (such as, e.g., 1.2, where 1 is the major version number and 2 is the
minor version number),

Chapter 10: Using Ciao inside GNU emacs 75

• a patch number (such as, e.g., the 4 in 1.2#4),

• a time stamp (such as, e.g., 1998/12/14,17:20*28+MET),

• the author of the change, and

• a comment explaining the change.

The version numbering used can be local to a single file or common to a number of related
files. A simple version numbering policy is implemented: when a relevant change is made, the
user typically inserts a changelog entry for it, using the appropriate command (or selecting the
corresponding option when prompted while saving a file). This will cause the patch number for
the file (or for the whole system that the file is part of) to be incremented automatically and the
corresponding machine-readable comment to be inserted in the file. Major and minor version
numbers can also be changed, but this is always invoked by hand (see below).

The changelog entry is written in the form of a comment/2 declaration. As mentioned before,
the advantage of using this kind of changelog entries is that these declarations can be processed
by the lpdoc automatic documenter (see the lpdoc reference manual [Her99] or the assertions
library documentation for more details on these declarations).

Whether the user is asked or not to introduce such changelog entries, and how the patch and
version numbers should be increased is controlled by the presence in the file of a comment/2
declaration of the type:

:- doc(version_maintenance,<type>).

(note that this requires including the assertions library in the source file). These declarations
themselves are also typically introduced automatically when using this mode (see below).

The version maintenance mode can also be set alternatively by inserting a comment such as:

%% Local Variables:
%% mode: ciao
%% update-version-comments: "off"
%% End:

The lines above instruct emacs to put the buffer visiting the file in emacs Ciao mode and
to turn version maintenance off. Setting the version maintenance mode in this way has the
disadvantage that lpdoc, the auto-documenter, and other related tools will not be aware of the
type of version maintenance being performed (the lines above are comments for Ciao). However,
this can be useful in fact for setting the version maintenance mode for packages and other files
meant for inclusion in other files, since that way the settings will not affect the file in which the
package is included.

The following commands implement the version control support:

〈C-c〉 〈C-a〉 Used to turn on or off version control for the file being visited in the current buffer.
The user will be prompted to choose among the following options:

〈y〉 Turn version control on for this file.

〈n〉 Turn version control off for this file. A version control comment such
as:

:- doc(version_maintenance,off).

will be added to the buffer and the file saved. No version control will be
performed on this file until the line above is removed or modified (i.e.,
from now on C-x C-s simply saves the buffer).

〈q〉 Turn off prompting for the introduction of changelog entries for now.
emacs will not ask again while the buffer is loaded, but it may ask again
when saving after the next time you load the buffer (if ciao-ask-for-
version-maintenance-type is set to yes).

76 The Ciao System

If 〈y〉 is selected, then the system prompts again regarding how and where the ver-
sion and patch number information is to be maintained. The following options are
available:

on All version control information will be contained within this file. When
saving a buffer (C-x C-s) emacs will ask if a changelog entry should
be added to the file before saving. If a comment is entered by the
user, a new patch number is assigned to it and the comment is added
to the file. This patch number will be the one that follows the most
recent changelog entry already in the file. This is obviously useful when
maintaining version numbers individually for each file.

<directory_name>
Global version control will be performed coherently on several files.
When saving a buffer (C-x C-s) emacs will ask if a changelog entry
should be added to the file before saving. If a comment is given,
the global patch number (which will be kept in the file: <directory_
name>/GlobalPatch) is atomically incremented and the changelog en-
try is added to the current file, associated to that patch number. Also,
a small entry is added to a file <directory_name>/GlobalChangeLog
which points to the current file. This allows inspecting all changes se-
quentially by visiting all the files where the changes were made (see
C-c C-n). This is obviously useful when maintaining a single thread of
version and patch numbers for a set of files.

off Turns off version control: C-x C-s then simply saves the file as usual.

Some useful tips:

• If a changelog entry is in fact introduced, the cursor is left at the point in the
file where the comment was inserted and the mark is left at the original file
point. This allows inspecting (and possibly modifying) the changelog entry,
and then returning to the original point in the file by simply typing C-x C-x.

• The first changelog entry is entered by default at the end of the buffer. Later,
the changelog entries can be moved anywhere else in the file. New changelog
entries are always inserted just above the first changelog entry which appears
in the file.

• The comments in changelog entries can be edited at any time.

• If a changelog entry is moved to another file, and version numbers are shared
by several files through a directory, the corresponding file pointer in the
<directory_name>/GlobalChangeLog file needs to be changed also, for the
entry to be locatable later using C-c C-n.

〈C-x〉 〈C-s〉 This is the standard emacs command that saves a buffer by writing the contents into
the associated .pl file. However, in the Ciao mode, if version control is set to on
for ths file, then this command will ask the user before saving whether to introduce
a changelog entry documenting the changes performed.

In addition, if:

• the buffer does not already contain a comment specifying the type of version
control to be performed,

• and the customizable variable ciao-ask-for-version-maintenance-type is
set to yes (go to the Ciao options menu, LPdoc area to change this, which is
by default set to no),

then, before saving a buffer, the user will be also automatically asked to choose
which kind of version control is desired for the file, as in C-c C-a.

Chapter 10: Using Ciao inside GNU emacs 77

〈C-c〉 〈C-s〉 Same as C-x C-s except that it forces prompting for inclusion of a changelog entry
even if the buffer is unmodified.

〈C-c〉 〈n〉 Force a move to a new major/minor version number (the user will be prompted for
the new numbers). Only applicable if using directory-based version maintenance.
Note that otherwise it suffices with introducing a changelog entry in the file and
changing its version number by hand.

〈C-c〉 〈C-n〉 When a unique version numbering is being maintained across several files, this
command allows inspecting all changes sequentially by visiting all the files in which
the changes were made:

• If in a source file, find the next changelog entry in the source file, open in another
window the corresponding GlobalChangeLog file, and position the cursor at the
corresponding entry. This allows browsing the previous and following changes
made, which may perhaps reside in other files in the system.

• If in a GlobalChangeLog file, look for the next entry in the file, and open in
another window the source file in which the corresponding comment resides, po-
sitioning the corresponding comment at the top of the screen. This allows going
through a section of the GlobalChangeLog file checking all the corresponding
comments in the different files in which they occur.

10.13 Generating program documentation

These commands provide some bindings and facilities for generating and viewing the docu-
mentation corresponding to the current buffer. The documentation is generated in a temporary
directory, which is created automatically. This is quite useful while modifying the documenta-
tion for a file, in order to check the output that will be produced, whithout having to set up
a documentation directory by hand or to regenerate a large manual of which the file may be a
part.

〈C-c〉 〈D〉 〈B〉 Generate the documentation for the current buffer in the default format. This
allows generating a simple document for the current buffer. Basically, it creates
a simple, default SETTINGS.pl file, sets mainfile in SETTINGS.pl to the current
buffer and then generates the documentation in a temporary directory. This is useful
for seeing how the documentation of a file will format. Note that for generating
manuals the best approach is to set up a permanent documentation directory with
the appropriate SETTINGS.pl file (see the LPdoc manual).

〈C-c〉 〈D〉 〈F〉 Change the default output format used by the LPdoc auto-documenter. It is set by
default to html or to the environment variable LPDOCFORMAT if it is defined.

〈C-c〉 〈D〉 〈S〉 Visit, or create, the default SETTINGS.pl file (which controls all auto-documenter
options).

〈C-c〉 〈D〉 〈G〉

Generate the documentation according to SETTINGS.pl in the default format. This
allows generating complex documents but it assumes that SETTINGS.pl exists and
that the options that it contains (main file, component files, paths, etc.) have been
set properly. Documentation is generated in a temporary directory. Note however
that for generating complex manuals the best approach is to set up a permanent
documentation directory with the appropriate SETTINGS.pl and Makefile files (see
the LPdoc manual).

〈C-c〉 〈D〉 〈V〉

Start a viewer on the documentation for the current buffer in the default format.

78 The Ciao System

〈C-c〉 〈D〉 〈W〉

Change the root working dir used by the LPdoc auto-documenter. It is set by
default to a new dir under /tmp or to the environment variable LPDOCWDIR if it is
defined.

10.14 Setting top level preprocessor and documenter
executables

These commands allow changing the executables used when starting the top-level, the prepro-
cessor, or the auto-documenter. They also allow changing the arguments that these executables
take, and changing the path where the libraries reside. In the case of the top-level and prepro-
cessor, this should be done only by users which understand the implications, but it is very useful
if several versions of Ciao or the preprocessor are available in the system. All these settings can
be changed through the customize options in the help menu (see Section 10.20 [Customization],
page 80).

〈C-c〉 〈S〉 〈A〉

〈C-c〉 〈S〉 〈C〉 Change the Ciao executable used to run the top level. It is set by default to ciao
or, to the environment variable CIAO if it is defined.

〈C-c〉 〈S〉 〈C-c〉

Change the arguments passed to the Ciao executable. They are set by default to
none or, to the environment variable CIAOARGS if it is defined.

〈C-c〉 〈S〉 〈P〉 Change the executable used to run the Ciao Preprocessor toplevel. It is set by
default to ciaopp or, to the environment variable CIAOPP if it is defined.

〈C-c〉 〈S〉 〈C-p〉

Change the arguments passed to the Ciao preprocessor executable. They are set by
default to none or to the environment variable CIAOPPARGS if it is defined.

〈C-c〉 〈S〉 〈L〉 Change the location of the Ciao library paths (changes the environment variable
CIAOLIB).

〈C-c〉 〈S〉 〈D〉 Change the executable used to run the LPdoc auto-documenter. It is set by default
to lpdoc or to the environment variable LPDOC if it is defined.

〈C-c〉 〈S〉 〈C-d〉

Change the arguments passed to the LPdoc auto-documenter. They are set by
default to none or to the environment variable LPDOCARGS if it is defined.

〈C-c〉 〈S〉 〈C-l〉

Change the path in which the LPdoc library is installed. It is set by default to
/home/clip/lib or to the environment variable LPDOCLIB if it is defined.

10.15 Other commands

Some other commands which are active in the Ciao mode:

〈C-c〉 〈C-l〉 Recenter the most recently used Ciao inferior process buffer (top level or preproces-
sor).

Chapter 10: Using Ciao inside GNU emacs 79

10.16 Traditional Prolog Mode Commands

These commands provide some bindings and facilities for loading programs, which are present
in emacs Prolog modes of traditional Prolog systems (e.g., SICStus). This is useful mainly if the
Ciao emacs mode is used with such Prolog systems. Note that these commands (compile/1
and consult/1) are deprecated in Ciao (due to the more advanced, separate compilation model
in Ciao) and their use in the Ciao top-level is not recommended.

〈C-c〉 〈K〉 Compile the entire buffer.

〈C-c〉 〈k〉 Compile a given region.

〈C-c〉 〈C-k〉 Compile the predicate around point.

〈C-c〉 〈C〉 Consult the entire buffer.

〈C-c〉 〈c〉 Consult a given region.

〈C-c〉 〈C-c〉 Consult the predicate around point.

10.17 Coexistence with other Prolog-like interfaces

As mentioned previously, the Ciao emacs interface can also be used to work with traditional
Prolog or CLP systems. Also, the Ciao emacs interface (mode) can coexist with other Prolog-
related emacs interfaces (modes) (such as, e.g., the SICStus Prolog interface). Only one of the
interfaces can be active at a time for a given buffer (i.e., for each given file opened inside emacs).
In order the change a buffer to a given interface, move the cursor to that buffer and type M-x
...-mode (e.g., for the Ciao mode, M-x ciao-mode).

If several Prolog-related emacs interfaces are loaded, then typically the last one to be loaded
takes precedence, in the sense that this will be the interface in which emacs will be set when
opening files which have a .pl ending (this depends a bit on how things are set up in your
.emacs file).

10.18 Getting the Ciao mode version

〈C-c〉 〈v〉 Report the version of the emacs Ciao mode.

10.19 Using Ciao mode capabilities in standard shells

The capabilities (commands, coloring, error location, ...) which are active in the Ciao inferior
mode can also be made available in any standard command line shell which is being run within
emacs. This can be enabled by going to the buffer in which the shell is running and typing “〈M-x〉

ciao-inferior-mode”. This is very useful for example when running the stand-alone compiler,
the lpdoc auto-documenter, or even certain user applications (those that use the standard error
message library) in an emacs sub-shell. Turning the Ciao inferior mode on on that sub-shell will
highlight and color the error messages, and automatically find and visit the locations in the files
in which the errors are reported.

Finally, one the most useful applications of this is when using the embedded debugger (a
version of the debugger which can be embedded into executables so that an interactive debugging
session can be triggered at any time while running that executable without needing the top-level
shell). If an application is run in a shell buffer which has been set with Ciao inferior mode (〈M-x〉

ciao-inferior-mode) and this application starts emitting output from the embedded debugger
(i.e., which contains the embedded debugger and is debugging its code) then the Ciao emacs
mode will be able to follow these messages, for example tracking execution in the source level
code. This also works if the application is written in a combination of languages, provided the

80 The Ciao System

parts written in Ciao are compiled with the embedded debugger package and is thus a covenient
way of debugging multi-language applications. The only thing needed is to make sure that the
output messages appear in a shell buffer that is in Ciao inferior mode.

10.20 Customization

This section explains all variables used in the Ciao emacs mode which can be customized by
users. Such customization can be performed (in later versions of emacs) from the emacs menus
(Help -> Customize -> Top-level Customization Group), or also by adding a setq expression
in the .emacs file. Such setq expression should be similar to:

(setq <variable> <new_value>)

The following sections list the different variables which can be customized for ciao, ciaopp and
lpdoc.

10.20.1 Ciao general variables

ciao-ask-for-version-maintenance-type (string)
If turned to yes the system asks prompts to set version control when saving files
that do not set a version control system explicitly within the file.

ciao-clip-logo (file)
CLIP logo image.

ciao-create-sample-file-on-startup (boolean)
When starting the Ciao environment using ciao-startup two buffers are opened: one
with a toplevel and another with a sample file. This toggle controls whether the
sample file, meant for novice users, is created or not. Set by default, non-novice
users will probably want to turn it off.

ciao-first-indent-width (integer)
First level indentation for a new goal.

ciao-indent-width (integer)
Indentation for a new goal.

ciao-inhibit-toolbar (boolean)
*Non-nil means don’t use the specialized Ciao toolbar.

ciao-library-path (string)
Path to the Ciao System libraries (reads/sets the CIAOLIB environment variable).
Typically left empty, since ciao executables know which library to use.

ciao-locate-also-note-messages (boolean)
If set, also when errors of type NOTE are detected the corresponding file is visited
and the location marked. It is set to nil by default because sometimes the user prefers
not to take any action with respect to these messages (for example, many come
from the documenter, indicating that adding certain declarations the documentation
would be improved).

ciao-locate-errors-after-run (boolean)
If set, location of any errors produced when running Ciao tools (loading or prepro-
cessing code, running the documenter, etc.) will be initiated automatically. I.e.,
after running a command, the system will automatically highlight any error mes-
sages and the corresponding areas in source files if possible. If set to nil this location
will only happen after typing C-c ‘ or accessing the corresponding menu or tool bar
button.

Chapter 10: Using Ciao inside GNU emacs 81

ciao-logo (file)
Ciao logo image.

ciao-main-filename (string)
Name of main file in a multiple module program. Setting thsi is very useful when
working on a multi-module program because it allows issuing a load command after
working on an inferior module which will reload from the main module, thus also
reloading automatically all dependent modules.

ciao-os-shell-prompt-pattern (string)
Regular expression used to describe the shell prompt pattern, so that error location
works in inferior shells. This is useful for example so that errors are located when
generating documentation, and also when using the embedded debugger or any other
application in a shell. It is best to be as precise as possible when defining this so
that the standard Ciao error location does not get confused.

ciao-query (string)
Query to use in Ciao. Setting this is useful when using a long or complicated query
because it saves from having to type it over and over again. It is possible to set that
this query will be issued any time a program is (re)loaded.

ciao-system (string)
Name of Ciao executable which runs the classical top level.

ciao-system-args (string)
Arguments passed to Ciao toplevel executable.

ciao-toplevel-buffer-name (string)
Basic name of the buffer running the Ciao toplevel inferior process.

ciao-user-directives (list)
List of identifiers of any directives defined by users which you would like highlighted
(colored). Be careful, since wrong entries may affect other syntax highlighting.

10.20.2 CiaoPP variables

ciao-ciaopp-buffer-name (string)
Basic name of the buffer running the Ciao preprocessor inferior process.

ciao-ciaopp-gmenu-buffer-name (string)
Basic name of the buffer running the Ciao preprocessor graphical menu interface.

ciao-ciaopp-system (string)
Name of Ciao preprocessor executable.

ciao-ciaopp-system-args (string)
Arguments passed to Ciao preprocessor executable.

ciao-ciaopp-use-graphical-menu (boolean)
If set, an interactive graphical menu is used for controlling CiaoPP, instead of asking
ascii questions in the CiaoPP buffer.

10.20.3 LPdoc variables

ciao-lpdoc-buffer-name (string)
Basic name of the buffer running the auto-documenter inferior process.

ciao-lpdoc-docformat (symbol)
Name of default output format used by LPdoc.

82 The Ciao System

ciao-lpdoc-libpath (directory)
Path in which the LPdoc library is installed.

ciao-lpdoc-system (string)
Name of LPdoc auto-documenter executable.

ciao-lpdoc-system-args (string)
Arguments passed to LPdoc executable.

ciao-lpdoc-wdir-root (directory)
Name of root working dir used by LPdoc.

10.20.4 Faces used in syntax-based highlighting (coloring)

ciao-button-pressed-widget-face (face)
Face used for documentation text.

ciao-button-widget-face (face)
Face used for documentation text.

ciao-edit-widget-face (face)
Face used for documentation text.

ciao-face-answer-val (face)
Face to use for answer values in top level.

ciao-face-answer-var (face)
Face to use for answer variables in top level.

ciao-face-builtin-directive (face)
Face to use for the standard directives.

ciao-face-check-assrt (face)
Face to use for check assertions.

ciao-face-checked-assrt (face)
Face to use for checked assertions.

ciao-face-ciaopp-option (face)
Face to use for CiaoPP option menus.

ciao-face-clauseheadname (face)
Face to use for clause head functors.

ciao-face-comment (face)
Face to use for code comments using fixed pitch (double %).

ciao-face-comment-variable-pitch (face)
Face to use for code comments using variable pitch (single %).

ciao-face-concurrency-op (face)
Face to use for concurrency operators.

ciao-face-condcode-directive (face)
Face to use for the conditional code directives.

ciao-face-cut (face)
Face to use for cuts.

ciao-face-debug-breakpoint (face)
Face to use with breakpoints in source debugger.

ciao-face-debug-call (face)
Face to use when at call port in source debugger.

Chapter 10: Using Ciao inside GNU emacs 83

ciao-face-debug-exit (face)
Face to use when at exit port in source debugger.

ciao-face-debug-expansion (face)
Face to use in source debugger when source literal not located.

ciao-face-debug-fail (face)
Face to use when at fail port in source debugger.

ciao-face-debug-mess (face)
Face to use for debug messages.

ciao-face-debug-redo (face)
Face to use when at redo port in source debugger.

ciao-face-entry-assrt (face)
Face to use for entry assertions.

ciao-face-error-mess (face)
Face to use for error messages.

ciao-face-false-assrt (face)
Face to use for false assertions.

ciao-face-fontify-sectioning (symbol)
Whether to fontify sectioning macros with varying height or a color face.

If it is a number, use varying height faces. The number is used for scaling starting
from ‘ciao-face-sectioning-5-face’. Typically values from 1.05 to 1.3 give best results,
depending on your font setup. If it is the symbol ‘color’, use ‘font-lock-type-face’.

Caveats: Customizing the scaling factor applies to all sectioning faces unless those
face have been saved by customize. Setting this variable directly does not take effect
unless you call ‘ciao-face-update-sectioning-faces’ or restart Emacs.

Switching from ‘color’ to a number or vice versa does not take effect unless you call
M-x font-lock-fontify-buffer or restart Emacs.

ciao-face-funexp-atom (face)
Face to use for atoms in functional notation.

ciao-face-highlight-code (face)
Face to use for highlighting code areas (e.g., when locating the code area that an
error message refers to).

ciao-face-library-directive (face)
Face to use for directives defined in the library.

ciao-face-lpdoc-bug-comment (face)
Face to use for LPdoc bug comments.

ciao-face-lpdoc-command (face)
Face to use LPdoc commands inserted in documentation text.

ciao-face-lpdoc-comment (face)
Face to use for LPdoc textual comments.

ciao-face-lpdoc-comment-variable-pitch (face)
Face to use for LPdoc textual comments in variable pitch.

ciao-face-lpdoc-crossref (face)
Face to use for LPdoc cross-references.

ciao-face-lpdoc-include (face)
Face to use for LPdoc include commands.

84 The Ciao System

ciao-face-lpdoc-verbatim (face)
Face to use for LPdoc verbatim text.

ciao-face-lpdoc-version-comment (face)
Face to use for LPdoc version comments.

ciao-face-modedef-assrt (face)
Face to use for modedef definitions.

ciao-face-module-directive (face)
Face to use for the module-related directives.

ciao-face-no-answer (face)
Face to use for no answer in top level.

ciao-face-note-mess (face)
Face to use for note messages.

ciao-face-other-mess (face)
Face to use for other messages.

ciao-face-predicate-directive (face)
Face to use for the predicate-related directives.

ciao-face-prompt (face)
Face to use for prompts in top-level and shells.

ciao-face-prop-assrt (face)
Face to use for property definitions.

ciao-face-quoted-atom (face)
Face to use for quoted atoms.

ciao-face-script-header (face)
Face to use for script headers.

ciao-face-sectioning-0-face (face)
Face for sectioning commands at level 0.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-1-face (face)
Face for sectioning commands at level 1.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-2-face (face)
Face for sectioning commands at level 2.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-3-face (face)
Face for sectioning commands at level 3.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-4-face (face)
Face for sectioning commands at level 4.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

Chapter 10: Using Ciao inside GNU emacs 85

ciao-face-sectioning-5-face (face)
Face for sectioning commands at level 5.

ciao-face-startup-mess (face)
Face to use for system splash message.

ciao-face-string (face)
Face to use for strings.

ciao-face-test-assrt (face)
Face to use for test assertions.

ciao-face-texec-assrt (face)
Face to use for texec assertions.

ciao-face-true-assrt (face)
Face to use for true assertions.

ciao-face-trust-assrt (face)
Face to use for trust assertions.

ciao-face-type-assrt (face)
Face to use for type definitions.

ciao-face-user-directive (face)
Face to use for directives defined by the user (see ciao-user-directives custom variable
to add new ones).

ciao-face-variable (face)
Face to use for variables.

ciao-face-warning-mess (face)
Face to use for warning messages.

ciao-face-yes-answer (face)
Face to use for yes answer in top level.

ciao-faces-use-variable-pitch-in-comments (boolean)
Controls whether variable pitch fonts are used when highlighting comments. Unset
by default. After changing this you must exit and reinitialize for the change to take
effect.

ciao-menu-error-widget-face (face)
Face used for menu error representation in graphical interface.

ciao-menu-note-widget-face (face)
Face used for menu note representation in graphical interface.

ciao-text-widget-face (face)
Face used for documentation text.

10.21 Installation of the Ciao emacs interface

If opening a file ending with .pl puts emacs in another mode (such as perl mode, which
is the –arguably incorrect– default setting in some emacs distributions), then either the emacs
mode was not installed or the installation settings are being overwritten by other settings in
your .emacs file or in some library. In any case, you can set things manually so that the Ciao
mode is loaded by default in your system. This can be done by including in your .emacs file a
line such as:

(load <CIAOLIBDIR>/ciao-mode-init)

This loads the above mentioned file from the Ciao library, which contains the following lines
(except that the paths are changed during installation to appropriate values for your system):

86 The Ciao System

; -*- mode: emacs-lisp; -*-
;;
;; Ciao/Prolog mode initialization
;; -------------------------------
;; (can normally be used with other Prolog modes and the default prolog.el)
;;
(setq load-path (cons <v>CIAOLIBDIR</v> load-path))
;; Java mode in ciao
(setq load-path

(cons <v>CIAOLIBDIR</v> load-path))
(defun load-java-ciaopp-mode ()

(require ’java-ciaopp)
(java-ciaopp-setup))

(add-hook ’java-mode-hook ’load-java-ciaopp-mode)

(autoload ’run-ciao-toplevel "ciao"
"Start a Ciao/Prolog top-level sub-process." t)

(autoload ’ciao-startup "ciao"
"The Ciao/Prolog program development system startup screens." t)

(autoload ’ciao "ciao"
"Start a Ciao/Prolog top-level sub-process." t)

(autoload ’prolog "ciao"
"Start a Ciao/Prolog top-level sub-process." t)

(autoload ’run-ciao-preprocessor "ciao"
"Start a Ciao/Prolog preprocessor sub-process." t)

(autoload ’ciaopp "ciao"
"Start a Ciao/Prolog preprocessor sub-process." t)

(autoload ’ciao-mode "ciao"
"Major mode for editing and running Ciao/Prolog" t)

(autoload ’ciao-inferior-mode "ciao"
"Major mode for running Ciao/Prolog, CiaoPP, LPdoc, etc." t)

(setq auto-mode-alist (cons ’("\\.pl$" . ciao-mode) auto-mode-alist))
(setq auto-mode-alist (cons ’("\\.pls$" . ciao-mode) auto-mode-alist))
(setq auto-mode-alist (cons ’("\\.lpdoc$" . ciao-mode) auto-mode-alist))
(setq completion-ignored-extensions

(append ’(".dep" ".itf" ".po" ".asr" ".cpx")
completion-ignored-extensions))

;; --
;; In Un*x, the following (or similar) lines should be included in your
;; .cshrc or .profile to find the manuals (the Ciao installation leaves
;; in the Ciao library directory ’DOTcshrc’ and ’DOTprofile’ files with
;; the right paths which can be included directly in your startup scripts):
;;
;; setenv INFOPATH /usr/local/info:/usr/info:<v>LPDOCDIR</v>
;; --

If you would like to configure things in a different way, you can also copy the contents of this
file to your .emacs file and make the appropriate changes. For example, if you do not want .pl
files to be put automatically in Ciao mode, then comment out (or remove) the line:

(setq auto-mode-alist ...)

Chapter 10: Using Ciao inside GNU emacs 87

You will then need to switch manually to Ciao mode by typing M-x ciao-mode after opening a
Ciao file.

If you are able to open the Ciao menu but the Ciao manuals are not found or the ciao
command (the top-level) is not found when loading .pl files, the probable cause is that you do
not have the Ciao paths in the INFOPATH and MANPATH environment variables (whether these
variables are set automatically or not for users depends on how the Ciao system was installed).
Under Un*x, you can add these paths easily by including the line:

source <CIAOLIBDIR>/DOTcshrc

in your .login or .cshrc files if you are using csh (or tcsh, etc.), or, alternatively, the line:

. <CIAOLIBDIR>/DOTprofile

in your .login or .profile files if you are using sh (or bash, etc.). See the Ciao installation in-
structions (Chapter 231 [Installing Ciao from the source distribution], page 1101 or Chapter 232
[Installing Ciao from a Win32 binary distribution], page 1111) for details.

10.22 Emacs version compatibility

This mode is currently being developed within GNU emacs version 21.3. It should also (hope-
fully) work with all other 21.XX, 20.XX, and later 19.XX versions. We also try our best to keep
things working under xemacs and under the diverse emacs native ports for the mac.

10.23 Acknowledgments (ciao.el)

This code is derived from the 1993 version of the emacs interface for &-Prolog by M.
Hermenegildo, itself derived from the original prolog.el by Masanobu Umeda with changes
by Johan Andersson, Peter Olin, Mats Carlsson, and Johan Bevemyr of SICS, Sweden. Other
changes also by Daniel Cabeza and Manuel C. Rodriguez. See the changelog for details.

88 The Ciao System

PART II - The Ciao basic language (engine) 89

PART II - The Ciao basic language (engine)

� �

Author(s): The CLIP Group.

This part documents the Ciao basic builtins. These predefined predicates and declarations are
available in every program, unless the pure package is used (by using a :- module(_,_,[pure]).
declaration or :- use_package(pure).). These predicates are contained in the engine directory
within the lib library. The rest of the library predicates, including the packages that provide
most of the ISO-Prolog builtins, are documented in subsequent parts.

 	

90 The Ciao System

Chapter 11: The module system 91

11 The module system

Author(s): Daniel Cabeza, The CLIP Group.

Modularity is a basic notion in a modern computer language. Modules allow dividing pro-
grams in several parts, which have its own independent name spaces. The module system in
Ciao [CH00a], as in many other Prolog implementations, is procedure based. This means that
predicate names are local to a module, but functor/atom names in data are shared (at least by
default).

The predicates visible in a module are the predicates defined in that module, plus the pred-
icates imported from other modules. Only predicates exported by a module can be imported
from other modules. The default module of a given predicate name is the local one if the predi-
cate is defined locally, else the last module from which the predicate is imported, where explicit
imports have priority over implicit ones (that is, a predicate imported through a use_module/2
declaration is always preferred over a predicate imported through a use_module/1 declaration).
To refer to a predicate from a module which is not the default module for that predicate the name
has to be module qualified. A module qualified predicate name has the form Module:Predicate
as in the call debugger:debug_module(M). Note that in Ciao this module qualification cannot
be used for gaining access to predicates that have not been imported, nor for defining clauses of
other modules.

All predicates defined in files with no module declaration belong to a special module called
user, from which they are all implicitly exported. This provides backward compatibility for
programs written for implementations with no module system and allows dividing programs
into several files without being aware of the module system at all. Note that this feature is
only supported for the above-mentioned backward-compatibility reasons, and the use of user
files is discouraged. Many attractive compilation features of Ciao cannot be supported for user
modules.

The case of multifile predicates (defined with the declaration multifile/1) is also special.
Multifile predicates can be defined by clauses distributed in several modules, and all modules
which define a predicate as multifile can use that predicate. The name space of multifile predi-
cates is independent, as if they belonged to the special module multifile.

Every user or module file imports implicitly a number of modules called builtin modules.
They are imported before all other importations of the module, thus allowing the redefinition
of any of their predicates (with the exception of true/0) by defining local versions or importing
them from other modules. Importing explicitly from a builtin module, however, disables the
implicit importation of the rest (this feature is used by package library(pure) to define pure
Prolog code).

11.1 Usage and interface (modules)
� �

• Library usage:

Modules are an intrinsic feature of Ciao, so nothing special has to be done to use them.

 	

11.2 Documentation on internals (modules)

DECLARATIONmodule/3:
Usage: :- module(Name,Exports,Packages).

92 The Ciao System

− Description: Declares a module of name Name which exports the predicates in
Exports, and uses the packages in Packages. Name must match with the name of
the file where the module resides, without extension. For each source in Packages, a
package file is used. If the source is specified with a path alias, this is the file included,
if it is an atom, the library paths are searched. See package/1 for a brief description
of package files.

This directive must appear the first in the file.

Also, if the compiler finds an unknown declaration as the first term in a file, the name
of the declaration is regarded as a package library to be included, and the arguments
of the declaration (if present) are interpreted like the arguments of module/3.

− The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)

Exports is a list of prednames. (basic props:list/2)

Packages is a list of sourcenames. (basic props:list/2)

DECLARATIONmodule/2:
Usage: :- module(Name,Exports).

− Description: Same as directive module/3, with an implicit package default. This
default package provides all the standard features provided by most Prolog systems
so that Prolog programs with traditional module/2 declarations can run without any
change.

− The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)

Exports is a list of prednames. (basic props:list/2)

DECLARATIONpackage/1:
Usage: :- package(Name).

− Description: Declares a package of name Name. Like in modules, Name must match
with the name of the file where the package resides, without extension. This directive
must appear the first in the file.

Package files provide syntactic extensions and their related functionalities by defin-
ing operators, new declarations, code translations, etc., as well as declaring imports
from other modules and defining additional code. Most Ciao syntactic and semantic
extensions, such as functional syntax, constraint solving, or breadth-first search are
implemented as packages.

− The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)

DECLARATIONexport/1:
Usage 1: :- export(Pred).

− Description: Adds Pred to the set of exported predicates.

− The following properties hold at call time:

Pred is a Name/Arity structure denoting a predicate name:

Chapter 11: The module system 93

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Usage 2: :- export(Exports).

− Description: Adds Exports to the set of exported predicates.

− The following properties hold at call time:

Exports is a list of prednames. (basic props:list/2)

DECLARATIONuse module/2:
Usage: :- use_module(Module,Imports).

− Description: Specifies that this code imports from the module defined in Module
the predicates in Imports. The imported predicates must be exported by the other
module.

− The following properties hold at call time:

Module is a source name. (streams basic:sourcename/1)

Imports is a list of prednames. (basic props:list/2)

DECLARATIONuse module/1:
Usage: :- use_module(Module).

− Description: Specifies that this code imports from the module defined in Module all
the predicates exported by it. The previous version with the explicit import list is
preferred to this as it minimizes the chances to have to recompile this code if the
other module changes.

− The following properties hold at call time:

Module is a source name. (streams basic:sourcename/1)

DECLARATIONimport/2:
Usage: :- import(Module,Imports).

− Description: Declares that this code imports from the module with name Module the
predicates in Imports.

Important note: this declaration is intended to be used when the current module or
the imported module is going to be dynamically loaded, and so the compiler does not
include the code of the imported module in the current executable (if only because
the compiler cannot know the location of the module file at the time of compilation).
For the same reason the predicates imported are not checked to be exported by
Module. Its use in other cases is strongly discouraged, as it disallows many compiler
optimizations.

− The following properties hold at call time:

Module is a module name (an atom). (modules:modulename/1)

Imports is a list of prednames. (basic props:list/2)

94 The Ciao System

DECLARATIONreexport/2:
Usage: :- reexport(Module,Preds).

− Description: Specifies that this code reexports from the module defined in Module the
predicates in Preds. This implies that this module imports from the module defined
in Module the predicates in Preds, an also that this module exports the predicates in
Preds .

− The following properties hold at call time:

Module is a source name. (streams basic:sourcename/1)

Preds is a list of prednames. (basic props:list/2)

DECLARATIONreexport/1:
Usage: :- reexport(Module).

− Description: Specifies that this code reexports from the module defined in Module all
the predicates exported by it. This implies that this module imports from the module
defined in Module all the predicates exported by it, an also that this module exports
all such predicates .

− The following properties hold at call time:

Module is a source name. (streams basic:sourcename/1)

DECLARATIONmeta predicate/1:
Usage: :- meta_predicate MetaSpecs.

− Description: Specifies that the predicates in MetaSpecs have arguments which has
to be module expanded (predicates, goals, etc). The directive is only mandatory for
exported predicates (in modules). This directive is defined as a prefix operator in the
compiler.

− The following properties hold at call time:

MetaSpecs is a sequence of metaspecs. (basic props:sequence/2)

REGTYPEmodulename/1:
A module name is an atom, not containing characters ‘:’ or ‘$’. Also, user and multifile
are reserved, as well as the module names of all builtin modules (because in an executable
all modules must have distinct names).

Usage: modulename(M)

− Description: M is a module name (an atom).

REGTYPEmetaspec/1:
A meta-predicate specification for a predicate is the functor of that predicate applied
to terms which represent the kind of module expansion that should be applied to each
argument. Possible contents are represented as:

?,+,-,_ These values denote that this argument is not module expanded.

goal This argument will be a term denoting a goal (either a simple or complex one)
which will be called. For commpatibility reasons it can be named as : as well.

clause This argument will be a term denoting a clause.

Chapter 11: The module system 95

fact This argument should be instantiated to a term denoting a fact (head-only
clause).

spec This argument should be instantiated to a predicate name, as Functor/Arity.

pred(N) This argument should be instantiated to a predicate construct to be called by
means of a call/N predicate call (see call/2).

list(Meta)
This argument should be instantiated to a list of terms as described by Meta
(e.g. list(goal)).

addterm(Meta)
This argument should be instantiated to the meta-data specified by Meta, and
an argument added after this one will carry the original data without module
expansion. Not intended to be used by normal users.

addmodule(Meta)
This argument should be instantiated to the meta-data specified by Meta,
and in an argument added after this one will be passed the calling module,
for example to allow handling more involved meta-data by using conversion
builtins. addmodule is an alias of addmodule(?). Not intended to be used by
normal users.

Usage: metaspec(M)

− Description: M is a meta-predicate specification.

96 The Ciao System

Chapter 12: Directives for using code in other files 97

12 Directives for using code in other files

Author(s): Daniel Cabeza.

Documentation for the directives used to load code into Ciao Prolog (both from the toplevel
shell and by other modules).

12.1 Usage and interface (loading_code)
� �

• Library usage:

These directives are builtin in Ciao, so nothing special has to be done to use them.

 	

12.2 Documentation on internals (loading_code)

DECLARATIONensure loaded/1:
Usage: :- ensure_loaded(File). 〈 • ISO • 〉

− Description: Specifies that the code present in File will be included in the executable
being prepared, in the user module. The file File cannot have a module declaration.
This directive is intended to be used by programs not divided in modules. Dividing
programs into modules is however strongly encouraged, since most of the attractive
features of Ciao (such as static debugging and global optimization) are only partially
available for user modules.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

DECLARATIONinclude/1:
Usage: :- include(File). 〈 • ISO • 〉

− Description: The contents of the file File are included in the current program text
exactly as if they had been written in place of this directive.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

DECLARATIONuse package/1:
:- use_package(Package).

Specifies the use in this file of the packages defined in Package. See the description of the
third argument of module/3 for an explanation of package files.

This directive must appear the first in the file, or just after a module/3 declaration. A
file with no module declaration, in the absence of this directive, uses an implicit package
default (see Chapter 31 [Other predicates and features defined by default], page 211).

Usage 1: :- use_package(Package).

− The following properties should hold at call time:

Package is a source name. (streams basic:sourcename/1)

Usage 2: :- use_package(Package).

− The following properties should hold at call time:

Package is a list of sourcenames. (basic props:list/2)

98 The Ciao System

Chapter 13: Control constructs/predicates 99

13 Control constructs/predicates

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This module contains the set of basic control predicates, except the predicates dealing with
exceptions, which are in Chapter 23 [Exception and Signal handling], page 177.

13.1 Usage and interface (basiccontrol)
� �

• Library usage:

These predicates/constructs are builtin in Ciao, so nothing special has to be done to use
them. In fact, as they are hardwired in some parts of the system, most of them cannot be
redefined.

• Exports:

− Predicates:

,/2, ;/2, ->/2, !/0, \+/1, if/3, true/0, fail/0, repeat/0, false/0, otherwise/0.

• Other modules used:

− System library modules:

assertions/native_props, debugger/debugger.

 	

13.2 Documentation on exports (basiccontrol)

PREDICATE,/2:
P,Q

Conjunction (P and Q).

Meta-predicate with arguments: goal,goal.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Q is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATE;/2:
P;Q

Disjunction (P or Q). Note that in Ciao |/2 is not equivalent to ;/2.

Meta-predicate with arguments: goal;goal.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Q is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

100 The Ciao System

PREDICATE->/2:
P->Q

If P then Q else fail, using first solution of P only. Also, (P -> Q ; R), if P then Q else R,
using first solution of P only. No cuts are allowed in P.

Meta-predicate with arguments: goal->goal.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Q is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATE!/0:
Usage: 〈 • ISO • 〉

− Description: Commit to any choices taken in the current predicate.

− The following properties hold globally:

All calls of the form ! are deterministic. (native props:is det/1)

All the calls of the form ! do not fail. (native props:not fails/1)

Goal ! produces 1 solutions. (native props:relations/2)

PREDICATE\+/1:
\+P

Goal P is not provable (negation by failure). Fails if P has a solution, and succeeds
otherwise. No cuts are allowed in P.

Meta-predicate with arguments: \+goal.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as not(X). (basic props:native/2)

All calls of the form \+P are deterministic. (native props:is det/1)

PREDICATEif/3:
if(P,Q,R)

If P then Q else R, exploring all solutions of P. No cuts are allowed in P.

Meta-predicate with arguments: if(goal,goal,goal).

Usage: if(A,B,C)

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

C is currently a term which is not a free variable. (term typing:nonvar/1)

Chapter 13: Control constructs/predicates 101

A is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

B is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

C is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold upon exit:

A is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

B is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

C is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEtrue/0:
General properties:

− The following properties hold globally:

true is evaluable at compile-time. (basic props:eval/1)

Usage: 〈 • ISO • 〉

− Description: Succeed (noop).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

true is side-effect free. (basic props:sideff/2)

All calls of the form true are deterministic. (native props:is det/1)

All the calls of the form true do not fail. (native props:not fails/1)

Goal true produces 1 solutions. (native props:relations/2)

PREDICATEfail/0:
General properties:

− The following properties hold globally:

fail is evaluable at compile-time. (basic props:eval/1)

− The following properties hold globally:

fail is equivalent to fail. (basic props:equiv/2)

Usage: 〈 • ISO • 〉

− Description: Fail, backtrack immediately.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

fail is side-effect free. (basic props:sideff/2)

All calls of the form fail are deterministic. (native props:is det/1)

Calls of the form fail fail. (native props:fails/1)

Goal fail produces 0 solutions. (native props:relations/2)

102 The Ciao System

PREDICATErepeat/0:
Usage: 〈 • ISO • 〉

− Description: Generates an infinite sequence of backtracking choices.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

repeat is side-effect free. (basic props:sideff/2)

PREDICATEfalse/0:
General properties:

− The following properties hold globally:

false is side-effect free. (basic props:sideff/2)

false is evaluable at compile-time. (basic props:eval/1)

PREDICATEotherwise/0:
General properties:

− The following properties hold globally:

otherwise is side-effect free. (basic props:sideff/2)

otherwise is evaluable at compile-time. (basic props:eval/1)

13.3 Known bugs and planned improvements (basiccontrol)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 14: Basic builtin directives 103

14 Basic builtin directives

Author(s): Daniel Cabeza.

This chapter documents the basic builtin directives in Ciao, additional to the documented in
other chapters. These directives are natively interpreted by the Ciao compiler (ciaoc).

Unlike in other Prolog systems, directives in Ciao are not goals to be executed by the compiler
or top level. Instead, they are read and acted upon by these programs. The advantage of this is
that the effect of the directives is consistent for executables, code loaded in the top level, code
analyzed by the preprocessor, etc.

As a result, by default only the builtin directives or declarations defined in this manual can
be used in user programs. However, it is possible to define new declarations using the new_
declaration/1 and new_declaration/2 directives (or using packages including them). Also,
packages may define new directives via code translations.

14.1 Usage and interface (builtin_directives)
� �

• Library usage:

These directives are builtin in Ciao, so nothing special has to be done to use them.

 	

14.2 Documentation on internals (builtin_directives)

DECLARATIONmultifile/1:
Usage: :- multifile Predicates. 〈 • ISO • 〉

− Description: Specifies that each predicate in Predicates may have clauses in more
than one file. Each file that contains clauses for a multifile predicate must contain
a directive multifile for the predicate. The directive should precede all clauses of
the affected predicates, and also dynamic/data declarations for the predicate. This
directive is defined as a prefix operator in the compiler.

− The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic props:sequence or list/2)

DECLARATIONdiscontiguous/1:
Usage: :- discontiguous Predicates. 〈 • ISO • 〉

− Description: Specifies that each predicate in Predicates may be defined in this file
by clauses which are not in consecutive order. Otherwise, a warning is signaled by the
compiler when clauses of a predicate are not consecutive (this behavior is controllable
by the prolog flag discontiguous warnings). The directive should precede all clauses of
the affected predicates. This directive is defined as a prefix operator in the compiler.

− The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic props:sequence or list/2)

DECLARATIONimpl defined/1:
Usage: :- impl_defined(Predicates).

104 The Ciao System

− Description: Specifies that each predicate in Predicates is impl icitly defined in the
current prolog source, either because it is a builtin predicate or because it is defined in
a C file. Otherwise, a warning is signaled by the compiler when an exported predicate
is not defined in the module or imported from other module.

− The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic props:sequence or list/2)

DECLARATIONredefining/1:
Usage: :- redefining(Predicate).

− Description: Specifies that this module redefines predicate Predicate, also imported
from other module, or imports it from more than one module. This prevents the
compiler giving warnings about redefinitions of that predicate. Predicate can be
partially (or totally) uninstantiated, to allow disabling those warnings for several (or
all) predicates at once.

− The following properties should hold at call time:

Predicate is compatible with predname (basic props:compat/2)

DECLARATIONinitialization/1:
Usage: :- initialization(Goal). 〈 • ISO • 〉

− Description: Goal will be executed at the start of the execution of any program
containing the current code. The initialization of a module/file never runs before the
initializations of the modules from which the module/file imports (excluding circular
dependences).

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

DECLARATIONon abort/1:
Usage: :- on_abort(Goal).

− Description: Goal will be executed after an abort of the execution of any program
containing the current code.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Chapter 15: Basic data types and properties 105

15 Basic data types and properties

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This library contains the set of basic properties used by the builtin predicates, and which
constitute the basic data types and properties of the language. They can be used both as type
testing builtins within programs (by calling them explicitly) and as properties in assertions.

15.1 Usage and interface (basic_props)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Properties:

member/2, compat/2, inst/2, iso/1, deprecated/1, not_further_inst/2, sideff/2,
regtype/1, native/1, native/2, no_rtcheck/1, eval/1, equiv/2, bind_ins/1,
error_free/1, memo/1, filter/2, pe_type/1.

− Regular Types:

term/1, int/1, nnegint/1, flt/1, num/1, atm/1, struct/1, gnd/1, gndstr/1,
constant/1, callable/1, operator_specifier/1, list/1, list/2, nlist/2,
sequence/2, sequence_or_list/2, character_code/1, string/1, num_code/1,
predname/1, atm_or_atm_list/1, flag_values/1.

• Other modules used:

− System library modules:

assertions/native_props, terms_check.

 	

15.2 Documentation on exports (basic_props)

REGTYPEterm/1:
The most general type (includes all possible terms).

General properties: term(X)

− The following properties hold globally:

term(X) is side-effect free. (basic props:sideff/2)

term(X)

− The following properties hold globally:

term(X) is evaluable at compile-time. (basic props:eval/1)

term(X)

− The following properties hold globally:

term(X) is equivalent to true. (basic props:equiv/2)

Usage: term(X)

− Description: X is any term.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

106 The Ciao System

REGTYPEint/1:
The type of integers. The range of integers is [-2^2147483616, 2^2147483616). Thus
for all practical purposes, the range of integers can be considered infinite.

General properties: int(T)

− The following properties hold globally:

int(T) is side-effect free. (basic props:sideff/2)

int(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

int(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form int(T) are deterministic. (native props:is det/1)

int(T)

− The following properties hold upon exit:

T is an integer. (basic props:int/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: int(T)

− Description: T is an integer.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEnnegint/1:
The type of non-negative integers, i.e., natural numbers.

General properties: nnegint(T)

− The following properties hold globally:

nnegint(T) is side-effect free. (basic props:sideff/2)

nnegint(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

nnegint(T) is evaluable at compile-time. (basic props:eval/1)

nnegint(T)

− The following properties hold upon exit:

T is a non-negative integer. (basic props:nnegint/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: nnegint(T)

− Description: T is a non-negative integer.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 15: Basic data types and properties 107

REGTYPEflt/1:
The type of floating-point numbers. The range of floats is the one provided by the C
double type, typically [4.9e-324, 1.8e+308] (plus or minus). There are also three spe-
cial values: Infinity, either positive or negative, represented as 1.0e1000 and -1.0e1000;
and Not-a-number, which arises as the result of indeterminate operations, represented as
0.Nan

General properties: flt(T)

− The following properties hold globally:

flt(T) is side-effect free. (basic props:sideff/2)

flt(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

flt(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form flt(T) are deterministic. (native props:is det/1)

flt(T)

− The following properties hold upon exit:

T is a float. (basic props:flt/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: flt(T)

− Description: T is a float.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEnum/1:
The type of numbers, that is, integer or floating-point.

General properties: num(T)

− The following properties hold globally:

num(T) is side-effect free. (basic props:sideff/2)

num(T) is binding insensitive. (basic props:bind ins/1)

num(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

num(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form num(T) are deterministic. (native props:is det/1)

num(T)

− The following properties hold upon exit:

T is a number. (basic props:num/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

108 The Ciao System

Usage: num(T)

− Description: T is a number.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEatm/1:
The type of atoms, or non-numeric constants. The size of atoms is unbound.

General properties: atm(T)

− The following properties hold globally:

atm(T) is side-effect free. (basic props:sideff/2)

atm(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

atm(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form atm(T) are deterministic. (native props:is det/1)

atm(T)

− The following properties hold upon exit:

T is an atom. (basic props:atm/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: atm(T)

− Description: T is an atom.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEstruct/1:
The type of compound terms, or terms with non-zeroary functors. By now there is a limit
of 255 arguments.

General properties: struct(T)

− The following properties hold globally:

struct(T) is side-effect free. (basic props:sideff/2)

struct(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

struct(T) is evaluable at compile-time. (basic props:eval/1)

struct(T)

− The following properties hold upon exit:

T is a compound term. (basic props:struct/1)

Chapter 15: Basic data types and properties 109

Usage: struct(T)

− Description: T is a compound term.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEgnd/1:
The type of all terms without variables.

General properties: gnd(T)

− The following properties hold globally:

gnd(T) is side-effect free. (basic props:sideff/2)

gnd(T)

− If the following properties hold at call time:

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

gnd(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form gnd(T) are deterministic. (native props:is det/1)

gnd(T)

− The following properties hold upon exit:

T is ground. (basic props:gnd/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: gnd(T)

− Description: T is ground.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEgndstr/1:
General properties: gndstr(T)

− The following properties hold globally:

gndstr(T) is side-effect free. (basic props:sideff/2)

gndstr(T)

− If the following properties hold at call time:

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

gndstr(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form gndstr(T) are deterministic. (native props:is det/1)

gndstr(T)

− The following properties hold upon exit:

T is a ground compound term. (basic props:gndstr/1)

Usage: gndstr(T)

110 The Ciao System

− Description: T is a ground compound term.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEconstant/1:
General properties: constant(T)

− The following properties hold globally:

constant(T) is side-effect free. (basic props:sideff/2)

constant(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

constant(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form constant(T) are deterministic. (native props:is det/1)

constant(T)

− The following properties hold upon exit:

T is an atomic term (an atom or a number). (basic props:constant/1)

Usage: constant(T)

− Description: T is an atomic term (an atom or a number).

REGTYPEcallable/1:
General properties: callable(T)

− The following properties hold globally:

callable(T) is side-effect free. (basic props:sideff/2)

callable(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

callable(T) is evaluable at compile-time. (basic props:eval/1)

All calls of the form callable(T) are deterministic. (native props:is det/1)

callable(T)

− The following properties hold upon exit:

T is currently a term which is not a free variable. (term typing:nonvar/1)

Usage: callable(T)

− Description: T is a term which represents a goal, i.e., an atom or a structure.

REGTYPEoperator specifier/1:
The type and associativity of an operator is described by the following mnemonic atoms:

xfx Infix, non-associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than
the operator itself.

Chapter 15: Basic data types and properties 111

xfy Infix, right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence
as the main operator.

yfx Infix, left-associative: same as above, but the other way around.

fx Prefix, non-associative: the subexpression must be of lower precedence than
the operator.

fy Prefix, associative: the subexpression can be of the same precedence as the
operator.

xf Postfix, non-associative: the subexpression must be of lower precedence than
the operator.

yf Postfix, associative: the subexpression can be of the same precedence as the
operator.

General properties: operator_specifier(X)

− The following properties hold globally:

operator_specifier(X) is side-effect free. (basic props:sideff/2)

operator_specifier(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

operator_specifier(X) is evaluable at compile-time. (basic props:eval/1)

All calls of the form operator_specifier(X) are deterministic. (na-
tive props:is det/1)

Goal operator_specifier(X) produces 7 solutions. (native props:relations/2)

operator_specifier(T)

− The following properties hold upon exit:

T specifies the type and associativity of an operator. (ba-
sic props:operator specifier/1)

Usage: operator_specifier(X)

− Description: X specifies the type and associativity of an operator.

REGTYPElist/1:
A list is formed with successive applications of the functor ’.’/2, and its end is the atom
[]. Defined as

list([]).
list([_1|L]) :-

list(L).

General properties: list(L)

− The following properties hold globally:

list(L) is side-effect free. (basic props:sideff/2)

list(L)

− If the following properties hold at call time:

L is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

list(L) is evaluable at compile-time. (basic props:eval/1)

All calls of the form list(L) are deterministic. (native props:is det/1)

112 The Ciao System

list(T)

− The following properties hold upon exit:

T is a list. (basic props:list/1)

Usage: list(L)

− Description: L is a list.

REGTYPElist/2:
list(L,T)

L is a list, and for all its elements, T holds.

Meta-predicate with arguments: list(?,(pred 1)).

General properties: list(L,T)

− The following properties hold globally:

list(L,T) is side-effect free. (basic props:sideff/2)

list(L,T)

− If the following properties hold at call time:

L is currently ground (it contains no variables). (term typing:ground/1)

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

list(L,T) is evaluable at compile-time. (basic props:eval/1)

list(X,T)

− The following properties hold upon exit:

X is a list. (basic props:list/1)

Usage: list(L,T)

− Description: L is a list of Ts.

REGTYPEnlist/2:
Meta-predicate with arguments: nlist(?,(pred 1)).

General properties: nlist(L,T)

− The following properties hold globally:

nlist(L,T) is side-effect free. (basic props:sideff/2)

nlist(L,T)

− If the following properties hold at call time:

L is currently ground (it contains no variables). (term typing:ground/1)

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

nlist(L,T) is evaluable at compile-time. (basic props:eval/1)

nlist(X,T)

− The following properties hold upon exit:

X is any term. (basic props:term/1)

Usage: nlist(L,T)

− Description: L is T or a nested list of Ts. Note that if T is term, this type is equivalent
to term, this fact explain why we do not have a nlist/1 type

Chapter 15: Basic data types and properties 113

PROPERTYmember/2:
General properties: member(X,L)

− The following properties hold globally:

member(X,L) is side-effect free. (basic props:sideff/2)

member(X,L) is binding insensitive. (basic props:bind ins/1)

member(X,L)

− If the following properties hold at call time:

L is a list. (basic props:list/1)

then the following properties hold globally:

member(X,L) is evaluable at compile-time. (basic props:eval/1)

member(_X,L)

− The following properties hold upon exit:

L is a list. (basic props:list/1)

member(X,L)

− If the following properties hold at call time:

L is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold upon exit:

X is currently ground (it contains no variables). (term typing:ground/1)

Usage: member(X,L)

− Description: X is an element of L.

REGTYPEsequence/2:
A sequence is formed with zero, one or more occurrences of the operator ’,’/2. For
example, a, b, c is a sequence of three atoms, a is a sequence of one atom.

Meta-predicate with arguments: sequence(?,(pred 1)).

General properties: sequence(S,T)

− The following properties hold globally:

sequence(S,T) is side-effect free. (basic props:sideff/2)

sequence(S,T)

− If the following properties hold at call time:

S is currently ground (it contains no variables). (term typing:ground/1)

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

sequence(S,T) is evaluable at compile-time. (basic props:eval/1)

sequence(E,T)

− The following properties hold upon exit:

E is currently a term which is not a free variable. (term typing:nonvar/1)

T is currently ground (it contains no variables). (term typing:ground/1)

Usage: sequence(S,T)

− Description: S is a sequence of Ts.

114 The Ciao System

REGTYPEsequence or list/2:
Meta-predicate with arguments: sequence_or_list(?,(pred 1)).

General properties: sequence_or_list(S,T)

− The following properties hold globally:

sequence_or_list(S,T) is side-effect free. (basic props:sideff/2)

sequence_or_list(S,T)

− If the following properties hold at call time:

S is currently ground (it contains no variables). (term typing:ground/1)

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

sequence_or_list(S,T) is evaluable at compile-time. (basic props:eval/1)

sequence_or_list(E,T)

− The following properties hold upon exit:

E is currently a term which is not a free variable. (term typing:nonvar/1)

T is currently ground (it contains no variables). (term typing:ground/1)

Usage: sequence_or_list(S,T)

− Description: S is a sequence or list of Ts.

REGTYPEcharacter code/1:
General properties: character_code(T)

− The following properties hold globally:

character_code(T) is side-effect free. (basic props:sideff/2)

character_code(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

character_code(T) is evaluable at compile-time. (basic props:eval/1)

character_code(I)

− The following properties hold upon exit:

I is an integer which is a character code. (basic props:character code/1)

Usage: character_code(T)

− Description: T is an integer which is a character code.

REGTYPEstring/1:
A string is a list of character codes. The usual syntax for strings "string" is allowed, which
is equivalent to [0’s,0’t,0’r,0’i,0’n,0’g] or [115,116,114,105,110,103]. There
is also a special Ciao syntax when the list is not complete: "st"||R is equivalent to
[0’s,0’t|R].

General properties: string(T)

− The following properties hold globally:

string(T) is side-effect free. (basic props:sideff/2)

Chapter 15: Basic data types and properties 115

string(T)

− If the following properties hold at call time:

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

string(T) is evaluable at compile-time. (basic props:eval/1)

string(T)

− The following properties hold upon exit:

T is a string (a list of character codes). (basic props:string/1)

Usage: string(T)

− Description: T is a string (a list of character codes).

REGTYPEnum code/1:
These are the ASCII codes which can appear in decimal representation of floating point
and integer numbers, including scientific notation and fractionary part.

REGTYPEpredname/1:
General properties: predname(P)

− The following properties hold globally:

predname(P) is side-effect free. (basic props:sideff/2)

predname(P)

− If the following properties hold at call time:

P is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

predname(P) is evaluable at compile-time. (basic props:eval/1)

predname(P)

− The following properties hold upon exit:

P is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Usage: predname(P)

− Description: P is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

REGTYPEatm or atm list/1:
General properties: atm_or_atm_list(T)

− The following properties hold globally:

atm_or_atm_list(T) is side-effect free. (basic props:sideff/2)

116 The Ciao System

atm_or_atm_list(T)

− If the following properties hold at call time:

T is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

atm_or_atm_list(T) is evaluable at compile-time. (basic props:eval/1)

atm_or_atm_list(T)

− The following properties hold upon exit:

T is an atom or a list of atoms. (basic props:atm or atm list/1)

Usage: atm_or_atm_list(T)

− Description: T is an atom or a list of atoms.

PROPERTYcompat/2:
This property captures the notion of type or property compatibility. The instantiation
or constraint state of the term is compatible with the given property, in the sense that
assuming that imposing that property on the term does not render the store inconsistent.
For example, terms X (i.e., a free variable), [Y|Z], and [Y,Z] are all compatible with the
regular type list/1, whereas the terms f(a) and [1|2] are not.

Meta-predicate with arguments: compat(?,(pred 1)).

General properties: compat(Term,Prop)

− If the following properties hold at call time:

Term is currently ground (it contains no variables). (term typing:ground/1)

Prop is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

compat(Term,Prop) is evaluable at compile-time. (basic props:eval/1)

Usage: compat(Term,Prop)

− Description: Term is compatible with Prop

PROPERTYinst/2:
Meta-predicate with arguments: inst(?,(pred 1)).

General properties: inst(Term,Prop)

− The following properties hold globally:

inst(Term,Prop) is side-effect free. (basic props:sideff/2)

inst(Term,Prop)

− If the following properties hold at call time:

Term is currently ground (it contains no variables). (term typing:ground/1)

Prop is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

inst(Term,Prop) is evaluable at compile-time. (basic props:eval/1)

Usage: inst(Term,Prop)

− Description: Term is instantiated enough to satisfy Prop.

Chapter 15: Basic data types and properties 117

PROPERTYiso/1:
Meta-predicate with arguments: iso(goal).

General properties: iso(G)

− The following properties hold globally:

iso(G) is side-effect free. (basic props:sideff/2)

Usage: iso(G)

− Description: Complies with the ISO-Prolog standard.

PROPERTYdeprecated/1:
Specifies that the predicate marked with this global property has been deprecated, i.e.,
its use is not recommended any more since it will be deleted at a future date. Typically
this is done because its functionality has been superseded by another predicate.

Meta-predicate with arguments: deprecated(goal).

General properties: deprecated(G)

− The following properties hold globally:

deprecated(G) is side-effect free. (basic props:sideff/2)

Usage: deprecated(G)

− Description: DEPRECATED.

PROPERTYnot further inst/2:
Meta-predicate with arguments: not_further_inst(goal,?).

General properties: not_further_inst(G,V)

− The following properties hold globally:

not_further_inst(G,V) is side-effect free. (basic props:sideff/2)

Usage: not_further_inst(G,V)

− Description: V is not further instantiated.

PROPERTYsideff/2:
sideff(G,X)

Declares that G is side-effect free (if its execution has no observable result other than its
success, its failure, or its abortion), soft (if its execution may have other observable results
which, however, do not affect subsequent execution, e.g., input/output), or hard (e.g.,
assert/retract).

Meta-predicate with arguments: sideff(goal,?).

General properties: sideff(G,X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

sideff(G,X) is side-effect free. (basic props:sideff/2)

Usage: sideff(G,X)

− Description: G is side-effect X.

− If the following properties hold at call time:

X is an element of [free,soft,hard]. (basic props:member/2)

118 The Ciao System

PROPERTYregtype/1:
Meta-predicate with arguments: regtype goal.

General properties: regtype G

− The following properties hold globally:

regtype G is side-effect free. (basic props:sideff/2)

Usage: regtype G

− Description: Defines a regular type.

PROPERTYnative/1:
Meta-predicate with arguments: native(goal).

General properties: native(P)

− The following properties hold globally:

native(P) is side-effect free. (basic props:sideff/2)

Usage: native(Pred)

− Description: This predicate is understood natively by CiaoPP.

PROPERTYnative/2:
Meta-predicate with arguments: native(goal,?).

General properties: native(P,K)

− The following properties hold globally:

native(P,K) is side-effect free. (basic props:sideff/2)

Usage: native(Pred,Key)

− Description: This predicate is understood natively by CiaoPP as Key.

PROPERTYno rtcheck/1:
Meta-predicate with arguments: no_rtcheck(goal).

General properties: no_rtcheck(G)

− The following properties hold globally:

no_rtcheck(G) is side-effect free. (basic props:sideff/2)

Usage: no_rtcheck(G)

− Description: Declares that the assertion in which this comp property appears must
not be checked at run-time.

PROPERTYeval/1:
Meta-predicate with arguments: eval(goal).

Usage: eval(Goal)

− Description: Goal is evaluable at compile-time.

Chapter 15: Basic data types and properties 119

PROPERTYequiv/2:
Meta-predicate with arguments: equiv(goal,goal).

Usage: equiv(Goal1,Goal2)

− Description: Goal1 is equivalent to Goal2.

PROPERTYbind ins/1:
Meta-predicate with arguments: bind_ins(goal).

Usage: bind_ins(Goal)

− Description: Goal is binding insensitive.

PROPERTYerror free/1:
Meta-predicate with arguments: error_free(goal).

Usage: error_free(Goal)

− Description: Goal is error free.

PROPERTYmemo/1:
Meta-predicate with arguments: memo(goal).

Usage: memo(Goal)

− Description: Goal should be memoized (not unfolded).

PROPERTYfilter/2:
Usage: filter(Vars,Goal)

− Description: Vars should be filtered during global control).

REGTYPEflag values/1:
Usage: flag_values(X)

− Description: Define the valid flag values

PROPERTYpe type/1:
Meta-predicate with arguments: pe_type(goal).

Usage: pe_type(Goal)

− Description: Goal will be filtered in partial evaluation time according to the PE types
defined in the assertion.

15.3 Known bugs and planned improvements (basic_props)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

120 The Ciao System

Chapter 16: Extra-logical properties for typing 121

16 Extra-logical properties for typing

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This library contains traditional Prolog predicates for testing types. They depend on the
state of instantiation of their arguments, thus being of extra-logical nature.

16.1 Usage and interface (term_typing)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Properties:

var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, ground/1,
type/2.

• Other modules used:

− System library modules:

assertions/native_props.

 	

16.2 Documentation on exports (term_typing)

PROPERTYvar/1:
General properties:

− The following properties hold globally:

All calls of the form var(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

var(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

var(X) is side-effect free. (basic props:sideff/2)

var(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

var(X) is evaluable at compile-time. (basic props:eval/1)

var(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

var(X) is equivalent to fail. (basic props:equiv/2)

var(X)

122 The Ciao System

− If the following properties hold at call time:

X is a free variable. (term typing:var/1)

then the following properties hold globally:

var(X) is equivalent to true. (basic props:equiv/2)

Usage: var(X)

− Description: X is a free variable.

− The following properties hold globally:

This predicate is understood natively by CiaoPP as free(X). (basic props:native/2)

PROPERTYnonvar/1:
General properties:

− The following properties hold globally:

All calls of the form nonvar(Arg1) are deterministic. (native props:is det/1)

nonvar(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

nonvar(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

nonvar(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

nonvar(X) is evaluable at compile-time. (basic props:eval/1)

nonvar(T)

− If the following properties hold at call time:

T is a free variable. (term typing:var/1)

then the following properties hold globally:

nonvar(T) is equivalent to fail. (basic props:equiv/2)

nonvar(T)

− If the following properties hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

nonvar(T) is equivalent to true. (basic props:equiv/2)

Usage: nonvar(X)

− Description: X is currently a term which is not a free variable.

− The following properties hold globally:

This predicate is understood natively by CiaoPP as not_free(X). (ba-
sic props:native/2)

Chapter 16: Extra-logical properties for typing 123

PROPERTYatom/1:
General properties: atom(X)

− The following properties hold upon exit:

X is an atom. (basic props:atm/1)

− The following properties hold globally:

All calls of the form atom(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

atom(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

atom(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

atom(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

atom(X) is evaluable at compile-time. (basic props:eval/1)

atom(T)

− If the following properties hold at call time:

T is a free variable. (term typing:var/1)

then the following properties hold globally:

atom(T) is equivalent to fail. (basic props:equiv/2)

Usage: atom(X)

− Description: X is currently instantiated to an atom.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYinteger/1:
General properties: integer(X)

− The following properties hold upon exit:

X is an integer. (basic props:int/1)

− The following properties hold globally:

All calls of the form integer(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

integer(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

integer(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

integer(X)

124 The Ciao System

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

integer(X) is evaluable at compile-time. (basic props:eval/1)

integer(T)

− If the following properties hold at call time:

T is a free variable. (term typing:var/1)

then the following properties hold globally:

integer(T) is equivalent to fail. (basic props:equiv/2)

Usage: integer(X)

− Description: X is currently instantiated to an integer.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYfloat/1:
General properties: float(X)

− The following properties hold upon exit:

X is a float. (basic props:flt/1)

− The following properties hold globally:

All calls of the form float(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

float(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

float(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

float(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

float(X) is evaluable at compile-time. (basic props:eval/1)

float(T)

− If the following properties hold at call time:

T is a free variable. (term typing:var/1)

then the following properties hold globally:

float(T) is equivalent to fail. (basic props:equiv/2)

Usage: float(X)

− Description: X is currently instantiated to a float.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 16: Extra-logical properties for typing 125

PROPERTYnumber/1:
General properties: number(X)

− The following properties hold upon exit:

X is a number. (basic props:num/1)

− The following properties hold globally:

All calls of the form number(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

number(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

number(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

number(X)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

number(X) is evaluable at compile-time. (basic props:eval/1)

number(T)

− If the following properties hold at call time:

T is a free variable. (term typing:var/1)

then the following properties hold globally:

number(T) is equivalent to fail. (basic props:equiv/2)

Usage: number(X)

− Description: X is currently instantiated to a number.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYatomic/1:
General properties: atomic(T)

− The following properties hold upon exit:

T is an atomic term (an atom or a number). (basic props:constant/1)

− The following properties hold globally:

All calls of the form atomic(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

atomic(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

atomic(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

atomic(X)

126 The Ciao System

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

atomic(X) is evaluable at compile-time. (basic props:eval/1)

atomic(T)

− If the following properties hold at call time:

T is a free variable. (term typing:var/1)

then the following properties hold globally:

atomic(T) is equivalent to fail. (basic props:equiv/2)

Usage: atomic(X)

− Description: X is currently instantiated to an atom or a number.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYground/1:
General properties: ground(X)

− The following properties hold upon exit:

X is ground. (basic props:gnd/1)

− The following properties hold globally:

All calls of the form ground(Arg1) are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

ground(X)

− The following properties hold globally:

X is not further instantiated. (basic props:not further inst/2)

ground(X) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

ground(X)

− If the following properties hold at call time:

X is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

ground(X) is evaluable at compile-time. (basic props:eval/1)

ground(X)

− If the following properties hold at call time:

X is a free variable. (term typing:var/1)

then the following properties hold globally:

ground(X) is equivalent to fail. (basic props:equiv/2)

ground(X)

− If the following properties hold at call time:

X is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

ground(X) is equivalent to true. (basic props:equiv/2)

Chapter 16: Extra-logical properties for typing 127

Usage: ground(X)

− Description: X is currently ground (it contains no variables).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYtype/2:
General properties: type(X,Y)

− The following properties hold upon exit:

Y is an atom. (basic props:atm/1)

− The following properties hold globally:

All calls of the form type(Arg1,Arg2) are deterministic. (native props:is det/1)

− The following properties hold globally:

type(Arg1,Arg2) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

type(X,Y)

− If the following properties hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

type(X,Y) is evaluable at compile-time. (basic props:eval/1)

Usage: type(X,Y)

− Description: X is internally of type Y (var, attv, float, integer, structure, atom
or list).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

16.3 Known bugs and planned improvements (term_typing)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

128 The Ciao System

Chapter 17: Basic term manipulation 129

17 Basic term manipulation

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This module provides basic term manipulation.

17.1 Usage and interface (term_basic)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

\=/2, arg/3, functor/3, =../2, copy_term/2, copy_term_nat/2, C/3.

− Properties:

=/2, const_head/1.

− Regular Types:

non_empty_list/1, list_functor/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

17.2 Documentation on exports (term_basic)

PROPERTY=/2:
〈 • ISO • 〉 A property, defined as follows:

X=Y :-
X=Y.

General properties: X=Y

− Description: X and Y unify.

− The following properties hold globally:

X=Y is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

X=Y is evaluable at compile-time. (basic props:eval/1)

All calls of the form X=Y are deterministic. (native props:is det/1)

Goal X=Y produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

PREDICATE\=/2:
General properties: X\=Y

130 The Ciao System

− If the following properties hold at call time:

X is currently ground (it contains no variables). (term typing:ground/1)

Y is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

X\=Y is evaluable at compile-time. (basic props:eval/1)

X\=Y

− The following properties hold globally:

X\=Y is side-effect free. (basic props:sideff/2)

Usage: X\=Y 〈 • ISO • 〉

− Description: X and Y are not unifiable.

− The following properties hold globally:

X\=Y is side-effect free. (basic props:sideff/2)

X\=Y is binding insensitive. (basic props:bind ins/1)

All calls of the form X\=Y are deterministic. (native props:is det/1)

PREDICATEarg/3:
Usage 1: arg(ArgNo,Term,Arg)

− The following properties should hold at call time:

ArgNo is a number. (basic props:num/1)

− The following properties hold globally:

All calls of the form arg(ArgNo,Term,Arg) are deterministic. (native props:is det/1)

Goal arg(ArgNo,Term,Arg) produces inf solutions. (native props:relations/2)

Usage 2: arg(ArgNo,Term,Arg)

− The following properties should hold at call time:

ArgNo is a number. (basic props:num/1)

Term is ground. (basic props:gnd/1)

− The following properties hold upon exit:

Arg is ground. (basic props:gnd/1)

Usage 3: arg(ArgNo,Term,Arg) 〈 • ISO • 〉

− Description: Argument ArgNo of the term Term is Arg.

− The following properties should hold at call time:

ArgNo is a non-negative integer. (basic props:nnegint/1)

Term is a compound term. (basic props:struct/1)

− The following properties hold globally:

arg(ArgNo,Term,Arg) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

arg(ArgNo,Term,Arg) is binding insensitive. (basic props:bind ins/1)

Usage 4: arg(ArgNo,Term,Arg)

− The following properties should hold at call time:

ArgNo is a non-negative integer. (basic props:nnegint/1)

Term is ground. (basic props:gnd/1)

− The following properties hold upon exit:

Arg is ground. (basic props:gnd/1)

Chapter 17: Basic term manipulation 131

PREDICATEfunctor/3:
〈 • ISO • 〉

General properties:

− The following properties hold globally:

functor(Arg1,Arg2,Arg3) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form functor(Arg1,Arg2,Arg3) are deterministic. (na-
tive props:is det/1)

Usage 1: functor(Term,Name,Arity) 〈 • ISO • 〉

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold upon exit:

Name is an atom. (basic props:atm/1)

Arity is a non-negative integer. (basic props:nnegint/1)

− The following properties hold globally:

Term is not further instantiated. (basic props:not further inst/2)

functor(Term,Name,Arity) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

functor(Term,Name,Arity) is binding insensitive. (basic props:bind ins/1)

functor(Term,Name,Arity) is evaluable at compile-time. (basic props:eval/1)

Usage 2: functor(Term,Name,Arity) 〈 • ISO • 〉

− Description: The principal functor of the term Term has name Name and arity Arity.

− The following properties should hold at call time:

Name is currently a term which is not a free variable. (term typing:nonvar/1)

Arity is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold upon exit:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

Name is an atom. (basic props:atm/1)

Arity is a non-negative integer. (basic props:nnegint/1)

− The following properties hold globally:

functor(Term,Name,Arity) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

functor(Term,Name,Arity) is binding insensitive. (basic props:bind ins/1)

functor(Term,Name,Arity) is evaluable at compile-time. (basic props:eval/1)

All the calls of the form functor(Term,Name,Arity) do not fail. (na-
tive props:not fails/1)

Usage 3: functor(Term,Name,Arity)

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

Name is a free variable. (term typing:var/1)

Arity is a free variable. (term typing:var/1)

Term is currently a term which is not a free variable. (term typing:nonvar/1)

132 The Ciao System

− The following properties hold upon exit:

1 is the size of argument Name, for any approximation. (native props:size/2)

arity(Term) is the size of argument Arity, for any approximation. (na-
tive props:size/2)

− The following properties hold globally:

arity is the metric of the variable Term, for any approximation. (na-
tive props:size metric/3)

PREDICATE=../2:
General properties:

− If the following properties hold at call time:

Arg1 is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

Arg1=..Arg2 is evaluable at compile-time. (basic props:eval/1)

Arg1=..List

− If the following properties hold at call time:

List is a list. (basic props:list/1)

term basic:const head(List) (term basic:const head/1)

then the following properties hold globally:

Arg1=..List is evaluable at compile-time. (basic props:eval/1)

Usage: Term=..List 〈 • ISO • 〉

− Description: The functor and arguments of the term Term comprise the list List.

− The following properties hold upon exit:

List is a list. (basic props:list/1)

− The following properties hold globally:

Term=..List is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEnon empty list/1:
Usage: non_empty_list(A)

− Description: A list that is not the empty list [].

PREDICATEcopy term/2:
General properties: copy_term(Term,Copy)

− If the following properties hold at call time:

Term is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

copy_term(Term,Copy) is evaluable at compile-time. (basic props:eval/1)

Usage: copy_term(Term,Copy) 〈 • ISO • 〉

Chapter 17: Basic term manipulation 133

− Description: Copy is a renaming of Term, such that brand new variables have been
substituted for all variables in Term. If any of the variables of Term have attributes,
the copied variables will have copies of the attributes as well. It behaves as if defined
by:

:- data ’copy of’/1.

copy_term(X, Y) :-
asserta_fact(’copy of’(X)),
retract_fact(’copy of’(Y)).

− The following properties should hold globally:

copy_term(Term,Copy) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcopy term nat/2:
Usage: copy_term_nat(Term,Copy)

− Description: Same as copy_term/2, except that attributes of variables are not copied.

− The following properties hold globally:

copy_term_nat(Term,Copy) is side-effect free. (basic props:sideff/2)

PREDICATEC/3:
General properties: C(S1,Terminal,S2)

− If the following properties hold at call time:

A list that is not the empty list []. (term basic:non empty list/1)

then the following properties hold upon exit:

S2 is a list. (basic props:list/1)

− If the following properties hold at call time:

Arg1 is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

C(Arg1,Arg2,Arg3) is evaluable at compile-time. (basic props:eval/1)

Usage 1: C(S1,Terminal,S2)

− The following properties hold upon exit:

term basic:list functor(S1) (term basic:list functor/1)

Usage 2: C(S1,Terminal,S2)

− Description: S1 is connected by the terminal Terminal to S2. Internally used in DCG
grammar rules. Defined as if by the single clause: ’C’([X|S], X, S).

− The following properties hold globally:

C(S1,Terminal,S2) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYconst head/1:
A property, defined as follows:

const_head([Head|_1]) :-
constant(Head).

134 The Ciao System

REGTYPElist functor/1:
A regular type, defined as follows:

list_functor([A|B]) :-
term(A),
term(B).

17.3 Known bugs and planned improvements (term_basic)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 18: Comparing terms 135

18 Comparing terms

Author(s): Daniel Cabeza, Manuel Hermenegildo.

These built-in predicates are extra-logical. They treat uninstantiated variables as objects
with values which may be compared, and they never instantiate those variables. They should
not be used when what you really want is arithmetic comparison or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:

• Variables, by age (roughly, oldest first – the order is not related to the names of variables).

• Floats, in numeric order (e.g. -1.0 is put before 1.0).

• Integers, in numeric order (e.g. -1 is put before 1).

• Atoms, in alphabetical (i.e. character code) order.

• Compound terms, ordered first by arity, then by the name of the principal functor, then
by the arguments in left-to-right order. Recall that lists are equivalent to compound terms
with principal functor ’.’/2.

For example, here is a list of terms in standard order:

[X, -1.0, -9, 1, bar, foo, [1], X = Y, foo(0,2), bar(1,1,1)]

18.1 Usage and interface (term_compare)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

\==/2, @</2, @=</2, @>/2, @>=/2, compare/3.

− Properties:

==/2.

− Regular Types:

comparator/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

18.2 Documentation on exports (term_compare)

PROPERTY==/2:
General properties: Term1==Term2

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

Term1==Term2 is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

Term1==Term2

136 The Ciao System

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

Term1==Term2 is evaluable at compile-time. (basic props:eval/1)

Term1==Term2

− The following properties hold globally:

All calls of the form Term1==Term2 are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: Term1==Term2

− Description: The terms Term1 and Term2 are strictly identical.

PREDICATE\==/2:
General properties: Term1\==Term2

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

Term1\==Term2 is evaluable at compile-time. (basic props:eval/1)

Term1\==Term2

− The following properties hold globally:

All calls of the form Term1\==Term2 are deterministic. (native props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: Term1\==Term2

− Description: The terms Term1 and Term2 are not strictly identical.

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

Term1\==Term2 is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATE@</2:
General properties: Term1@<Term2

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

Term1@<Term2 is evaluable at compile-time. (basic props:eval/1)

Usage: Term1@<Term2

Chapter 18: Comparing terms 137

− Description: The term Term1 precedes the term Term2 in the standard order.

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

Term1@<Term2 is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATE@=</2:
General properties: Term1@=<Term2

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

Term1@=<Term2 is evaluable at compile-time. (basic props:eval/1)

Usage: Term1@=<Term2

− Description: The term Term1 precedes or is identical to the term Term2 in the stan-
dard order.

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

Term1@=<Term2 is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATE@>/2:
General properties: Term1@>Term2

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

Term1@>Term2 is evaluable at compile-time. (basic props:eval/1)

Usage: Term1@>Term2

− Description: The term Term1 follows the term Term2 in the standard order.

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

Term1@>Term2 is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATE@>=/2:
General properties: Term1@>=Term2

138 The Ciao System

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

Term1@>=Term2 is evaluable at compile-time. (basic props:eval/1)

Usage: Term1@>=Term2

− Description: The term Term1 follows or is identical to the term Term2 in the standard
order.

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

Term1@>=Term2 is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcompare/3:
compare(Op,Term1,Term2)

Op is the result of comparing the terms Term1 and Term2.

General properties: compare(Op,Term1,Term2)

− If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term typing:ground/1)

Term2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

compare(Op,Term1,Term2) is evaluable at compile-time. (basic props:eval/1)

Usage:

− Calls should, and exit will be compatible with:

Op is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Term1 is any term. (basic props:term/1)

Term2 is any term. (basic props:term/1)

− The following properties hold upon exit:

Op is an atom. (basic props:atm/1)

Term1 is any term. (basic props:term/1)

Term2 is any term. (basic props:term/1)

term compare:comparator(Op) (term compare:comparator/1)

Term1 is any term. (basic props:term/1)

Term2 is any term. (basic props:term/1)

− The following properties hold globally:

Term1 is not further instantiated. (basic props:not further inst/2)

Term2 is not further instantiated. (basic props:not further inst/2)

compare(Op,Term1,Term2) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 18: Comparing terms 139

REGTYPEcomparator/1:
A regular type, defined as follows:

comparator(=).
comparator(>).
comparator(<).

18.3 Known bugs and planned improvements (term_compare)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

140 The Ciao System

Chapter 19: Basic predicates handling names of constants 141

19 Basic predicates handling names of constants

Author(s): The CLIP Group.

The Ciao system provides builtin predicates which allow dealing with names of constants
(atoms or numbers). Note that sometimes strings (character code lists) are more suitable to
handle sequences of characters.

19.1 Usage and interface (atomic_basic)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

name/2, atom_codes/2, number_codes/2, number_codes/3, atom_number/2, atom_
number/3, atom_length/2, atom_concat/3, sub_atom/4.

− Properties:

number_codes/3.

− Regular Types:

valid_base/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

19.2 Documentation on exports (atomic_basic)

PREDICATEname/2:
name(Const,String)

String is the list of the ASCII codes of the characters comprising the name of Const.
Note that if Const is an atom whose name can be interpreted as a number (e.g. ’96’),
the predicate is not reversible, as that atom will not be constructed when Const is unin-
stantiated. Thus it is recommended that new programs use the ISO-compliant predicates
atom_codes/2 or number_codes/2, as these predicates do not have this inconsistency.

General properties:

− The following properties hold globally:

name(Const,String) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

Usage 1:

− Calls should, and exit will be compatible with:

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Const is an atomic term (an atom or a number). (basic props:constant/1)

− The following properties hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

142 The Ciao System

− The following properties hold globally:

name(Const,String) is evaluable at compile-time. (basic props:eval/1)

Usage 2:

− Description: If String can be interpreted as a number, Const is unified with that
number, otherwise with the atom whose name is String.

− The following properties should hold at call time:

Const is a free variable. (term typing:var/1)

String is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

Const is an atomic term (an atom or a number). (basic props:constant/1)

− The following properties hold globally:

name(Const,String) is evaluable at compile-time. (basic props:eval/1)

PREDICATEatom codes/2:
atom_codes(Atom,String) 〈 • ISO • 〉

String is the list of the ASCII codes of the characters comprising the name of Atom.

General properties: atom_codes(A,B)

− If the following properties should hold at call time:

term basic:A=ao (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=[97,241,111] (term basic:= /2)

then the following properties should hold globally:

All the calls of the form atom_codes(A,B) do not fail. (native props:not fails/1)

All calls of the form atom_codes(A,B) are deterministic. (native props:is det/1)

− The following properties hold globally:

atom_codes(Atom,String) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form atom_codes(Atom,String) are deterministic. (na-
tive props:is det/1)

Usage 1:

− Calls should, and exit will be compatible with:

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

− The following properties hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

− The following properties hold globally:

atom_codes(Atom,String) is evaluable at compile-time. (basic props:eval/1)

Usage 2:

− Calls should, and exit will be compatible with:

Atom is an atom. (basic props:atm/1)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic props:string/1)

Chapter 19: Basic predicates handling names of constants 143

− The following properties hold upon exit:

Atom is an atom. (basic props:atm/1)

− The following properties hold globally:

atom_codes(Atom,String) is evaluable at compile-time. (basic props:eval/1)

PREDICATEnumber codes/2:
number_codes(Number,String) 〈 • ISO • 〉

String is the list of the ASCII codes of the characters comprising a representation of
Number.

General properties:

− The following properties hold globally:

number_codes(Number,String) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

number_codes(A,B)

− If the following properties hold at call time:

A is an integer. (basic props:int/1)

then the following properties hold upon exit:

B is a list of num_codes. (basic props:list/2)

Usage 1:

− Calls should, and exit will be compatible with:

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Number is a number. (basic props:num/1)

− The following properties hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

− The following properties hold globally:

number_codes(Number,String) is evaluable at compile-time. (basic props:eval/1)

Usage 2:

− The following properties should hold at call time:

Number is a free variable. (term typing:var/1)

String is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

Number is a number. (basic props:num/1)

− The following properties hold globally:

number_codes(Number,String) is evaluable at compile-time. (basic props:eval/1)

PREDICATEatom number/2:
atom_number(Atom,Number)

Atom can be read as a representation of Number.

General properties: atom_number(A,B)

144 The Ciao System

− If the following properties should hold at call time:

term basic:B=0.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=0.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=0.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=0.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B= -0.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=-0.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=-0.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:B0= -0.0 (term basic:= /2)

term basic:B=B0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B=1.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=1.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=1.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=1.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B=0.Inf (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=0.Inf (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=0.Inf (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=0.Inf (term basic:= /2)

atom_number(A,B)

Chapter 19: Basic predicates handling names of constants 145

− If the following properties should hold at call time:

term basic:B= -1.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=-1.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=-1.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:B= -1.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B= -1.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=-1.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=-1.0 (term basic:= /2)

then the following properties should hold upon exit:

term basic:B= -1.0 (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B= -0.Inf (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=-0.Inf (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:A=-0.Inf (term basic:= /2)

then the following properties should hold upon exit:

term basic:B= -0.Inf (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B= -0.Inf (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=-0.Inf (term basic:= /2)

atom_number(A,B)

− If the following properties should hold at call time:

term basic:B=0.Nan (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=0.Nan (term basic:= /2)

atom_number(A,B)

146 The Ciao System

− If the following properties should hold at call time:

term basic:A=0.Nan (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=0.Nan (term basic:= /2)

− The following properties hold globally:

atom_number(Atom,Number) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form atom_number(Atom,Number) are deterministic. (na-
tive props:is det/1)

Usage 1:

− Call and exit should be compatible with:

Number is a number. (basic props:num/1)

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Number is a number. (basic props:num/1)

Atom is an atom. (basic props:atm/1)

Number is a number. (basic props:num/1)

− The following properties should hold globally:

atom_number(Atom,Number) is evaluable at compile-time. (basic props:eval/1)

Usage 2:

− The following properties should hold at call time:

Atom is a free variable. (term typing:var/1)

Number is a number. (basic props:num/1)

− The following properties should hold upon exit:

Atom is an atom. (basic props:atm/1)

Atom is an atom. (basic props:atm/1)

Number is a number. (basic props:num/1)

− The following properties should hold globally:

atom_number(Atom,Number) is evaluable at compile-time. (basic props:eval/1)

PREDICATEatom number/3:
atom_number(Atom,Base,Number)

Atom can be read as a representation of Number in base Base.

General properties:

− The following properties hold globally:

atom_number(Atom,Base,Number) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form atom_number(Atom,Base,Number) are deterministic. (na-
tive props:is det/1)

Usage 1:

− Call and exit should be compatible with:

Base is a number. (basic props:num/1)

Chapter 19: Basic predicates handling names of constants 147

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

Number is a number. (basic props:num/1)

− The following properties should hold upon exit:

Base is a number. (basic props:num/1)

Usage 2:

− The following properties should hold at call time:

Atom is a free variable. (term typing:var/1)

Base is a number. (basic props:num/1)

Number is a number. (basic props:num/1)

− The following properties should hold upon exit:

Atom is an atom. (basic props:atm/1)

PREDICATEatom length/2:
atom_length(Atom,Length) 〈 • ISO • 〉

Length is the number of characters forming the name of Atom.

General properties:

− The following properties hold globally:

atom_length(Atom,Length) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form atom_length(Atom,Length) are deterministic. (na-
tive props:is det/1)

Usage:

− Calls should, and exit will be compatible with:

Length is an integer. (basic props:int/1)

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Length is an integer. (basic props:int/1)

− The following properties hold globally:

atom_length(Atom,Length) is evaluable at compile-time. (basic props:eval/1)

PREDICATEatom concat/3:
atom_concat(Atom_1,Atom_2,Atom_12) 〈 • ISO • 〉

Atom_12 is the result of concatenating Atom_1 followed by Atom_2.

General properties:

− The following properties hold globally:

atom_concat(Atom_1,Atom_2,Atom_12) is side-effect free. (basic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form atom_concat(Atom_1,Atom_2,Atom_12) are deterministic. (na-
tive props:is det/1)

Usage 1:

148 The Ciao System

− Description: Concatenate two atoms.

− Calls should, and exit will be compatible with:

Atom_12 is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Atom_12 is an atom. (basic props:atm/1)

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is an atom. (basic props:atm/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold globally:

atom_concat(Atom_1,Atom_2,Atom_12) is evaluable at compile-time. (ba-
sic props:eval/1)

Usage 2:

− Description: Non-deterministically split an atom.

− The following properties should hold at call time:

Atom_1 is a free variable. (term typing:var/1)

Atom_2 is a free variable. (term typing:var/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is an atom. (basic props:atm/1)

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is an atom. (basic props:atm/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold globally:

atom_concat(Atom_1,Atom_2,Atom_12) is evaluable at compile-time. (ba-
sic props:eval/1)

Usage 3:

− Description: Take out of an atom a certain suffix (or fail if it cannot be done).

− The following properties should hold at call time:

Atom_1 is a free variable. (term typing:var/1)

Atom_2 is an atom. (basic props:atm/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Atom_1 is an atom. (basic props:atm/1)

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is an atom. (basic props:atm/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold globally:

atom_concat(Atom_1,Atom_2,Atom_12) is evaluable at compile-time. (ba-
sic props:eval/1)

Usage 4:

Chapter 19: Basic predicates handling names of constants 149

− Description: Take out of an atom a certain prefix (or fail if it cannot be done).

− The following properties should hold at call time:

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is a free variable. (term typing:var/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Atom_2 is an atom. (basic props:atm/1)

Atom_1 is an atom. (basic props:atm/1)

Atom_2 is an atom. (basic props:atm/1)

Atom_12 is an atom. (basic props:atm/1)

− The following properties hold globally:

atom_concat(Atom_1,Atom_2,Atom_12) is evaluable at compile-time. (ba-
sic props:eval/1)

PREDICATEsub atom/4:
sub_atom(Atom,Before,Length,Sub_atom)

Sub_atom is formed with Length consecutive characters of Atom after the Before character.
For example, the goal sub_atom(summer,1,4,umme) succeeds.

General properties:

− The following properties hold globally:

sub_atom(Atom,Before,Length,Sub_atom) is side-effect free. (ba-
sic props:sideff/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

Usage:

− Calls should, and exit will be compatible with:

Sub_atom is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

Before is an integer. (basic props:int/1)

Length is an integer. (basic props:int/1)

− The following properties hold upon exit:

Sub_atom is an atom. (basic props:atm/1)

− The following properties hold globally:

sub_atom(Atom,Before,Length,Sub_atom) is evaluable at compile-time. (ba-
sic props:eval/1)

REGTYPEvalid base/1:
Usage:

− Description: Valid numeric base to convert numbers to strings or atoms

19.3 Known bugs and planned improvements (atomic_basic)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

150 The Ciao System

Chapter 20: Arithmetic 151

20 Arithmetic

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Arithmetic is performed by built-in predicates which take as arguments arithmetic expressions
(see arithexpression/1) and evaluate them. Terms representing arithmetic expressions can
be created dynamically, but at the time of evaluation, each variable in an arithmetic expression
must be bound to a non-variable expression (the term must be ground). For example, given the
code in the first line a possible shell interaction follows:

evaluate(Expression, Answer) :- Answer is Expression.

?- _X=24*9, evaluate(_X+6, Ans).

Ans = 222 ?

yes

20.1 Usage and interface (arithmetic)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

is/2, </2, =</2, >/2, >=/2, =:=/2, =\=/2.

− Regular Types:

arithexpression/1, intexpression/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

20.2 Documentation on exports (arithmetic)

PREDICATEis/2:
Val is Exp 〈 • ISO • 〉

The arithmetic expression Exp is evaluated and the result is unified with Val

General properties: X is Y

− Description: is/2, sqrt test

− If the following properties should hold at call time:

term basic:Y=sqrt(4) (term basic:= /2)

then the following properties should hold upon exit:

term basic:X=2.0 (term basic:= /2)

A is B

− The following properties hold globally:

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

152 The Ciao System

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Val is Exp is side-effect free. (basic props:sideff/2)

Val is Exp is binding insensitive. (basic props:bind ins/1)

All calls of the form Val is Exp are deterministic. (native props:is det/1)

Goal Val is Exp produces inf solutions. (native props:relations/2)

Usage 1: A is B

− The following properties should hold at call time:

A is a free variable. (term typing:var/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is a free variable. (term typing:var/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold upon exit:

A is a number. (basic props:num/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

int(B) is the size of argument A, for any approximation. (native props:size/2)

− The following properties hold globally:

All the calls of the form A is B do not fail. (native props:not fails/1)

A is B is evaluable at compile-time. (basic props:eval/1)

Usage 2: A is B

− The following properties should hold at call time:

A is a free variable. (term typing:var/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is a free variable. (term typing:var/1)

B is an integer expression. (arithmetic:intexpression/1)

− The following properties hold upon exit:

A is an integer. (basic props:int/1)

B is an integer expression. (arithmetic:intexpression/1)

int(B) is the size of argument A, for any approximation. (native props:size/2)

− The following properties hold globally:

All the calls of the form A is B do not fail. (native props:not fails/1)

A is B is evaluable at compile-time. (basic props:eval/1)

Usage 3: A is B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is a number. (basic props:num/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Chapter 20: Arithmetic 153

Usage 4: A is B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an integer. (basic props:int/1)

B is an integer expression. (arithmetic:intexpression/1)

− The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

PREDICATE</2:
Exp1<Exp2 〈 • ISO • 〉

The numeric value of Exp1 is less than the numeric value of Exp2 when both are evaluated
as arithmetic expressions.

General properties:

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Exp1<Exp2 is side-effect free. (basic props:sideff/2)

Exp1<Exp2 is binding insensitive. (basic props:bind ins/1)

All calls of the form Exp1<Exp2 are deterministic. (native props:is det/1)

Goal Exp1<Exp2 produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: A<B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an arithmetic expression. (arithmetic:arithexpression/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold globally:

A<B is evaluable at compile-time. (basic props:eval/1)

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

PREDICATE=</2:
Exp1=<Exp2 〈 • ISO • 〉

The numeric value of Exp1 is less than or equal to the numeric value of Exp2 when both
are evaluated as arithmetic expressions.

General properties:

154 The Ciao System

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Exp1=<Exp2 is side-effect free. (basic props:sideff/2)

Exp1=<Exp2 is binding insensitive. (basic props:bind ins/1)

All calls of the form Exp1=<Exp2 are deterministic. (native props:is det/1)

Goal Exp1=<Exp2 produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: A=<B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an arithmetic expression. (arithmetic:arithexpression/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold globally:

A=<B is evaluable at compile-time. (basic props:eval/1)

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

PREDICATE>/2:
Exp1>Exp2 〈 • ISO • 〉

The numeric value of Exp1 is greater than the numeric value of Exp2 when both are
evaluated as arithmetic expressions.

General properties:

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Exp1>Exp2 is side-effect free. (basic props:sideff/2)

Exp1>Exp2 is binding insensitive. (basic props:bind ins/1)

All calls of the form Exp1>Exp2 are deterministic. (native props:is det/1)

Goal Exp1>Exp2 produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: A>B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an arithmetic expression. (arithmetic:arithexpression/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold globally:

A>B is evaluable at compile-time. (basic props:eval/1)

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

Chapter 20: Arithmetic 155

PREDICATE>=/2:
Exp1>=Exp2 〈 • ISO • 〉

The numeric value of Exp1 is greater than or equal to the numeric value of Exp2 when
both are evaluated as arithmetic expressions.

General properties:

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Exp1>=Exp2 is side-effect free. (basic props:sideff/2)

Exp1>=Exp2 is binding insensitive. (basic props:bind ins/1)

All calls of the form Exp1>=Exp2 are deterministic. (native props:is det/1)

Goal Exp1>=Exp2 produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: A>=B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an arithmetic expression. (arithmetic:arithexpression/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold globally:

A>=B is evaluable at compile-time. (basic props:eval/1)

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

PREDICATE=:=/2:
Exp1=:=Exp2 〈 • ISO • 〉

The numeric values of Exp1 and Exp2 are equal when both are evaluated as arithmetic
expressions.

General properties:

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Exp1=:=Exp2 is side-effect free. (basic props:sideff/2)

Exp1=:=Exp2 is binding insensitive. (basic props:bind ins/1)

All calls of the form Exp1=:=Exp2 are deterministic. (native props:is det/1)

Goal Exp1=:=Exp2 produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: A=:=B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an arithmetic expression. (arithmetic:arithexpression/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

156 The Ciao System

− The following properties hold globally:

A=:=B is evaluable at compile-time. (basic props:eval/1)

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

PREDICATE=\=/2:
Exp1=\=Exp2 〈 • ISO • 〉

The numeric values of Exp1 and Exp2 are not equal when both are evaluated as arithmetic
expressions.

General properties:

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Exp1=\=Exp2 is side-effect free. (basic props:sideff/2)

Exp1=\=Exp2 is binding insensitive. (basic props:bind ins/1)

All calls of the form Exp1=\=Exp2 are deterministic. (native props:is det/1)

Goal Exp1=\=Exp2 produces inf solutions. (native props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: A=\=B

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

B is currently a term which is not a free variable. (term typing:nonvar/1)

A is an arithmetic expression. (arithmetic:arithexpression/1)

B is an arithmetic expression. (arithmetic:arithexpression/1)

− The following properties hold globally:

A=\=B is evaluable at compile-time. (basic props:eval/1)

int is the metric of the variable A, for any approximation. (na-
tive props:size metric/3)

int is the metric of the variable B, for any approximation. (na-
tive props:size metric/3)

REGTYPEarithexpression/1:
An arithmetic expression is a term built from numbers and evaluable functors that repre-
sent arithmetic functions. An arithmetic expression evaluates to a number, which may be
an integer (int/1) or a float (flt/1). The evaluable functors allowed in an arithmetic
expression are listed below, together with an indication of the functions they represent.
All evaluable functors defined in ISO-Prolog are implemented, as well as some other use-
ful or traditional. Unless stated otherwise, an expression evaluates to a float if any of its
arguments is a float, otherwise to an integer.

• - /1: sign reversal. 〈 • ISO • 〉

• + /1: identity.

• -- /1: decrement by one.

Chapter 20: Arithmetic 157

• ++ /1: increment by one.

• + /2: addition. 〈 • ISO • 〉

• - /2: subtraction. 〈 • ISO • 〉

• * /2: multiplication. 〈 • ISO • 〉

• // /2: integer division. Float arguments are truncated to integers, result always
integer. 〈 • ISO • 〉

• / /2: division. Result always float. 〈 • ISO • 〉

• rem/2: integer remainder. The result is always an integer, its sign is the sign of the
first argument. 〈 • ISO • 〉

• mod/2: modulo. The result is always a positive integer. 〈 • ISO • 〉

• abs/1: absolute value. 〈 • ISO • 〉

• sign/1: sign of. 〈 • ISO • 〉

• float_integer_part/1: float integer part. Result always float. 〈 • ISO • 〉

• float_fractional_part/1: float fractional part. Result always float. 〈 • ISO • 〉

• truncate/1: The result is the integer equal to the integer part of the argument.
〈 • ISO • 〉

• integer/1: same as truncate/1.

• float/1: conversion to float. 〈 • ISO • 〉

• floor/1: largest integer not greater than. 〈 • ISO • 〉

• round/1: integer nearest to. 〈 • ISO • 〉

• ceiling/1: smallest integer not smaller than. 〈 • ISO • 〉

• ** /2: exponentiation. Result always float. 〈 • ISO • 〉

• >> /2: integer bitwise right shift. 〈 • ISO • 〉

• << /2: integer bitwise left shift. 〈 • ISO • 〉

• /\ /2: integer bitwise and. 〈 • ISO • 〉

• \/ /2: integer bitwise or. 〈 • ISO • 〉

• \ /1: integer bitwise complement. 〈 • ISO • 〉

• # /2: integer bitwise exclusive or (xor).

• exp/1: exponential (e to the power of). Result always float. 〈 • ISO • 〉

• log/1: natural logarithm (base e). Result always float. 〈 • ISO • 〉

• sqrt/1: square root. Result always float. 〈 • ISO • 〉

• sin/1: sine. Result always float. 〈 • ISO • 〉

• cos/1: cosine. Result always float. 〈 • ISO • 〉

• atan/1: arc tangent. Result always float. 〈 • ISO • 〉

• gcd/2: Greatest common divisor. Arguments must evaluate to integers, result always
integer.

In addition to these functors, a list of just a number evaluates to this number. Since a
quoted string is just a list of integers, this allows a quoted character to be used in place
of its ASCII code; e.g. "A" behaves within arithmetic expressions as the integer 65. Note
that this is not ISO-compliant, and that can be achieved by using the ISO notation 0’A.

Arithmetic expressions, as described above, are just data structures. If you want one
evaluated you must pass it as an argument to one of the arithmetic predicates defined in
this library.

General properties:

158 The Ciao System

− The following properties hold globally:

arithexpression(Arg1) is side-effect free. (basic props:sideff/2)

− If the following properties hold at call time:

Arg1 is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

All calls of the form arithexpression(Arg1) are deterministic. (na-
tive props:is det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native props:test type/2)

Usage: arithexpression(E)

− Description: E is an arithmetic expression.

REGTYPEintexpression/1:
General properties:

− The following properties hold globally:

intexpression(Arg1) is side-effect free. (basic props:sideff/2)

Usage: intexpression(E)

− Description: E is an integer expression.

20.3 Known bugs and planned improvements (arithmetic)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 21: Basic file/stream handling 159

21 Basic file/stream handling

Author(s): Daniel Cabeza, Mats Carlsson.

This module provides basic predicates for handling files and streams, in order to make in-
put/output on them.

21.1 Usage and interface (streams_basic)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

open/3, open/4, close/1, set_input/1, current_input/1, set_output/1, current_
output/1, character_count/2, line_count/2, line_position/2, flush_output/1,
flush_output/0, clearerr/1, current_stream/3, stream_code/2, absolute_file_
name/2, absolute_file_name/7, pipe/2.

− Regular Types:

open_option_list/1, sourcename/1, stream/1, stream_alias/1, io_mode/1, atm_
or_int/1.

− Multifiles:

file_search_path/2, library_directory/1.

 	

21.2 Documentation on exports (streams_basic)

PREDICATEopen/3:
open(File,Mode,Stream)

Open File with mode Mode and return in Stream the stream associated with the file. No
extension is implicit in File.

Usage 1: 〈 • ISO • 〉

− Description: Normal use.

− Call and exit should be compatible with:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

Mode is an opening mode (’read’, ’write’ or ’append’). (streams basic:io mode/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Usage 2:

− Description: In the special case that File is an integer, it is assumed to be a file
descriptor passed to Prolog from a foreign function call. The file descriptor is con-
nected to a Prolog stream (invoking the UNIX function fdopen) which is unified with
Stream.

160 The Ciao System

− Call and exit should be compatible with:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

File is an integer. (basic props:int/1)

Mode is an opening mode (’read’, ’write’ or ’append’). (streams basic:io mode/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

PREDICATEopen/4:
open(File,Mode,Stream,Options)

Same as open(File, Mode, Stream) with options Options. See the definition of open_
option_list/1 for details.

Usage:

− Call and exit should be compatible with:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

Mode is an opening mode (’read’, ’write’ or ’append’). (streams basic:io mode/1)

Options is a list of options for open/4. (streams basic:open option list/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEopen option list/1:
A list of options for open/4, currently the meaningful options are:

lock Try to set an advisory lock for the file. If the open mode is read, the lock is
a read (shared) lock, else it is a write (exclusive) lock. If the lock cannot be
acquired, the call waits until it is released (but can fail in exceptional cases).

lock_nb Same as lock, but the call immediately fails if the lock cannot be acquired.

lock(Lock_Mode)
Same as lock, but specifying in Lock_Mode whether the lock is read (also
shared) or write (also exclusive). This option has be included for compat-
ibility with the SWI-Prolog locking options, because in general the type of
lock should match the open mode as in the lock option.

lock_nb(Lock_Mode)
Same as the previous option but with the lock_nb behavior.

All file locking is implemented via the POSIX function fcntl(). Please refer to its manual
page for details.

Usage: open_option_list(L)

− Description: L is a list of options for open/4.

Chapter 21: Basic file/stream handling 161

PREDICATEclose/1:
close(Stream)

Close the stream Stream.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEset input/1:
set_input(Stream)

Set the current input stream to Stream. A notion of current input stream is maintained
by the system, so that input predicates with no explicit stream operate on the current
input stream. Initially it is set to user_input.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent input/1:
current_input(Stream)

Unify Stream with the current input stream. In addition to the ISO behavior, stream
aliases are allowed. This is useful for most applications checking whether a stream is the
standard input or output.

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEset output/1:
set_output(Stream)

Set the current output stream to Stream. A notion of current output stream is maintained
by the system, so that output predicates with no explicit stream operate on the current
output stream. Initially it is set to user_output.

Usage: 〈 • ISO • 〉

162 The Ciao System

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent output/1:
current_output(Stream)

Unify Stream with the current output stream. The same comment as for current_input/1
applies.

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcharacter count/2:
character_count(Stream,Count)

Count characters have been read from or written to Stream.

Usage:

− Calls should, and exit will be compatible with:

Count is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Count is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEline count/2:
line_count(Stream,Count)

Count lines have been read from or written to Stream.

Usage:

− Calls should, and exit will be compatible with:

Count is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Count is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 21: Basic file/stream handling 163

PREDICATEline position/2:
line_position(Stream,Count)

Count characters have been read from or written to the current line of Stream.

Usage:

− Calls should, and exit will be compatible with:

Count is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Count is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEflush output/1:
flush_output(Stream)

Flush any buffered data to output stream Stream.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEflush output/0:
flush_output

Behaves like current_output(S), flush_output(S)

PREDICATEclearerr/1:
clearerr(Stream)

Clear the end-of-file and error indicators for input stream Stream.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

PREDICATEcurrent stream/3:
current_stream(Filename,Mode,Stream)

Stream is a stream which was opened in mode Mode and which is connected to the abso-
lute file name Filename (an atom) or to the file descriptor Filename (an integer). This
predicate can be used for enumerating all currently open streams through backtracking.

Usage:

164 The Ciao System

− Calls should, and exit will be compatible with:

streams basic:atm or int(Filename) (streams basic:atm or int/1)

Mode is an opening mode (’read’, ’write’ or ’append’). (streams basic:io mode/1)

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

streams basic:atm or int(Filename) (streams basic:atm or int/1)

Mode is an opening mode (’read’, ’write’ or ’append’). (streams basic:io mode/1)

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEstream code/2:
stream_code(Stream,StreamCode)

StreamCode is the file descriptor (an integer) corresponding to the Prolog stream Stream.

Usage 1:

− Calls should, and exit will be compatible with:

StreamCode is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

StreamCode is an integer. (basic props:int/1)

Usage 2:

− The following properties should hold at call time:

Stream is a free variable. (term typing:var/1)

StreamCode is an integer. (basic props:int/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

PREDICATEabsolute file name/2:
absolute_file_name(RelFileSpec,AbsFileSpec)

If RelFileSpec is an absolute pathname then do an absolute lookup. If RelFileSpec
is a relative pathname then prefix the name with the name of the current directory and
do an absolute lookup. If RelFileSpec is a path alias, perform the lookup following the
path alias rules (see sourcename/1). In all cases: if a matching file with suffix .pl exists,
then AbsFileSpec will be unified with this file. Failure to open a file normally causes an
exception. The behaviour can be controlled by the fileerrors prolog flag.

Usage: absolute_file_name(RelFileSpec,AbsFileSpec)

− Description: AbsFileSpec is the absolute name (with full path) of RelFileSpec.

− Call and exit should be compatible with:

RelFileSpec is a source name. (streams basic:sourcename/1)

AbsFileSpec is an atom. (basic props:atm/1)

− The following properties should hold at call time:

RelFileSpec is currently a term which is not a free variable. (term typing:nonvar/1)

AbsFileSpec is a free variable. (term typing:var/1)

Chapter 21: Basic file/stream handling 165

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEabsolute file name/7:
absolute_file_name(Spec,Opt,Suffix,CurrDir,AbsFile,AbsBase,AbsDir)

AbsFile is the absolute name (with full path) of Spec, which has an optional first suffix Opt
and an optional second suffix Suffix, when the current directory is CurrDir. AbsBase is
the same as AbsFile, but without the second suffix, and AbsDir is the absolute path of the
directory where AbsFile is. The Ciao compiler invokes this predicate with Opt=’_opt’
and Suffix=’.pl’ when searching source files.

Usage:

− The following properties should hold at call time:

Spec is a source name. (streams basic:sourcename/1)

Opt is an atom. (basic props:atm/1)

Suffix is an atom. (basic props:atm/1)

CurrDir is an atom. (basic props:atm/1)

AbsFile is a free variable. (term typing:var/1)

AbsBase is a free variable. (term typing:var/1)

AbsDir is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

AbsFile is an atom. (basic props:atm/1)

AbsBase is an atom. (basic props:atm/1)

AbsDir is an atom. (basic props:atm/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEpipe/2:
Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Arg1 is a free variable. (term typing:var/1)

Arg2 is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Arg1 is an open stream. (streams basic:stream/1)

Arg2 is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEsourcename/1:
A source name is a flexible way of referring to a concrete file. A source name is either a
relative or absolute filename given as:

• an atom, or

• a unary functor (which represents a path alias, see below) applied to a relative path,
the latter being given as an atom.

166 The Ciao System

In all cases certain filename extensions (e.g., .pl) can be implicit. In the first form above,
file names can be relative to the current directory. Also, file names beginning with ~ or $
are treated specially. For example,

’~/ciao/sample.pl’
is equivalent to ’/home/staff/herme/ciao/sample.pl’, if
/home/staff/herme is the user’s home directory. (This is also equivalent
to ’$HOME/ciao/sample.pl’ as explained below.)

’~bardo/prolog/sample.pl’
is equivalent to ’/home/bardo/prolog/sample.pl’, if /home/bardo is
bardo’s home directory.

’$UTIL/sample.pl’
is equivalent to ’/usr/local/src/utilities/sample.pl’, if
/usr/local/src/utilities is the value of the environment variable UTIL.

The second form allows using path aliases. Such aliases allow refering to files not with
absolute file system paths but with paths which are relative to predefined (or user-
defined) abstract names. For example, given the path alias myutils which has been
defined to refer to path ’/home/bardo/utilities’, if that directory contains the file
stuff.pl then the term myutils(stuff) in a use_module/1 declaration would refer to
the file ’/home/bardo/utilities/stuff.pl’ (the .pl extension is implicit in the use_
module/1 declaration). As a special case, if that directory contains a subdirectory named
stuff which in turn contains the file stuff.pl, the same term would refer to the file
’/home/bardo/utilities/stuff/stuff.pl’. If a path alias is related to several paths,
all paths are scanned in sequence until a match is found. For information on predefined
path aliases or how to define new path aliases, see file_search_path/2.

Usage: sourcename(F)

− Description: F is a source name.

REGTYPEstream/1:
Streams correspond to the file pointers used at the operating system level, and usually
represent opened files. There are four special streams which correspond with the operating
system standard streams:

user_input
The standard input stream, i.e. the terminal, usually.

user_output
The standard output stream, i.e. the terminal, usually.

user_error
The standard error stream.

user The standard input or output stream, depending on context.

Usage: stream(S)

− Description: S is an open stream.

REGTYPEstream alias/1:
Usage: stream_alias(S)

− Description: S is the alias of an open stream, i.e., an atom which represents a stream
at Prolog level.

Chapter 21: Basic file/stream handling 167

REGTYPEio mode/1:
Can have the following values:

read Open the file for input.

write Open the file for output. The file is created if it does not already exist, the
file will otherwise be truncated.

append Open the file for output. The file is created if it does not already exist, the
file will otherwise be appended to.

Usage: io_mode(M)

− Description: M is an opening mode (’read’, ’write’ or ’append’).

REGTYPEatm or int/1:
A regular type, defined as follows:

atm_or_int(X) :-
atm(X).

atm_or_int(X) :-
int(X).

21.3 Documentation on multifiles (streams_basic)

PREDICATEfile search path/2:
file_search_path(Alias,Path)

The path alias Alias is linked to path Path. Both arguments must be atoms. New facts
(or clauses) of this predicate can be asserted to define new path aliases. Predefined path
aliases in Ciao are:

library Initially points to all Ciao library paths. See library_directory/1.

engine The path of the Ciao engine builtins.

. The current path (’.’).

The predicate is multifile.

The predicate is of type dynamic.

file_search_path(X,Y)

− The following properties hold upon exit:

X is ground. (basic props:gnd/1)

Y is ground. (basic props:gnd/1)

PREDICATElibrary directory/1:
library_directory(Path)

Path is a library path (a path represented by the path alias library). Predefined library
paths in Ciao are ’$CIAOLIB/lib’, ’$CIAOLIB/library’, and ’$CIAOLIB/contrib’,
given that $CIAOLIB is the path of the root ciao library directory. More library paths
can be defined by asserting new facts (or clauses) of this predicate.

The predicate is multifile.

The predicate is of type dynamic.

library_directory(X)

168 The Ciao System

− The following properties hold upon exit:

X is ground. (basic props:gnd/1)

21.4 Known bugs and planned improvements (streams_basic)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 22: Basic input/output 169

22 Basic input/output

Author(s): Daniel Cabeza, Mats Carlsson.

This module provides predicates for character input/output and for canonical term out-
put. From the ISO-Prolog predicates for character input/output, only the _code versions are
provided, the rest are given by library(iso_byte_char), using these. Most predicates are
provided in two versions: one that specifies the input or output stream as the first argument
and a second which omits this argument and uses the current input or output stream.

22.1 Usage and interface (io_basic)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

get_code/2, get_code/1, get1_code/2, get1_code/1, peek_code/2, peek_code/1,
skip_code/2, skip_code/1, skip_line/1, skip_line/0, put_code/2, put_code/1,
nl/1, nl/0, tab/2, tab/1, code_class/2, getct/2, getct1/2, display/2, display/1,
displayq/2, displayq/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

22.2 Documentation on exports (io_basic)

PREDICATEget code/2:
get_code(Stream,Code)

Reads from Stream the next character and unifies Code with its character code. At end
of stream, unifies Code with the integer -1.

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEget code/1:
get_code(Code)

Behaves like current_input(S), get_code(S,Code).

Usage: 〈 • ISO • 〉

170 The Ciao System

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEget1 code/2:
get1_code(Stream,Code)

Reads from Stream the next non-layout character (see code_class/2) and unifies Code
with its character code. At end of stream, unifies Code with the integer -1.

Usage:

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEget1 code/1:
get1_code(Code)

Behaves like current_input(S), get1_code(S,Code).

Usage:

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEpeek code/2:
peek_code(Stream,Code)

Unifies Code with the character code of the next character of Stream, leaving the stream
position unaltered. At end of stream, unifies Code with the integer -1.

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

Chapter 22: Basic input/output 171

PREDICATEpeek code/1:
peek_code(Code)

Behaves like current_input(S), peek_code(S,Code).

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

PREDICATEskip code/2:
skip_code(Stream,Code)

Skips just past the next character code Code from Stream.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Code is an integer. (basic props:int/1)

PREDICATEskip code/1:
skip_code(Code)

Behaves like current_input(S), skip_code(S,Code).

Usage:

− The following properties should hold at call time:

Code is an integer. (basic props:int/1)

PREDICATEskip line/1:
skip_line(Stream)

Skips from Stream the remaining input characters on the current line. If the end of the
stream is reached, the stream will stay at its end. Portable among different operating
systems.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

PREDICATEskip line/0:
skip_line

Behaves like current_input(S), skip_line(S).

172 The Ciao System

PREDICATEput code/2:
put_code(Stream,Code)

Outputs to Stream the character corresponding to character code Code.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Code is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form put_code(Stream,Code) are deterministic. (na-
tive props:is det/1)

PREDICATEput code/1:
put_code(Code)

Behaves like current_output(S), put_code(S,Code).

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Code is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form put_code(Code) are deterministic. (native props:is det/1)

PREDICATEnl/1:
nl(Stream)

Outputs a newline character to Stream. Equivalent to put_code(Stream, 0’\n).

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form nl(Stream) are deterministic. (native props:is det/1)

All the calls of the form nl(Stream) do not fail. (native props:not fails/1)

PREDICATEnl/0:
nl

Behaves like current_output(S), nl(S).

Usage: 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form nl are deterministic. (native props:is det/1)

All the calls of the form nl do not fail. (native props:not fails/1)

Goal nl produces 1 solutions. (native props:relations/2)

Chapter 22: Basic input/output 173

PREDICATEtab/2:
tab(Stream,Num)

Outputs Num spaces to Stream.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Num is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form tab(Stream,Num) are deterministic. (native props:is det/1)

PREDICATEtab/1:
tab(Num)

Behaves like current_output(S), tab(S,Num).

Usage:

− The following properties should hold at call time:

Num is an integer. (basic props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

All calls of the form tab(Num) are deterministic. (native props:is det/1)

PREDICATEcode class/2:
code_class(Code,Class)

Unifies Class with an integer corresponding to the lexical class of the character whose
code is Code, with the following correspondence:

0 - layout (includes space, newline, tab)
1 - small letter
2 - capital letter (including ’_’)
3 - digit
4 - graphic (includes #$&*+-./:<=>?@^\‘~)
5 - punctuation (includes !;"’%(),[]{|})

Note that in ISO-Prolog the back quote ‘ is a punctuation character, whereas in Ciao it
is a graphic character. Thus, if compatibility with ISO-Prolog is desired, the programmer
should not use this character in unquoted names.

Usage:

− Calls should, and exit will be compatible with:

Class is an integer. (basic props:int/1)

− The following properties should hold at call time:

Code is an integer. (basic props:int/1)

− The following properties hold upon exit:

Class is an integer. (basic props:int/1)

174 The Ciao System

PREDICATEgetct/2:
getct(Code,Type)

Reads from the current input stream the next character, unifying Code with its character
code, and Type with its lexical class. At end of stream, unifies both Code and Type with
the integer -1. Equivalent to

get(Code), (Code = -1 -> Type = -1 ; code_class(Code,Type))

Usage:

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

Type is an integer. (basic props:int/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

Type is an integer. (basic props:int/1)

PREDICATEgetct1/2:
getct1(Code,Type)

Reads from the current input stream the next non-layout character, unifying Code with its
character code, and Type with its lexical class (which will be nonzero). At end of stream,
unifies both Code and Type with the integer -1. Equivalent to

get1(Code), (Code = -1 -> Type = -1 ; code_class(Code,Type))

Usage:

− Calls should, and exit will be compatible with:

Code is an integer. (basic props:int/1)

Type is an integer. (basic props:int/1)

− The following properties hold upon exit:

Code is an integer. (basic props:int/1)

Type is an integer. (basic props:int/1)

PREDICATEdisplay/2:
display(Stream,Term)

Displays Term onto Stream. Lists are output using list notation, the other compound
terms are output in functional notation. Similar to write_term(Stream, Term, [ignore_
ops(ops)]), except that curly bracketed notation is not used with {}/1, and the write_
strings flag is not honored.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

− The following properties hold upon exit:

Term is any term. (basic props:term/1)

− The following properties hold globally:

Term is not further instantiated. (basic props:not further inst/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 22: Basic input/output 175

PREDICATEdisplay/1:
display(Term)

Behaves like current_output(S), display(S,Term).

Usage:

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

− The following properties hold upon exit:

Term is any term. (basic props:term/1)

− The following properties hold globally:

Term is not further instantiated. (basic props:not further inst/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEdisplayq/2:
displayq(Stream,Term)

Similar to display(Stream, Term), but atoms and functors that can’t be read back by
read_term/3 are quoted. Thus, similar to write_term(Stream, Term, [quoted(true),
ignore_ops(ops)]), with the same exceptions as display/2.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

− The following properties hold upon exit:

Term is any term. (basic props:term/1)

− The following properties hold globally:

Term is not further instantiated. (basic props:not further inst/2)

PREDICATEdisplayq/1:
displayq(Term)

Behaves like current_output(S), displayq(S,Term).

Usage:

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

− The following properties hold upon exit:

Term is any term. (basic props:term/1)

− The following properties hold globally:

Term is not further instantiated. (basic props:not further inst/2)

22.3 Known bugs and planned improvements (io_basic)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

176 The Ciao System

Chapter 23: Exception and Signal handling 177

23 Exception and Signal handling

Author(s): The CLIP Group.

This module includes predicates related to exceptions and signals, which alter the normal
flow of Prolog.

23.1 Usage and interface (exceptions)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

catch/3, intercept/3, throw/1, send_signal/1, send_silent_signal/1, halt/0,
halt/1, abort/0.

 	

23.2 Documentation on exports (exceptions)

PREDICATEcatch/3:
catch(Goal,Error,Handler)

Executes Goal. If an exception is raised during its execution, Error is unified with the ex-
ception, and if the unification succeeds, the entire execution derived from Goal is aborted,
and Handler is executed. The execution resumes with the continuation of the catch/3
call. For example, given the code

p(X) :- throw(error), display(’---’).
p(X) :- display(X).

the execution of "catch(p(0), E, display(E)), display(.), fail." results in the out-
put "error.".

Meta-predicate with arguments: catch(goal,?,goal).

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Error is any term. (basic props:term/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold upon exit:

Error is any term. (basic props:term/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

178 The Ciao System

PREDICATEintercept/3:
intercept(Goal,Signal,Handler)

Executes Goal. If a signal is send during its execution, Signal is unified with the exception,
and if the unification succeeds, Handler is executed and then the execution resumes after
the point where the exception was thrown. To avoid infinite loops if Handler raises an
exception which unifies with Error, the exception handler is deactivated before to execute
Handler. Note the difference with builtin catch/3, given the code

p(X) :- send_signal(signal), display(’---’).
p(X) :- display(X).

the execution of "intercept(p(0), E, display(E)), display(.), fail." results in the
output "error---.0.".

Meta-predicate with arguments: intercept(goal,?,goal).

Usage:

− Call and exit should be compatible with:

Signal is any term. (basic props:term/1)

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Signal is any term. (basic props:term/1)

PREDICATEthrow/1:
throw(Ball)

Raises an error, throwing the exception Ball, to be caught by an ancestor catch/3. The
closest matching ancestor is chosen. Exceptions are also thrown by other builtins in case
of error.

Usage: throw(Term) 〈 • ISO • 〉

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEsend signal/1:
send_signal(Signal)

Emits a signal, to be intercept by an ancestor intercept/3. The closest matching ances-
tor is chosen. If the signal is not intercepted, throws the error error(unintercepted_
signal(Signal), send_signal/1-1).

Usage: send_signal(Term)

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

Chapter 23: Exception and Signal handling 179

PREDICATEsend silent signal/1:
send_silent_signal(Signal)

Emits a signal as send_signal/1, but do not throws an error if the signal is not intercepted
(i.e. just suceeds silently)

Usage: send_silent_signal(Term)

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEhalt/0:
halt

Halt the system, exiting to the invoking shell.

Usage: 〈 • ISO • 〉

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEhalt/1:
halt(Code)

Halt the system, exiting to the invoking shell, returning exit code Code.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Code is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Code is an integer. (basic props:int/1)

PREDICATEabort/0:
abort

Abort the current execution.

23.3 Known bugs and planned improvements (exceptions)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

180 The Ciao System

Chapter 24: Changing system behaviour and various flags 181

24 Changing system behaviour and various flags

Author(s): Daniel Cabeza, Mats Carlsson.

Flags define some parameters of the system and control the behavior of system or library
predicates. Each flag has a name and an associated predefined value, and except some system
flags which are fixed in general their associated value is changeable. Predefined flags in the
system are:

version The Ciao version, as a term ciao(Version,Patch). Version is a floating point
number, Patch is an integer. Unchangeable.

dialect Value set to ciao. Used for compatibility with other systems when in Prolog mode.
Unchangeable.

argv Its value is a list of atoms representing the program arguments supplied when the
current executable was invoked. This is the value to which is instantiated the argu-
ment of the main/1 predicate at executable startup. Unchangeable.

bounded It is false, to denote that the range of integers can be considered infinite (but see
int/1). Unchangeable. 〈 • ISO • 〉

fileerrors
If on, predicates handling files give errors (throw exceptions) when a file is inexistent
or an operation is not allowed. If off, fail in that conditions. Initially on.

gc Controls whether garbage collection is done. May be on (default) or off.

gc_margin
An integer Margin. If less than Margin kilobytes are reclaimed in a garbage collec-
tion then the size of the garbage collected area should be increased. Also, no garbage
collection is attempted unless the garbage collected area has at least Margin kilo-
bytes. Initially 500.

gc_trace Governs garbage collection trace messages. An element off
[on,off,terse,verbose]. Initially off.

integer_rounding_function
It is toward_zero, so that -1 =:= -3//2 succeeds. Unchangeable. 〈 • ISO • 〉

max_arity
It is 255, so that no compound term (or predicate) can have more than this number
of arguments. Unchangeable. 〈 • ISO • 〉

quiet Controls which messages issued using io_aux are actually written. As the system
uses that library to report its messages, this flag controls the verbosity of the system.
Possible states of the flag are:

on No messages are reported.

error Only error messages are reported.

warning Only error and warning messages are reported.

off All messages are reported, except debug messages. This is the default
state.

debug All messages, including debug messages, are reported. This is only
intended for the system implementators.

unknown Controls action on calls to undefined predicates. The possible states of the flag are:

error An error is thrown with the error term existence_error(procedure,
F/A).

182 The Ciao System

fail The call simply fails.

warning A warning is written and the call fails.

The state is initially error. 〈 • ISO • 〉

24.1 Usage and interface (prolog_flags)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

set_prolog_flag/2, current_
prolog_flag/2, prolog_flag/3, push_prolog_flag/2, pop_prolog_flag/1, set_
ciao_flag/2, current_ciao_flag/2, ciao_flag/3, push_ciao_flag/2, pop_ciao_
flag/1, prompt/2, gc/0, nogc/0, fileerrors/0, nofileerrors/0.

− Multifiles:

define_flag/3.

 	

24.2 Documentation on exports (prolog_flags)

PREDICATEset prolog flag/2:
set_prolog_flag(FlagName,Value)

Set existing flag FlagName to Value.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

FlagName is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

− The following properties should hold upon exit:

FlagName is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

PREDICATEcurrent prolog flag/2:
current_prolog_flag(FlagName,Value)

FlagName is an existing flag and Value is the value currently associated with it.

Usage:

− The following properties should hold upon exit:

FlagName is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Chapter 24: Changing system behaviour and various flags 183

PREDICATEprolog flag/3:
prolog_flag(FlagName,OldValue,NewValue)

FlagName is an existing flag, unify OldValue with the value associated with it, and set it
to new value NewValue.

Usage 1: prolog_flag(A,B,C)

− The following properties should hold at call time:

C is any term. (basic props:term/1)

C is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold upon exit:

A is an atom. (basic props:atm/1)

B is any term. (basic props:term/1)

Usage 2: prolog_flag(FlagName,OldValue,NewValue)

− Description: Same as current_prolog_flag(FlagName, OldValue). OldValue and
NewValue must be strictly identical variables.

− The following properties should hold at call time:

OldValue is a free variable. (term typing:var/1)

NewValue is a free variable. (term typing:var/1)

FlagName is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

OldValue is any term. (basic props:term/1)

NewValue is any term. (basic props:term/1)

PREDICATEpush prolog flag/2:
push_prolog_flag(Flag,NewValue)

Same as set_prolog_flag/2, but storing current value of Flag to restore it with pop_
prolog_flag/1.

Usage:

− The following properties should hold at call time:

Flag is an atom. (basic props:atm/1)

NewValue is any term. (basic props:term/1)

− The following properties should hold upon exit:

Flag is an atom. (basic props:atm/1)

NewValue is any term. (basic props:term/1)

PREDICATEpop prolog flag/1:
pop_prolog_flag(Flag)

Restore the value of Flag previous to the last non-canceled push_prolog_flag/2 on it.

Usage:

− The following properties should hold at call time:

Flag is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Flag is an atom. (basic props:atm/1)

184 The Ciao System

PREDICATEset ciao flag/2:
Usage: set_ciao_flag(FlagName,Value)

− The following properties should hold globally:

set_ciao_flag(FlagName,Value) is equivalent to
set_prolog_flag(FlagName,Value). (basic props:equiv/2)

PREDICATEcurrent ciao flag/2:
Usage: current_ciao_flag(FlagName,Value)

− The following properties should hold globally:

current_ciao_
flag(FlagName,Value) is equivalent to current_prolog_flag(FlagName,Value).
(basic props:equiv/2)

PREDICATEciao flag/3:
Usage: ciao_flag(Flag,Old,New)

− The following properties should hold globally:

ciao_flag(Flag,Old,New) is equivalent to prolog_flag(Flag,Old,New). (ba-
sic props:equiv/2)

PREDICATEpush ciao flag/2:
Usage: push_ciao_flag(Flag,NewValue)

− The following properties should hold globally:

push_
ciao_flag(Flag,NewValue) is equivalent to push_prolog_flag(Flag,NewValue).
(basic props:equiv/2)

PREDICATEpop ciao flag/1:
Usage: pop_ciao_flag(Flag)

− The following properties should hold globally:

pop_ciao_flag(Flag) is equivalent to pop_prolog_flag(Flag). (ba-
sic props:equiv/2)

PREDICATEprompt/2:
prompt(Old,New)

Unify Old with the current prompt for reading, change it to New.

Usage 1: prompt(A,B)

− The following properties should hold at call time:

B is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

A is an atom. (basic props:atm/1)

Usage 2: prompt(Old,New)

Chapter 24: Changing system behaviour and various flags 185

− Description: Unify Old with the current prompt for reading without changing it. On
calls, Old and New must be strictly identical variables.

− The following properties should hold at call time:

Old is a free variable. (term typing:var/1)

New is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Old is an atom. (basic props:atm/1)

New is an atom. (basic props:atm/1)

PREDICATEgc/0:
Usage:

− Description: Enable garbage collection. Equivalent to set_prolog_flag(gc, on)

− The following properties should hold globally:

gc is equivalent to set_prolog_flag(gc,on). (basic props:equiv/2)

PREDICATEnogc/0:
Usage:

− Description: Disable garbage collection. Equivalent to set_prolog_flag(gc, off)

− The following properties should hold globally:

nogc is equivalent to set_prolog_flag(gc,off). (basic props:equiv/2)

PREDICATEfileerrors/0:
Usage:

− Description: Enable reporting of file errors. Equivalent to set_prolog_
flag(fileerrors, on)

− The following properties should hold globally:

fileerrors is equivalent to set_prolog_flag(fileerrors,on). (ba-
sic props:equiv/2)

PREDICATEnofileerrors/0:
Usage:

− Description: Disable reporting of file errors. Equivalent to set_prolog_
flag(fileerrors, off)

− The following properties should hold globally:

nofileerrors is equivalent to set_prolog_flag(fileerrors,off). (ba-
sic props:equiv/2)

186 The Ciao System

24.3 Documentation on multifiles (prolog_flags)

PREDICATEdefine flag/3:
define_flag(Flag,Values,Default)

New flags can be defined by writing facts of this predicate. Flag is the name of the new
flag, Values defines the posible values for the flag (see below) and Default defines the
predefined value associated with the flag (which should be compatible with Values).

The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

24.4 Documentation on internals (prolog_flags)

PREDICATEset prolog flag/1:
No further documentation available for this predicate.

24.5 Known bugs and planned improvements (prolog_flags)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 25: Fast/concurrent update of facts 187

25 Fast/concurrent update of facts

Author(s): Daniel Cabeza, Manuel Carro.

Prolog implementations traditionally implement the concept of dynamic predicates: pred-
icates which can be inspected or modified at run-time, adding or deleting individual clauses.
The power of this feature comes at a cost: as new clause bodies can be arbitrarily added to
the program, new predicate calls can arise which are not ’visible’ at compile-time, thus compli-
cating global analysis and optimization of the code. But it is the case that most of the time
what the programmer wants is simply to store data, with the purpose of sharing it between
search branches, predicates, or even execution threads. In Ciao the concept of data predicate
serves this purpose: a data predicate is a predicate composed exclusively by facts, which can
be inspected, and dynamically added or deleted, at run-time. Using data predicates instead of
normal dynamic predicates brings benefits in terms of speed, but above all makes the code much
easier to analyze automatically and thus allows better optimization.

Also, a special kind of data predicates exists, concurrent predicates, which can be used to
communicate/synchronize among different execution threads (see Chapter 88 [Low-level concur-
rency/multithreading primitives], page 465).

Data predicates must be declared through a data/1 declaration. Concurrent data predicates
must be declared through a concurrent/1 declaration.

25.1 Usage and interface (data_facts)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

asserta_fact/1, asserta_fact/2, assertz_fact/1, assertz_fact/2, current_
fact/1, current_fact/2, retract_fact/1, retractall_fact/1, current_fact_
nb/1, retract_fact_nb/1, close_predicate/1, open_predicate/1, set_fact/1,
erase/1.

− Regular Types:

reference/1.

 	

25.2 Documentation on exports (data_facts)

PREDICATEasserta fact/1:
asserta_fact(Fact)

Fact is added to the corresponding data predicate. The fact becomes the first clause of
the predicate concerned.

Meta-predicate with arguments: asserta_fact(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

188 The Ciao System

PREDICATEasserta fact/2:
asserta_fact(Fact,Ref)

Same as asserta_fact/1, instantiating Ref to a unique identifier of the asserted fact.

Meta-predicate with arguments: asserta_fact(fact,?).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Ref is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Ref is a reference of a dynamic or data clause. (data facts:reference/1)

PREDICATEassertz fact/1:
assertz_fact(Fact)

Fact is added to the corresponding data predicate. The fact becomes the last clause of
the predicate concerned.

Meta-predicate with arguments: assertz_fact(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEassertz fact/2:
assertz_fact(Fact,Ref)

Same as assertz_fact/1, instantiating Ref to a unique identifier of the asserted fact.

Meta-predicate with arguments: assertz_fact(fact,?).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Ref is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Ref is a reference of a dynamic or data clause. (data facts:reference/1)

PREDICATEcurrent fact/1:
current_fact(Fact)

Gives on backtracking all the facts defined as data or concurrent which unify with Fact. It
is faster than calling the predicate explicitly, which do invoke the meta-interpreter. If the
Fact has been defined as concurrent and has not been closed, current_fact/1 will wait
(instead of failing) for more clauses to appear after the last clause of Fact is returned.

Meta-predicate with arguments: current_fact(fact).

Usage:

Chapter 25: Fast/concurrent update of facts 189

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEcurrent fact/2:
current_fact(Fact,Ref)

Fact is a fact of a data predicate and Ref is its reference identifying it uniquely.

Meta-predicate with arguments: current_fact(fact,?).

Usage 1:

− Description: Gives on backtracking all the facts defined as data which unify with
Fact, instantiating Ref to a unique identifier for each fact.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Ref is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Ref is a reference of a dynamic or data clause. (data facts:reference/1)

Usage 2:

− Description: Given Ref, unifies Fact with the fact identified by it.

− Call and exit should be compatible with:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold at call time:

Ref is a reference of a dynamic or data clause. (data facts:reference/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEretract fact/1:
retract_fact(Fact)

Unifies Fact with the first matching fact of a data predicate, and then erases it. On
backtracking successively unifies with and erases new matching facts. If Fact is declared
as concurrent and is non- closed, retract_fact/1 will wait for more clauses or for the
closing of the predicate after the last matching clause has been removed.

Meta-predicate with arguments: retract_fact(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

190 The Ciao System

PREDICATEretractall fact/1:
retractall_fact(Fact)

Erase all the facts of a data predicate unifying with Fact. Even if all facts are removed,
the predicate continues to exist.

Meta-predicate with arguments: retractall_fact(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEcurrent fact nb/1:
current_fact_nb(Fact)

Behaves as current_fact/1 but a fact is never waited on even if it is concurrent and
non-closed.

Meta-predicate with arguments: current_fact_nb(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEretract fact nb/1:
retract_fact_nb(Fact)

Behaves as retract_fact/1, but never waits on a fact, even if it has been declared as
concurrent and is non- closed.

Meta-predicate with arguments: retract_fact_nb(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEclose predicate/1:
close_predicate(Pred)

Changes the behavior of the predicate Pred if it has been declared as a concurrent pred-
icate: calls to this predicate will fail (instead of wait) if no more clauses of Pred are
available.

Chapter 25: Fast/concurrent update of facts 191

Meta-predicate with arguments: close_predicate(fact).

Usage:

− The following properties should hold at call time:

Pred is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Pred is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEopen predicate/1:
open_predicate(Pred)

Reverts the behavior of concurrent predicate Pred to waiting instead of failing if no more
clauses of Pred are available.

Meta-predicate with arguments: open_predicate(fact).

Usage:

− The following properties should hold at call time:

Pred is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Pred is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEset fact/1:
set_fact(Fact)

Sets Fact as the unique fact of the corresponding data predicate.

Meta-predicate with arguments: set_fact(fact).

Usage:

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEerase/1:
erase(Ref)

Deletes the clause referenced by Ref.

Usage:

− The following properties should hold at call time:

Ref is a reference of a dynamic or data clause. (data facts:reference/1)

− The following properties should hold upon exit:

Ref is a reference of a dynamic or data clause. (data facts:reference/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

192 The Ciao System

REGTYPEreference/1:
Usage: reference(R)

− Description: R is a reference of a dynamic or data clause.

25.3 Documentation on internals (data_facts)

DECLARATIONdata/1:
Usage: :- data Predicates.

− Description: Defines each predicate in Predicates as a data predicate. If a predicate
is defined data in a file, it must be defined data in every file containing clauses for
that predicate. The directive should precede all clauses of the affected predicates.
This directive is defined as a prefix operator in the compiler.

− The following properties hold at call time:

Predicates is a sequence or list of prednames. (basic props:sequence or list/2)

DECLARATIONconcurrent/1:
Usage: :- concurrent Predicates.

− Description: Defines each predicate in Predicates as a concurrent predicate. If a
predicate is defined concurrent in a file, it must be defined concurrent in every file
containing clauses for that predicate. The directive should precede all clauses of the
affected predicates. This directive is defined as a prefix operator in the compiler.

− The following properties hold at call time:

Predicates is a sequence or list of prednames. (basic props:sequence or list/2)

25.4 Known bugs and planned improvements (data_facts)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 26: Extending the syntax 193

26 Extending the syntax

Author(s): Daniel Cabeza.

This chapter documents the builtin directives in Ciao for extending the syntax of source files.

Note that the ISO-Prolog directive char_conversion/2 is not implemented, since Ciao does
not (yet) have a character conversion table.

26.1 Usage and interface (syntax_extensions)
� �

• Library usage:

These directives are builtin in Ciao, so nothing special has to be done to use them.

 	

26.2 Documentation on internals (syntax_extensions)

DECLARATIONop/3:
Usage: :- op(Priority,Op_spec,Operator). 〈 • ISO • 〉

− Description: Updates the operator table for reading the terms in the rest of the
current text, in the same way as the builtin op/3 does. Its scope is local to the
current text. Usually included in package files.

− The following properties hold at call time:

Priority is an integer. (basic props:int/1)

Op_spec specifies the type and associativity of an operator. (ba-
sic props:operator specifier/1)

Operator is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONnew declaration/1:
Usage: :- new_declaration(Predicate).

− Description: Declares Predicate to be a valid declaration in the rest of the current
text. Such declarations are simply ignored by the compiler or top level, but can be
used by other code processing programs such as an automatic documentator. Also,
they can easily translated into standard code (a set of facts and/or rules) by defining
a suitable expansion (e.g., by add_sentence_trans/1, etc.). This is tipically done in
package files.

Equivalent to new_declaration(Predicate, off).

− The following properties hold at call time:

Predicate is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

194 The Ciao System

DECLARATIONnew declaration/2:
Usage: :- new_declaration(Predicate,In_Itf).

− Description: Declares Predicate to be a valid declaration in the rest of the current
text. Such declarations will be included in the interface file for this file if In_Itf is
’on’, not if it is ’off’. Including such declarations in interface files makes them visible
while processing other modules which make use of this one.

− The following properties hold at call time:

Predicate is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

In_Itf is ’on’ or ’off’ (syntax extensions:switch/1)

DECLARATIONload compilation module/1:
Usage: :- load_compilation_module(File).

− Description: Loads code defined in File into the compiler, usually including pred-
icates which define translations of clauses, sentences, and terms, for use with the
declarations add_sentence_trans/2 and similar ones. The application order of trans-
lations is determined by ascending priority numbers. Normally included in package
files.

− The following properties hold at call time:

File is a source name. (streams basic:sourcename/1)

DECLARATIONadd sentence trans/2:
Usage: :- add_sentence_trans(Predicate,Priority).

− Description: Starts a translation, defined by Predicate, of the terms read by the
compiler in the rest of the current text. For each subsequent term read by the com-
piler, the translation predicate is called to obtain a new term which will be used by
the compiler as if it where the term present in the file. If the call fails, the term
is used as such. A list may be returned also, to translate a single term into several
terms. Before calling the translation predicate with actual program terms, it is called
with an input of 0 to give an opportunity of making initializations for the module,
discarding the result (note that normally a 0 could not be there). Predicate must be
exported by a module previously loaded with a load_compilation_module/1 decla-
ration. Normally included in package files.

− The following properties hold at call time:

Predicate is a translation predicate spec (has arity 2 or 3). (syn-
tax extensions:translation predname/1)

Priority is an integer. (basic props:int/1)

DECLARATIONadd term trans/2:
Usage: :- add_term_trans(P,Priority).

Chapter 26: Extending the syntax 195

− Description: Starts a translation, defined by Predicate, of the terms and sub-terms
read by the compiler in the rest of the current text. This translation is performed af-
ter all translations defined by add_sentence_trans/1 are done. For each subsequent
term read by the compiler, and recursively any subterm included, the translation
predicate is called to possibly obtain a new term to replace the old one. Care must
be taken of not introducing an endless loop of translations. Predicate must be
exported by a module previously loaded with a load_compilation_module/1 decla-
ration. Normally included in package files.

− The following properties hold at call time:

P is a translation predicate spec (has arity 2 or 3). (syn-
tax extensions:translation predname/1)

Priority is an integer. (basic props:int/1)

DECLARATIONadd goal trans/2:
Usage: :- add_goal_trans(Predicate,Priority).

− Description: Declares a translation, defined by Predicate, of the goals present in
the clauses of the current text. This translation is performed after all translations
defined by add_sentence_trans/1 and add_term_trans/1 are done. For each clause
read by the compiler, the translation predicate is called with each goal present in the
clause to possibly obtain other goal to substitute the original one, and the translation
is subsequently applied to the resulting goal. Care must be taken of not introducing
an endless loop of translations. Predicate must be exported by a module previously
loaded with a load_compilation_module/1 declaration. Bear in mind that this type
of translation noticeably slows down compilation. Normally included in package files.

− The following properties hold at call time:

Predicate is a translation predicate spec (has arity 2 or 3). (syn-
tax extensions:translation predname/1)

Priority is an integer. (basic props:int/1)

DECLARATIONadd clause trans/2:
Usage: :- add_clause_trans(Predicate,Priority).

− Description: Declares a translation, defined by Predicate, of the clauses of the
current text. The translation is performed before add_goal_trans/1 translations but
after add_sentence_trans/1 and add_term_trans/1 translations. The usefulness of
this translation is that information of the interface of related modules is available
when it is performed. For each clause read by the compiler, the translation predicate
is called with the first argument instantiated to a structure clause(Head,Body),
and the predicate must return in the second argument a similar structure, without
changing the functor in Head (or fail, in which case the clause is used as is). Before
executing the translation predicate with actual clauses it is called with an input of
clause(0,0), discarding the result.

− The following properties hold at call time:

Predicate is a translation predicate spec (has arity 2 or 3). (syn-
tax extensions:translation predname/1)

Priority is an integer. (basic props:int/1)

196 The Ciao System

REGTYPEtranslation predname/1:
A translation predicate is a predicate of arity 2 or 3 used to make compile-time translations.
The compiler invokes a translation predicate instantiating its first argument with the item
to be translated, and if the predicate is of arity 3 its third argument with the name of
the module where the translation is done. If the call is successful, the second argument is
used as if that item were in the place of the original, else the original item is used.

Usage: translation_predname(P)

− Description: P is a translation predicate spec (has arity 2 or 3).

Chapter 27: Message printing primitives 197

27 Message printing primitives

Author(s): Daniel Cabeza, Edison Mera (improvements).

This module provides predicates for printing in a unified way informational messages, and
also for printing some terms in a specific way.

27.1 Usage and interface (io_aux)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

message/2, message_lns/4, messages/1, error/1, warning/1, note/1, message/1,
debug/1, inform_user/1, display_string/1, display_list/1, display_term/1,
add_lines/4.

− Regular Types:

message_info/1, message_type/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

27.2 Documentation on exports (io_aux)

PREDICATEmessage/2:
Usage: message(Type,Message)

− Description: Output to standard error Message, which is of type Type. The quiet
prolog flag (see Chapter 24 [Changing system behaviour and various flags], page 181)
controls which messages are actually output, depending on its type. Also, for error,
warning and note messages, a prefix is output which denotes the severity of the
message.

− The following properties should hold at call time:

Specifies the different types of messages. (io aux:message type/1)

Message is an item or a list of items from this list:

$$(String)
String is a string, which is output with display_string/1.

’’(Term) Term is output quoted. If the module write is loaded, the term is output
with writeq/1, else with displayq/1.

~~(Term) Term is output unquoted. If the module write is loaded, the term is
output with write/1, else with display/1.

[](Term) Term is recursively output as a message, can be an item or a list of items
from this list.

Term Any other term is output with display/1.

(io aux:message text/1)

198 The Ciao System

PREDICATEmessage lns/4:
Usage: message_lns(Type,L0,L1,Message)

− Description: Output to standard error Message, which is of type Type, and occurs
between lines L0 and L1. This is the same as message/2, but printing the lines where
the message occurs in a unified way (this is useful because automatic tools such as
the emacs mode know how to parse them).

− The following properties should hold at call time:

Specifies the different types of messages. (io aux:message type/1)

L0 is a non-negative integer. (basic props:nnegint/1)

L1 is a non-negative integer. (basic props:nnegint/1)

Message is an item or a list of items from this list:

$$(String)
String is a string, which is output with display_string/1.

’’(Term) Term is output quoted. If the module write is loaded, the term is output
with writeq/1, else with displayq/1.

~~(Term) Term is output unquoted. If the module write is loaded, the term is
output with write/1, else with display/1.

[](Term) Term is recursively output as a message, can be an item or a list of items
from this list.

Term Any other term is output with display/1.

(io aux:message text/1)

PREDICATEmessages/1:
Usage: messages(Messages)

− Description: Print each element in Messages using message/2, message_lns/4,
message/1, error/1, warning/1, note/1 or debug/1 predicate. If the element should
be printed using message lns/4, it is printed in a compact way, avoiding to print the
same file name several times.

− The following properties should hold at call time:

Messages is a list of message_infos. (basic props:list/2)

PREDICATEerror/1:
Defined as

error(Message) :-
message(error,Message).

.

PREDICATEwarning/1:
Defined as

warning(Message) :-
message(warning,Message).

.

Chapter 27: Message printing primitives 199

PREDICATEnote/1:
Defined as

note(Message) :-
message(note,Message).

.

PREDICATEmessage/1:
Defined as

message(Message) :-
message(message,Message).

.

PREDICATEdebug/1:
Defined as

debug(Message) :-
message(debug,Message).

.

PREDICATEinform user/1:
inform_user(Message)

Similar to message/1, but Message is output with display_list/1. This predicate is
obsolete, and may disappear in future versions.

PREDICATEdisplay string/1:
display_string(String)

Output String as the sequence of characters it represents.

Usage: display_string(String)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic props:string/1)

PREDICATEdisplay list/1:
display_list(List)

Outputs List. If List is a list, do display/1 on each of its elements, else do display/1
on List.

PREDICATEdisplay term/1:
display_term(Term)

Output Term in a way that a read/1 will be able to read it back, even if operators change.

200 The Ciao System

REGTYPEmessage info/1:
Usage:

− Description: The type of the elements to be printed using the messages/1 predicate.
Defined as

message_info(message_lns(Source,Ln0,Ln1,Type,Text)) :-
atm(Source),
nnegint(Ln0),
nnegint(Ln1),
message_type(Type),
message_text(Text).

message_info(message(Type,Text)) :-
atm(Type),
message_text(Text).

message_info(error(Text)) :-
message_text(Text).

message_info(warning(Text)) :-
message_text(Text).

message_info(note(Text)) :-
message_text(Text).

message_info(message(Text)) :-
message_text(Text).

message_info(debug(Text)) :-
message_text(Text).

.

REGTYPEmessage type/1:
Usage:

− Description: Specifies the different types of messages.

PREDICATEadd lines/4:
No further documentation available for this predicate.

27.3 Known bugs and planned improvements (io_aux)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

• message/2 assumes that a module with name ’write’ is library(write).

Chapter 28: Attributed variables 201

28 Attributed variables

Author(s): Christian Holzbaur, Daniel Cabeza, Manuel Carro.

These predicates allow the manipulation of attributed variables. Attributes are special terms
which are attached to a (free) variable, and are hidden from the normal Prolog computation.
They can only be treated by using the predicates below.

28.1 Usage and interface (attributes)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

attach_attribute/2, get_attribute/2, update_attribute/2,
detach_attribute/1.

− Multifiles:

verify_attribute/2, combine_attributes/2.

 	

28.2 Documentation on exports (attributes)

PREDICATEattach attribute/2:
Usage: attach_attribute(Var,Attr)

− Description: Attach attribute Attr to Var.

− The following properties should hold at call time:

Var is a free variable. (term typing:var/1)

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold upon exit:

Var is a free variable. (term typing:var/1)

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEget attribute/2:
Usage: get_attribute(Var,Attr)

− Description: Unify Attr with the attribute of Var, or fail if Var has no attribute.

− The following properties should hold at call time:

Var is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEupdate attribute/2:
Usage: update_attribute(Var,Attr)

− Description: Change the attribute of attributed variable Var to Attr.

202 The Ciao System

− The following properties should hold at call time:

Var is a free variable. (term typing:var/1)

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold upon exit:

Var is a free variable. (term typing:var/1)

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEdetach attribute/1:
Usage: detach_attribute(Var)

− Description: Take out the attribute from the attributed variable Var.

− The following properties should hold at call time:

Var is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Var is a free variable. (term typing:var/1)

28.3 Documentation on multifiles (attributes)

PREDICATEverify attribute/2:
The predicate is multifile.

Usage: verify_attribute(Attr,Term)

− Description: A user defined predicate. This predicate is called when an attributed
variable with attribute Attr is about to be unified with the non-variable term Term.
The user should define this predicate (as multifile) in the modules implementing
special unification.

− The following properties should hold at call time:

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

Term is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold upon exit:

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

Term is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEcombine attributes/2:
The predicate is multifile.

Usage: combine_attributes(Var1,Var2)

− Description: A user defined predicate. This predicate is called when two attributed
variables with attributes Var1 and Var2 are about to be unified. The user should
define this predicate (as multifile) in the modules implementing special unification.

− The following properties should hold at call time:

Var1 is a free variable. (term typing:var/1)

Var2 is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Var1 is a free variable. (term typing:var/1)

Var2 is a free variable. (term typing:var/1)

Chapter 28: Attributed variables 203

28.4 Other information (attributes)

Note that combine_attributes/2 and verify_attribute/2 are not called with the at-
tributed variables involved, but with the corresponding attributes instead. The reasons are:

• There are simple applications which only refer to the attributes.

• If the application wants to refer to the attributed variables themselves, they can be made
part the attribute term. The implementation of freeze/2 utilizes this technique. Note that
this does not lead to cyclic structures, as the connection between an attributed variable and
its attribute is invisible to the pure parts of the Prolog implementation.

• If attributed variables were passed as arguments, the user code would have to refer to the
attributes through an extra call to get_attribute/2.

• As the/one attribute is the first argument to each of the two predicates, indexing applies.
Note that attributed variables themselves look like variables to the indexing mechanism.

However, future improvements may change or extend the interface to attributed variables in
order to provide a richer and more expressive interface.

For customized output of attributed variables, please refer to the documentation of the pred-
icate portray_attribute/2.

28.5 Known bugs and planned improvements (attributes)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

204 The Ciao System

Chapter 29: Internal Runtime Information 205

29 Internal Runtime Information

Author(s): Daniel Cabeza, Manuel Carro, Jose F. Morales.

This module provides internal information about the current running engine and enviroment.
That information includes the architecture, platform, operating system, location of libraries,
and C header files. That information is mainly used in parts of the Ciao dynamic compilation
(location of source, generation of gluecode for the foreign interface, etc.).

29.1 Usage and interface (system_info)
� �

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

get_arch/1, get_os/1, get_platform/1, get_debug/1, get_eng_location/1, get_
ciao_ext/1, get_exec_ext/1, get_so_ext/1, this_module/1, current_module/1,
ciao_c_headers_dir/1, ciao_lib_dir/1.

− Regular Types:

internal_module_id/1.

 	

29.2 Documentation on exports (system_info)

PREDICATEget arch/1:
This predicate will describe the computer architecture wich is currently executing the
predicate.

Computer architectures are identified by a simple atom. This atom is implementation-
defined, and may suffer any change from one Ciao version to another.

For example, Ciao running on an Intel-based machine will retrieve:

?- get_arch(I).

I = i86 ? ;

no
?-

Usage: get_arch(ArchDescriptor)

− Description: Unifies ArchDescriptor with a simple atom which describes the com-
puter architecture currently executing the predicate.

− The following properties hold upon exit:

ArchDescriptor is an atom. (basic props:atm/1)

PREDICATEget os/1:
This predicate will describe the operating system which is running on the machine cur-
rently executing the Prolog program.

206 The Ciao System

Operating systems are identified by a simple atom. This atom is implementation-defined,
and may suffer changes from one Ciao version to another.

For example, Ciao running on Linux will retrieve:

?- get_os(I).

I = ’LINUX’ ? ;

no
?-

Usage: get_os(OsDescriptor)

− Description: Unifies OsDescriptor with a simple atom which describes the running
operating system when predicate was called.

− The following properties hold upon exit:

OsDescriptor is an atom. (basic props:atm/1)

PREDICATEget platform/1:
Usage: get_platform(Platform)

− Description: Platform is the atom describing the current operating system and com-
puter architecture.

− The following properties hold upon exit:

Platform is an atom. (basic props:atm/1)

PREDICATEget debug/1:
Usage: get_debug(Debug)

− Description: Unifies Debug with an atom that indicates if the emulator has been
compiled with debug information

− The following properties hold upon exit:

Debug is an atom. (basic props:atm/1)

PREDICATEget eng location/1:
Usage: get_eng_location(Ext)

− Description: Ext indicates if the engine is located in a library (dyn) or in an executable
(empty).

− Calls should, and exit will be compatible with:

Ext is an atom. (basic props:atm/1)

PREDICATEget ciao ext/1:
Usage: get_ciao_ext(Ext)

− Description: Ext is the default extension for the executable Ciao programs.

− The following properties hold upon exit:

Ext is an atom. (basic props:atm/1)

Chapter 29: Internal Runtime Information 207

PREDICATEget exec ext/1:
Usage: get_exec_ext(Ext)

− Description: Ext is the extension for executables.

− The following properties hold upon exit:

Ext is an atom. (basic props:atm/1)

PREDICATEget so ext/1:
Usage: get_so_ext(Ext)

− Description: Ext is the default extension for the shared libraries. For example, .dll
in Windows and .so in most Unix systems.

− Calls should, and exit will be compatible with:

Ext is an atom. (basic props:atm/1)

PREDICATEthis module/1:
Meta-predicate with arguments: this_module(addmodule(?)).

Usage: this_module(Module)

− Description: Module is the internal module identifier for current module.

− The following properties hold upon exit:

Module is an internal module identifier (system info:internal module id/1)

PREDICATEcurrent module/1:
This predicate will successively unify its argument with all module names currently loaded.
Module names will be simple atoms.

When called using a free variable as argument, it will retrieve on backtracking all modules
currently loaded. This is usefull when called from the Ciao toplevel.

When called using a module name as argument it will check whether the given module is
loaded or not. This is usefull when called from user programs.

Usage: current_module(Module)

− Description: Retrieves (on backtracking) all currently loaded modules into your ap-
plication.

− The following properties should hold upon exit:

Module is an internal module identifier (system info:internal module id/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEciao c headers dir/1:
Usage: ciao_c_headers_dir(CiaoPath)

− Description: CiaoPath is the path to the root of the installed Ciao header C files
(.h), typically used for interfacing Ciao and C.

− The following properties hold upon exit:

CiaoPath is an atom. (basic props:atm/1)

208 The Ciao System

PREDICATEciao lib dir/1:
Usage: ciao_lib_dir(CiaoPath)

− Description: CiaoPath is the path to the root of the Ciao libraries. Inside this
directory, there are the directories ’lib’, ’library’ and ’contrib’, which contain library
modules.

− The following properties hold upon exit:

CiaoPath is an atom. (basic props:atm/1)

REGTYPEinternal module id/1:
For a user file it is a term user/1 with an argument different for each user file, for other
modules is just the name of the module (as an atom).

Usage: internal_module_id(M)

− Description: M is an internal module identifier

29.3 Known bugs and planned improvements (system_info)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 30: Conditional Compilation 209

30 Conditional Compilation

Author(s): Jose F. Morales.

This package defines a serie of directives for conditional compilation that allow the inclusion
or exclusion of code blocks (which may contain nested conditional directives) based on the truth
value at compile time of special goals called conditions. The syntax for conditional directives is:

:- if(Cond1).
<<Block1>>

:- elif(Cond2).
<<Block2>>

:- else.
<<BlockN>>

:- endif.

where elif(_) can appear zero or more times and the else part is optional. The valid conditions
are:

• calls to current_prolog_flag/2.

• conjunctions, disjunctions, or negations of conditions.

The sentences in Block1 are included if the condition in Cond1 is satisfied, else Block2 is
included if Cond2 is satisfied (and so on for each elif), and BlockN if no previous condition is
satisfied.

30.1 Usage and interface (condcomp_doc)
� �

• Library usage:

The conditional compilation directives are enabled by including the condcomp package in
the package list of a module or by means of an explicit :- use_package(condcomp)

 	

30.2 Known bugs and planned improvements (condcomp_doc)

• This package implements a :- define(X) directive and defined(X) condition. However,
the syntax and semantic of this feature has still to be decided. Do not use it.

• Errors do not show line numbers

210 The Ciao System

Chapter 31: Other predicates and features defined by default 211

31 Other predicates and features defined by default

Author(s): Daniel Cabeza.

To simplify the use of Ciao Prolog to the first-timers, some other predicates and features are
defined by default in normal cases, to provide more or less what other prologs define by default.
Here are explicitly listed the predicates defined, coming from several libraries. Apart from
those, the features defined in Chapter 41 [Definite clause grammars], page 271 and Chapter 53
[Enabling operators at run-time], page 335 are also activated.

31.1 Usage and interface (default_predicates)
� �

• Library usage:

No need of explicit loading. It is included by default in modules starting with a module/2
declaration or user files without a starting use_package/1 declaration. In the Ciao shell, it
is loaded by default when no ~/.ciaorc exists. Note that :- module(modulename,exports)
is equivalent to :- module(modulename,exports,[default]) If you do not want these pred-
icates/features loaded for a given file (in order to make the executable smaller) you can
ask for this explicitly using :- module(modulename,exports,[]) or in a user file :- use_
package([]).

• Other modules used:

− System library modules:

aggregates, dynamic, read, write, operators, iso_byte_char, iso_misc, format,
lists, sort, between, compiler/compiler, system, prolog_sys, dec10_io, old_
database, ttyout.

 	

31.2 Documentation on exports (default_predicates)

(UNDOC REEXPORT)op/3:
Imported from operators (see the corresponding documentation for details).

(UNDOC REEXPORT)current op/3:
Imported from operators (see the corresponding documentation for details).

(UNDOC REEXPORT)append/3:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)delete/3:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)select/3:
Imported from lists (see the corresponding documentation for details).

212 The Ciao System

(UNDOC REEXPORT)nth/3:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)last/2:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)reverse/2:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)length/2:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)use module/1:
Imported from compiler (see the corresponding documentation for details).

(UNDOC REEXPORT)use module/2:
Imported from compiler (see the corresponding documentation for details).

(UNDOC REEXPORT)ensure loaded/1:
Imported from compiler (see the corresponding documentation for details).

(UNDOC REEXPORT)^/2:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findnsols/5:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findnsols/4:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findall/4:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findall/3:
Imported from aggregates (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 213

(UNDOC REEXPORT)bagof/3:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)setof/3:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)wellformed body/3:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)data/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)dynamic/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)current predicate/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)current predicate/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)clause/3:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)clause/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)abolish/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)retractall/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)retract/1:
Imported from dynamic (see the corresponding documentation for details).

214 The Ciao System

(UNDOC REEXPORT)assert/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)assert/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)assertz/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)assertz/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)asserta/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)asserta/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)read option/1:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)second prompt/2:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read top level/3:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read term/3:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read term/2:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read/2:
Imported from read (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 215

(UNDOC REEXPORT)read/1:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)write attribute/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)printable char/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)prettyvars/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)numbervars/3:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)portray clause/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)portray clause/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write list1/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)print/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)print/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write canonical/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write canonical/2:
Imported from write (see the corresponding documentation for details).

216 The Ciao System

(UNDOC REEXPORT)writeq/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)writeq/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write option/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write term/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write term/3:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)put char/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)put char/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek char/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek char/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get char/2:
Imported from iso_byte_char (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 217

(UNDOC REEXPORT)get char/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)put byte/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)put byte/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek byte/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek byte/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get byte/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get byte/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)char codes/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)number chars/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)atom chars/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)char code/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)unify with occurs check/2:
Imported from iso_misc (see the corresponding documentation for details).

218 The Ciao System

(UNDOC REEXPORT)sub atom/5:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)compound/1:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)once/1:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)format control/1:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)format to string/3:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)sformat/3:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)format/3:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)format/2:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)keypair/1:
Imported from sort (see the corresponding documentation for details).

(UNDOC REEXPORT)keylist/1:
Imported from sort (see the corresponding documentation for details).

(UNDOC REEXPORT)keysort/2:
Imported from sort (see the corresponding documentation for details).

(UNDOC REEXPORT)sort/2:
Imported from sort (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 219

(UNDOC REEXPORT)between/3:
Imported from between (see the corresponding documentation for details).

(UNDOC REEXPORT)system error report/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)replace characters/4:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)no swapslash/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)cyg2win/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)winpath c/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)winpath/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)winpath/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)using windows/0:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)rename file/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete file/1:
Imported from system (see the corresponding documentation for details).

220 The Ciao System

(UNDOC REEXPORT)set exec mode/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)chmod/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)chmod/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)fmode/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time0/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file properties/6:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file property/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)mktemp in tmp/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)mktemp/2:
Imported from system (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 221

(UNDOC REEXPORT)directory files/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)wait/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/8:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/4:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen mode/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/0:
Imported from system (see the corresponding documentation for details).

222 The Ciao System

(UNDOC REEXPORT)cd/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)working directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make dirpath/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make dirpath/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)umask/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current executable/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current host/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get address/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get tmp dir/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get grnam/1:
Imported from system (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 223

(UNDOC REEXPORT)get pwnam/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get gid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get uid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get pid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file dir name/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)extract paths/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)dir path/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)copy file/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)copy file/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)c errno/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)del env/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)set env/2:
Imported from system (see the corresponding documentation for details).

224 The Ciao System

(UNDOC REEXPORT)current env/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)setenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)getenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime struct/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime/9:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)time/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)pause/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)garbage collect/0:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)current atom/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)predicate property/3:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)predicate property/2:
Imported from prolog_sys (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 225

(UNDOC REEXPORT)time option/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)tick option/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)clockfreq option/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)memory option/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)garbage collection option/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)symbol option/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)time result/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)memory result/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)gc result/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)symbol result/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)new atom/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)tick result/1:
Imported from prolog_sys (see the corresponding documentation for details).

226 The Ciao System

(UNDOC REEXPORT)clockfreq result/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)statistics/2:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)statistics/0:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)close file/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)told/0:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)telling/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)tell/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)seen/0:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)seeing/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)see/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)current key/2:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)recorded/3:
Imported from old_database (see the corresponding documentation for details).

Chapter 31: Other predicates and features defined by default 227

(UNDOC REEXPORT)recordz/3:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)recorda/3:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)ttydisplay string/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyskipeol/0:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttydisplayq/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttydisplay/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyflush/0:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttytab/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyskip/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyput/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttynl/0:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyget1/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyget/1:
Imported from ttyout (see the corresponding documentation for details).

228 The Ciao System

PART III - ISO-Prolog library (iso) 229

PART III - ISO-Prolog library (iso)

� �

Author(s): The CLIP Group.

This part documents the iso package which provides to Ciao programs (most of) the ISO-
Prolog functionality, including the ISO-Prolog builtins not covered by the basic library.

 	

230 The Ciao System

Chapter 32: ISO-Prolog package 231

32 ISO-Prolog package

Author(s): The CLIP Group.

This library package allows the use of the ISO-Prolog predicates in Ciao programs. The
compatibility is not at 100% yet.

32.1 Usage and interface (iso_doc)
� �

• Library usage:

:- use_package(iso).

or

:- module(...,...,[iso]).

• New operators defined:

-->/2 [1200,xfx], |/2 [1100,xfy].

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write.

 	

232 The Ciao System

Chapter 33: All solutions predicates 233

33 All solutions predicates

Author(s): Richard A. O’Keefe (first version), David H.D. Warren (first version), Mats
Carlsson (changes), Daniel Cabeza, Manuel Hermenegildo.

This module implements the standard solution aggregation predicates.

When there are many solutions to a problem, and when all those solutions are required to be
collected together, this can be achieved by repeatedly backtracking and gradually building up a
list of the solutions. The following built-in predicates are provided to automate this process.

33.1 Usage and interface (aggregates)
� �

• Library usage:

:- use_module(library(aggregates)).

• Exports:

− Predicates:

setof/3, bagof/3, findall/3, findall/4, findnsols/4, findnsols/5, ^/2.

• Other modules used:

− System library modules:

assertions/native_props, sort, lists.

 	

33.2 Documentation on exports (aggregates)

PREDICATEsetof/3:
setof(Template,Generator,Set)

Finds the Set of instances of the Template satisfying Generator. The set is in ascending
order (see Chapter 18 [Comparing terms], page 135 for a definition of this order) without
duplicates, and is non-empty. If there are no solutions, setof fails. setof may succeed in
more than one way, binding free variables in Generator to different values. This can be
avoided by using existential quantifiers on the free variables in front of Generator, using
^/2. For example, given the clauses:

father(bill, tom).
father(bill, ann).
father(bill, john).
father(harry, july).
father(harry, daniel).

The following query produces two alternative solutions via backtracking:

?- setof(X,father(F,X),Sons).

F = bill,
Sons = [ann,john,tom] ? ;

F = harry,
Sons = [daniel,july] ? ;

no

234 The Ciao System

?-

Meta-predicate with arguments: setof(?,goal,?).

General properties: setof(X,Y,Z)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as findall(X,Y,Z). (ba-
sic props:native/2)

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Set is a list. (basic props:list/1)

− The following properties should hold at call time:

Template is any term. (basic props:term/1)

Generator is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

Set is a list. (basic props:list/1)

− The following properties should hold globally:

Template is not further instantiated. (basic props:not further inst/2)

PREDICATEbagof/3:
bagof(Template,Generator,Bag)

Finds all the instances of the Template produced by the Generator, and returns them in
the Bag in the order in which they were found. If the Generator contains free variables
which are not bound in the Template, it assumes that this is like any other Prolog question
and that you want bindings for those variables. This can be avoided by using existential
quantifiers on the free variables in front of the Generator, using ^/2.

Meta-predicate with arguments: bagof(?,goal,?).

General properties: bagof(X,Y,Z)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as findall(X,Y,Z). (ba-
sic props:native/2)

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Bag is a list. (basic props:list/1)

− The following properties should hold at call time:

Template is any term. (basic props:term/1)

Generator is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

Bag is a list. (basic props:list/1)

− The following properties should hold globally:

Template is not further instantiated. (basic props:not further inst/2)

Chapter 33: All solutions predicates 235

PREDICATEfindall/3:
findall(Template,Generator,List)

A special case of bagof, where all free variables in the Generator are taken to be existen-
tially quantified. Faster than the other aggregation predicates.

Meta-predicate with arguments: findall(?,goal,?).

Usage: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

List is a list. (basic props:list/1)

− The following properties should hold at call time:

Template is any term. (basic props:term/1)

Generator is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold upon exit:

Template is any term. (basic props:term/1)

List is a list. (basic props:list/1)

− The following properties hold globally:

Template is not further instantiated. (basic props:not further inst/2)

This predicate is understood natively by CiaoPP. (basic props:native/1)

All the calls of the form findall(Template,Generator,List) do not fail. (na-
tive props:not fails/1)

All calls of the form findall(Template,Generator,List) are deterministic. (na-
tive props:is det/1)

PREDICATEfindall/4:
Meta-predicate with arguments: findall(?,goal,?,?).

Usage:

− Description: As findall/3, but returning in Tail the tail of List (findall(Template,
Generator, List, Tail)).

− Call and exit should be compatible with:

Arg3 is any term. (basic props:term/1)

Arg4 is any term. (basic props:term/1)

− The following properties should hold at call time:

Arg1 is any term. (basic props:term/1)

Arg2 is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Arg1 is any term. (basic props:term/1)

Arg3 is any term. (basic props:term/1)

Arg4 is any term. (basic props:term/1)

− The following properties should hold globally:

Arg1 is not further instantiated. (basic props:not further inst/2)

236 The Ciao System

PREDICATEfindnsols/4:
findnsols(N,Template,Generator,List)

As findall/3, but generating at most N solutions of Generator. Thus, the length of
List will not be greater than N. If N=<0, returns directly an empty list. This predicate is
especially useful if Generator may have an infinite number of solutions.

Meta-predicate with arguments: findnsols(?,?,goal,?).

Usage:

− Call and exit should be compatible with:

List is a list. (basic props:list/1)

− The following properties should hold at call time:

N is an integer. (basic props:int/1)

Template is any term. (basic props:term/1)

Generator is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

List is a list. (basic props:list/1)

− The following properties should hold globally:

Template is not further instantiated. (basic props:not further inst/2)

PREDICATEfindnsols/5:
findnsols(N,Template,Generator,List,Tail)

As findnsols/4, but returning in Tail the tail of List.

Meta-predicate with arguments: findnsols(?,?,goal,?,?).

Usage:

− The following properties should hold at call time:

N is an integer. (basic props:int/1)

Template is any term. (basic props:term/1)

Generator is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

− The following properties should hold globally:

Template is not further instantiated. (basic props:not further inst/2)

PREDICATE^/2:
Meta-predicate with arguments: (?)^goal.

General properties: _X^Y

− The following properties hold globally:

This predicate is understood natively by CiaoPP as call(Y). (basic props:native/2)

Usage: X^P

− Description: Existential quantification: X is existentially quantified in P. E.g., in
A^p(A,B), A is existentially quantified. Used only within aggregation predicates. In
all other contexts, simply, execute the procedure call P.

Chapter 33: All solutions predicates 237

− The following properties should hold at call time:

X is a free variable. (term typing:var/1)

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

33.3 Known bugs and planned improvements (aggregates)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

238 The Ciao System

Chapter 34: Dynamic predicates 239

34 Dynamic predicates

Author(s): Daniel Cabeza, The CLIP Group.

The package dynamic_clauses provides the assert/retract family of predicates to manipulate
dynamic predicates.

The defined predicates allow modification of the program as it is actually running. Clauses
can be added to the program (asserted) or removed from the program (retracted), as well as
inspected. Note that in Ciao only the dynamic predicates of the current module (or accessible
dynamic multifile predicates) can be accessed and modified. This limits the bad impact to
global analysis of this dynamic modification of the program. Thus, if dynamic predicates are
exported, to be able to inspect or modify them externally some accessing predicates need to be
implemented and exported alongside.

For the inspecting/manipulating predicates, the argument which corresponds to the clause
head must be instantiated to an atom or a compound term. The argument corresponding to
the clause must be instantiated either to a term Head :- Body or, if the body part is empty, to
Head. An empty body part is represented as true.

Note that using this library is very detrimental to global analysis, and that for most uses the
predicates listed in Chapter 25 [Fast/concurrent update of facts], page 187 suffice.

34.1 Usage and interface (dynamic_rt)
� �

• Library usage:

To be able to handle dynamic predicates in a module, load the library package dynamic_
clauses, either by putting it in the package list of the module or using the use_package/1
directive. Do not load directly the dynamic_rt module.

• Exports:

− Predicates:

asserta/1, asserta/2, assertz/1, assertz/2, assert/1, assert/2, retract/1,
retractall/1, abolish/1, clause/2, mfclause/2, current_predicate/1, current_
predicate/2, dynamic/1, data/1, wellformed_body/3.

− Multifiles:

do_on_abolish/1.

• Other modules used:

− System library modules:

prolog_sys, iso_misc.

 	

34.2 Documentation on exports (dynamic_rt)

PREDICATEasserta/1:
Usage: asserta(Clause) 〈 • ISO • 〉

− Description: The current instance of Clause is interpreted as a clause and is added
to the current program. The predicate concerned must be dynamic. The new clause
becomes the first clause for the predicate concerned. Any uninstantiated variables in
Clause will be replaced by new private variables.

240 The Ciao System

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEasserta/2:
Usage: asserta(Clause,Ref)

− Description: Like asserta/1. Ref is a unique identifier of the asserted clause.

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Ref is a free variable. (term typing:var/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEassertz/1:
Usage: assertz(Clause) 〈 • ISO • 〉

− Description: Like asserta/1, except that the new clause becomes the last clause for
the predicate concerned.

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEassertz/2:
Usage: assertz(Clause,Ref)

− Description: Like assertz/1. Ref is a unique identifier of the asserted clause.

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Ref is a free variable. (term typing:var/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEassert/1:
Usage: assert(Clause)

− Description: Identical to assertz/1. Included for compatibility.

Chapter 34: Dynamic predicates 241

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEassert/2:
Usage: assert(Clause,Ref)

− Description: Identical to assertz/2. Included for compatibility.

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Ref is a free variable. (term typing:var/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEretract/1:
Usage: retract(Clause) 〈 • ISO • 〉

− Description: The first clause in the program that matches Clause is erased. The
predicate concerned must be dynamic.

The predicate retract/1 may be used in a non-determinate fashion, i.e., it will suc-
cessively retract clauses matching the argument through backtracking. If reactivated
by backtracking, invocations of the predicate whose clauses are being retracted will
proceed unaffected by the retracts. This is also true for invocations of clause for
the same predicate. The space occupied by a retracted clause will be recovered when
instances of the clause are no longer in use.

− The following properties should hold at call time:

Clause is currently a term which is not a free variable. (term typing:nonvar/1)

Clause is a well-formed clause (dynamic rt:clause/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEretractall/1:
Usage: retractall(Head)

− Description: Erase all clauses whose head matches Head, where Head must be instan-
tiated to an atom or a compound term. The predicate concerned must be dynamic.
The predicate definition is retained.

− The following properties should hold at call time:

Head is currently a term which is not a free variable. (term typing:nonvar/1)

Head is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

242 The Ciao System

PREDICATEabolish/1:
Meta-predicate with arguments: abolish(spec).

Usage: abolish(Spec) 〈 • ISO • 〉

− Description: Erase all clauses of the predicate specified by the predicate spec Spec.
The predicate definition itself is also erased (the predicate is deemed undefined after
execution of the abolish). The predicates concerned must all be user defined.

− The following properties should hold at call time:

Spec is currently a term which is not a free variable. (term typing:nonvar/1)

Spec is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEclause/2:
Usage: clause(Head,Body) 〈 • ISO • 〉

− Description: The clause ’Head :- Body’ exists in the current module. The predicate
concerned must be dynamic.

− The following properties should hold at call time:

Head is currently a term which is not a free variable. (term typing:nonvar/1)

Head is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Body is a clause body (dynamic rt:body/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEmfclause/2:
Usage: mfclause(Head,Body) 〈 • ISO • 〉

− Description: There is a clause ’Head :- Body’ of a dynamic multifile predicate acces-
sible from this module.

− The following properties should hold at call time:

Head is currently a term which is not a free variable. (term typing:nonvar/1)

Head is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Body is a clause body (dynamic rt:body/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 34: Dynamic predicates 243

PREDICATEcurrent predicate/1:
Usage: current_predicate(Spec) 〈 • ISO • 〉

− Description: A predicate in the current module is named Spec.

− The following properties should hold upon exit:

Spec is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent predicate/2:
Usage: current_predicate(Spec,Module)

− Description: A predicate in Module is named Spec. Module never is an engine module.

− The following properties should hold upon exit:

Spec is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Module is an internal module identifier (system info:internal module id/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEdynamic/1:
dynamic Spec

Spec is of the form F/A. The predicate named F with arity A is made dynamic in the current
module at runtime (useful for predicate names generated on-the-fly). If the predicate
functor name F is uninstatiated, a new, unique, predicate name is generated at runtime.

Usage: dynamic Spec

− The following properties should hold at call time:

Spec is currently a term which is not a free variable. (term typing:nonvar/1)

Spec is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

PREDICATEdata/1:
data Spec

Spec is of the form F/A. The predicate named F with arity A is made data in the current
module at runtime (useful for predicate names generated on-the-fly). If the predicate
functor name F is uninstatiated, a new, unique, predicate name is generated at runtime.

Usage: data Spec

244 The Ciao System

− The following properties should hold at call time:

Spec is currently a term which is not a free variable. (term typing:nonvar/1)

Spec is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

PREDICATEerase/1:
erase(Ref)

Deletes the clause referenced by Ref, the identifier obtained by using asserta/2 or
assertz/2.

PREDICATEwellformed body/3:
wellformed_body(BodyIn,Env,BodyOut)

BodyIn is a well-formed clause body. BodyOut is its counterpart with no single-variable
meta-goals (i.e., with call(X) for X). Env denotes if global cuts are admissible in BodyIn
(+ if they are, - if they are not).

34.3 Documentation on multifiles (dynamic_rt)

PREDICATEdo on abolish/1:
do_on_abolish(Head)

A hook predicate which will be called when the definition of the predicate of Head is
abolished.

The predicate is multifile.

Usage: do_on_abolish(G)

− The following properties should hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

34.4 Known bugs and planned improvements (dynamic_rt)

• Package dynamic clauses cannot be loaded into the shell.

Chapter 35: Term input 245

35 Term input

Author(s): Daniel Cabeza (modifications and documentation, adapted from SICStus 0.6
code), Manuel Carro (modifications and documentation).

This module provides falicities to read terms in Prolog syntax. This is very convenient in
many cases (and not only if you are writing a Prolog compiler), because Prolog terms are easy
to write and can convey a lot of information in a human-readable fashion.

35.1 Usage and interface (read)
� �

• Library usage:

:- use_module(library(read)).

• Exports:

− Predicates:

read/1, read/2, read_term/2, read_term/3, read_top_level/3, second_prompt/2.

− Regular Types:

read_option/1.

− Multifiles:

define_flag/3.

• Other modules used:

− System library modules:

tokenize, operators, lists.

 	

35.2 Documentation on exports (read)

PREDICATEread/1:
read(Term)

Like read(Stream,Term) with Stream associated to the current input stream.

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Term is any term. (basic props:term/1)

− The following properties should hold upon exit:

Term is any term. (basic props:term/1)

PREDICATEread/2:
Usage: read(Stream,Term) 〈 • ISO • 〉

− Description: The next term, delimited by a full-stop (i.e., a . followed by either a
space or a control character), is read from Stream and is unified with Term. The
syntax of the term must agree with current operator declarations. If the end of
Stream has been reached, Term is unified with the term end_of_file. Further calls
to read/2 for the same stream will then cause an error, unless the stream is connected
to the terminal (in which case a prompt is opened on the terminal).

246 The Ciao System

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

PREDICATEread term/2:
Usage: read_term(Term,Options) 〈 • ISO • 〉

− Description: Like read_term/3, but reading from the current input

− The following properties should hold at call time:

Options is currently a term which is not a free variable. (term typing:nonvar/1)

Term is any term. (basic props:term/1)

Options is a list of read_options. (basic props:list/2)

PREDICATEread term/3:
Usage: read_term(Stream,Term,Options) 〈 • ISO • 〉

− Description: Reads a Term from Stream with the ISO-Prolog Options. These options
can control the behavior of read term (see read_option/1).

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

Options is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

Options is a list of read_options. (basic props:list/2)

PREDICATEread top level/3:
read_top_level(Stream,Data,Variables)

Predicate used to read in the Top Level.

PREDICATEsecond prompt/2:
Usage: second_prompt(Old,New)

− Description: Changes the prompt (the second prompt, as opposed to the first one,
used by the toplevel) used by read/2 and friends to New, and returns the current one
in Old.

− The following properties should hold upon exit:

Old is currently instantiated to an atom. (term typing:atom/1)

New is currently instantiated to an atom. (term typing:atom/1)

REGTYPEread option/1:
Usage: read_option(Option)

− Description: Option is an allowed read_term/[2,3] option. These options are:

Chapter 35: Term input 247

read_option(variables(_V)).
read_option(variable_names(_N)).
read_option(singletons(_S)).
read_option(lines(_StartLine,_EndLine)).
read_option(dictionary(_Dict)).

They can be used to return the singleton variables in the term, a list of variables, etc.

− The following properties should hold upon exit:

Option is currently instantiated to an atom. (term typing:atom/1)

35.3 Documentation on multifiles (read)

PREDICATEdefine flag/3:
Defines flags as follows:

define_flag(read_hiord,[on,off],off).
define_flag(read_curly_blocks,[on,off],off).
define_flag(read_postfix_blocks,[on,off],off).

(See Chapter 24 [Changing system behaviour and various flags], page 181).

If flag is on (it is off by default), a variable followed by a parenthesized lists of arguments
is read as a call/N term, except if the variable is anonymous, in which case it is read as
an anonymous predicate abstraction head. For example, P(X) is read as call(P,X) and
_(X,Y) as ’’(X,Y).

The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

35.4 Known bugs and planned improvements (read)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

• The comma cannot be redefined as an operator, it is defined in any case as op(1000, xfy,[’,’]).

248 The Ciao System

Chapter 36: Term output 249

36 Term output

Author(s): Richard A. O’Keefe (original version), Mats Carlsson (changes), Daniel Cabeza
(changes), Manuel Hermenegildo (changes), Manuel Carro (changes).

This library provides different predicates for term output, additional to the kernel predicates
display/1- display/2 and displayq/1-displayq/2. All the predicates defined in ISO-Prolog
are included, plus other traditionally provided by Prolog Implementations. Output predicates
are provided in two versions: one that uses the current output stream and other in which the
stream is specified explicitly, as an additional first argument.

36.1 Usage and interface (write)
� �

• Library usage:

:- use_module(library(write)).

• Exports:

− Predicates:

write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1, write_
canonical/2, write_canonical/1, print/2, print/1, write_list1/1, portray_
clause/2, portray_clause/1, numbervars/3, prettyvars/1, printable_char/1,
write_attribute/1.

− Properties:

write_option/1.

− Multifiles:

define_flag/3, portray_attribute/2, portray/1.

• Other modules used:

− System library modules:

assertions/native_props, operators, sort.

 	

36.2 Documentation on exports (write)

PREDICATEwrite term/3:
Usage: write_term(Stream,Term,OptList) 〈 • ISO • 〉

− Description: Outputs the term Term to the stream Stream, with the list of write-
options OptList. See write_option/1 type for default options.

− The following properties should hold at call time:

OptList is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

OptList is a list of write_options. (basic props:list/2)

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

250 The Ciao System

PREDICATEwrite term/2:
Usage: write_term(Term,OptList) 〈 • ISO • 〉

− Description: Behaves like current_output(S), write_term(S,Term,OptList).

− The following properties should hold at call time:

OptList is currently a term which is not a free variable. (term typing:nonvar/1)

Term is any term. (basic props:term/1)

OptList is a list of write_options. (basic props:list/2)

PROPERTYwrite option/1:
Opt is a valid write option which affects the predicate write_term/3 and similar ones.
Possible write options are:

• quoted(bool): If bool is true, atoms and functors that can’t be read back by read_
term/3 are quoted, if it is false, each atom and functor is written as its name.
Default value is false.

• ignore ops(flag): If flag is true, each compound term is output in functional notation,
if it is ops, curly bracketed notation and list notation is enabled when outputing
compound terms, if it is false, also operator notation is enabled when outputing
compound terms. Default value is false.

• numbervars(bool): If bool is true, a term of the form ’$VAR’(N) where N is an
integer, is output as a variable name consisting of a capital letter possibly followed
by an integer, a term of the form ’$VAR’(Atom) where Atom is an atom, as this
atom (without quotes), and a term of the form ’$VAR’(String) where String is a
character string, as the atom corresponding to this character string. See predicates
numbervars/3 and prettyvars/1. If bool is false this cases are not treated in any
special way. Default value is false.

• portrayed(bool): If bool is true, then call multifile predicates portray/1 and
portray_attribute/2, to provide the user handlers for pretty printing some terms.
portray_attribute/2 is called whenever an attributed variable is to be printed,
portray/1 is called whenever a non-variable term is to be printed. If either call suc-
ceeds, then it is assumed that the term has been output, else it is printed as usual. If
bool is false, these predicates are not called. Default value is false. This option is
set by the toplevel when writting the final values of variables, and by the debugging
package when writting the goals in the tracing messages. Thus you can vary the forms
of these messages if you wish.

• max depth(depth): depth is a positive integer or cero. If it is positive, it denotes the
depth limit on printing compound terms. If it is cero, there is no limit. Default value
is 0 (no limit).

• priority(prio): prio is an integer between 1 and 1200. If the term to be printed has
higher priority than prio, it will be printed parenthesized. Default value is 1200 (no
term parenthesized).

.

Usage: write_option(Opt)

− Description: Opt is a valid write option.

PREDICATEwrite/2:
Usage: write(Stream,Term) 〈 • ISO • 〉

− Description: Behaves like write_term(Stream, Term, [numbervars(true)]).

Chapter 36: Term output 251

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

− The following properties hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

All calls of the form write(Stream,Term) are deterministic. (native props:is det/1)

PREDICATEwrite/1:
Usage: write(Term) 〈 • ISO • 〉

− Description: Behaves like current_output(S), write(S,Term).

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

− The following properties hold globally:

All calls of the form write(Term) are deterministic. (native props:is det/1)

PREDICATEwriteq/2:
Usage: writeq(Stream,Term) 〈 • ISO • 〉

− Description: Behaves like write_term(Stream, Term, [quoted(true),
numbervars(true)]).

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

− The following properties hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

All calls of the form writeq(Stream,Term) are deterministic. (native props:is det/1)

PREDICATEwriteq/1:
Usage: writeq(Term) 〈 • ISO • 〉

− Description: Behaves like current_output(S), writeq(S,Term).

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

− The following properties hold globally:

All calls of the form writeq(Term) are deterministic. (native props:is det/1)

PREDICATEwrite canonical/2:
Usage: write_canonical(Stream,Term) 〈 • ISO • 〉

− Description: Behaves like write_term(Stream, Term, [quoted(true), ignore_
ops(true)]). The output of this predicate can always be parsed by read_term/2
even if the term contains special characters or if operator declarations have changed.

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

252 The Ciao System

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

PREDICATEwrite canonical/1:
Usage: write_canonical(Term) 〈 • ISO • 〉

− Description: Behaves like current_output(S), write_canonical(S,Term).

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

PREDICATEprint/2:
Usage: print(Stream,Term)

− Description: Behaves like write_term(Stream, Term, [numbervars(true),
portrayed(true)]).

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

PREDICATEprint/1:
Usage: print(Term)

− Description: Behaves like current_output(S), print(S,Term).

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

PREDICATEwrite list1/1:
Usage:

− Description: Writes a list to current output one element in each line.

− The following properties should hold at call time:

Arg1 is a list. (basic props:list/1)

PREDICATEportray clause/2:
Usage: portray_clause(Stream,Clause)

− Description: Outputs the clause Clause onto Stream, pretty printing its variables and
using indentation, including a period at the end. This predicate is used by listing/0.

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Clause is any term. (basic props:term/1)

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

Chapter 36: Term output 253

PREDICATEportray clause/1:
Usage: portray_clause(Clause)

− Description: Behaves like current_output(S), portray_clause(S,Term).

− The following properties should hold at call time:

Clause is any term. (basic props:term/1)

PREDICATEnumbervars/3:
Usage: numbervars(Term,N,M)

− Description: Unifies each of the variables in term Term with a term of the form
’$VAR’(I) where I is an integer from N onwards. M is unified with the last integer
used plus 1. If the resulting term is output with a write option numbervars(true),
in the place of the variables in the original term will be printed a variable name
consisting of a capital letter possibly followed by an integer. When N is 0 you will get
the variable names A, B, ..., Z, A1, B1, etc.

− The following properties should hold at call time:

N is currently a term which is not a free variable. (term typing:nonvar/1)

Term is any term. (basic props:term/1)

N is an integer. (basic props:int/1)

M is any term. (basic props:term/1)

− The following properties should hold upon exit:

Term is any term. (basic props:term/1)

N is an integer. (basic props:int/1)

M is an integer. (basic props:int/1)

PREDICATEprettyvars/1:
Usage: prettyvars(Term)

− Description: Similar to numbervars(Term,0,_), except that singleton variables in
Term are unified with ’$VAR’(’_’), so that when the resulting term is output with a
write option numbervars(true), in the place of singleton variables _ is written. This
predicate is used by portray_clause/2.

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

PREDICATEprintable char/1:
Usage: printable_char(Char)

− Description: Char is the code of a character which can be printed.

− The following properties should hold at call time:

Char is currently a term which is not a free variable. (term typing:nonvar/1)

Char is an integer which is a character code. (basic props:character code/1)

PREDICATEwrite attribute/1:
No further documentation available for this predicate.

254 The Ciao System

36.3 Documentation on multifiles (write)

PREDICATEdefine flag/3:
Defines flags as follows:

define_flag(write_strings,[on,off],off).

(See Chapter 24 [Changing system behaviour and various flags], page 181).

If flag is on, lists which may be written as strings are.

The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

PREDICATEportray attribute/2:
The predicate is multifile.

Usage: portray_attribute(Attr,Var)

− Description: A user defined predicate. When an attributed variable Var is about to
be printed, this predicate receives the variable and its attribute Attr. The predicate
should either print something based on Attr or Var, or do nothing and fail. In the
latter case, the default printer (write/1) will print the attributed variable like an
unbound variable, e.g. _673.

− The following properties should hold at call time:

Attr is currently a term which is not a free variable. (term typing:nonvar/1)

Var is a free variable. (term typing:var/1)

PREDICATEportray/1:
The predicate is multifile.

Usage: portray(T)

− Description: A user defined predicate. This should either print the Term and succeed,
or do nothing and fail. In the latter case, the default printer (write/1) will print the
Term.

− The following properties should hold at call time:

T is any term. (basic props:term/1)

− The following properties hold upon exit:

T is any term. (basic props:term/1)

36.4 Known bugs and planned improvements (write)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 37: Defining operators 255

37 Defining operators

Author(s): Daniel Cabeza (modifications and documentation, adapted from SICStus 0.6
code), Manuel Carro (modifications and documentation).

Operators allow writting terms in a more clear way than the standard functional notation.
Standard operators in Ciao are defined by this predicate (but note that the compiler itself defines
more operators at compile time):

standard_ops :-
op(1200,xfx,[:-]),
op(1200,fx,[:-,?-]),
op(1100,xfy,[;]),
op(1050,xfy,[->]),
op(1000,xfy,[’,’]),
op(900,fy,[\+]),
op(700,xfx,[=,\=,==,\==,@<,@>,@=<,@>=,=..,is,=:=,=\=,<,=<,>,>=]),
op(550,xfx,[:]),
op(500,yfx,[+,-,/\,\/,#]),
op(500,fy,[++,--]),
op(400,yfx,[*,/,//,rem,mod,<<,>>]),
op(200,fy,[+,-,\]),
op(200,xfx,[**]),
op(200,xfy,[^]).

37.1 Usage and interface (operators)
� �

• Library usage:

:- use_module(library(operators)).

• Exports:

− Predicates:

op/3,
current_op/3, current_prefixop/3, current_infixop/4, current_postfixop/3,
standard_ops/0.

 	

37.2 Documentation on exports (operators)

PREDICATEop/3:
op(Precedence,Type,Name)

Declares the atom Name to be an operator of the stated Type and Precedence (0 =<
Precedence =< 1200). Name may also be a list of atoms in which case all of them are
declared to be operators. If Precedence is 0 then the operator properties of Name (if any)
are cancelled. Note that, unlike in ISO-Prolog, it is allowed to define two operators with
the same name, one infix and the other postfix.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Precedence is an integer. (basic props:int/1)

256 The Ciao System

Type specifies the type and associativity of an operator. (ba-
sic props:operator specifier/1)

Name is an atom or a list of atoms. (basic props:atm or atm list/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent op/3:
current_op(Precedence,Type,Op)

The atom Op is currently an operator of type Type and precedence Precedence. Neither
Op nor the other arguments need be instantiated at the time of the call; i.e., this predicate
can be used to generate as well as to test.

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Precedence is an integer. (basic props:int/1)

Type specifies the type and associativity of an operator. (ba-
sic props:operator specifier/1)

Op is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Precedence is an integer. (basic props:int/1)

Type specifies the type and associativity of an operator. (ba-
sic props:operator specifier/1)

Op is an atom. (basic props:atm/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent prefixop/3:
current_prefixop(Op,Less,Precedence)

Similar to current_op/3, but it concerns only the prefix operators. It returns only one
solution. Not a predicate for general use.

Usage:

− Call and exit should be compatible with:

Op is an atom. (basic props:atm/1)

Less is an integer. (basic props:int/1)

Precedence is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Op is an atom. (basic props:atm/1)

Less is an integer. (basic props:int/1)

Precedence is an integer. (basic props:int/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 37: Defining operators 257

PREDICATEcurrent infixop/4:
current_infixop(Op,LeftLess,Prec,RightLess)

Similar to current_op/3, but it concerns only infix operators. It returns only one solution.
Not a predicate for general use.

Usage:

− Call and exit should be compatible with:

Op is an atom. (basic props:atm/1)

LeftLess is an integer. (basic props:int/1)

Prec is an integer. (basic props:int/1)

RightLess is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Op is an atom. (basic props:atm/1)

LeftLess is an integer. (basic props:int/1)

Prec is an integer. (basic props:int/1)

RightLess is an integer. (basic props:int/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent postfixop/3:
current_postfixop(Op,Less,Precedence)

Similar to current_op/3, but it concerns only the postfix operators. It returns only one
solution. Not a predicate for general use.

Usage:

− Call and exit should be compatible with:

Op is an atom. (basic props:atm/1)

Less is an integer. (basic props:int/1)

Precedence is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Op is an atom. (basic props:atm/1)

Less is an integer. (basic props:int/1)

Precedence is an integer. (basic props:int/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEstandard ops/0:
No further documentation available for this predicate.

258 The Ciao System

Chapter 38: The Iso Byte Char module 259

38 The Iso Byte Char module

Author(s): The CLIP Group, Daniel Cabeza, Edison Mera (documentation), Manuel
Hermenegildo (minor mods).

This module provides some basic predicates according to the ISO specification of byte and
char manipulation.

38.1 Usage and interface (iso_byte_char)
� �

• Library usage:

:- use_module(library(iso_byte_char)).

• Exports:

− Predicates:

char_code/2, atom_chars/2, number_chars/2, char_codes/2, get_byte/1, get_
byte/2, peek_byte/1, peek_byte/2, put_byte/1, put_byte/2, get_char/1, get_
char/2, peek_char/1, peek_char/2, put_char/1, put_char/2.

 	

38.2 Documentation on exports (iso_byte_char)

PREDICATEchar code/2:
char_code(Char,Code)

Succeeds iff the character code of the one char atom Char is Code.

Usage 1: 〈 • ISO • 〉

− Call and exit should be compatible with:

Code is an integer which is a character code. (basic props:character code/1)

− The following properties should hold at call time:

Char is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Code is an integer which is a character code. (basic props:character code/1)

Usage 2: 〈 • ISO • 〉

− The following properties should hold at call time:

Char is a free variable. (term typing:var/1)

Code is an integer which is a character code. (basic props:character code/1)

− The following properties should hold upon exit:

Char is an atom. (basic props:atm/1)

PREDICATEatom chars/2:
atom_chars(Atom,Chars)

Succeeds iff Chars is a list whose elements are the one-char atoms whose names are the
successive characters of the name of atom Atom

Usage 1: 〈 • ISO • 〉

260 The Ciao System

− Call and exit should be compatible with:

Chars is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Chars is a list of atms. (basic props:list/2)

Usage 2: 〈 • ISO • 〉

− The following properties should hold at call time:

Atom is a free variable. (term typing:var/1)

Chars is a list of atms. (basic props:list/2)

− The following properties should hold upon exit:

Atom is an atom. (basic props:atm/1)

PREDICATEnumber chars/2:
number_chars(Number,Chars)

Success iff Chars is a list whose elements are the one-char atoms corresponding to a
character sequence of Number which could be output

Usage 1: 〈 • ISO • 〉

− Call and exit should be compatible with:

Chars is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Number is a number. (basic props:num/1)

− The following properties should hold upon exit:

Chars is a list of atms. (basic props:list/2)

Usage 2: 〈 • ISO • 〉

− The following properties should hold at call time:

Number is a free variable. (term typing:var/1)

Chars is a list of atms. (basic props:list/2)

− The following properties should hold upon exit:

Number is a number. (basic props:num/1)

PREDICATEchar codes/2:
Usage 1:

− Call and exit should be compatible with:

Arg2 is a list of character_codes. (basic props:list/2)

− The following properties should hold at call time:

Arg1 is a list of atms. (basic props:list/2)

− The following properties should hold upon exit:

Arg2 is a list of character_codes. (basic props:list/2)

Usage 2:

Chapter 38: The Iso Byte Char module 261

− The following properties should hold at call time:

Arg1 is a free variable. (term typing:var/1)

Arg2 is a list of character_codes. (basic props:list/2)

− The following properties should hold upon exit:

Arg1 is a list of atms. (basic props:list/2)

PREDICATEget byte/1:
Usage: 〈 • ISO • 〉

− Description: Same as get_byte/2, but use the current input.

− Call and exit should be compatible with:

Arg1 is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Arg1 is an integer. (basic props:int/1)

PREDICATEget byte/2:
get_byte(Stream,Byte)

Is true iff Byte unifies with the next byte to be input from the target Stream.

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Byte is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

Byte is an integer. (basic props:int/1)

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

PREDICATEpeek byte/1:
Usage: 〈 • ISO • 〉

− Description: Same as peek_byte/2, but use the current input.

− Call and exit should be compatible with:

Arg1 is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Arg1 is an integer. (basic props:int/1)

PREDICATEpeek byte/2:
Usage: 〈 • ISO • 〉

− Description: Is true iff Byte unifies with the next byte to be input from the target
Stream.

262 The Ciao System

− Call and exit should be compatible with:

Arg2 is an integer. (basic props:int/1)

− The following properties should hold at call time:

Arg1 is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

Arg1 is an open stream. (streams basic:stream/1)

Arg2 is an integer. (basic props:int/1)

− The following properties should hold globally:

Arg1 is not further instantiated. (basic props:not further inst/2)

PREDICATEput byte/1:
Usage: 〈 • ISO • 〉

− Description: Same as put_byte/2, but use the current input.

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

PREDICATEput byte/2:
put_byte(Stream,Byte)

Is true. Procedurally, putbyte/2 is executed as follows:

a) Outputs the byte Byte to the target stream.

b) Changes the stream position of the target stream to take account of the byte which has
been output.

c) The goal succeeds.

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Byte is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

PREDICATEget char/1:
Usage: 〈 • ISO • 〉

− Description: Same as get_char/2, but use the current input.

− Call and exit should be compatible with:

Arg1 is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Arg1 is an atom. (basic props:atm/1)

Chapter 38: The Iso Byte Char module 263

PREDICATEget char/2:
get_char(Stream,Char)

Is true iif Char unifies with the next character to be input from the target Stream.

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Char is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

Char is an atom. (basic props:atm/1)

− The following properties should hold globally:

Stream is not further instantiated. (basic props:not further inst/2)

PREDICATEpeek char/1:
Usage: 〈 • ISO • 〉

− Description: Similar to peek_code/1, but using char instead of code.

− Call and exit should be compatible with:

Arg1 is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Arg1 is an atom. (basic props:atm/1)

PREDICATEpeek char/2:
Usage: 〈 • ISO • 〉

− Description: Similar to peek_code/2, but using char instead of code.

− Call and exit should be compatible with:

Arg2 is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Arg1 is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

Arg1 is an open stream. (streams basic:stream/1)

Arg2 is an atom. (basic props:atm/1)

− The following properties should hold globally:

Arg1 is not further instantiated. (basic props:not further inst/2)

PREDICATEput char/1:
Usage: 〈 • ISO • 〉

− Description: Similar to put_code/1, but using char instead of code.

− The following properties should hold at call time:

Arg1 is an atom. (basic props:atm/1)

264 The Ciao System

PREDICATEput char/2:
Usage: 〈 • ISO • 〉

− Description: Similar to put_code/2, but using char instead of code.

− The following properties should hold at call time:

Arg1 is an open stream. (streams basic:stream/1)

Arg2 is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Arg1 is an open stream. (streams basic:stream/1)

− The following properties should hold globally:

Arg1 is not further instantiated. (basic props:not further inst/2)

Chapter 39: Miscellaneous ISO Prolog predicates 265

39 Miscellaneous ISO Prolog predicates

Author(s): Daniel Cabeza.

This module implements some miscellaneous ISO Prolog predicates.

39.1 Usage and interface (iso_misc)
� �

• Library usage:

:- use_module(library(iso_misc)).

• Exports:

− Predicates:

once/1, compound/1, sub_atom/5, unify_with_occurs_check/2.

• Other modules used:

− System library modules:

between.

 	

39.2 Documentation on exports (iso_misc)

PREDICATEonce/1:
once(G)

Finds the first solution of goal G (if any). once/1 behaves as call/1, except that no
further solutions are explored on backtracking.

Meta-predicate with arguments: once(goal).

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEcompound/1:
compound(T)

T is currently instantiated to a compound term.

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

T is any term. (basic props:term/1)

− The following properties should hold upon exit:

T is any term. (basic props:term/1)

T is a compound term. (basic props:struct/1)

266 The Ciao System

PREDICATEsub atom/5:
sub_atom(Atom,Before,Length,After,Sub_atom)

Is true iff atom Atom can be broken into three pieces, AtomL, Sub_atom and AtomR such
that Before is the number of characters of the name of AtomL, Length is the number of
characters of the name of Sub_atom and After is the number of characters of the name
of AtomR

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

Before is an integer. (basic props:int/1)

Length is an integer. (basic props:int/1)

After is an integer. (basic props:int/1)

Sub_atom is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Atom is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Before is an integer. (basic props:int/1)

Length is an integer. (basic props:int/1)

After is an integer. (basic props:int/1)

Sub_atom is an atom. (basic props:atm/1)

PREDICATEunify with occurs check/2:
unify_with_occurs_check(X,Y)

Attempts to compute and apply a most general unifier of the two terms X and Y. Is true
iff X and Y are unifiable.

Usage: 〈 • ISO • 〉

− Call and exit should be compatible with:

X is any term. (basic props:term/1)

Y is any term. (basic props:term/1)

− The following properties should hold upon exit:

X is any term. (basic props:term/1)

Y is any term. (basic props:term/1)

39.3 Known bugs and planned improvements (iso_misc)

• There is a naive implementation of compound/1, perhaps is better to implement it as a
builtin – EMM.

Chapter 40: Incomplete ISO Prolog predicates 267

40 Incomplete ISO Prolog predicates

Author(s): The CLIP Group.

This module implements some ISO Prolog predicates, but that are not complete yet.

40.1 Usage and interface (iso_incomplete)
� �

• Library usage:

:- use_module(library(iso_incomplete)).

• Exports:

− Predicates:

close/2, stream_property/2.

 	

40.2 Documentation on exports (iso_incomplete)

PREDICATEclose/2:
Usage:

− The following properties should hold at call time:

Arg1 is an open stream. (streams basic:stream/1)

iso incomplete:close options(Arg2) (iso incomplete:close options/1)

− The following properties should hold upon exit:

Arg1 is an open stream. (streams basic:stream/1)

iso incomplete:close options(Arg2) (iso incomplete:close options/1)

− The following properties should hold globally:

Arg1 is not further instantiated. (basic props:not further inst/2)

Arg2 is not further instantiated. (basic props:not further inst/2)

PREDICATEstream property/2:
Usage:

− Call and exit should be compatible with:

Arg1 is an open stream. (streams basic:stream/1)

Arg2 is a valid stream property. (iso incomplete:stream prop/1)

− The following properties should hold upon exit:

Arg1 is an open stream. (streams basic:stream/1)

Arg2 is a valid stream property. (iso incomplete:stream prop/1)

268 The Ciao System

PART IV - Classic Prolog library (classic) 269

PART IV - Classic Prolog library (classic)

� �

Author(s): The CLIP Group.

This part documents some Ciao libraries which provide additional predicates and function-
alities that, despite not being in the ISO standard, are present in many popular Prolog systems.
This includes definite clause grammars (DCGs), “Quintus-style” internal database, list pro-
cessing predicates, DEC-10 Prolog-style input/output, formatted output, dynamic loading of
modules, activation of operators at run-time, etc.

 	

270 The Ciao System

Chapter 41: Definite clause grammars 271

41 Definite clause grammars

Author(s): The CLIP Group.

This library package allows the use of DCGs (Definite Clause Grammars) [Col78,PW80] in
a Ciao module/program.

Definite clause grammars are an extension of the well-known context-free grammars. Prolog’s
grammar rules provide a convenient notation for expressing definite clause grammars. A DCG
rule in Prolog takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or more
items linked by the standard Prolog conjunction operator ",".

Definite clause grammars extend context-free grammars in the following ways:

1. A non-terminal symbol may be any Prolog term (other than a variable or number).

2. A terminal symbol may be any Prolog term. To distinguish terminals from non-terminals,
a sequence of one or more terminal symbols is written within a grammar rule as a Prolog
list. An empty sequence is written as the empty list []. If the terminal symbols are ASCII
character codes, such lists can be written (as elsewhere) as strings. An empty sequence is
written as the empty list, [] or "".

3. Extra conditions, in the form of Prolog procedure calls, may be included in the right-hand
side of a grammar rule. Such procedure calls are written enclosed in {} brackets.

4. The left-hand side of a grammar rule consists of a non-terminal, optionally followed by a
sequence of terminals (again written as a Prolog list).

5. Alternatives may be stated explicitly in the right-hand side of a grammar rule, using the
disjunction operator ;, or, also, as traditionally in Prolog, using | (which is treated specially
when this package is loaded).

6. The cut symbol may be included in the right-hand side of a grammar rule, as in a Prolog
clause. The cut symbol does not need to be enclosed in {} brackets.

As an example, here is a simple grammar which parses an arithmetic expression (made up
of digits and operators) and computes its value.

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {0’0=<C, C=<0’9, X is C - 0’0}.

In the last rule, C is the ASCII code of some digit.

The query

?- expr(Z, "-2+3*5+1", []).

will compute Z=14. The two extra arguments are explained below.

Now, in fact, grammar rules are merely a convenient “syntactic sugar” for ordinary Prolog
clauses. Each grammar rule takes an input string, analyses some initial portion, and produces
the remaining portion (possibly enlarged) as output for further analysis. The arguments required
for the input and output strings are not written explicitly in a grammar rule, but the syntax

272 The Ciao System

implicitly defines them. We now show how to translate grammar rules into ordinary clauses by
making explicit the extra arguments.

A rule such as

p(X) --> q(X).

translates into

p(X, S0, S) :- q(X, S0, S).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) -->
q(X),
r(X, Y),
s(Y).

then corresponding input and output arguments are identified, as in

p(X, Y, S0, S) :-
q(X, S0, S1),
r(X, Y, S1, S2),
r(Y, S2, S).

Terminals are translated using the built-in predicate ’C’/3 (this predicate is not normally
useful in itself; it has been given the name ’C’ simply to avoid using up a more useful name).
Then, for instance

p(X) --> [go,to], q(X), [stop].

is translated by

p(X, S0, S) :-
’C’(S0, go, S1),
’C’(S1, to, S2),
q(X, S2, S3),
’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate as themselves, e.g.

p(X) --> [X], {integer(X), X>0}, q(X).

translates to

p(X, S0, S) :-
’C’(S0, X, S1),
integer(X),
X>0,
q(X, S1, S).

Similarly, a cut is translated literally.

Terminals on the left-hand side of a rule translate into an explicit list in the output argument
of the main non-terminal, e.g.

is(N), [not] --> [aint].

becomes

is(N, S0, [not|S]) :- ’C’(S0, aint, S).

Disjunction has a fairly obvious translation, e.g.

args(X, Y) -->
(dir(X), [to], indir(Y)
; indir(Y), dir(X)
).

translates to

Chapter 41: Definite clause grammars 273

args(X, Y, S0, S) :-
(dir(X, S0, S1),

’C’(S1, to, S2),
indir(Y, S2, S)

; indir(Y, S0, S1),
dir(X, S1, S)

).

41.1 Usage and interface (dcg_doc)
� �

• Library usage:

:- use_package(dcg).

or

:- module(...,...,[dcg]).

 	

274 The Ciao System

Chapter 42: Definite Clause Grammars (expansion) 275

42 Definite Clause Grammars (expansion)

Author(s): Daniel Cabeza.

This module implements the translation for Definite Clause Grammars (DCGs) (expansion).

42.1 Usage and interface (dcg_tr)
� �

• Library usage:

:- use_module(library(dcg_tr)).

• Exports:

− Predicates:

phrase/2, phrase/3, dcg_translation/2.

• Other modules used:

− System library modules:

terms, assertions/doc_props.

 	

42.2 Documentation on exports (dcg_tr)

PREDICATEphrase/2:
phrase(Phrase,List)

Like phrase(Phrase,List,[]).

Meta-predicate with arguments: phrase(goal,?).

PREDICATEphrase/3:
Meta-predicate with arguments: phrase(goal,?,?).

Usage: phrase(Phrase,List,Remainder)

− Description: The list List is a phrase of type Phrase (according to the current
grammar rules), where Phrase is either a non-terminal or more generally a grammar
rule body. Remainder is what remains of the list after a phrase has been found.

− The following properties should hold at call time:

Phrase is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold globally:

Documentation is still incomplete: phrase(Phrase,List,Remainder) may not con-
form the functionality documented. (doc props:doc incomplete/1)

PREDICATEdcg translation/2:
Performs the code expansion of source clauses that use DCGs.

42.3 Known bugs and planned improvements (dcg_tr)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

276 The Ciao System

Chapter 43: Formatted output 277

43 Formatted output

Author(s): The CLIP Group.

The format family of predicates is due to Quintus Prolog. They act as a Prolog interface to
the C stdio function printf(), allowing formatted output.

Output is formatted according to an output pattern which can have either a format control
sequence or any other character, which will appear verbatim in the output. Control sequences
act as place-holders for the actual terms that will be output. Thus

?- format("Hello ~q!",world).

will print Hello world!.

If there is only one item to print it may be supplied alone. If there are more they have to
be given as a list. If there are none then an empty list should be supplied. There has to be as
many items as control characters.

The character ~ introduces a control sequence. To print a ~ verbatim just repeat it:

?- format("Hello ~~world!", []).

will result in Hello ~world!.

A format may be spread over several lines. The control sequence \c followed by a 〈LFD〉 will
translate to the empty string:

?- format("Hello \c
world!", []).

will result in Hello world!.

43.1 Usage and interface (format)
� �

• Library usage:

:- use_module(library(format)).

• Exports:

− Predicates:

format/2, format/3, sformat/3, format_to_string/3.

− Regular Types:

format_control/1.

• Other modules used:

− System library modules:

write, system, assertions/doc_props.

 	

43.2 Documentation on exports (format)

PREDICATEformat/2:
General properties: format(C,A)

278 The Ciao System

− The following properties hold globally:

This predicate is understood natively by CiaoPP as format(C,A). (ba-
sic props:native/2)

Usage: format(Format,Arguments)

− Description: Print Arguments onto current output stream according to format
Format.

− The following properties should hold at call time:

Format is an atom or string describing how the arguments should be formatted. If it
is an atom it will be converted into a string with name/2. (format:format control/1)

PREDICATEformat/3:
General properties: format(S,C,A)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as format(S,C,A). (ba-
sic props:native/2)

Usage: format(Stream,Format,Arguments)

− Description: Print Arguments onto Stream according to format Format.

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Format is an atom or string describing how the arguments should be formatted. If it
is an atom it will be converted into a string with name/2. (format:format control/1)

PREDICATEsformat/3:
Usage: sformat(String,Format,Arguments)

− Description: Same as format_to_string(Format, Arguments, String) (note the
different argument order).

− The following properties should hold at call time:

Format is an atom or string describing how the arguments should be formatted. If it
is an atom it will be converted into a string with name/2. (format:format control/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

PREDICATEformat to string/3:
Usage: format_to_string(Format,Arguments,String)

− Description: Print Arguments onto current string String according to format Format.
This predicate is similar to the format/2, but the result is stored in a string.

− The following properties should hold at call time:

Format is an atom or string describing how the arguments should be formatted. If it
is an atom it will be converted into a string with name/2. (format:format control/1)

Arguments is a list. (basic props:list/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

Chapter 43: Formatted output 279

REGTYPEformat control/1:
The general format of a control sequence is ~NC. The character C determines the type of
the control sequence. N is an optional numeric argument. An alternative form of N is *.
* implies that the next argument in Arguments should be used as a numeric argument in
the control sequence. Example:

?- format("Hello~4cworld!", [0’x]).

and

?- format("Hello~*cworld!", [4,0’x]).

both produce

Helloxxxxworld!

The following control sequences are available.

• ~a The argument is an atom. The atom is printed without quoting.

• ~Nc (Print character.) The argument is a number that will be interpreted as an
ASCII code. N defaults to one and is interpreted as the number of times to print the
character.

• ~Ne

• ~NE

• ~Nf

• ~Ng

• ~NG (Print float). The argument is a float. The float and N will be passed to the C
printf() function as

printf("%.Ne", Arg)
printf("%.NE", Arg)
printf("%.Nf", Arg)
printf("%.Ng", Arg)
printf("%.NG", Arg)

If N is not supplied the action defaults to

printf("%e", Arg)
printf("%E", Arg)
printf("%f", Arg)
printf("%g", Arg)
printf("%G", Arg)

• ~Nd (Print decimal.) The argument is an integer. N is interpreted as the number of
digits after the decimal point. If N is 0 or missing, no decimal point will be printed.
Example:

?- format("Hello ~1d world!", [42]).
?- format("Hello ~d world!", [42]).

will print as

Hello 4.2 world!
Hello 42 world!

respectively.

• ~ND (Print decimal.) The argument is an integer. Identical to ~Nd except that , will
separate groups of three digits to the left of the decimal point. Example:

?- format("Hello ~1D world!", [12345]).

will print as

Hello 1,234.5 world!

280 The Ciao System

• ~Nr (Print radix.) The argument is an integer. N is interpreted as a radix. N should
be >= 2 and <= 36. If N is missing the radix defaults to 8. The letters a-z will denote
digits larger than 9. Example:

?- format("Hello ~2r world!", [15]).
?- format("Hello ~16r world!", [15]).

will print as

Hello 1111 world!
Hello f world!

respectively.

• ~NR (Print radix.) The argument is an integer. Identical to ~Nr except that the
letters A-Z will denote digits larger than 9. Example:

?- format("Hello ~16R world!", [15]).

will print as

Hello F world!

• ~Ns (Print string.) The argument is a list of ASCII codes. Exactly N characters will
be printed. N defaults to the length of the string. Example:

?- format("Hello ~4s ~4s!", ["new","world"]).
?- format("Hello ~s world!", ["new"]).

will print as

Hello new worl!
Hello new world!

respectively.

• ~i (Ignore argument.) The argument may be of any type. The argument will be
ignored. Example:

?- format("Hello ~i~s world!", ["old","new"]).

will print as

Hello new world!

• ~k (Print canonical.) The argument may be of any type. The argument will be passed
to write_canonical/2 (Chapter 36 [Term output], page 249). Example:

?- format("Hello ~k world!", [[a,b,c]]).

will print as

Hello .(a,.(b,.(c,[]))) world!

• ~p (print.) The argument may be of any type. The argument will be passed to
print/2 (Chapter 36 [Term output], page 249). Example:

suposing the user has defined the predicate

:- multifile portray/1.
portray([X|Y]) :- print(cons(X,Y)).

then

?- format("Hello ~p world!", [[a,b,c]]).

will print as

Hello cons(a,cons(b,cons(c,[]))) world!

• ~q (Print quoted.) The argument may be of any type. The argument will be passed
to writeq/2 (Chapter 36 [Term output], page 249). Example:

?- format("Hello ~q world!", [[’A’,’B’]]).

will print as

Chapter 43: Formatted output 281

Hello [’A’,’B’] world!

• ~w (write.) The argument may be of any type. The argument will be passed to
write/2 (Chapter 36 [Term output], page 249). Example:

?- format("Hello ~w world!", [[’A’,’B’]]).

will print as

Hello [A,B] world!

• ~Nn (Print newline.) Print N newlines. N defaults to 1. Example:

?- format("Hello ~n world!", []).

will print as

Hello
world!

• ~N (Fresh line.) Print a newline, if not already at the beginning of a line.

• ~~ (Print tilde.) Prints ~

The following control sequences are also available for compatibility, but do not perform
any useful functions.

• ~N| (Set tab.) Set a tab stop at position N, where N defaults to the current position,
and advance the current position there.

• ~N+ (Advance tab.) Set a tab stop at N positions past the current position, where N
defaults to 8, and advance the current position there.

• ~Nt (Set fill character.) Set the fill character to be used in the next position movement
to N, where N defaults to 〈SPC〉.

Usage: format_control(C)

− Description: C is an atom or string describing how the arguments should be formatted.
If it is an atom it will be converted into a string with name/2.

− The following properties should hold globally:

Documentation is still incomplete: format_control(C) may not conform the func-
tionality documented. (doc props:doc incomplete/1)

43.3 Known bugs and planned improvements (format)

• format_to_string/3 is extremelly slow in its current implementation. It writes an inter-
mediate file which is immediately removed, if possible. It is not very fast. In case there
are no permissions, writing is attempted through an internal pipe, which may hang if the
string is too long (this is O.S. dependant).

282 The Ciao System

Chapter 44: List processing 283

44 List processing

Author(s): The CLIP Group.

This module provides a set of predicates for list processing.

44.1 Usage and interface (lists)
� �

• Library usage:

:- use_module(library(lists)).

• Exports:

− Predicates:

nonsingle/1, append/3, reverse/2, reverse/3, delete/3, delete_non_ground/3,
select/3, length/2, nth/3, add_after/4, add_before/4, dlist/3, list_concat/2,
list_insert/2, insert_last/3, contains_ro/2, contains1/2, nocontainsx/2,
last/2, list_lookup/3, list_lookup/4, intset_insert/3, intset_delete/3,
intset_in/2, intset_sequence/3, intersection/3, union/3, difference/3,
equal_lists/2, list_to_list_of_lists/2, powerset/2, cross_product/2,
sequence_to_list/2.

− Properties:

list1/2, sublist/2, subordlist/2.

− Regular Types:

list_of_lists/1.

• Other modules used:

− System library modules:

assertions/native_props.

 	

44.2 Documentation on exports (lists)

PREDICATEnonsingle/1:
General properties: nonsingle(A)

− Description: nonsingle fails.

− If the following properties should hold at call time:

term basic:A=[a] (term basic:= /2)

then the following properties should hold globally:

Calls of the form nonsingle(A) fail. (native props:fails/1)

nonsingle(A)

− Description: nonsingle succeeds.

− If the following properties should hold at call time:

term basic:A=[a,b] (term basic:= /2)

Usage: nonsingle(X)

− Description: X is not a singleton.

284 The Ciao System

PREDICATEappend/3:
General properties: append(Xs,Ys,Zs)

− Description: Zs is Ys appended to Xs.

− The following properties should hold upon exit:

Xs is a list. (basic props:list/1)

append(Xs,Ys,Zs)

− If the following properties hold at call time:

Xs is a list. (basic props:list/1)

Ys is a list. (basic props:list/1)

then the following properties should hold upon exit:

Zs is a list. (basic props:list/1)

append(Xs,Ys,Zs)

− If the following properties hold at call time:

Zs is a list. (basic props:list/1)

then the following properties should hold upon exit:

Xs is a list. (basic props:list/1)

Ys is a list. (basic props:list/1)

append(Xs,Ys,Zs)

− The following properties should hold upon exit:

The sharing pattern is [[X,Y,Z],[X,Z],[Y,Z]]. (native props:mshare/1)

append(Xs,Ys,Zs)

− If the following properties hold at call time:

Xs is currently ground (it contains no variables). (term typing:ground/1)

Ys is currently ground (it contains no variables). (term typing:ground/1)

then the following properties should hold upon exit:

Zs is currently ground (it contains no variables). (term typing:ground/1)

append(Xs,Ys,Zs)

− If the following properties hold at call time:

Zs is currently ground (it contains no variables). (term typing:ground/1)

then the following properties should hold upon exit:

Xs is currently ground (it contains no variables). (term typing:ground/1)

Ys is currently ground (it contains no variables). (term typing:ground/1)

append(Xs,Ys,Zs)

− The following properties hold globally:

append(Xs,Ys,Zs) is side-effect free. (basic props:sideff/2)

append(Xs,Ys,Zs)

− If the following properties hold at call time:

Xs is a list. (basic props:list/1)

then the following properties hold globally:

append(Xs,Ys,Zs) is evaluable at compile-time. (basic props:eval/1)

append(Xs,Ys,Zs)

Chapter 44: List processing 285

− If the following properties hold at call time:

Zs is a list. (basic props:list/1)

then the following properties hold globally:

append(Xs,Ys,Zs) is evaluable at compile-time. (basic props:eval/1)

append(A,B,C)

− Description: Simple call to append

− If the following properties should hold at call time:

term basic:A=[1,2,3] (term basic:= /2)

term basic:B=[4,5] (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[1,2,3,4,5] (term basic:= /2)

append(A,B,X)

− Description: Simple append test

− If the following properties should hold at call time:

term basic:L=[([1,2],[1,2,4,5,6]),([1,2,3],[1,2,3,4,5,6])] (term basic:= /2)

term basic:B=[4,5,6] (term basic:= /2)

A,X2 is an element of L. (basic props:member/2)

then the following properties should hold upon exit:

The terms X and X2 are strictly identical. (term compare:== /2)

append(A,B,X)

− Description: Test of reverse call

− If the following properties should hold at call time:

term basic:X=[1,2,3] (term basic:= /2)

then the following properties should hold upon exit:

A,B is an element of [([],[1,2,3]),([1],[2,3]),([1,2],[3]),([1,2,3],[])].
(basic props:member/2)

append(A,B,X)

− Description: Empty test.

− If the following properties should hold at call time:

term basic:A=[] (term basic:= /2)

term basic:B=[] (term basic:= /2)

then the following properties should hold upon exit:

The terms X and [] are strictly identical. (term compare:== /2)

append(_A,B,X)

− Description: Test of a call that fails

− If the following properties should hold at call time:

term basic:B=[2] (term basic:= /2)

term basic:X=[1,2,3] (term basic:= /2)

then the following properties should hold globally:

Calls of the form append(_A,B,X) fail. (native props:fails/1)

append(X,Y,Z)

− Description: Test of a reverse call.

286 The Ciao System

− If the following properties should hold at call time:

term basic:Y=[2] (term basic:= /2)

term basic:Z=[1,2] (term basic:= /2)

then the following properties should hold upon exit:

The terms X and [1] are strictly identical. (term compare:== /2)

Usage: append(Xs,Ys,Zs)

− Call and exit should be compatible with:

Xs is a list. (basic props:list/1)

Ys is a list. (basic props:list/1)

Zs is a list. (basic props:list/1)

PREDICATEreverse/2:
General properties: reverse(A,B)

− Description: Reverse a list

− If the following properties should hold at call time:

term basic:A=[1,2,3] (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=[3,2,1] (term basic:= /2)

− The following properties hold globally:

reverse(Arg1,Arg2) is side-effect free. (basic props:sideff/2)

reverse(Xs,_Ys)

− If the following properties hold at call time:

Xs is a list. (basic props:list/1)

then the following properties hold globally:

reverse(Xs,_Ys) is evaluable at compile-time. (basic props:eval/1)

Usage: reverse(Xs,Ys)

− Description: Reverses the order of elements in Xs.

− The following properties should hold at call time:

Xs is a list. (basic props:list/1)

Ys is any term. (basic props:term/1)

− The following properties should hold upon exit:

Xs is a list. (basic props:list/1)

Ys is a list. (basic props:list/1)

PREDICATEreverse/3:
General properties: reverse(A,B,C)

− Description: reverse/3 test

− Call and exit should be compatible with:

B is a free variable. (term typing:var/1)

− If the following properties should hold at call time:

term basic:A=[1,2,3] (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[3,2,1|B] (term basic:= /2)

Chapter 44: List processing 287

− The following properties hold globally:

reverse(Arg1,Arg2,Arg3) is side-effect free. (basic props:sideff/2)

reverse(Xs,Ys,Zs)

− If the following properties hold at call time:

Xs is a list. (basic props:list/1)

Ys is a list. (basic props:list/1)

then the following properties hold globally:

reverse(Xs,Ys,Zs) is evaluable at compile-time. (basic props:eval/1)

Usage: reverse(A,B,C)

− Description: Reverse the order of elements in A, and append it with B.

PREDICATEdelete/3:
General properties:

− The following properties hold globally:

delete(Arg1,Arg2,Arg3) is side-effect free. (basic props:sideff/2)

delete(L1,E,L2)

− If the following properties hold at call time:

L1 is currently ground (it contains no variables). (term typing:ground/1)

L2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

delete(L1,E,L2) is evaluable at compile-time. (basic props:eval/1)

Usage: delete(L1,E,L2)

− Description: L2 is L1 without the ocurrences of E.

− The following properties should hold upon exit:

L1 is a list. (basic props:list/1)

L2 is a list. (basic props:list/1)

PREDICATEdelete non ground/3:
General properties:

− The following properties hold globally:

delete_non_ground(Arg1,Arg2,Arg3) is side-effect true. (basic props:sideff/2)

delete_non_ground(L1,E,L2)

− If the following properties hold at call time:

L1 is currently ground (it contains no variables). (term typing:ground/1)

L2 is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

delete_non_ground(L1,E,L2) is evaluable at compile-time. (basic props:eval/1)

Usage: delete_non_ground(L1,E,L2)

− Description: L2 is L1 without the ocurrences of E. E can be a nonground term so that
all the elements in L1 it unifies with will be deleted

− The following properties should hold upon exit:

L1 is a list. (basic props:list/1)

L2 is a list. (basic props:list/1)

288 The Ciao System

PREDICATEselect/3:
General properties:

− The following properties hold globally:

select(Arg1,Arg2,Arg3) is side-effect free. (basic props:sideff/2)

select(X,Xs,Ys)

− If the following properties hold at call time:

X is currently ground (it contains no variables). (term typing:ground/1)

Xs is currently ground (it contains no variables). (term typing:ground/1)

then the following properties hold globally:

select(X,Xs,Ys) is evaluable at compile-time. (basic props:eval/1)

Usage: select(X,Xs,Ys)

− Description: Xs and Ys have the same elements except for one occurrence of X.

PREDICATElength/2:
General properties: length(A,B)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

− The following properties hold globally:

length(Arg1,Arg2) is side-effect free. (basic props:sideff/2)

length(L,N)

− If the following properties hold at call time:

L is a list. (basic props:list/1)

then the following properties hold globally:

length(L,N) is evaluable at compile-time. (basic props:eval/1)

length(L,N)

− If the following properties hold at call time:

N is currently instantiated to an integer. (term typing:integer/1)

then the following properties hold globally:

length(L,N) is evaluable at compile-time. (basic props:eval/1)

Usage 1: length(L,N)

− Description: Computes the length of L.

− The following properties should hold at call time:

L is a list. (basic props:list/1)

N is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

L is a list. (basic props:list/1)

N is an integer. (basic props:int/1)

Usage 2: length(L,N)

− Description: Outputs L of length N.

− The following properties should hold at call time:

L is a free variable. (term typing:var/1)

N is an integer. (basic props:int/1)

Chapter 44: List processing 289

− The following properties should hold upon exit:

L is a list. (basic props:list/1)

N is an integer. (basic props:int/1)

Usage 3: length(L,N)

− Description: Checks that L is of length N.

− The following properties should hold at call time:

L is a list. (basic props:list/1)

N is an integer. (basic props:int/1)

− The following properties should hold upon exit:

L is a list. (basic props:list/1)

N is an integer. (basic props:int/1)

PREDICATEnth/3:
nth(N,List,Elem)

N is the position in List of Elem. N counts from one.

General properties:

− The following properties hold globally:

nth(N,List,Elem) is side-effect free. (basic props:sideff/2)

nth(N,L,E)

− If the following properties hold at call time:

N is currently instantiated to an integer. (term typing:integer/1)

then the following properties hold globally:

nth(N,L,E) is evaluable at compile-time. (basic props:eval/1)

nth(N,L,E)

− If the following properties hold at call time:

L is a list. (basic props:list/1)

then the following properties hold globally:

nth(N,L,E) is evaluable at compile-time. (basic props:eval/1)

nth(N,L,E)

− If the following properties hold at call time:

N is an integer. (basic props:int/1)

L is a list. (basic props:list/1)

then the following properties hold globally:

All calls of the form nth(N,L,E) are deterministic. (native props:is det/1)

Usage 1:

− Description: Unifies Elem and the Nth element of List.

− Call and exit should be compatible with:

List is a list. (basic props:list/1)

Elem is any term. (basic props:term/1)

− The following properties should hold at call time:

N is an integer. (basic props:int/1)

290 The Ciao System

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

Elem is any term. (basic props:term/1)

Usage 2:

− Description: Finds the positions where Elem is in List. Positions are found in as-
cending order.

− Call and exit should be compatible with:

List is a list. (basic props:list/1)

Elem is any term. (basic props:term/1)

− The following properties should hold at call time:

N is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

N is an integer. (basic props:int/1)

List is a list. (basic props:list/1)

Elem is any term. (basic props:term/1)

PREDICATEadd after/4:
Usage: add_after(L0,E0,E,L)

− Description: Adds element E after element E0 (or at end) to list L0 returning in L the
new list (uses term comparison).

− The following properties should hold at call time:

L0 is currently a term which is not a free variable. (term typing:nonvar/1)

E0 is currently a term which is not a free variable. (term typing:nonvar/1)

E is currently a term which is not a free variable. (term typing:nonvar/1)

L is a free variable. (term typing:var/1)

PREDICATEadd before/4:
Usage: add_before(L0,E0,E,L)

− Description: Adds element E before element E0 (or at start) to list L0 returning in
L the new list (uses term comparison).

− The following properties should hold at call time:

L0 is currently a term which is not a free variable. (term typing:nonvar/1)

E0 is currently a term which is not a free variable. (term typing:nonvar/1)

E is currently a term which is not a free variable. (term typing:nonvar/1)

L is a free variable. (term typing:var/1)

PROPERTYlist1/2:
Meta-predicate with arguments: list1(?,(pred 1)).

Usage: list1(X,Y)

− Description: X is a list of Ys of at least one element.

Chapter 44: List processing 291

PREDICATEdlist/3:
Usage: dlist(List,DList,Tail)

− Description: List is the result of removing Tail from the end of DList (makes a
difference list from a list).

PREDICATElist concat/2:
Usage: list_concat(LL,L)

− Description: L is the concatenation of all the lists in LL.

− The following properties should hold at call time:

LL is a list of lists. (basic props:list/2)

− The following properties should hold upon exit:

L is a list. (basic props:list/1)

PREDICATElist insert/2:
Usage: list_insert(List,Term)

− Description: Adds Term to the end of List if there is no element in List identical to
Term.

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEinsert last/3:
Usage: insert_last(L0,E,L)

− Description: Adds element E at end of list L0 returning L.

− The following properties should hold at call time:

L0 is currently a term which is not a free variable. (term typing:nonvar/1)

E is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEcontains ro/2:
Usage:

− Description: Impure membership (does not instantiate a variable in its first argument.

PREDICATEcontains1/2:
Usage:

− Description: First membership.

PREDICATEnocontainsx/2:
Usage: nocontainsx(L,X)

− Description: X is not identical to any element of L.

292 The Ciao System

PREDICATElast/2:
Usage: last(L,X)

− Description: X is the last element of list L.

PREDICATElist lookup/3:
Usage: list_lookup(List,Key,Value)

− Description: Same as list_lookup/4, but use -/2 as functor.

PREDICATElist lookup/4:
Usage: list_lookup(List,Functor,Key,Value)

− Description: Look up Functor(Key,Value) pair in variable ended key-value pair list
L or else add it at the end.

PREDICATEintset insert/3:
Usage: intset_insert(A,B,Set)

− Description: Insert the element B in the ordered set of numbers A.

PREDICATEintset delete/3:
Usage: intset_delete(A,B,Set)

− Description: Delete from the ordered set A the element B.

PREDICATEintset in/2:
Usage: intset_in(E,Set)

− Description: Succeds iff E is element of Set

PREDICATEintset sequence/3:
Usage: intset_sequence(N,L1,L2)

− Description: Generates an ordered set of numbers from 0 to N-1, and append it to
L1.

PREDICATEintersection/3:
Usage: intersection(List1,List2,List)

− Description: List has the elements which are both in List1 and List2.

− The following properties should hold at call time:

List1 is currently a term which is not a free variable. (term typing:nonvar/1)

List2 is currently a term which is not a free variable. (term typing:nonvar/1)

List1 is a list. (basic props:list/1)

List2 is a list. (basic props:list/1)

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

Chapter 44: List processing 293

PREDICATEunion/3:
Usage: union(List1,List2,List)

− Description: List has the elements which are in List1 followed by the elements
which are in List2 but not in List1.

− The following properties should hold at call time:

List1 is currently a term which is not a free variable. (term typing:nonvar/1)

List2 is currently a term which is not a free variable. (term typing:nonvar/1)

List is a free variable. (term typing:var/1)

List1 is a list. (basic props:list/1)

List2 is a list. (basic props:list/1)

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

PREDICATEdifference/3:
Usage: difference(List1,List2,List)

− Description: List has the elements which are in List1 but not in List2.

− The following properties should hold at call time:

List1 is currently a term which is not a free variable. (term typing:nonvar/1)

List2 is currently a term which is not a free variable. (term typing:nonvar/1)

List is a free variable. (term typing:var/1)

List1 is a list. (basic props:list/1)

List2 is a list. (basic props:list/1)

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

PROPERTYsublist/2:
Usage: sublist(List1,List2)

− Description: List2 contains all the elements of List1.

− If the following properties should hold at call time:

List2 is currently a term which is not a free variable. (term typing:nonvar/1)

PROPERTYsubordlist/2:
Usage: subordlist(List1,List2)

− Description: List2 contains all the elements of List1 in the same order.

− If the following properties should hold at call time:

List2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEequal lists/2:
Usage: equal_lists(List1,List2)

− Description: List1 has all the elements of List2, and vice versa.

− The following properties should hold at call time:

List1 is a list. (basic props:list/1)

List2 is a list. (basic props:list/1)

294 The Ciao System

PREDICATElist to list of lists/2:
Usage 1: list_to_list_of_lists(List,LList)

− The following properties should hold at call time:

List is a list. (basic props:list/1)

− The following properties should hold upon exit:

lists:list of lists(LList) (lists:list of lists/1)

Usage 2: list_to_list_of_lists(List,LList)

− Description: LList is the list of one element lists with elements of List.

− The following properties should hold at call time:

lists:list of lists(LList) (lists:list of lists/1)

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

PREDICATEpowerset/2:
Usage: powerset(List,LList)

− Description: LList is the powerset of List, i.e., the list of all lists which have elements
of List. If List is ordered, LList and all its elements are ordered.

− The following properties should hold at call time:

List is currently a term which is not a free variable. (term typing:nonvar/1)

List is a list. (basic props:list/1)

− The following properties should hold upon exit:

lists:list of lists(LList) (lists:list of lists/1)

PREDICATEcross product/2:
Usage: cross_product(LList,List)

− Description: List is the cartesian product of the lists in LList, that is, the list of
lists formed with one element of each list in LList, in the same order.

− The following properties should hold at call time:

LList is currently a term which is not a free variable. (term typing:nonvar/1)

lists:list of lists(LList) (lists:list of lists/1)

− The following properties should hold upon exit:

lists:list of lists(List) (lists:list of lists/1)

PREDICATEsequence to list/2:
Usage: sequence_to_list(Sequence,List)

− Description: List is the list of all elements in the (comma-separated) sequence
Sequence. The use of this predicate is reversible.

REGTYPElist of lists/1:
A regular type, defined as follows:

list_of_lists([]).
list_of_lists([L|Xs]) :-

list(L),
list_of_lists(Xs).

Chapter 45: Sorting lists 295

45 Sorting lists

Author(s): Richard A. O’Keefe (original version), The CLIP Group (changes and modifica-
tions).

This module implements some sorting list predicates.

45.1 Usage and interface (sort)
� �

• Library usage:

:- use_module(library(sort)).

• Exports:

− Predicates:

sort/2, keysort/2.

− Regular Types:

keylist/1, keypair/1.

 	

45.2 Documentation on exports (sort)

PREDICATEsort/2:
sort(List1,List2)

The elements of List1 are sorted into the standard order (see Chapter 18 [Comparing
terms], page 135) and any identical elements are merged, yielding List2. The time and
space complexity of this operation is at worst O(N lg N) where N is the length of List1.

General properties: sort(A,B)

− If the following properties should hold at call time:

term basic:A=[1,2,6,5,2,1] (term basic:= /2)

then the following properties should hold upon exit:

The terms B and [1,2,5,6] are strictly identical. (term compare:== /2)

sort(A,B)

− If the following properties hold at call time:

A is a list. (basic props:list/1)

then the following properties hold globally:

sort(A,B) is evaluable at compile-time. (basic props:eval/1)

sort(A,B)

− The following properties hold globally:

sort(A,B) is side-effect free. (basic props:sideff/2)

Usage:

− Description: List2 is the sorted list corresponding to List1.

− Call and exit should be compatible with:

List2 is a list. (basic props:list/1)

− The following properties should hold at call time:

List1 is a list. (basic props:list/1)

296 The Ciao System

− The following properties should hold upon exit:

List2 is a list. (basic props:list/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEkeysort/2:
keysort(List1,List2)

List1 is sorted into order according to the value of the keys of its elements, yielding the
list List2. No merging takes place. This predicate is stable, i.e., if an element A occurs
before another element B with the same key in the input, then A will occur before B also in
the output. The time and space complexity of this operation is at worst O(N lg N) where
N is the length of List1.

Usage:

− Description: List2 is the (key-)sorted list corresponding to List1.

− Call and exit should be compatible with:

List2 is a list of pairs of the form Key-Value. (sort:keylist/1)

− The following properties should hold at call time:

List1 is a list of pairs of the form Key-Value. (sort:keylist/1)

− The following properties should hold upon exit:

List2 is a list of pairs of the form Key-Value. (sort:keylist/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

REGTYPEkeylist/1:
Usage: keylist(L)

− Description: L is a list of pairs of the form Key-Value.

REGTYPEkeypair/1:
Usage: keypair(P)

− Description: P is a pair of the form "K-_", where K is considered the key.

45.3 Known bugs and planned improvements (sort)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 46: compiler (library) 297

46 compiler (library)

46.1 Usage and interface (compiler)
� �

• Library usage:

:- use_module(library(compiler)).

• Exports:

− Predicates:

make_po/1, make_wam/1, ensure_loaded/1, ensure_loaded/2, use_module/1, use_
module/2, use_module/3, unload/1, set_debug_mode/1, set_nodebug_mode/1, set_
debug_module/1, set_nodebug_module/1, set_debug_module_source/1, mode_of_
module/2, module_of/2.

• Other modules used:

− System library modules:

system, compiler/c_itf_internal, compiler/exemaker.

 	

46.2 Documentation on exports (compiler)

PREDICATEmake po/1:
No further documentation available for this predicate.

PREDICATEmake wam/1:
No further documentation available for this predicate.

PREDICATEensure loaded/1:
No further documentation available for this predicate.

PREDICATEensure loaded/2:
No further documentation available for this predicate.

PREDICATEuse module/1:
No further documentation available for this predicate.

PREDICATEuse module/2:
No further documentation available for this predicate.

Meta-predicate with arguments: use_module(?,addmodule(?)).

298 The Ciao System

PREDICATEuse module/3:
No further documentation available for this predicate.

PREDICATEunload/1:
No further documentation available for this predicate.

PREDICATEset debug mode/1:
No further documentation available for this predicate.

PREDICATEset nodebug mode/1:
No further documentation available for this predicate.

PREDICATEset debug module/1:
No further documentation available for this predicate.

PREDICATEset nodebug module/1:
No further documentation available for this predicate.

PREDICATEset debug module source/1:
No further documentation available for this predicate.

PREDICATEmode of module/2:
No further documentation available for this predicate.

PREDICATEmodule of/2:
No further documentation available for this predicate.

Chapter 47: Enumeration of integers inside a range 299

47 Enumeration of integers inside a range

Author(s): The CLIP Group.

This modules enumerates integers between two numbers, or checks that an integer lies within
a range

47.1 Usage and interface (between)
� �

• Library usage:

:- use_module(library(between)).

• Exports:

− Predicates:

between/3.

 	

47.2 Documentation on exports (between)

PREDICATEbetween/3:
Usage: between(Min,Max,N)

− Description: N is a number which is greater than or equal to Min and smaller than or
equal to Max. Both Min and Max can be either integer or real numbers.

− The following properties should hold at call time:

Min is currently a term which is not a free variable. (term typing:nonvar/1)

Max is currently a term which is not a free variable. (term typing:nonvar/1)

Min is a number. (basic props:num/1)

Max is a number. (basic props:num/1)

− The following properties should hold upon exit:

N is an integer. (basic props:int/1)

300 The Ciao System

Chapter 48: Operating system utilities 301

48 Operating system utilities

Author(s): Daniel Cabeza, Manuel Carro.

This module contains predicates for invoking services which are typically provided by the
operating system. Note that the predicates which take names of files or directories as arguments
in this module expect atoms, not path aliases. I.e., generally these predicates will not call
absolute_file_name/2 on names of files or directories taken as arguments.

48.1 Usage and interface (system)
� �

• Library usage:

:- use_module(library(system)).

• Exports:

− Predicates:

pause/1, time/1, datime/1, datime/9, getenvstr/2, setenvstr/2, current_env/2,
set_env/2, del_env/1, c_errno/1, copy_file/2, copy_file/3, dir_path/2,
extract_paths/2, file_dir_name/3, get_pid/1, get_uid/1, get_gid/1, get_
pwnam/1, get_grnam/1, get_tmp_dir/1, get_address/2, current_host/1, current_
executable/1, umask/2, make_directory/2, make_directory/1, make_dirpath/2,
make_dirpath/1, working_directory/2, cd/1, shell/0, shell/1, shell/2,
system/1, system/2, popen/3, exec/4, exec/3, exec/8, wait/3, directory_files/2,
mktemp/2, mktemp_in_tmp/2, file_exists/1, file_exists/2, file_property/2,
file_properties/6, modif_time/2, modif_time0/2, fmode/2, chmod/2, chmod/3,
set_exec_mode/2, delete_file/1, delete_directory/1, rename_file/2, using_
windows/0, winpath/2, winpath/3, winpath_c/3, cyg2win/3, no_swapslash/3,
replace_characters/4, system_error_report/1.

− Regular Types:

datime_struct/1, popen_mode/1.

− Multifiles:

define_flag/3.

• Other modules used:

− System library modules:

lists.

 	

48.2 Documentation on exports (system)

PREDICATEpause/1:
pause(Seconds)

Make this thread sleep for some Seconds.

Usage:

− The following properties should hold at call time:

Seconds is an integer. (basic props:int/1)

302 The Ciao System

PREDICATEtime/1:
time(Time)

Time is unified with the number of seconds elapsed since January, 1, 1970 (UTC).

Usage:

− Calls should, and exit will be compatible with:

Time is an integer. (basic props:int/1)

− The following properties hold upon exit:

Time is an integer. (basic props:int/1)

PREDICATEdatime/1:
datime(Datime)

Datime is unified with a term of the
form datime(Year,Month,Day,Hour,Minute,Second) which contains the current date
and time.

Usage:

− Call and exit should be compatible with:

system:datime struct(Datime) (system:datime struct/1)

− The following properties should hold upon exit:

system:datime struct(Datime) (system:datime struct/1)

PREDICATEdatime/9:
datime(Time,Year,Month,Day,Hour,Min,Sec,WeekDay,YearDay)

Time is as in time/1. WeekDay is the number of days since Sunday, in the range 0 to 6.
YearDay is the number of days since January 1, in the range 0 to 365.

Usage 1:

− Description: If Time is given, the rest of the arguments are unified with the date and
time to which the Time argument refers.

− Calls should, and exit will be compatible with:

Year is an integer. (basic props:int/1)

Month is an integer. (basic props:int/1)

Day is an integer. (basic props:int/1)

Hour is an integer. (basic props:int/1)

Min is an integer. (basic props:int/1)

Sec is an integer. (basic props:int/1)

WeekDay is an integer. (basic props:int/1)

YearDay is an integer. (basic props:int/1)

− The following properties should hold at call time:

Time is an integer. (basic props:int/1)

− The following properties hold upon exit:

Year is an integer. (basic props:int/1)

Month is an integer. (basic props:int/1)

Day is an integer. (basic props:int/1)

Hour is an integer. (basic props:int/1)

Chapter 48: Operating system utilities 303

Min is an integer. (basic props:int/1)

Sec is an integer. (basic props:int/1)

WeekDay is an integer. (basic props:int/1)

YearDay is an integer. (basic props:int/1)

Usage 2:

− Description: Bound Time, WeekDay and YearDay as determined by the input argu-
ments.

− Calls should, and exit will be compatible with:

Time is an integer. (basic props:int/1)

WeekDay is an integer. (basic props:int/1)

YearDay is an integer. (basic props:int/1)

− The following properties should hold at call time:

Year is an integer. (basic props:int/1)

Month is an integer. (basic props:int/1)

Day is an integer. (basic props:int/1)

Hour is an integer. (basic props:int/1)

Min is an integer. (basic props:int/1)

Sec is an integer. (basic props:int/1)

− The following properties hold upon exit:

Time is an integer. (basic props:int/1)

WeekDay is an integer. (basic props:int/1)

YearDay is an integer. (basic props:int/1)

Usage 3:

− Description: Bound Time to current time and the rest of the arguments refer to
current time.

− Calls should, and exit will be compatible with:

WeekDay is an integer. (basic props:int/1)

YearDay is an integer. (basic props:int/1)

− The following properties should hold at call time:

Time is a free variable. (term typing:var/1)

Year is a free variable. (term typing:var/1)

Month is a free variable. (term typing:var/1)

Day is a free variable. (term typing:var/1)

Hour is a free variable. (term typing:var/1)

Min is a free variable. (term typing:var/1)

Sec is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Time is an integer. (basic props:int/1)

Year is an integer. (basic props:int/1)

Month is an integer. (basic props:int/1)

Day is an integer. (basic props:int/1)

Hour is an integer. (basic props:int/1)

Min is an integer. (basic props:int/1)

Sec is an integer. (basic props:int/1)

WeekDay is an integer. (basic props:int/1)

YearDay is an integer. (basic props:int/1)

304 The Ciao System

REGTYPEdatime struct/1:
A regular type, defined as follows:

datime_struct(datime(Year,Month,Day,Hour,Min,Sec)) :-
int(Year),
int(Month),
int(Day),
int(Hour),
int(Min),
int(Sec).

PREDICATEgetenvstr/2:
getenvstr(Name,Value)

The environment variable Name has Value. Fails if variable Name is not defined.

Usage:

− Call and exit should be compatible with:

Value is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Value is a string (a list of character codes). (basic props:string/1)

PREDICATEsetenvstr/2:
setenvstr(Name,Value)

The environment variable Name is assigned Value.

Usage:

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

Value is a string (a list of character codes). (basic props:string/1)

PREDICATEcurrent env/2:
current_env(Name,Value)

If Name is an atom, then unifies the environment variable Name with its value. Note that
this predicate can be used to enumerate all the environment variables using backtracking.

Usage:

− Call and exit should be compatible with:

Name is an atom. (basic props:atm/1)

Value is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Name is an atom. (basic props:atm/1)

Value is an atom. (basic props:atm/1)

Chapter 48: Operating system utilities 305

PREDICATEset env/2:
set_env(Name,Value)

The environment variable Name is assigned Value.

Usage:

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

Value is an atom. (basic props:atm/1)

PREDICATEdel env/1:
del_env(Name)

The environment variable Name is removed.

Usage:

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

PREDICATEc errno/1:
Usage:

− Calls should, and exit will be compatible with:

Arg1 is an integer. (basic props:int/1)

− The following properties hold upon exit:

Arg1 is an integer. (basic props:int/1)

PREDICATEcopy file/2:
copy_file(Source,Destination)

Copies the file Source to Destination.

Usage:

− The following properties should hold at call time:

Source is an atom. (basic props:atm/1)

Destination is an atom. (basic props:atm/1)

PREDICATEcopy file/3:
Usage:

− The following properties should hold at call time:

Arg1 is an atom. (basic props:atm/1)

Arg2 is an atom. (basic props:atm/1)

system:copy options(Arg3) (system:copy options/1)

PREDICATEdir path/2:
No further documentation available for this predicate.

306 The Ciao System

PREDICATEextract paths/2:
extract_paths(String,Paths)

Interpret String as the value of a UNIX environment variable holding a list of paths and
return in Paths the list of the paths. Paths in String are separated by colons, and an
empty path is considered a shorthand for ’.’ (current path). The most typical environment
variable with this format is PATH. For example, this is a typical use:

?- set_prolog_flag(write_strings, on).

yes
?- getenvstr(’PATH’, PATH), extract_paths(PATH, Paths).

PATH = ":/home/bardo/bin:/home/clip/bin:/opt/bin/:/bin",
Paths = [".","/home/bardo/bin","/home/clip/bin","/opt/bin/","/bin"] ?

yes
?-

Usage:

− Call and exit should be compatible with:

Paths is a list of strings. (basic props:list/2)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold upon exit:

Paths is a list of strings. (basic props:list/2)

PREDICATEfile dir name/3:
file_dir_name(File,Dir,Name)

Discomposes a given File in its directory and name

Usage:

− Calls should, and exit will be compatible with:

File is an atom. (basic props:atm/1)

Dir is an atom. (basic props:atm/1)

Name is an atom. (basic props:atm/1)

− The following properties hold upon exit:

File is an atom. (basic props:atm/1)

Dir is an atom. (basic props:atm/1)

Name is an atom. (basic props:atm/1)

PREDICATEget pid/1:
get_pid(Pid)

Unifies Pid with the process identificator of the current process or thread.

Usage:

− Calls should, and exit will be compatible with:

Pid is an integer. (basic props:int/1)

− The following properties hold upon exit:

Pid is an integer. (basic props:int/1)

Chapter 48: Operating system utilities 307

PREDICATEget uid/1:
get_uid(Uid)

Unifies Uid with the user id of the current process.

Usage:

− Calls should, and exit will be compatible with:

Uid is an integer. (basic props:int/1)

− The following properties hold upon exit:

Uid is an integer. (basic props:int/1)

PREDICATEget gid/1:
get_gid(Uid)

Unifies Gid with the group id of the current process.

Usage:

− Calls should, and exit will be compatible with:

Uid is an integer. (basic props:int/1)

− The following properties hold upon exit:

Uid is an integer. (basic props:int/1)

PREDICATEget pwnam/1:
get_pwnam(User)

Unifies User with the user of the current process, as specified in the /etc/passwd file.

Usage:

− Calls should, and exit will be compatible with:

User is an atom. (basic props:atm/1)

− The following properties hold upon exit:

User is an atom. (basic props:atm/1)

PREDICATEget grnam/1:
get_grnam(Group)

Unifies Group with the group of the current process, as specified in the /etc/group file.

Usage:

− Calls should, and exit will be compatible with:

Group is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Group is an atom. (basic props:atm/1)

PREDICATEget tmp dir/1:
Usage: get_tmp_dir(TmpDir)

− Description: Gets the directory name used to store temporary files. In Unix is /tmp,
in Windows is determined by the TMP environment variable.

308 The Ciao System

− The following properties should hold at call time:

TmpDir is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

TmpDir is an atom. (basic props:atm/1)

PREDICATEget address/2:
No further documentation available for this predicate.

PREDICATEcurrent host/1:
current_host(Hostname)

Hostname is unified with the fully qualified name of the host.

Usage:

− Calls should, and exit will be compatible with:

Hostname is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Hostname is an atom. (basic props:atm/1)

PREDICATEcurrent executable/1:
current_executable(Path)

Unifies Path with the path to the current executable.

Usage:

− Calls should, and exit will be compatible with:

Path is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Path is an atom. (basic props:atm/1)

PREDICATEumask/2:
Usage 1: umask(OldMask,NewMask)

− Description: The process file creation mask was OldMask, and it is changed to
NewMask.

− The following properties should hold at call time:

NewMask is an integer. (basic props:int/1)

− The following properties hold upon exit:

OldMask is an integer. (basic props:int/1)

Usage 2: umask(OldMask,NewMask)

− Description: Gets the process file creation mask without changing it.

− The following properties should hold at call time:

OldMask is a free variable. (term typing:var/1)

NewMask is a free variable. (term typing:var/1)

The terms OldMask and NewMask are strictly identical. (term compare:== /2)

− The following properties hold upon exit:

OldMask is an integer. (basic props:int/1)

NewMask is an integer. (basic props:int/1)

Chapter 48: Operating system utilities 309

PREDICATEmake directory/2:
make_directory(DirName,Mode)

Creates the directory DirName with a given Mode. This is, as usual, operated against the
current umask value.

Usage:

− The following properties should hold at call time:

DirName is an atom. (basic props:atm/1)

Mode is an integer. (basic props:int/1)

PREDICATEmake directory/1:
make_directory(DirName)

Equivalent to make_directory(D,0o777).

Usage:

− The following properties should hold at call time:

DirName is an atom. (basic props:atm/1)

PREDICATEmake dirpath/2:
make_dirpath(Path,Mode)

Creates the whole Path for a given directory with a given Mode. As an example, make_
dirpath(’/tmp/var/mydir/otherdir’).

Usage:

− The following properties should hold at call time:

Path is a source name. (streams basic:sourcename/1)

Mode is an integer. (basic props:int/1)

PREDICATEmake dirpath/1:
make_dirpath(Path)

Equivalent to make_dirpath(D,0o777).

Usage:

− The following properties should hold at call time:

Path is an atom. (basic props:atm/1)

PREDICATEworking directory/2:
working_directory(OldDir,NewDir)

Unifies current working directory with OldDir, and then changes the working directory
to NewDir. Calling working_directory(Dir,Dir) simply unifies Dir with the current
working directory without changing anything else.

Usage 1:

− Description: Changes current working directory.

− Calls should, and exit will be compatible with:

OldDir is an atom. (basic props:atm/1)

310 The Ciao System

− The following properties should hold at call time:

NewDir is an atom. (basic props:atm/1)

− The following properties hold upon exit:

OldDir is an atom. (basic props:atm/1)

Usage 2: working_directory(OldDir,NewDir)

− Description: Gets current working directory.

− The following properties should hold at call time:

OldDir is a free variable. (term typing:var/1)

NewDir is a free variable. (term typing:var/1)

The terms OldDir and NewDir are strictly identical. (term compare:== /2)

− The following properties hold upon exit:

OldDir is an atom. (basic props:atm/1)

NewDir is an atom. (basic props:atm/1)

PREDICATEcd/1:
cd(Path)

Changes working directory to Path.

Usage:

− The following properties should hold at call time:

Path is an atom. (basic props:atm/1)

PREDICATEshell/0:
Usage:

− Description: Execs the shell specified by the environment variable SHELL. When the
shell process terminates, control is returned to Prolog.

PREDICATEshell/1:
shell(Command)

Command is executed in the shell specified by the environment variable SHELL. It succeeds
if the exit code is zero and fails otherwise.

Usage:

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

PREDICATEshell/2:
shell(Command,ReturnCode)

Executes Command in the shell specified by the environment variable SHELL and stores the
exit code in ReturnCode.

Usage:

− Calls should, and exit will be compatible with:

ReturnCode is an integer. (basic props:int/1)

Chapter 48: Operating system utilities 311

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

− The following properties hold upon exit:

ReturnCode is an integer. (basic props:int/1)

PREDICATEsystem/1:
system(Command)

Executes Command using the shell /bin/sh.

Usage:

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

PREDICATEsystem/2:
system(Command,ReturnStatus)

Executes Command in the /bin/sh shell and stores the return status in ReturnStatus.
Note that the exit code is masked as the low order 8 bits of the return status:

ReturnCode is (ReturnStatus /\ 0xFF00) >> 8.

Usage:

− Calls should, and exit will be compatible with:

ReturnStatus is an integer. (basic props:int/1)

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

− The following properties hold upon exit:

ReturnStatus is an integer. (basic props:int/1)

PREDICATEpopen/3:
popen(Command,Mode,Stream)

Open a pipe to process Command in a new shell with a given Mode and return a commu-
nication Stream (as in UNIX popen(3)). If Mode is read the output from the process is
sent to Stream. If Mode is write, Stream is sent as input to the process. Stream may
be read from or written into using the ordinary stream I/O predicates. Stream must be
closed explicitly using close/1, i.e., it is not closed automatically when the process dies.
Note that popen/2 is defined in ***x as using /bin/sh, which usually does not exist in
Windows systems. In this case, a sh shell which comes with Windows is used.

Usage:

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

Mode is ’read’ or ’write’. (system:popen mode/1)

Stream is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Stream is an open stream. (streams basic:stream/1)

312 The Ciao System

REGTYPEpopen mode/1:
Usage: popen_mode(M)

− Description: M is ’read’ or ’write’.

PREDICATEexec/4:
exec(Command,StdIn,StdOut,StdErr)

Starts the process Command and returns the standart I/O streams of the process in StdIn,
StdOut, and StdErr. If Command contains blank spaces, these are taken as separators
between a program name (the first chunk of contiguous non-blank characters) and options
for the program (the subsequent contiguous pieces of non-blank characters), as in exec(’ls
-lRa ../sibling_dir’, In, Out, Err).

Usage:

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

StdIn is a free variable. (term typing:var/1)

StdOut is a free variable. (term typing:var/1)

StdErr is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

StdIn is an open stream. (streams basic:stream/1)

StdOut is an open stream. (streams basic:stream/1)

StdErr is an open stream. (streams basic:stream/1)

PREDICATEexec/3:
exec(Command,StdIn,StdOut)

Starts the process Command and returns the standart I/O streams of the process in StdIn
and StdOut. Standard error is connected to whichever the parent process had it con-
nected to. Command is treated and split in components as in exec/4.

Usage:

− The following properties should hold at call time:

Command is an atom. (basic props:atm/1)

StdIn is a free variable. (term typing:var/1)

StdOut is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

StdIn is an open stream. (streams basic:stream/1)

StdOut is an open stream. (streams basic:stream/1)

PREDICATEexec/8:
Usage: exec(Command,Arguments,StdIn,StdOut,StdErr,Background,PID,ErrCode)

− Description: exec/8 gives a finer control on execution of process. Command is the
command to be executed and Arguments is a list of atoms to be passed as arguments
to the command. When called with free variables, StdIn, StdOut, and StdErr are
instantiated to streams connected to the standard output, input, and error of the
created process. Background controls whether the caller waits for Command to finish,

Chapter 48: Operating system utilities 313

or if the process executing Command is completely detached (it can be waited for
using wait/3). ErrCode is the error code returned by the lower-level exec() system
call (this return code is system-dependent, but a non-zero value usually means that
something has gone wrong). If Command does not start by a slash, exec/8 uses the
environment variable PATH to search for it. If PATH is not set, /bin and /usr/bin are
searched.

− The following properties should hold at call time:

Command is currently a term which is not a free variable. (term typing:nonvar/1)

Arguments is currently a term which is not a free variable. (term typing:nonvar/1)

Background is currently a term which is not a free variable. (term typing:nonvar/1)

PID is a free variable. (term typing:var/1)

ErrCode is a free variable. (term typing:var/1)

Command is an atom. (basic props:atm/1)

Arguments is a list of atms. (basic props:list/2)

Background is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

StdIn is an open stream. (streams basic:stream/1)

StdOut is an open stream. (streams basic:stream/1)

StdErr is an open stream. (streams basic:stream/1)

PID is an integer. (basic props:int/1)

ErrCode is an integer. (basic props:int/1)

PREDICATEwait/3:
Usage: wait(Pid,RetCode,Status)

− Description: wait/3 waits for the process numbered Pid. If PID equals -1, it will wait
for any children process. RetCode is usually the PID of the waited-for process, and
-1 in case in case of error. Status is related to the exit value of the process in a
system-dependent fashion.

− The following properties should hold at call time:

Pid is currently a term which is not a free variable. (term typing:nonvar/1)

RetCode is a free variable. (term typing:var/1)

Status is a free variable. (term typing:var/1)

Pid is an integer. (basic props:int/1)

RetCode is a free variable. (term typing:var/1)

Status is a free variable. (term typing:var/1)

− The following properties hold upon exit:

RetCode is an integer. (basic props:int/1)

Status is an integer. (basic props:int/1)

PREDICATEdirectory files/2:
directory_files(Directory,FileList)

FileList is the unordered list of entries (files, directories, etc.) in Directory.

Usage:

314 The Ciao System

− Calls should, and exit will be compatible with:

FileList is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Directory is an atom. (basic props:atm/1)

− The following properties hold upon exit:

FileList is a list of atms. (basic props:list/2)

PREDICATEmktemp/2:
mktemp(Template,Filename)

Returns a unique Filename based on Template: Template must be a valid file name with
six trailing X, which are substituted to create a new file name. Filename is created in
read/write mode but closed immediately after creation.

Usage:

− Calls should, and exit will be compatible with:

Filename is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Template is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Filename is an atom. (basic props:atm/1)

PREDICATEmktemp in tmp/2:
No further documentation available for this predicate.

PREDICATEfile exists/1:
file_exists(File)

Succeeds if File (a file or directory) exists (and is accessible).

Usage:

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

PREDICATEfile exists/2:
file_exists(File,Mode)

File (a file or directory) exists and it is accessible with Mode, as in the Unix call access(2).
Typically, Mode is 4 for read permission, 2 for write permission and 1 for execute permis-
sion.

Usage:

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

Mode is an integer. (basic props:int/1)

− The following properties hold upon exit:

File is an atom. (basic props:atm/1)

Mode is an integer. (basic props:int/1)

Chapter 48: Operating system utilities 315

PREDICATEfile property/2:
file_property(File,Property)

File has the property Property. The possible properties are:

type(Type)
Type is one of regular, directory, symlink, fifo, socket or unknown.

linkto(Linkto)
If File is a symbolic link, Linkto is the file pointed to by the link (and the
other properties come from that file, not from the link itself).

mod time(ModTime)
ModTime is the time of last modification (seconds since January, 1, 1970).

mode(Protection)
Protection is the protection mode.

size(Size) Size is the size.

If Property is uninstantiated, the predicate will enumerate the properties on backtracking.

Usage:

− Call and exit should be compatible with:

Property is a compound term. (basic props:struct/1)

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Property is a compound term. (basic props:struct/1)

PREDICATEfile properties/6:
file_properties(Path,Type,Linkto,Time,Protection,Size)

The file Path has the following properties:

• File type Type (one of regular, directory, symlink, fifo, socket or unknown).

• If Path is a symbolic link, Linkto is the file pointed to. All other properties come
from the file pointed, not the link. Linkto is ” if Path is not a symbolic link.

• Time of last modification Time (seconds since January, 1, 1970).

• Protection mode Protection.

• Size in bytes Size.

Usage:

− Calls should, and exit will be compatible with:

Type is an atom. (basic props:atm/1)

Linkto is an atom. (basic props:atm/1)

Time is an integer. (basic props:int/1)

Protection is an integer. (basic props:int/1)

Size is an integer. (basic props:int/1)

− The following properties should hold at call time:

Path is an atom. (basic props:atm/1)

316 The Ciao System

− The following properties hold upon exit:

Type is an atom. (basic props:atm/1)

Linkto is an atom. (basic props:atm/1)

Time is an integer. (basic props:int/1)

Protection is an integer. (basic props:int/1)

Size is an integer. (basic props:int/1)

PREDICATEmodif time/2:
modif_time(File,Time)

The file File was last modified at Time, which is in seconds since January, 1, 1970. Fails
if File does not exist.

Usage:

− Call and exit should be compatible with:

Time is an integer. (basic props:int/1)

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Time is an integer. (basic props:int/1)

PREDICATEmodif time0/2:
modif_time0(File,Time)

If File exists, Time is its latest modification time, as in modif_time/2. Otherwise, if File
does not exist, Time is zero.

Usage:

− Call and exit should be compatible with:

Time is an integer. (basic props:int/1)

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Time is an integer. (basic props:int/1)

PREDICATEfmode/2:
fmode(File,Mode)

The file File has protection mode Mode.

Usage:

− Call and exit should be compatible with:

Mode is an integer. (basic props:int/1)

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Mode is an integer. (basic props:int/1)

Chapter 48: Operating system utilities 317

PREDICATEchmod/2:
chmod(File,NewMode)

Change the protection mode of file File to NewMode.

Usage:

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

NewMode is an integer. (basic props:int/1)

PREDICATEchmod/3:
chmod(File,OldMode,NewMode)

The file File has protection mode OldMode and it is changed to NewMode.

Usage 1:

− Call and exit should be compatible with:

OldMode is an integer. (basic props:int/1)

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

NewMode is an integer. (basic props:int/1)

− The following properties should hold upon exit:

OldMode is an integer. (basic props:int/1)

Usage 2: chmod(File,OldMode,NewMode)

− Description: If OldMode is identical to NewMode then it is equivalent to
fmode(File,OldMode)

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

OldMode is a free variable. (term typing:var/1)

NewMode is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

File is an atom. (basic props:atm/1)

OldMode is an atom. (basic props:atm/1)

NewMode is an atom. (basic props:atm/1)

PREDICATEset exec mode/2:
set_exec_mode(SourceName,ExecName)

Copies the permissions of SourceName to ExecName adding permissions to execute.

Usage:

− The following properties should hold at call time:

SourceName is an atom. (basic props:atm/1)

ExecName is an atom. (basic props:atm/1)

318 The Ciao System

PREDICATEdelete file/1:
delete_file(File)

Delete the file File.

Usage:

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

PREDICATEdelete directory/1:
delete_directory(File)

Delete the directory Directory.

Usage:

− The following properties should hold at call time:

File is an atom. (basic props:atm/1)

PREDICATErename file/2:
rename_file(File1,File2)

Change the name of File1 to File2.

Usage:

− The following properties should hold at call time:

File1 is an atom. (basic props:atm/1)

File2 is an atom. (basic props:atm/1)

PREDICATEusing windows/0:
Usage:

− Description: Success if the operating system is using windows instead of a posix
operating system (which includes cygwin under windows). To do this, we look at the
CIAOSCRIPT environment variable, so if it is defined we suppose we are inside a
posix operating system (and not windows).

PREDICATEwinpath/2:
Usage 1: winpath(A,B)

− The following properties should hold at call time:

A is an atom. (basic props:atm/1)

B is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

A is an atom. (basic props:atm/1)

B is an atom. (basic props:atm/1)

Usage 2: winpath(A,B)

− The following properties should hold at call time:

A is a free variable. (term typing:var/1)

B is an atom. (basic props:atm/1)

Chapter 48: Operating system utilities 319

− The following properties should hold upon exit:

A is an atom. (basic props:atm/1)

B is an atom. (basic props:atm/1)

Usage 3: winpath(A,B)

− The following properties should hold at call time:

A is an atom. (basic props:atm/1)

B is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

A is an atom. (basic props:atm/1)

B is an atom. (basic props:atm/1)

PREDICATEwinpath/3:
winpath(Option,Posix,WinPath)

Option specifies if you want to get a relative or a full path. Posix represent a path as
usual in unix, and WinPath is the Windows-Style representation of Posix.

Usage 1:

− The following properties should hold at call time:

Option is a free variable. (term typing:var/1)

Posix is a free variable. (term typing:var/1)

WinPath is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

system:winpath option(Option) (system:winpath option/1)

Posix is an atom. (basic props:atm/1)

Usage 2:

− The following properties should hold at call time:

Option is a free variable. (term typing:var/1)

Posix is an atom. (basic props:atm/1)

WinPath is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

system:winpath option(Option) (system:winpath option/1)

WinPath is an atom. (basic props:atm/1)

PREDICATEwinpath c/3:
Same as winpath/3, but for strings.

PREDICATEcyg2win/3:
Usage: cyg2win(CygWinPath,WindowsPath,SwapSlash)

− Description: Converts a posix path to a Windows-style path. If SwapSlash is swap,
slashes are converted in to backslash. If it is noswap, they are preserved.

320 The Ciao System

− The following properties should hold at call time:

CygWinPath is a string (a list of character codes). (basic props:string/1)

WindowsPath is a free variable. (term typing:var/1)

SwapSlash is currently instantiated to an atom. (term typing:atom/1)

− The following properties should hold upon exit:

CygWinPath is a string (a list of character codes). (basic props:string/1)

WindowsPath is a string (a list of character codes). (basic props:string/1)

SwapSlash is currently instantiated to an atom. (term typing:atom/1)

PREDICATEno swapslash/3:
No further documentation available for this predicate.

PREDICATEreplace characters/4:
replace_characters(String,SearchChar,ReplaceChar,Output)

Replaces all the occurrences of SearchChar by ReplaceChar and unifies the result with
Output

PREDICATEsystem error report/1:
Usage: system_error_report(Report)

− Description: Report is the error message from the last system call, like strerror in
POSIX.

− The following properties should hold at call time:

Report is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Report is an atom. (basic props:atm/1)

48.3 Documentation on multifiles (system)

PREDICATEdefine flag/3:
The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

Chapter 48: Operating system utilities 321

48.4 Known bugs and planned improvements (system)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

• In some situations, copy file don’t work when the second argument is a directory, example:

copy file(’site/ciaopp online.html’ , ~distdir, yes),

• shell/n commands have a bug in Windows: if the environment variable SHELL is instan-
tiated to some Windows shell implementation, then it is very possible that shell/{1,2} will
not work, as it is always called with the -c flag to start the user command. For example,
COMMAND.COM might need the flag /C – but there is no way to know a priori which
command line option is necessary for every shell! It does not seems usual that Windows
sets the SHELL environment variable: if it is not set, we set it up at startup time to point
to the sh.exe provided with Ciao, which is able to start Windows aplications. Therefore,
?- shell(’command.com’). just works.

• If exec/4 does not find the command to be executed, there is no visible error message: it is
sent to a error output which has already been assigned to a different stream, disconnected
from the one the user sees.

322 The Ciao System

Chapter 49: Prolog system internal predicates 323

49 Prolog system internal predicates

Author(s): Manuel Carro, Daniel Cabeza, José F. Morales, Mats Carlsson (original author).

This module implements some miscellaneous predicates which provide access to some internal
statistics, special properties of the predicates, etc.

49.1 Usage and interface (prolog_sys)
� �

• Library usage:

:- use_module(library(prolog_sys)).

• Exports:

− Predicates:

statistics/0, statistics/2, new_atom/1, predicate_property/2, predicate_
property/3, current_atom/1, garbage_collect/0.

− Regular Types:

clockfreq_result/1, tick_result/1, symbol_result/1, gc_result/1, memory_
result/1, time_result/1, symbol_option/1, garbage_collection_option/1,
memory_option/1, clockfreq_option/1, tick_option/1, time_option/1.

 	

49.2 Documentation on exports (prolog_sys)

PREDICATEstatistics/0:
Usage:

− Description: Prints statistics about the system.

PREDICATEstatistics/2:
Usage 1: statistics(Tick_option,Tick_result)

− Description: Gather information about clock ticks (either run, user, system or wall
tick) since last consult or since start of program. A tick is the smallest amount of
time that a clock can measure.

− The following properties should hold at call time:

Options to get information about execution ticks. (prolog sys:tick option/1)

Tick_result is any term. (basic props:term/1)

− The following properties should hold upon exit:

Options to get information about execution ticks. (prolog sys:tick option/1)

Tick_result is a two-element list of numbers. The first number is the number of
ticks since the start of the execution; the second number is the number of ticks since
the previous consult to tick. (prolog sys:tick result/1)

Usage 2: statistics(Clockfreq_option,Clockfreq_result)

− Description: Gather information about frequency of the clocks used to measure the
ticks (either run-user, system or wall clock). Results are returned in hertz. This value
also can be defined as the amount of ticks that a clock can measure in one second.

324 The Ciao System

− The following properties should hold at call time:

Options to get information about the frequency of clocks used to get the ticks. (pro-
log sys:clockfreq option/1)

Clockfreq_result is any term. (basic props:term/1)

− The following properties should hold upon exit:

Options to get information about the frequency of clocks used to get the ticks. (pro-
log sys:clockfreq option/1)

Clockfreq_result is a number. It gives the frequency in hertz used by the clock get
the ticks. (prolog sys:clockfreq result/1)

Usage 3: statistics(Time_option,Time_result)

− Description: Gather information about time (either process time or wall time) since
last consult or since start of program. Results are returned in milliseconds. Note that
internally, time is calculated as:

Time_result = (Tick_result / Clockfreq_result) * 1000

− The following properties should hold at call time:

Options to get information about execution time. Time_option must be one of
runtime, usertime, systemtime or walltime. (prolog sys:time option/1)

Time_result is any term. (basic props:term/1)

− The following properties should hold upon exit:

Options to get information about execution time. Time_option must be one of
runtime, usertime, systemtime or walltime. (prolog sys:time option/1)

Time_result is a two-element list of numbers. The first number is the time since the
start of the execution; the second number is the time since the previous consult to
time. (prolog sys:time result/1)

Usage 4: statistics(Memory_option,Memory_result)

− Description: Gather information about memory consumption.

− The following properties should hold at call time:

Options to get information about memory usage. (prolog sys:memory option/1)

Memory_result is any term. (basic props:term/1)

− The following properties should hold upon exit:

Options to get information about memory usage. (prolog sys:memory option/1)

Result is a two-element list of integers. The first element is the space taken up by
the option selected, measured in bytes; the second integer is zero for program space
(which grows as necessary), and the amount of free space otherwise. (pro-
log sys:memory result/1)

Usage 5: statistics(Garbage_collection_option,Gc_result)

− Description: Gather information about garbage collection.

− The following properties should hold at call time:

Options to get information about garbage collection. (pro-
log sys:garbage collection option/1)

Gc_result is any term. (basic props:term/1)

− The following properties should hold upon exit:

Options to get information about garbage collection. (pro-
log sys:garbage collection option/1)

Gc_result is a tree-element list of integers, related to garbage collection and memory
management. When stack_shifts is selected, the first one is the number of shifts

Chapter 49: Prolog system internal predicates 325

(reallocations) of the local stack; the second is the number of shifts of the trail, and
the third is the time spent in these shifts. When garbage_collection is selected, the
numbers are, respectively, the number of garbage collections performed, the number
of bytes freed, and the time spent in garbage collection. (prolog sys:gc result/1)

Usage 6: statistics(Symbol_option,Symbol_result)

− Description: Gather information about number of symbols and predicates.

− The following properties should hold at call time:

Option to get information about the number of symbols in the program. (pro-
log sys:symbol option/1)

Symbol_result is any term. (basic props:term/1)

− The following properties should hold upon exit:

Option to get information about the number of symbols in the program. (pro-
log sys:symbol option/1)

Symbol_result is a two-element list of integers. The first one is the number of atom,
functor, and predicate names in the symbol table. The second is the number of
predicates known to be defined (although maybe without clauses). (pro-
log sys:symbol result/1)

Usage 7: statistics(Option,Arg2)

− Description: If Option is unbound, it is bound to the values on the other cases.

− Call and exit should be compatible with:

Arg2 is any term. (basic props:term/1)

− The following properties should hold upon exit:

Arg2 is any term. (basic props:term/1)

REGTYPEclockfreq result/1:
Usage: clockfreq_result(Result)

− Description: Result is a number. It gives the frequency in hertz used by the clock
get the ticks.

REGTYPEtick result/1:
Usage: tick_result(Result)

− Description: Result is a two-element list of numbers. The first number is the number
of ticks since the start of the execution; the second number is the number of ticks
since the previous consult to tick.

PREDICATEnew atom/1:
Usage: new_atom(Atom)

− Description: Returns, on success, a new atom, not existing before in the system.
The entry argument must be a variable. The idea behind this atom generation is to
provide a fast source of identifiers for new objects, concurrent predicates, etc. on the
fly.

− The following properties should hold at call time:

Atom is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Atom is an atom. (basic props:atm/1)

326 The Ciao System

REGTYPEsymbol result/1:
Usage: symbol_result(Result)

− Description: Result is a two-element list of integers. The first one is the number of
atom, functor, and predicate names in the symbol table. The second is the number
of predicates known to be defined (although maybe without clauses).

REGTYPEgc result/1:
Usage: gc_result(Result)

− Description: Result is a tree-element list of integers, related to garbage collection and
memory management. When stack_shifts is selected, the first one is the number
of shifts (reallocations) of the local stack; the second is the number of shifts of the
trail, and the third is the time spent in these shifts. When garbage_collection is
selected, the numbers are, respectively, the number of garbage collections performed,
the number of bytes freed, and the time spent in garbage collection.

REGTYPEmemory result/1:
Usage: memory_result(Result)

− Description: Result is a two-element list of integers. The first element is the space
taken up by the option selected, measured in bytes; the second integer is zero for
program space (which grows as necessary), and the amount of free space otherwise.

REGTYPEtime result/1:
Usage: time_result(Result)

− Description: Result is a two-element list of numbers. The first number is the time
since the start of the execution; the second number is the time since the previous
consult to time.

REGTYPEsymbol option/1:
Usage: symbol_option(M)

− Description: Option to get information about the number of symbols in the program.

REGTYPEgarbage collection option/1:
Usage: garbage_collection_option(M)

− Description: Options to get information about garbage collection.

REGTYPEmemory option/1:
Usage: memory_option(M)

− Description: Options to get information about memory usage.

Chapter 49: Prolog system internal predicates 327

REGTYPEclockfreq option/1:
Usage: clockfreq_option(M)

− Description: Options to get information about the frequency of clocks used to get
the ticks.

REGTYPEtick option/1:
Usage: tick_option(M)

− Description: Options to get information about execution ticks.

REGTYPEtime option/1:
Usage: time_option(M)

− Description: Options to get information about execution time. M must be one of
runtime, usertime, systemtime or walltime.

PREDICATEpredicate property/2:
General properties: predicate_property(Head,Prop)

− Description: Predicate property of true/0 is compiled

− If the following properties should hold at call time:

term basic:Head=true (term basic:= /2)

then the following properties should hold upon exit:

term basic:Prop=compiled (term basic:= /2)

Usage: predicate_property(Head,Property)

− Description: The predicate Head, visible from the current module, (a goal) has the
property Property.

− The following properties should hold upon exit:

Head is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Property is an atom. (basic props:atm/1)

PREDICATEpredicate property/3:
No further documentation available for this predicate.

PREDICATEcurrent atom/1:
Usage: current_atom(Atom)

− Description: Enumerates on backtracking all the existing atoms in the system.

− The following properties hold upon exit:

Atom is an atom. (basic props:atm/1)

PREDICATEgarbage collect/0:
Usage:

− Description: Forces garbage collection when called.

328 The Ciao System

49.3 Known bugs and planned improvements (prolog_sys)

• The space used by the process is not measured here: process data, code, and stack also take
up memory. The memory reported for atoms is not what is actually used, but the space
used up by the hash table (which is enlarged as needed).

• The predicate predicate_property/2 needs more work:

• Efficiency: In order to be complete and efficient, this needs to be a built-in predicate
of our module system. Consulting predicate properties does not seem a dangerous
operation (except that, when it cannot be resolved at compile-time, it prevents removal
of module runtime information).

• Correctness: The head is automatically module-expanded on call. If the head is not
module-expanded, there are consistency problems. Other systems avoid those problems
by disallowing the import of two predicates with the same name from different modules.
That is clearly not a solution in Ciao.

• Implement a ’$predicate_property’/2 where the module can be specified. That will
simplify the predicate_property/2 implementation

Chapter 50: DEC-10 Prolog file IO 329

50 DEC-10 Prolog file IO

This module implements the support for DEC-10 Prolog style file I/O.

50.1 Usage and interface (dec10_io)
� �

• Library usage:

:- use_module(library(dec10_io)).

• Exports:

− Predicates:

see/1, seeing/1, seen/0, tell/1, telling/1, told/0, close_file/1.

 	

50.2 Documentation on exports (dec10_io)

PREDICATEsee/1:
Usage: see(File)

− The following properties should hold at call time:

File is currently instantiated to an atom. (term typing:atom/1)

PREDICATEseeing/1:
Usage: seeing(File)

− The following properties should hold upon exit:

File is currently instantiated to an atom. (term typing:atom/1)

PREDICATEseen/0:
No further documentation available for this predicate.

PREDICATEtell/1:
Usage: tell(File)

− The following properties should hold at call time:

File is currently instantiated to an atom. (term typing:atom/1)

PREDICATEtelling/1:
Usage: telling(File)

− The following properties should hold upon exit:

File is currently instantiated to an atom. (term typing:atom/1)

330 The Ciao System

PREDICATEtold/0:
No further documentation available for this predicate.

PREDICATEclose file/1:
No further documentation available for this predicate.

Chapter 51: Quintus-like internal database 331

51 Quintus-like internal database

Author(s): The CLIP Group.

The predicates described in this section were introduced in early implementations of Prolog
to provide efficient means of performing operations on large quantities of data. The introduction
of indexed dynamic predicates have rendered these predicates obsolete, and the sole purpose of
providing them is to support existing code. There is no reason whatsoever to use them in new
code.

These predicates store arbitrary terms in the database without interfering with the clauses
which make up the program. The terms which are stored in this way can subsequently be
retrieved via the key on which they were stored. Many terms may be stored on the same key,
and they can be individually accessed by pattern matching. Alternatively, access can be achieved
via a special identifier which uniquely identifies each recorded term and which is returned when
the term is stored.

51.1 Usage and interface (old_database)
� �

• Library usage:

:- use_module(library(old_database)).

• Exports:

− Predicates:

recorda/3, recordz/3, recorded/3, current_key/2.

 	

51.2 Documentation on exports (old_database)

PREDICATErecorda/3:
recorda(Key,Term,Ref)

The term Term is recorded in the internal database as the first item for the key Key, where
Ref is its implementation-defined identifier. The key must be given, and only its principal
functor is significant. Any uninstantiated variables in the Term will be replaced by new
private variables, along with copies of any subgoals blocked on these variables.

Usage: recorda(Key,Term,Ref)

− The following properties should hold at call time:

Key is currently a term which is not a free variable. (term typing:nonvar/1)

Ref is a free variable. (term typing:var/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATErecordz/3:
recordz(Key,Term,Ref)

Like recorda/3, except that the new term becomes the last item for the key Key.

Usage: recordz(Key,Term,Ref)

332 The Ciao System

− The following properties should hold at call time:

Key is currently a term which is not a free variable. (term typing:nonvar/1)

Ref is a free variable. (term typing:var/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATErecorded/3:
recorded(Key,Term,Ref)

The internal database is searched for terms recorded under the key Key. These terms
are successively unified with Term in the order they occur in the database. At the same
time, Ref is unified with the implementation-defined identifier uniquely identifying the
recorded item. If the key is instantiated to a compound term, only its principal functor is
significant. If the key is uninstantiated, all terms in the database are successively unified
with Term in the order they occur.

Usage: recorded(Key,Term,Ref)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcurrent key/2:
current_key(KeyName,KeyTerm)

KeyTerm is the most general form of the key for a currently recorded term, and KeyName
is the name of that key. This predicate can be used to enumerate in undefined order all
keys for currently recorded terms through backtracking.

Usage: current_key(Name,Key)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

Chapter 52: ttyout (library) 333

52 ttyout (library)

52.1 Usage and interface (ttyout)
� �

• Library usage:

:- use_module(library(ttyout)).

• Exports:

− Predicates:

ttyget/1, ttyget1/1, ttynl/0, ttyput/1, ttyskip/1, ttytab/1, ttyflush/0,
ttydisplay/1, ttydisplayq/1, ttyskipeol/0, ttydisplay_string/1.

 	

52.2 Documentation on exports (ttyout)

PREDICATEttyget/1:
Usage: ttyget(X)

− The following properties should hold upon exit:

X is an integer. (basic props:int/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEttyget1/1:
No further documentation available for this predicate.

PREDICATEttynl/0:
− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEttyput/1:
Usage: ttyput(X)

− The following properties should hold at call time:

X is an integer. (basic props:int/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEttyskip/1:
No further documentation available for this predicate.

334 The Ciao System

PREDICATEttytab/1:
No further documentation available for this predicate.

PREDICATEttyflush/0:
− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEttydisplay/1:
No further documentation available for this predicate.

PREDICATEttydisplayq/1:
No further documentation available for this predicate.

PREDICATEttyskipeol/0:
No further documentation available for this predicate.

PREDICATEttydisplay string/1:
No further documentation available for this predicate.

Chapter 53: Enabling operators at run-time 335

53 Enabling operators at run-time

Author(s): Daniel Cabeza.

This library package allows the use of the statically defined operators of a module for the
reading performed at run-time by the program that uses the module. Simply by using this
package the operator definitions appearing in the module are enabled during the execution of
the program.

53.1 Usage and interface (runtime_ops_doc)
� �

• Library usage:

:- use_package(runtime_ops).

or

:- module(...,...,[runtime_ops]).

• Other modules used:

− System library modules:

operators.

 	

336 The Ciao System

PART V - Assertions, Properties, Types, Modes, Comments (assertions) 337

PART V - Assertions, Properties, Types, Modes,
Comments (assertions)

� �

Author(s): The CLIP Group.

Ciao allows annotating the program code with assertions. Such assertions include type
and instantiation mode declarations, but also more general properties as well as comments for
autodocumentation in the literate programming style. These assertions document predicates
(and modules and whole applications) and can be used by the Ciao preprocessor/compiler while
debugging and optimizing the program or library, and by the Ciao documenter to build program
or library reference manuals.

 	

338 The Ciao System

Chapter 54: The Ciao assertion package 339

54 The Ciao assertion package

Author(s): Manuel Hermenegildo, Francisco Bueno, German Puebla.

The assertions package adds a number of new declaration definitions and new operator
definitions which allow including program assertions in user programs. Such assertions can
be used to describe predicates, properties, modules, applications, etc. These descriptions can
contain formal specifications (such as sets of preconditions, post-conditions, or descriptions of
computations) as well as machine-readable textual comments.

This module is part of the assertions library. It defines the basic code-related assertions,
i.e., those intended to be used mainly by compilation-related tools, such as the static analyzer
or the run-time test generator.

Giving specifications for predicates and other program elements is the main functionality
documented here. The exact syntax of comments is described in the autodocumenter (lpdoc
[Knu84,Her99]) manual, although some support for adding machine-readable comments in as-
sertions is also mentioned here.

There are two kinds of assertions: predicate assertions and program point assertions. All
predicate assertions are currently placed as directives in the source code, i.e., preceded by “:-”.
Program point assertions are placed as goals in clause bodies.

54.1 More info

The facilities provided by the library are documented in the description of its component
modules. This documentation is intended to provide information only at a “reference man-
ual” level. For a more tutorial introduction to the subject and some more examples please
see [PBH00]. The assertion language implemented in this library is modeled after this design
document, although, due to implementation issues, it may differ in some details. The purpose
of this manual is to document precisely what the implementation of the library supports at any
given point in time.

54.2 Some attention points

• Formatting commands within text strings: many of the predicates defined in these mod-
ules include arguments intended for providing textual information. This includes titles,
descriptions, comments, etc. The type of this argument is a character string. In order for
the automatic generation of documentation to work correctly, this character string should
adhere to certain conventions. See the description of the docstring/1 type/grammar for
details.

• Referring to variables: In order for the automatic documentation system to work correctly,
variable names (for example, when referring to arguments in the head patterns of pred dec-
larations) must be surrounded by an @var command. For example, @var{VariableName}
should be used for referring to the variable “VariableName”, which will appear then for-
matted as follows: VariableName. See the description of the docstring/1 type/grammar
for details.

340 The Ciao System

54.3 Usage and interface (assertions_doc)
� �

• Library usage:

The recommended procedure in order to make use of assertions in user programs is to include
the assertions syntax library, using one of the following declarations, as appropriate:

:- module(...,...,[assertions]).
:- use_package([assertions]).

• Exports:

− Predicates:

check/1, trust/1, true/1, false/1.

• New operators defined:

=>/2 [975,xfx], ::/2 [978,xfx], decl/1 [1150,fx], decl/2 [1150,xfx], pred/1 [1150,fx], pred/2
[1150,xfx], prop/1 [1150,fx], prop/2 [1150,xfx], modedef/1 [1150,fx], calls/1 [1150,fx],
calls/2 [1150,xfx], success/1 [1150,fx], success/2 [1150,xfx], test/1 [1150,fx], test/2
[1150,xfx], texec/1 [1150,fx], texec/2 [1150,xfx], comp/1 [1150,fx], comp/2 [1150,xfx],
entry/1 [1150,fx], exit/1 [1150,fx], exit/2 [1150,xfx].

• New declarations defined:

pred/1, pred/2, texec/1, texec/2, calls/1, calls/2, success/1, success/2, test/1,
test/2, comp/1, comp/2, prop/1, prop/2, entry/1, exit/1, exit/2, modedef/1, decl/1,
decl/2, doc/2, comment/2.

• Other modules used:

− System library modules:

assertions/assertions_props.

 	

54.4 Documentation on new declarations (assertions_doc)

DECLARATIONpred/1:
This assertion provides information on a predicate. The body of the assertion (its only
argument) contains properties or comments in the formats defined by assrt_body/1.

More than one of these assertions may appear per predicate, in which case each one
represents a possible “ mode” of use (usage) of the predicate. The exact scope of the
usage is defined by the properties given for calls in the body of each assertion (which
should thus distinguish the different usages intended). All of them together cover all
possible modes of usage.

For example, the following assertions describe (all the and the only) modes of usage of
predicate length/2 (see lists):

:- pred length(L,N) : list * var => list * integer
"Computes the length of L.".
:- pred length(L,N) : var * integer => list * integer
"Outputs L of length N.".
:- pred length(L,N) : list * integer => list * integer
"Checks that L is of length N.".

Usage: :- pred AssertionBody.

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions props:assrt body/1)

Chapter 54: The Ciao assertion package 341

DECLARATIONpred/2:
This assertion is similar to a pred/1 assertion but it is explicitely qualified. Non-qualified
pred/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus pred AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is an assertion body. (assertions props:assrt body/1)

DECLARATIONtexec/1:
This assertion is similar to a calls/1 assertion but it is used to provide input data and
execution commands to the unit-test driver.

Usage: :- texec AssertionBody.

− The following properties should hold at call time:

AssertionBody is a call assertion body. (assertions props:c assrt body/1)

DECLARATIONtexec/2:
This assertion is similar to a texec/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified texec/1 assertions are assumed to have check status.

Usage: :- AssertionStatus texec AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is a call assertion body. (assertions props:c assrt body/1)

DECLARATIONcalls/1:
This assertion is similar to a pred/1 assertion but it only provides information about the
calls to a predicate. If one or several calls assertions are given they are understood to
describe all possible calls to the predicate.

For example, the following assertion describes all possible calls to predicate is/2 (see
arithmetic):

:- calls is(term,arithexpression).

Usage: :- calls AssertionBody.

− The following properties should hold at call time:

AssertionBody is a call assertion body. (assertions props:c assrt body/1)

DECLARATIONcalls/2:
This assertion is similar to a calls/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified calls/1 assertions are assumed to have check status.

Usage: :- AssertionStatus calls AssertionBody.

342 The Ciao System

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is a call assertion body. (assertions props:c assrt body/1)

DECLARATIONsuccess/1:
This assertion is similar to a pred/1 assertion but it only provides information about the
answers to a predicate. The described answers might be conditioned to a particular way
of calling the predicate.

For example, the following assertion specifies the answers of the length/2 predicate if it
is called as in the first mode of usage above (note that the previous pred assertion already
conveys such information, however it also compelled the predicate calls, while the success
assertion does not):

:- success length(L,N) : list * var => list * integer.

Usage: :- success AssertionBody.

− The following properties should hold at call time:

AssertionBody is a predicate assertion body. (assertions props:s assrt body/1)

DECLARATIONsuccess/2:
success assertion This assertion is similar to a success/1 assertion but it is explicitely
qualified with an assertion status. The status of non-qualified success/1 assertions is
assumed to be check.

Usage: :- AssertionStatus success AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is a predicate assertion body. (assertions props:s assrt body/1)

DECLARATIONtest/1:
This assertion is similar to a success assertion but it specifies a concrete test case to be
run in order verify (partially) that the predicate is working as expected. For example, the
following test will verify that the length predicate works well for the particular list given:

:- test length(L,N) : (L = [1,2,5,2]) => (N = 4).

Usage: :- test AssertionBody.

− The following properties should hold at call time:

AssertionBody is a predicate assertion body. (assertions props:s assrt body/1)

DECLARATIONtest/2:
This assertion is similar to a test/1 assertion but it is explicitely qualified with an
assertion status. Non-qualified test/1 assertions are assumed to have check status. In
this context, check means that the test should be executed when the developer runs the
test battery.

Usage: :- AssertionStatus test AssertionBody.

Chapter 54: The Ciao assertion package 343

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is a predicate assertion body. (assertions props:s assrt body/1)

DECLARATIONcomp/1:
This assertion is similar to a pred/1 assertion but it only provides information about the
global execution properties of a predicate (note that such kind of information is also con-
veyed by pred assertions). The described properties might be conditioned to a particular
way of calling the predicate.

For example, the following assertion specifies that the computation of append/3 (see
lists) will not fail if it is called as described (but does not compel the predicate to be
called that way):

:- comp append(Xs,Ys,Zs) : var * var * var + not_fail.

Usage: :- comp AssertionBody.

− The following properties should hold at call time:

AssertionBody is a comp assertion body. (assertions props:g assrt body/1)

DECLARATIONcomp/2:
This assertion is similar to a comp/1 assertion but it is explicitely qualified. Non-qualified
comp/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus comp AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is a comp assertion body. (assertions props:g assrt body/1)

DECLARATIONprop/1:
This assertion is similar to a pred/1 assertion but it flags that the predicate being docu-
mented is also a “ property.”

Properties are standard predicates, but which are guaranteed to terminate for any possible
instantiation state of their argument(s), do not perform side-effects which may interfere
with the program behaviour, and do not further instantiate their arguments or add new
constraints.

Provided the above holds, properties can thus be safely used as run-time checks. The
program transformation used in ciaopp for run-time checking guarantees the third re-
quirement. It also performs some basic checks on properties which in most cases are
enough for the second requirement. However, it is the user’s responsibility to guarantee
termination of the properties defined. (See also Chapter 56 [Declaring regular types],
page 355 for some considerations applicable to writing properties.)

The set of properties is thus a strict subset of the set of predicates. Note that properties
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.

Usage: :- prop AssertionBody.

344 The Ciao System

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions props:assrt body/1)

DECLARATIONprop/2:
This assertion is similar to a prop/1 assertion but it is explicitely qualified. Non-qualified
prop/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus prop AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is an assertion body. (assertions props:assrt body/1)

DECLARATIONentry/1:
This assertion provides information about the external calls to a predicate. It is identical
syntactically to a calls/1 assertion. However, they describe only external calls, i.e., calls
to the exported predicates of a module from outside the module, or calls to the predicates
in a non-modular file from other files (or the user).

These assertions are trusted by the compiler. As a result, if their descriptions are erroneous
they can introduce bugs in programs. Thus, entry/1 assertions should be written with
care.

An important use of these assertions is in providing information to the compiler which it
may not be able to infer from the program. The main use is in providing information on
the ways in which exported predicates of a module will be called from outside the module.
This will greatly improve the precision of the analyzer, which otherwise has to assume
that the arguments that exported predicates receive are any arbitrary term.

Usage: :- entry AssertionBody.

− The following properties should hold at call time:

AssertionBody is a call assertion body. (assertions props:c assrt body/1)

DECLARATIONexit/1:
This type of assertion provides information about the answers that an (exported) predicate
provides for external calls. It is identical syntactically to a success/1 assertion. However,
it describes only external answers, i.e., answers to the exported predicates of a module
from outside the module, or answers to the predicates in a non-modular file from other
files (or the user). The described answers may be conditioned to a particular way of calling
the predicate. E.g.:

:- exit length(L,N) : list * var => list * integer.

Usage: :- exit AssertionBody.

− The following properties should hold at call time:

AssertionBody is a predicate assertion body. (assertions props:s assrt body/1)

Chapter 54: The Ciao assertion package 345

DECLARATIONexit/2:
exit assertion This assertion is similar to an exit/1 assertion but it is explicitely qualified
with an assertion status. Non-qualified exit/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus exit AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is a predicate assertion body. (assertions props:s assrt body/1)

DECLARATIONmodedef/1:
This assertion is used to define modes. A mode defines in a compact way a set of call
and success properties. Once defined, modes can be applied to predicate arguments in
assertions. The meaning of this application is that the call and success properties defined
by the mode hold for the argument to which the mode is applied. Thus, a mode is
conceptually a “property macro”.

The syntax of mode definitions is similar to that of pred declarations. For example, the
following set of assertions:

:- modedef +A : nonvar(A) # "A is bound upon predicate entry.".

:- pred p(+A,B) : integer(A) => ground(B).

is equivalent to:

:- pred p(A,B) : (nonvar(A),integer(A)) => ground(B)
"A is bound upon predicate entry.".

Usage: :- modedef AssertionBody.

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions props:assrt body/1)

DECLARATIONdecl/1:
This assertion is similar to a pred/1 assertion but it is used for declarations instead than
for predicates.

Usage: :- decl AssertionBody.

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions props:assrt body/1)

DECLARATIONdecl/2:
This assertion is similar to a decl/1 assertion but it is explicitely qualified. Non-qualified
decl/1 assertions are assumed the qualifier check.

Usage: :- AssertionStatus decl AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is an assertion body. (assertions props:assrt body/1)

346 The Ciao System

DECLARATIONdoc/2:
Usage: :- doc(Pred,Comment).

− Description: Documentation . This assertion provides a text Comment for a given
predicate Pred.

− The following properties should hold at call time:

Pred is a head pattern. (assertions props:head pattern/1)

Comment is a text comment with admissible documentation commands. The usual
formatting commands that are applicable in comment strings are defined by
stringcommand/1. See the lpdoc manual for documentation on comments. (asser-
tions props:docstring/1)

DECLARATIONcomment/2:
Usage: :- comment(Pred,Comment).

− Description: An alias for doc/2 (deprecated, for compatibility with older versions).

− The following properties should hold at call time:

Pred is a head pattern. (assertions props:head pattern/1)

Comment is a text comment with admissible documentation commands. The usual
formatting commands that are applicable in comment strings are defined by
stringcommand/1. See the lpdoc manual for documentation on comments. (asser-
tions props:docstring/1)

54.5 Documentation on exports (assertions_doc)

PREDICATEcheck/1:
Usage: check(PropertyConjunction)

− Description: This assertion provides information on a clause program point (position
in the body of a clause). Calls to a check/1 assertion can appear in the body of a
clause in any place where a literal can normally appear. The property defined by
PropertyConjunction should hold in all the run-time stores corresponding to that
program point. See also Chapter 60 [Run-time checking of assertions], page 377.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions props:property conjunction/1)

PREDICATEtrust/1:
Usage: trust(PropertyConjunction)

− Description: This assertion also provides information on a clause program point. It is
identical syntactically to a check/1 assertion. However, the properties stated are not
taken as something to be checked but are instead trusted by the compiler. While the
compiler may in some cases detect an inconsistency between a trust/1 assertion and
the program, in all other cases the information given in the assertion will be taken
to be true. As a result, if these assertions are erroneous they can introduce bugs in
programs. Thus, trust/1 assertions should be written with care.

Chapter 54: The Ciao assertion package 347

An important use of these assertions is in providing information to the compiler which
it may not be able to infer from the program (either because the information is not
present or because the analyzer being used is not precise enough). In particular,
providing information on external predicates which may not be accessible at the time
of compiling the module can greatly improve the precision of the analyzer. This can
be easily done with trust assertion.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions props:property conjunction/1)

PREDICATEtrue/1:
Usage: true(PropertyConjunction)

− Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved to hold by the analyzer. Thus, these assertions
often represent the analyzer output.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions props:property conjunction/1)

PREDICATEfalse/1:
Usage: false(PropertyConjunction)

− Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved not to hold by the analyzer. Thus, these
assertions often represent the analyzer output.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions props:property conjunction/1)

348 The Ciao System

Chapter 55: Types and properties related to assertions 349

55 Types and properties related to assertions

Author(s): Manuel Hermenegildo.

This module is part of the assertions library. It provides the formal definition of the
syntax of several forms of assertions and describes their meaning. It does so by defining types
and properties related to the assertions themselves. The text describes, for example, the overall
fields which are admissible in the bodies of assertions, where properties can be used inside these
bodies, how to combine properties for a given predicate argument (e.g., conjunctions) , etc. and
provides some examples.

55.1 Usage and interface (assertions_props)
� �

• Library usage:

:- use_module(library(assertions_props)).

• Exports:

− Properties:

head_pattern/1, nabody/1, docstring/1.

− Regular Types:

assrt_body/1, complex_arg_property/1, property_conjunction/1, property_
starterm/1, complex_goal_property/1, dictionary/1, c_assrt_body/1, s_assrt_
body/1, g_assrt_body/1, assrt_status/1, assrt_type/1, predfunctor/1,
propfunctor/1.

 	

55.2 Documentation on exports (assertions_props)

REGTYPEassrt body/1:
This predicate defines the different types of syntax admissible in the bodies of pred/1,
decl/1, etc. assertions. Such a body is of the form:

Pr [:: DP] [: CP] [=> AP] [+ GP] [# CO]

where (fields between [...] are optional):

• Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

• DP is a (possibly empty) complex argument property (complex_arg_property/1)
which expresses properties which are compatible with the predicate, i.e., instantiations
made by the predicate are compatible with the properties in the sense that applying
the property at any point would not make it fail.

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

• GP is a (possibly empty) complex goal property (complex_goal_property/1) which
applies to the whole execution of a call to the predicate. These only apply if the
(possibly empty) properties given for calls in the assertion hold.

350 The Ciao System

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

See the lpdoc manual for documentation on assertion comments.

Usage: assrt_body(X)

− Description: X is an assertion body.

PROPERTYhead pattern/1:
A head pattern can be a predicate name (functor/arity) (predname/1) or a term. Thus,
both p/3 and p(A,B,C) are valid head patterns. In the case in which the head pattern is
a term, each argument of such a term can be:

• A variable. This is useful in order to be able to refer to the correspond-
ing argument positions by name within properties and in comments. Thus,
p(Input,Parameter,Output) is a valid head pattern.

• A variable, as above, but preceded by a “ mode.” This mode determines in a
compact way certain call or answer properties. For example, the head pattern
p(Input,+Parameter,Output) is valid, as long as +/1 is declared as a mode.

Acceptable modes
are documented in library(basicmodes) and library(isomodes). User defined
modes are documented in modedef/1.

• Any term. In this case this term determines the instantiation state of the correspond-
ing argument position of the predicate calls to which the assertion applies.

• A ground term preceded by a “ mode.” The ground term determines a property of
the corresponding argument. The mode determines if it applies to the calls and/or
the successes. The actual property referred to is that given by the term but with
one more argument added at the beginning, which is a new variable which, in a
rewriting of the head pattern, appears at the argument position occupied by the term.
For example, the head pattern p(Input,+list(int),Output) is valid for mode +/1
defined in library(isomodes), and equivalent in this case to having the head pattern
p(Input,A,Output) and stating that the property list(A,int) holds for the calls
of the predicate.

• Any term preceded by a “ mode.” In this case, only one variable is admitted,
it has to be the first argument of the mode, and it represents the argument po-
sition. I.e., it plays the role of the new variable mentioned above. Thus, no
rewriting of the head pattern is performed in this case. For example, the head
pattern p(Input,+(Parameter,list(int)),Output) is valid for mode +/2 defined
in library(isomodes), and equivalent in this case to having the head pattern
p(Input,Parameter,Output) and stating that the property list(Parameter,int)
holds for the calls of the predicate.

Usage: head_pattern(Pr)

− Description: Pr is a head pattern.

REGTYPEcomplex arg property/1:
complex_arg_property(Props)

Props is a (possibly empty) complex argument property. Such properties can appear in
two formats, which are defined by property_conjunction/1 and property_starterm/1

Chapter 55: Types and properties related to assertions 351

respectively. The two formats can be mixed provided they are not in the same field of an
assertion. I.e., the following is a valid assertion:

:- pred foo(X,Y) : nonvar * var => (ground(X),ground(Y)).

Usage: complex_arg_property(Props)

− Description: Props is a (possibly empty) complex argument property

REGTYPEproperty conjunction/1:
This type defines the first, unabridged format in which properties can be expressed in the
bodies of assertions. It is essentially a conjunction of properties which refer to variables.
The following is an example of a complex property in this format:

• (integer(X),list(Y,integer)): X has the property integer/1 and Y has the prop-
erty list/2, with second argument integer.

Usage: property_conjunction(Props)

− Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument.

REGTYPEproperty starterm/1:
This type defines a second, compact format in which properties can be expressed in the
bodies of assertions. A property_starterm/1 is a term whose main functor is */2 and,
when it appears in an assertion, the number of terms joined by */2 is exactly the arity of
the predicate it refers to. A similar series of properties as in property_conjunction/1
appears, but the arity of each property is one less: the argument position to which they
refer (first argument) is left out and determined by the position of the property in the
property_starterm/1. The idea is that each element of the */2 term corresponds to a
head argument position. Several properties can be assigned to each argument position by
grouping them in curly brackets. The following is an example of a complex property in
this format:

• integer * list(integer): the first argument of the procedure (or function, or ...)
has the property integer/1 and the second one has the property list/2, with second
argument integer.

• {integer,var} * list(integer): the first argument of the procedure (or function,
or ...) has the properties integer/1 and var/1 and the second one has the property
list/2, with second argument integer.

Usage: property_starterm(Props)

− Description: Props is either a term or several terms separated by */2. The main
functor of each of those terms corresponds to that of the definition of a property, and
the arity should be one less than in the definition of such property. All arguments of
each such term are ground.

REGTYPEcomplex goal property/1:
complex_goal_property(Props)

Props is a (possibly empty) complex goal property. Such properties can be either a term
or a conjunction of terms. The main functor and arity of each of those terms corresponds
to the definition of a property. Such properties apply to all executions of all goals of the
predicate which comply with the assertion in which the Props appear.

352 The Ciao System

The arguments of the terms in Props are implicitely augmented with a first argument
which corresponds to a goal of the predicate of the assertion in which the Props appear.
For example, the assertion

:- comp var(A) + not_further_inst(A).

has property not_further_inst/1 as goal property, and establishes that in all executions
of var(A) it should hold that not_further_inst(var(A),A).

Usage: complex_goal_property(Props)

− Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. A first
implicit argument in such terms identifies goals to which the properties apply.

PROPERTYnabody/1:
Usage: nabody(ABody)

− Description: ABody is a normalized assertion body.

REGTYPEdictionary/1:
Usage: dictionary(D)

− Description: D is a dictionary of variable names.

REGTYPEc assrt body/1:
This predicate defines the different types of syntax admissible in the bodies of call/1,
entry/1, etc. assertions. The following are admissible:

Pr : CP [# CO]

where (fields between [...] are optional):

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.

Usage: c_assrt_body(X)

− Description: X is a call assertion body.

REGTYPEs assrt body/1:
This predicate defines the different types of syntax admissible in the bodies of pred/1,
func/1, etc. assertions. The following are admissible:

Pr : CP => AP # CO
Pr : CP => AP
Pr => AP # CO
Pr => AP

where:

Chapter 55: Types and properties related to assertions 353

• Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.

Usage: s_assrt_body(X)

− Description: X is a predicate assertion body.

REGTYPEg assrt body/1:
This predicate defines the different types of syntax admissible in the bodies of comp/1
assertions. The following are admissible:

Pr : CP + GP # CO
Pr : CP + GP
Pr + GP # CO
Pr + GP

where:

• Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• GP contains (possibly empty) complex goal property (complex_goal_property/1)
which applies to the whole execution of a call to the predicate. These only apply if
the (possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.

Usage: g_assrt_body(X)

− Description: X is a comp assertion body.

REGTYPEassrt status/1:
The types of assertion status. They have the same meaning as the program-point asser-
tions, and are as follows:

assrt_status(true).
assrt_status(false).
assrt_status(check).
assrt_status(checked).

354 The Ciao System

assrt_status(trust).

Usage: assrt_status(X)

− Description: X is an acceptable status for an assertion.

REGTYPEassrt type/1:
The admissible kinds of assertions:

assrt_type(pred).
assrt_type(prop).
assrt_type(decl).
assrt_type(func).
assrt_type(calls).
assrt_type(success).
assrt_type(comp).
assrt_type(entry).
assrt_type(exit).
assrt_type(test).
assrt_type(texec).
assrt_type(modedef).

Usage: assrt_type(X)

− Description: X is an admissible kind of assertion.

REGTYPEpredfunctor/1:
Usage: predfunctor(X)

− Description: X is a type of assertion which defines a predicate.

REGTYPEpropfunctor/1:
Usage: propfunctor(X)

− Description: X is a type of assertion which defines a property.

PROPERTYdocstring/1:
Usage: docstring(String)

− Description: String is a text comment with admissible documentation commands.
The usual formatting commands that are applicable in comment strings are defined
by stringcommand/1. See the lpdoc manual for documentation on comments.

Chapter 56: Declaring regular types 355

56 Declaring regular types

Author(s): Manuel Hermenegildo, Pedro López, Francisco Bueno.

This library package adds declarations and new operator definitions which provide simple
syntactic sugar to write regular type definitions in source code. Regular types are just properties
which have the additional characteristic of being regular types (basic_props:regtype/1),
defined below.

For example, this library package allows writing:

:- regtype tree(X) # "X is a tree.".

instead of the more cumbersome:

:- prop tree(X) + regtype # "X is a tree.".

Regular types can be used as properties to describe predicates and play an essential role in
program debugging (see the Ciao Prolog preprocessor (ciaopp) manual).

In this chapter we explain some general considerations worth taking into account when writing
properties in general, not just regular types.

56.1 Defining properties

Given the classes of assertions in the Ciao assertion language, there are two fundamental
classes of properties. Properties used in assertions which refer to execution states (i.e., calls/1,
success/1, and the like) are called properties of execution states. Properties used in asser-
tions related to computations (i.e., comp/1) are called properties of computations. Different
considerations apply when writing a property of the former or of the later kind.

Consider a definition of the predicate string_concat/3 which concatenates two character
strings (represented as lists of ASCII codes):

string_concat([],L,L).
string_concat([X|Xs],L,[X|NL]):- string_concat(Xs,L,NL).

Assume that we would like to state in an assertion that each argument “is a list of inte-
gers.” However, we must decide which one of the following two possibilities we mean exactly:
“the argument is instantiated to a list of integers” (let us call this property instantiated_
to_intlist/1), or “if any part of the argument is instantiated, this instantiation must be
compatible with the argument being a list of integers” (we will call this property compatible_
with_intlist/1). For example, instantiated_to_intlist/1 should be true for the terms []
and [1,2], but should not for X, [a,2], and [X,2]. In turn, compatible_with_intlist/1
should be true for [], X, [1,2], and [X,2], but should not be for [X|1], [a,2], and 1. We
refer to properties such as instantiated_to_intlist/1 above as instantiation properties and
to those such as compatible_with_intlist/1 as compatibility properties (corresponding to the
traditional notions of “instantiation types” and “compatibility types”).

It turns out that both of these notions are quite useful in practice. In the example above, we
probably would like to use compatible_with_intlist/1 to state that on success of string_
concat/3 all three argument must be compatible with lists of integers in an assertion like:

:- success string_concat(A,B,C) => (compatible_with_intlist(A),
compatible_with_intlist(B),
compatible_with_intlist(C)).

With this assertion, no error will be flagged for a call to string_concat/3 such
as string_concat([20],L,R), which on success produces the resulting atom string_
concat([20],L,[20|L]), but a call string_concat([],a,R) would indeed flag an error.

On the other hand, and assuming that we are running on a Prolog system, we would probably
like to use instantiated_to_intlist/1 for sumlist/2 as follows:

356 The Ciao System

:- calls sumlist(L,N) : instantiated_to_intlist(L).

sumlist([],0).
sumlist([X|R],S) :- sumlist(R,PS), S is PS+X.

to describe the type of calls for which the program has been designed, i.e., those in which the
first argument of sumlist/2 is indeed a list of integers.

The property instantiated_to_intlist/1 might be written as in the following (Prolog)
definition:

:- prop instantiated_to_intlist/1.

instantiated_to_intlist(X) :-
nonvar(X), instantiated_to_intlist_aux(X).

instantiated_to_intlist_aux([]).
instantiated_to_intlist_aux([X|T]) :-

integer(X), instantiated_to_intlist(T).

(Recall that the Prolog builtin integer/1 itself implements an instantiation check, failing if
called with a variable as the argument.)

The property compatible_with_intlist/1 might in turn be written as follows (also in
Prolog):

:- prop compatible_with_intlist/1.

compatible_with_intlist(X) :- var(X).
compatible_with_intlist(X) :-

nonvar(X), compatible_with_intlist_aux(X).

compatible_with_intlist_aux([]).
compatible_with_intlist_aux([X|T]) :-

int_compat(X), compatible_with_intlist(T).

int_compat(X) :- var(X).
int_compat(X) :- nonvar(X), integer(X).

Note that these predicates meet the criteria for being properties and thus the prop/1 decla-
ration is correct.

Ensuring that a property meets the criteria for “not affecting the computation” can sometimes
make its coding somewhat tedious. In some ways, one would like to be able to write simply:

intlist([]).
intlist([X|R]) :- int(X), intlist(R).

(Incidentally, note that the above definition, provided that it suits the requirements for being a
property and that int/1 is a regular type, meets the criteria for being a regular type. Thus, it
could be declared :- regtype intlist/1.)

But note that (independently of the definition of int/1) the definition above is not the
correct instantiation check, since it would succeed for a call such as intlist(X). In fact, it is
not strictly correct as a compatibility property either, because, while it would fail or succeed
as expected, it would perform instantiations (e.g., if called with intlist(X) it would bind X to
[]). In practice, it is convenient to provide some run-time support to aid in this task.

The run-time support of the Ciao system (see Chapter 60 [Run-time checking of assertions],
page 377) ensures that the execution of properties is performed in such a way that properties
written as above can be used directly as instantiation checks. Thus, writing:

Chapter 56: Declaring regular types 357

:- calls sumlist(L,N) : intlist(L).

has the desired effect. Also, the same properties can often be used as compatibility checks by
writing them in the assertions as compat(Property) (basic_props:compat/1). Thus, writing:

:- success string_concat(A,B,C) => (compat(intlist(A)),
compat(intlist(B)),
compat(intlist(C))).

also has the desired effect.

As a general rule, the properties that can be used directly for checking for compatibility should
be downwards closed, i.e., once they hold they will keep on holding in every state accessible in
forwards execution. There are certain predicates which are inherently instantiation checks and
should not be used as compatibility properties nor appear in the definition of a property that
is to be used with compat. Examples of such predicates (for Prolog) are ==, ground, nonvar,
integer, atom, >, etc. as they require a certain instantiation degree of their arguments in order
to succeed.

In contrast with properties of execution states, properties of computations refer to the entire
execution of the call(s) that the assertion relates to. One such property is, for example, not_
fail/1 (note that although it has been used as in :- comp append(Xs,Ys,Zs) + not_fail,
it is in fact read as not_fail(append(Xs,Ys,Zs)); see assertions_props:complex_goal_
property/1). For this property, which should be interpreted as “execution of the predicate
either succeeds at least once or loops,” we can use the following predicate not_fail/1 for run-
time checking:

not_fail(Goal):-
if(call(Goal),

true, %% then
warning(Goal)). %% else

where the warning/1 (library) predicate simply prints a warning message.

In this simple case, implementation of the predicate is not very difficult using the (non-
standard) if/3 builtin predicate present in many Prolog systems.

However, it is not so easy to code predicates which check other properties of the computation
and we may in general need to program a meta-interpreter for this purpose.

56.2 Usage and interface (regtypes_doc)
� �

• Library usage:

:- use_package(regtypes).

or

:- module(...,...,[regtypes]).

• New operators defined:

regtype/1 [1150,fx], regtype/2 [1150,xfx].

• New declarations defined:

regtype/1, regtype/2.

• Other modules used:

− System library modules:

assertions/assertions_props.

 	

358 The Ciao System

56.3 Documentation on new declarations (regtypes_doc)

DECLARATIONregtype/1:
This assertion is similar to a prop assertion but it flags that the property being doc-
umented is also a “ regular type.” Regular types are properties whose definitions are
regular programs (see lelow). This allows for example checking whether it is in the class
of types supported by the regular type checking and inference modules.

A regular program is defined by a set of clauses, each of the form:

p(x, v_1, ..., v_n) :- body_1, ..., body_k.

where:

1. x is a term whose variables (which are called term variables) are unique, i.e., it is not
allowed to introduce equality constraints between the variables of x.

For example, p(f(X, Y)) :- ... is valid, but p(f(X, X)) :- ... is not.

2. in all clauses defining p/n+1 the terms x do not unify except maybe for one single
clause in which x is a variable.

3. n >= 0 and p/n is a parametric type functor (whereas the predicate defined by the
clauses is p/n+1).

4. v_1, ..., v_n are unique variables, which are called parametric variables.

5. Each body_i is of the form:

1. t(z) where z is one of the term variables and t is a regular type expression;

2. q(y, t_1, ..., t_m) where m >= 0, q/m is a parametric type functor, not in the
set of functors =/2, ^/2, ./3.

t_1, ..., t_m are regular type expressions, and y is a term variable.

6. Each term variable occurs at most once in the clause’s body (and should be as the
first argument of a literal).

A regular type expression is either a parametric variable or a parametric type functor
applied to some of the parametric variables.

A parametric type functor is a regular type, defined by a regular program, or a basic type.
Basic types are defined in Chapter 15 [Basic data types and properties], page 105.

The set of regular types is thus a well defined subset of the set of properties. Note that
types can be used to describe characteristics of arguments in assertions and they can also
be executed (called) as any other predicates.

Usage: :- regtype AssertionBody.

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions props:assrt body/1)

DECLARATIONregtype/2:
This assertion is similar to a regtype/1 assertion but it is explicitely qualified. Non-
qualified regtype/1 assertions are assumed the qualifier check. Note that checking regular
type definitions should be done with the ciaopp preprocessor.

Usage: :- AssertionStatus regtype AssertionBody.

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (asser-
tions props:assrt status/1)

AssertionBody is an assertion body. (assertions props:assrt body/1)

Chapter 57: Properties which are native to analyzers 359

57 Properties which are native to analyzers

Author(s): Francisco Bueno, Manuel Hermenegildo, Pedro López, Edison Mera.

This library contains a set of properties which are natively understood by the different pro-
gram analyzers of ciaopp. They are used by ciaopp on output and they can also be used as
properties in assertions.

57.1 Usage and interface (native_props)
� �

• Library usage:

:- use_module(library(assertions(native_props)))

or also as a package :- use_package(nativeprops).

Note the different names of the library and the package.

• Exports:

− Properties:

clique/1,
clique_1/1, constraint/1, covered/1, covered/2, exception/1, exception/2,
fails/1, finite_solutions/1, have_choicepoints/1, indep/1, indep/2, is_det/1,
linear/1, mshare/1, mut_exclusive/1, no_choicepoints/1, no_exception/1, no_
exception/2, no_signal/1, no_signal/2, non_det/1, nonground/1, not_covered/1,
not_fails/1, not_mut_exclusive/1, num_solutions/2, solutions/2, possibly_
fails/1, possibly_nondet/1, relations/2, sideff_hard/1, sideff_pure/1,
sideff_soft/1, signal/1, signal/2, signals/2, size/2, size/3, size_lb/2, size_
o/2, size_ub/2, size_metric/3, size_metric/4, steps/2, steps_lb/2, steps_o/2,
steps_ub/2, tau/1, terminates/1, test_type/2, throws/2, user_output/2.

• Other modules used:

− System library modules:

terms_check, terms_vars, sort, lists, streams, file_utils, system.

 	

57.2 Documentation on exports (native_props)

PROPERTYclique/1:
clique(X)

X is a set of variables of interest, much the same as a sharing group but X represents all
the sharing groups in the powerset of those variables. Similar to a sharing group, a clique
is often translated to ground/1, indep/1, and indep/2 properties.

Usage: clique(X)

− Description: The clique pattern is X.

− The following properties should hold globally:

This predicate is understood natively by CiaoPP as clique(X). (ba-
sic props:native/2)

360 The Ciao System

PROPERTYclique 1/1:
clique_1(X)

X is a set of variables of interest, much the same as a sharing group but X represents all the
sharing groups in the powerset of those variables but disregarding the singletons. Similar
to a sharing group, a clique 1 is often translated to ground/1, indep/1, and indep/2
properties.

Usage: clique_1(X)

− Description: The 1-clique pattern is X.

− The following properties should hold globally:

This predicate is understood natively by CiaoPP as clique_1(X). (ba-
sic props:native/2)

PROPERTYconstraint/1:
constraint(C)

C contains a list of linear (in)equalities that relate variables and int values. For example,
[A < B + 4] is a constraint while [A < BC + 4] or [A = 3.4, B >= C] are not.

Usage: constraint(C)

− Description: C is a list of linear equations

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYcovered/1:
covered(X)

For any call of the form X there is at least one clause whose test succeeds (i.e., all the calls
of the form X are covered) [DLGH97].

Usage: covered(X)

− Description: All the calls of the form X are covered.

PROPERTYcovered/2:
covered(X,Y)

All variables occuring in X occur also in Y.

Usage: covered(X,Y)

− Description: X is covered by Y.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYexception/1:
Meta-predicate with arguments: exception(goal).

Usage: exception(Goal)

− Description: Calls of the form Goal throw an exception.

Chapter 57: Properties which are native to analyzers 361

PROPERTYexception/2:
Meta-predicate with arguments: exception(goal,?).

Usage: exception(Goal,E)

− Description: Calls of the form Goal throw an exception that unifies with E.

PROPERTYfails/1:
fails(X)

Calls of the form X fail.

Meta-predicate with arguments: fails(goal).

Usage: fails(X)

− Description: Calls of the form X fail.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYfinite solutions/1:
finite_solutions(X)

Calls of the form X produce a finite number of solutions [DLGH97].

Meta-predicate with arguments: finite_solutions(goal).

Usage: finite_solutions(X)

− Description: All the calls of the form X have a finite number of solutions.

PROPERTYhave choicepoints/1:
Meta-predicate with arguments: have_choicepoints(goal).

Usage: have_choicepoints(X)

− Description: A call to X creates choicepoints.

PROPERTYindep/1:
Usage: indep(X)

− Description: The variables in pairs in X are pairwise independent.

− The following properties hold globally:

This predicate is understood natively by CiaoPP as indep(X). (basic props:native/2)

PROPERTYindep/2:
Usage: indep(X,Y)

− Description: X and Y do not have variables in common.

− The following properties hold globally:

This predicate is understood natively by CiaoPP as indep([[X,Y]]). (ba-
sic props:native/2)

362 The Ciao System

PROPERTYis det/1:
is_det(X)

All calls of the form X are deterministic, i.e., produce at most one solution, or do not
terminate. In other words, if X succeeds, it can only succeed once. It can still leave choice
points after its execution, but when backtracking into these, it can only fail or go into an
infinite loop.

Meta-predicate with arguments: is_det(goal).

Usage: is_det(X)

− Description: All calls of the form X are deterministic.

PROPERTYlinear/1:
linear(X)

X is bound to a term which is linear, i.e., if it contains any variables, such variables appear
only once in the term. For example, [1,2,3] and f(A,B) are linear terms, while f(A,A)
is not.

Usage: linear(X)

− Description: X is instantiated to a linear term.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYmshare/1:
mshare(X)

X contains all sharing sets [JL88,MH89] which specify the possible variable occurrences in
the terms to which the variables involved in the clause may be bound. Sharing sets are a
compact way of representing groundness of variables and dependencies between variables.
This representation is however generally difficult to read for humans. For this reason, this
information is often translated to ground/1, indep/1 and indep/2 properties, which are
easier to read.

Usage: mshare(X)

− Description: The sharing pattern is X.

− The following properties should hold globally:

This predicate is understood natively by CiaoPP as sharing(X). (ba-
sic props:native/2)

PROPERTYmut exclusive/1:
mut_exclusive(X)

For any call of the form X at most one clause succeeds, i.e., clauses are pairwise exclusive.

Meta-predicate with arguments: mut_exclusive(goal).

Usage: mut_exclusive(X)

− Description: For any call of the form X at most one clause succeeds.

Chapter 57: Properties which are native to analyzers 363

PROPERTYno choicepoints/1:
Meta-predicate with arguments: no_choicepoints(goal).

Usage: no_choicepoints(X)

− Description: A call to X does not create choicepoints.

PROPERTYno exception/1:
Meta-predicate with arguments: no_exception(goal).

Usage: no_exception(Goal)

− Description: Calls of the form Goal do not throw any exception.

PROPERTYno exception/2:
Meta-predicate with arguments: no_exception(goal,?).

Usage: no_exception(Goal,E)

− Description: Calls of the form Goal do not throw exception E.

PROPERTYno signal/1:
Meta-predicate with arguments: no_signal(goal).

Usage: no_signal(Goal)

− Description: Calls of the form Goal do not send any signal.

PROPERTYno signal/2:
Meta-predicate with arguments: no_signal(goal,?).

Usage: no_signal(Goal,E)

− Description: Calls of the form Goal do not send the signal E.

PROPERTYnon det/1:
non_det(X)

All calls of the form X are non-deterministic, i.e., produce several solutions.

Meta-predicate with arguments: non_det(goal).

Usage: non_det(X)

− Description: All calls of the form X are non-deterministic.

PROPERTYnonground/1:
Usage: nonground(X)

− Description: X is not ground.

− The following properties should hold globally:

This predicate is understood natively by CiaoPP as not_ground(X). (ba-
sic props:native/2)

364 The Ciao System

PROPERTYnot covered/1:
not_covered(X)

There is some call of the form X for which there is no clause whose test succeeds [DLGH97].

Usage: not_covered(X)

− Description: Not all of the calls of the form X are covered.

PROPERTYnot fails/1:
not_fails(X)

Calls of the form X produce at least one solution, or do not terminate [DLGH97].

Meta-predicate with arguments: not_fails(goal).

Usage: not_fails(X)

− Description: All the calls of the form X do not fail.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYnot mut exclusive/1:
not_mut_exclusive(X)

For calls of the form X more than one clause may succeed. I.e., clauses are not disjoint for
some call.

Meta-predicate with arguments: not_mut_exclusive(goal).

Usage: not_mut_exclusive(X)

− Description: For some calls of the form X more than one clause may succeed.

PROPERTYnum solutions/2:
Usage 1: num_solutions(X,N)

− Description: All the calls of the form X have N solutions.

− If the following properties should hold at call time:

X is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

N is an integer. (basic props:int/1)

Usage 2: num_solutions(Goal,Check)

− Description: For a call to Goal, Check(X) succeeds, where X is the number of solu-
tions.

− If the following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Check is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Chapter 57: Properties which are native to analyzers 365

PROPERTYsolutions/2:
Usage: solutions(Goal,Sols)

− Description: Goal Goal produces the solutions listed in Sols.

− If the following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Sols is a list. (basic props:list/1)

PROPERTYpossibly fails/1:
possibly_fails(X)

Non-failure is not ensured for any call of the form X [DLGH97]. In other words, nothing
can be ensured about non-failure nor termination of such calls.

Meta-predicate with arguments: possibly_fails(goal).

Usage: possibly_fails(X)

− Description: Non-failure is not ensured for calls of the form X.

PROPERTYpossibly nondet/1:
possibly_nondet(X)

Non-determinism is not ensured for all calls of the form X. In other words, nothing can
be ensured about determinacy nor termination of such calls.

Usage: possibly_nondet(X)

− Description: Non-determinism is not ensured for calls of the form X.

PROPERTYrelations/2:
relations(X,N)

The goal X produces N solutions. In other words, N is the cardinality of the solution set of
X.

Meta-predicate with arguments: relations(goal,?).

Usage: relations(X,N)

− Description: Goal X produces N solutions.

PROPERTYsideff hard/1:
Meta-predicate with arguments: sideff_hard(goal).

Usage: sideff_hard(X)

− Description: X has hard side-effects, i.e., those that might affect program execution
(e.g., assert/retract).

PROPERTYsideff pure/1:
Meta-predicate with arguments: sideff_pure(goal).

Usage: sideff_pure(X)

− Description: X is pure, i.e., has no side-effects.

366 The Ciao System

PROPERTYsideff soft/1:
Meta-predicate with arguments: sideff_soft(goal).

Usage: sideff_soft(X)

− Description: X has soft side-effects, i.e., those not affecting program execution (e.g.,
input/output).

PROPERTYsignal/1:
Meta-predicate with arguments: signal(goal).

Usage: signal(Goal)

− Description: Calls of the form Goal throw a signal.

PROPERTYsignal/2:
Meta-predicate with arguments: signal(goal,?).

Usage: signal(Goal,E)

− Description: A call to Goal sends a signal that unifies with E.

PROPERTYsignals/2:
Meta-predicate with arguments: signals(goal,?).

Usage: signals(Goal,Es)

− Description: Calls of the form Goal can generate only the signals that unify with the
terms listed in Es.

PROPERTYsize/2:
Usage: size(X,Y)

− Description: Y is the size of argument X, for any approximation.

PROPERTYsize/3:
Usage: size(A,X,Y)

− Description: Y is the size of argument X, for the approximation A.

PROPERTYsize lb/2:
size_lb(X,Y)

The minimum size of the terms to which the argument Y is bound is given by the expression
Y. Various measures can be used to determine the size of an argument, e.g., list-length,
term-size, term-depth, integer-value, etc. [DL93,LGHD96].

Usage: size_lb(X,Y)

− Description: Y is a lower bound on the size of argument X.

Chapter 57: Properties which are native to analyzers 367

PROPERTYsize o/2:
Usage: size_o(X,Y)

− Description: The size of argument X is in the order of Y.

PROPERTYsize ub/2:
size_ub(X,Y)

The maximum size of the terms to which the argument Y is bound is given by the expression
Y. Various measures can be used to determine the size of an argument, e.g., list-length,
term-size, term-depth, integer-value, etc. [DL93,LGHD96].

Usage: size_ub(X,Y)

− Description: Y is a upper bound on the size of argument X.

PROPERTYsize metric/3:
Meta-predicate with arguments: size_metric(goal,?,?).

Usage: size_metric(Head,Var,Metric)

− Description: Metric is the metric of the variable Var, for any approximation.

PROPERTYsize metric/4:
Meta-predicate with arguments: size_metric(goal,?,?,?).

Usage: size_metric(Head,Approx,Var,Metric)

− Description: Metric is the metric of the variable Var, for the approximation Approx.
Currently, Metric can be: int/1, size/1, length/1, depth/2, and void/1.

PROPERTYsteps/2:
steps(X,Y)

The time (in resolution steps) spent by any call of the form X is given by the expression Y

Meta-predicate with arguments: steps(goal,?).

Usage: steps(X,Y)

− Description: Y is the cost (number of resolution steps) of any call of the form X.

PROPERTYsteps lb/2:
steps_lb(X,Y)

The minimum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DLGHL97,LGHD96]

Meta-predicate with arguments: steps_lb(goal,?).

Usage: steps_lb(X,Y)

− Description: Y is a lower bound on the cost of any call of the form X.

368 The Ciao System

PROPERTYsteps o/2:
Meta-predicate with arguments: steps_o(goal,?).

Usage: steps_o(X,Y)

− Description: Y is the complexity order of the cost of any call of the form X.

PROPERTYsteps ub/2:
steps_ub(X,Y)

The maximum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DL93,LGHD96].

Meta-predicate with arguments: steps_ub(goal,?).

Usage: steps_ub(X,Y)

− Description: Y is a upper bound on the cost of any call of the form X.

PROPERTYtau/1:
tau(Types)

Types contains a list with the type associations for each variable, in the form
V/[T1,..,TN]. Note that tau is used in object-oriented programs only

Usage: tau(TypeInfo)

− Description: Types is a list of associations between variables and list of types

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PROPERTYterminates/1:
terminates(X)

Calls of the form X always terminate [DLGH97].

Meta-predicate with arguments: terminates(goal).

Usage: terminates(X)

− Description: All calls of the form X terminate.

PROPERTYtest type/2:
Meta-predicate with arguments: test_type(goal,?).

Usage: test_type(X,T)

− Description: Indicates the type of test that a predicate performs. Required by the
nonfailure analyisis.

PROPERTYthrows/2:
Meta-predicate with arguments: throws(goal,?).

Usage: throws(Goal,Es)

− Description: Calls of the form Goal can throw only the exceptions that unify with
the terms listed in Es.

Chapter 57: Properties which are native to analyzers 369

PROPERTYuser output/2:
Meta-predicate with arguments: user_output(goal,?).

Usage: user_output(Goal,S)

− Description: Calls of the form Goal write S to standard output.

PROPERTYinstance/2:
Usage: instance(Term1,Term2)

− Description: Term1 is an instance of Term2.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

57.3 Known bugs and planned improvements (native_props)

• A missing property is succeeds (not fails = succeeds or not terminates. – EMM

• run-time check for throws/2 unimplemented yet.

• run-time check for signals/2 unimplemented yet.

370 The Ciao System

Chapter 58: ISO-Prolog modes 371

58 ISO-Prolog modes

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This file defines the “ modes” used in the documentation of the ISO-Prolog standard. See
also Chapter 59 [Classical Prolog modes], page 373 for an alternative set of modes.

58.1 Usage and interface (isomodes_doc)
� �

• Library usage:

:- use_package([assertions,isomodes]).

• New operators defined:

?/1 [200,fy], @/1 [200,fy].

• New modes defined:

+/1, @/1, -/1, ?/1, */1, +/2, @/2, -/2, ?/2, */2.

 	

58.2 Documentation on new modes (isomodes_doc)

MODE+/1:
Usage: +A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

MODE@/1:
Usage: @A

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODE-/1:
Usage: -A

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

MODE?/1:
Unspecified argument.

MODE*/1:
Unspecified argument.

372 The Ciao System

MODE+/2:
Usage: A+X

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

MODE@/2:
Usage: @(A,X)

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODE-/2:
Usage: A-X

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

MODE?/2:
Usage: A?X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

MODE*/2:
Usage: A*X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

Chapter 59: Classical Prolog modes 373

59 Classical Prolog modes

Author(s): Manuel Hermenegildo.

This file defines a number of very simple “ modes” which are frequently useful in programs.
These correspond to the modes used in classical Prolog texts with some simple addtions. Note
that some of these modes use the same symbol as one of the ISO-modes (see Chapter 58 [ISO-
Prolog modes], page 371) but with subtly different meaning.

59.1 Usage and interface (basicmodes_doc)
� �

• Library usage:

:- use package([assertions,basicmodes]).

• New operators defined:

?/1 [500,fx], @/1 [500,fx].

• New modes defined:

+/1, -/1, ?/1, @/1, in/1, out/1, go/1, +/2, -/2, ?/2, @/2, in/2, out/2, go/2.

• Other modules used:

− System library modules:

metaprops/meta_props.

 	

59.2 Documentation on new modes (basicmodes_doc)

MODE+/1:
Input value in argument.

Usage: +A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

MODE-/1:
No input value in argument.

Usage: -A

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

MODE?/1:
Unspecified argument.

MODE@/1:
No output value in argument.

Usage: @A

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

374 The Ciao System

MODEin/1:
Input argument.

Usage: in(A)

− The following properties are added at call time:

A is currently ground (it contains no variables). (term typing:ground/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEout/1:
Output argument.

Usage: out(A)

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEgo/1:
Ground output (input/output argument).

Usage: go(A)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODE+/2:
Usage: A+X

− Call and exit are compatible with:

A has property X. (meta props:call/2)

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

MODE-/2:
Usage: A-X

− Call and exit are compatible with:

A has property X. (meta props:call/2)

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

MODE?/2:
Usage: A?X

− Call and exit are compatible with:

A has property X. (meta props:call/2)

Chapter 59: Classical Prolog modes 375

MODE@/2:
Usage: @(A,X)

− Call and exit are compatible with:

A has property X. (meta props:call/2)

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODEin/2:
Usage: in(A,X)

− Call and exit are compatible with:

A has property X. (meta props:call/2)

− The following properties are added at call time:

A is currently ground (it contains no variables). (term typing:ground/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEout/2:
Usage: out(A,X)

− Call and exit are compatible with:

A has property X. (meta props:call/2)

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEgo/2:
Usage: go(A,X)

− Call and exit are compatible with:

A has property X. (meta props:call/2)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

376 The Ciao System

Chapter 60: Run-time checking of assertions 377

60 Run-time checking of assertions

Author(s): Edison Mera.

This package provides a complete implementation of run-time checks of predicate assertions.
The program is instrumented to check such assertions at run time, and in case a property does
not hold, the error is reported. Note that there is also an older package called rtchecks, by David
Trallero. The advantage of this one is that it can be used independently of CiaoPP and also has
updated functionality.

There are two main applications of run-time checks:

• To improve debugging of certain predicates, specifying some expected behavior that is
checked at run-time with the assertions.

• To avoid manual implementation of run-time checks that should be done in some predicates,
leaving the code clean and understandable.

The run-time checks can be configured using prolog flags. Below we itemize the valid prolog
flags with its values and a brief explanation of the meaning:

• rtchecks_level

• exports: Only use rtchecks for external calls of the exported predicates.

• inner : Use also rtchecks for internal calls. Default.

• rtchecks_trust

• no : Disable rtchecks for trust assertions.

• yes : Enable rtchecks for trust assertions. Default.

• rtchecks_entry

• no : Disable rtchecks for entry assertions.

• yes : Enable rtchecks for entry assertions. Default.

• rtchecks_exit

• no : Disable rtchecks for exit assertions.

• yes : Enable rtchecks for exit assertions. Default.

• rtchecks_test

• no : Disable rtchecks for test assertions. Default.

• yes : Enable rtchecks for test assertions. Used for debugging purposes, but is better
to use the unittest library.

• rtchecks_inline

• no : Instrument rtchecks using call to library predicates present in rtchecks_rt.pl,
nativeprops.pl and basic_props.pl. In this way, space is saved, but sacrifying
performance due to usage of meta calls and external methods in the libraries. Default.

• yes : Expand library predicates inline as far as possible. In this way, the code is faster,
because its avoids metacalls and usage of external methods, but the final executable
could be bigger.

• rtchecks_asrloc Controls the usage of locators for the assertions in the error messages.
The locator says the file and lines that contains the assertion that had failed. Valid values
are:

• no : Disabled.

• yes : Enabled. Default.

• rtchecks_predloc Controls the usage of locators for the predicate that caused the run-time
check error. The locator says the first clause of the predicate that the violated assertion
refers to.

• no : Disabled.

378 The Ciao System

• yes : Enabled, Default.

• rtchecks_callloc

• no : Do not show the stack of predicates that caused the failure

• predicate: Show the stack of predicates that caused the failure. Instrument it in the
predicate. Default.

• literal : Show the stack of predicates that caused the failure. Instrument it in the
literal. This mode provides more information, because reports also the literal in the
body of the predicate.

• rtchecks_namefmt

• long : Show the name of predicates, properties and the values of the variables

• short : Only show the name of the predicate in a reduced format. Default.

60.1 Usage and interface (rtchecks_doc)
� �

• Library usage:

:- use_package(rtchecks).

or

:- module(...,...,[rtchecks]).

 	

Chapter 61: Unit Testing Library 379

61 Unit Testing Library

Author(s): Edison Mera.

This library provides an extension of the Ciao assertion language which allows writing unit
tests. The central idea is to use the assertion language to provide specifications of test cases for
a given predicate. The package also provides some special properties that are convenient when
specifying unit tests and the required run-time libraries.

In general, a test assertion is written as follows:

:- test predicate(A1, A2, ..., An)
: <Precondition>
=> <Postcondition>
+ <Global properties>
<Comment>.

Where the fields of the test assertion have the usual meaning in Ciao assertions, i.e., they
contain conjunctions of properties which must hold at certain points in the execution. Here
we give a somewhat more operational (“test oriented”), reading to these fields: predicate/n
is the predicate to be tested. Precondition is a goal that is called before the predicate being
tested, and can be used to generate values of the input parameters. Postcondition is a goal
that should succeed after predicate/n has been called. The idea appears to be simple, but
note that due to the non-determinism of logic programs, the test engine needs to test all the
solutions that can be tested up to given limits (for example, a maximum number of solutions,
or a given time-out). Properties specifies some global properties that the predicate should
meet, for example, not_fails means that the program does not fail, exception(error(a,b))
means that the program should throw the exception error(a,b), and so on. But there are
some specific properties that only applies to testing specified in the module unittest props.pl,
for example times(N) specifies that the given test should be executed N times, try_sols(N)
specifies that the first N solutions of the predicate predicate/n are tested. Comment is a string
that document the test.

A convenient way to run these tests is by selecting options in the CiaoDbg menu within the
development environment:

1. Run tests in current module: execute only the tests specified in the current module.

2. Run tests in all related modules: execute the tests specified in the module and in all
the modules being used by this.

3. Show untested predicates: show the exported predicates that do not have any test asser-
tion.

61.1 Additional notes

1. The test assertions allow performing unit testing, i.e., in Ciao, performing tests at the
predicate level.

2. The tests currently can only be applied to exported predicates.

3. If you need to write tests for predicates that are spread over several modules, but work
together, then it is best to create a separate module, and reexport to the predicates required
to build the test. This allows performing integration testing, using the same syntax of the
unit tests.

4. The Ciao system includes a good (and growing) number of unit tests. To run all the tests
among the other standard tests within the CiaoDE run the following (at the top level of
the source tree):

./ciaosetup runtests

380 The Ciao System

61.2 Usage and interface (unittest_doc)
� �

• Library usage:

:- use_module(library(unittest)).

 	

PART VI - Ciao library miscellanea 381

PART VI - Ciao library miscellanea

� �

Author(s): The CLIP Group.

This part documents several Ciao libraries which provide different useful additional func-
tionality. Such functionality includes performing operating system calls, gathering statistics
from the Ciao engine, file and filename manipulation, error and exception handling, fast reading
and writing of terms (marshalling and unmarshalling), file locking, issuing program and error
messages, pretty-printing programs and assertions, a browser of the system libraries, additional
expansion utilities, concurrent aggregates, graph visualization, etc.

 	

382 The Ciao System

Chapter 62: Library Paths for Ciao Components 383

62 Library Paths for Ciao Components

Author(s): The CLIP Group.

This package setups the file search path and library aliases to access all the available Ciao
components.

62.1 Usage and interface (ciaopaths_doc)
� �

• Library usage:

:- use_package(ciaopaths).

or

:- module(...,...,[ciaopaths]).

• New operators defined:

-->/2 [1200,xfx], |/2 [1100,xfy].

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write.

 	

62.2 Known bugs and planned improvements (ciaopaths_doc)

• The package is disabled by default for efficiency reasons (forces many dependencies on
minimal programs). Nevertheless, a lighter implementation could be enabled by default for
the ’ciao’ dialect in the near future (and make the package disappear).

384 The Ciao System

Chapter 63: Analytic benchmarks 385

63 Analytic benchmarks

Author(s): Manuel Carro (adapted to Ciao Prolog).

This module provides a set of analytic benchmarks which try to isolate and measure the speed
of certain very common operations in a Prolog system. The benchmarks come from a variety
of sources, mostly within former ECRC (please look at the comments in the source code) and
were posted by Jean-Claude Syre on 24th June 1986 to the Prolog Digest. Further packaging
was done by Thoma Sjoland and SICS. They were adapted to Ciao Prolog by Manuel Carro, by:

• Changing the syntax to Ciao Prolog, when needed, including extensive use of higher-order
programming for the benchmarking loops.

• Adapting the size of the benchmarks and the number of repetitions to fit modern computers
and Prolog compilation.

• Changing the format of the output and recording performance data in the incore database.

• Changing benchmarking loops to be failure-driven.

• Adding a void initial dry run to heat up the caches.

The comments corresponding to the original programs follow. They have been largely un-
changed, except to reflect changes in the program interface necessary to perform the modular-
ization and to adapt them to Ciao Prolog. Of course the number of repeated calls was changed.
The original comments are still in the source files.

63.1 Testing Calls

This is the one you always dreamed to test! Like all benchmarks, it uses a loop calling the
actual benchmark program. The benchmark program consists of a sequence of 200 predicates
having no arguments, no choice points, NOTHING. 200 is chosen to have sufficient accuracy in
measuring the execution time.

The results show the effect of pure calls, and the Klips performance can be called the peak
performance of the prolog system. Note that the peak performance has very little significance
to classify the overall performance of a Prolog system.

63.2 Testing non-deterministic behavior

This program contains a series of 3 different benchmark predicates.

The predicate choice_point/1 tests calls invoking the creation of a choice point, i.e. a
branch point where the execution will possibly come back to in case of backtracking. It does
NOT backtrack. Two versions are proposed, one with and the other without arguments.

We then present two predicates to evaluate the mechanism of backtracking during execution.
Both predicates create one choice point and then backtrack 20 times on every loop iteration
step. baktrak1/1 exhibits a kind of backtracking called deep, while baktrak2/1 deals with
shallow backtracking. Both are worth being tried, whatever your particular Prolog System is.

63.3 Testing environment handling

The creation and deletion of environments are an important feature in prolog machines. The
following program attempts to evaluate that. A usual condition to have environments is that
the clause is made of several goals. Thus there will be calls in the clause creating environments,
and some work to set the parameters of each call. Three arguments per goal were chosen
because this number comes close to the average number of arguments of a predicate and to the
average number of permanent variables in an environment. The arguments were arranged in
different orders for every goal, because we did not want to measure the merits of register transfer

386 The Ciao System

optimisations. Note that these transfers exist, so the results cannot be compared with those
given by the program which creates choice points (generally slower).

Another version, envir0ar/1, with 0 argument in each call, can also be usefully tried

63.4 Testing indexing mechanisms

We give only one test for indexing, i.e. the selection of a clause due to the type of an
argument. This program does not test the merits of indexing on an argument other than the
first one. It does not test for multiple indexing either. It does not show the inefficiency which
occurs if 2 choice points per clause are created. This may happen e.g. in Warren’s indexing
scheme.

Each of these tests would require an extra benchmark program. The program given below
tests the main point in indexing. Right now we think it is not worth adding all this complexity
to the benchmarks, in order to measure all the details in indexing. Therefore we give only this
single test.

63.5 Testing unification

We have 6 programs to evaluate the process of unification in the Prolog system:

• Test of list construction via unification.

• Test of list matching unification.

• Test of structure construction via unification This program is equivalent to construct list,
except that it uses the standard structure representation instead of the simplified list nota-
tion.

• Test of structure matching via unification. This predicate matches a list of 100 elements in
structure notation.

• Test to match a nested structure. This predicate tests the (compiled) unification of a
complex structure.

• Test of general unification of 2 complex structures. This predicate tests general unification.
We call it general unification, because it cannot be analysed at compile time. Therefore
this kind of unification cannot be compiled and, even in a compiled system, it must be
handled at run time, exactly as by an interpreter. This is done by a general procedure for
unification. The name of the benchmark therefore does not reflect that the unification is
general, i.e. including all Prolog types (e.g. it does not contain variables), but it reflects
the use of the procedure for general unification as opposed to specific, compiled unification.

Manuel Carro: note that in this case the term "Logical Inference" is a bit contrived, since
by design some of these (head) unifications are very more compled, naturally being slower and
giving slow KLIPS results.

63.6 Testing dereferencing

Program to benchmark the dereferencing speed. It constructs a list containing 500 variables
which are then bound together. Since different systems use different strategies for binding
variables on the global stack, the whole is made for two lists and the long variable chain is
created only in one of them.

Manuel Carro: different results in this benchmark are not likely to affect larger, general
programs. It is a well-known fact that n programs tend not to generate long dereferencing chains.
Empirical measurements show that dereference chains of length greater than three are extremely
rare. So a suboptimal / optimal behavior in this test is not likely to affect greatly the overall
speed of a system.

Chapter 63: Analytic benchmarks 387

63.7 Testing the cut

It seems almost impossible to isolate the cut operator in a simple test program. However, the
cut-testing program in this benchmark set contains a lot of cut at exec time. It may be regarded
as a partial test of cut, and may be worthwhile for some software implementations of Prolog.
cuttest/1 calls the cutit11 predicate, which performs 100 calls to a predicate cutt1 where a cut
operator appears in the second clause. Having indexing makes the evaluation of the cut more
accurate, so please indicate in our result whether or not your Prolog system uses indexing, to
clarify the comparison with others.

63.8 Assorted small programs

Here we deal with prolog programs that do something, while being still small but representa-
tive of some well-known Prolog computations. This set should be augmented by other programs,
some of them might come from your ideas.

Some of the following programs were taken from the Berkeley paper by Peter Van Roy "A
Prolog Compiler for the PLM". Other programs were kindly donated by the following ECRC
members: Helmut Simonis, Mehmet Dincbas, Micha Meier and Pascal Van Hentenryck.

The programs have been statically analysed and they represent fairly standard programs as
far as the statistical averages are concerned. That is the arity of most clauses is 2 or 3 and there
are usually 2 or 3 clauses per predicate. The programs range from fairly trivial programs like
fibonacci series to problems such as Hamiltonian graph traversal.

Also, some more programs have been added since the last release and some corrections have
been made. Most of the writes were removed in order to reduce i/o activity.

The programs added were symbolic differentiation (from Warren’s paper) and a quick sort
algorithm using difference lists. The last addition is a bit of a rogue: its a naive reverse, where
one can enter the list length. The list gets constructed and then gets reversed.

We are grateful to Saumya Debray from Stony Brook and others for comments, suggestions,
feedback and useful inputs.

These benchmarks were run on a VAX 785 with 8 Meg of memory, under 4.2 BSD Unix. The
interpreter was C-Prolog version 1.5.

This entire file (without mail/net headers) contains 584 lines.

Name | Call by | # of Inferences | KLips
| | (one iteration) | (C-Prolog)

----------+-------------------+-------------------+-----------
fib | fibonacci(1). | 4932 | 2.0
----------+-------------------+-------------------+-----------
map | map(200). | 68 | 1.3
----------+-------------------+-------------------+-----------
mham | mham(1). | 493824 | 1.7
----------+-------------------+-------------------+-----------
mutest | mutest(1). | 1366 | 2.3
----------+-------------------+-------------------+-----------
quicksort | qs(10). | 601 | 1.9
----------+-------------------+-------------------+-----------
queens | qu(10). | 684 | 1.7
----------+-------------------+-------------------+-----------
query | query(1). | 2294 | 0.9
----------+-------------------+-------------------+-----------
sym_diff | differen(150). | 71 | 1.5
----------+-------------------+-------------------+-----------

388 The Ciao System

diff_lists| diff(50). | 608 | 2.1
----------+-------------------+-------------------+-----------
nrev 10 | nrev. | 66 | 2.0
----------+-------------------+-------------------+-----------
nrev 30 | nrev. | 496 | 2.5
----------+-------------------+-------------------+-----------
nrev 50 | nrev. | 1326 | 2.5
----------+-------------------+-------------------+-----------
nrev 100 | nrev. | 5151 | 2.5
----------+-------------------+-------------------+-----------
nrev 150 | nrev. | 11476 | 2.5
----------+-------------------+-------------------+-----------
nrev 200 | nrev. | 20301 | 2.5
----------+-------------------+-------------------+-----------

63.9 Usage and interface (ecrc)
� �

• Library usage:

:- use_module(library(ecrc)).

• Exports:

− Predicates:

main/1, just_benchmarks/0, generate_human_file/0, generate_machine_file/0,
send_info_to_developers/0, arithm_average/2, geom_average/2.

− Regular Types:

benchmark_usage/1.

• Other modules used:

− System library modules:

aggregates, format, lists, system, dec10_io, terms, hiordlib, getopts, prolog_
sys, benchmarks/benchmark_utilities, benchmarks/boresea, benchmarks/choice,
benchmarks/envir, benchmarks/index, benchmarks/unif, benchmarks/deref,
benchmarks/cut, benchmarks/small_programs, benchmarks/results.

 	

63.10 Documentation on exports (ecrc)

PREDICATEmain/1:
Usage: main(Flags)

− Description: Main entry point. Execute all benchmarks and report on the perfor-
mance obtained. This makes it easy to run the set of benchmarks as an executable.
Its behavior regarding printing gathered data can be controlled with the list of flags
passed as argument. Data is always asserted and available to other programs through
the dump_benchmark_data/0 and access_benchmark_data/8 predicates.

− The following properties should hold at call time:

Flags is currently a term which is not a free variable. (term typing:nonvar/1)

Flags is a list of benchmark_usages. (basic props:list/2)

Chapter 63: Analytic benchmarks 389

REGTYPEbenchmark usage/1:
Usage: benchmark_usage(Flag)

− Description: Options which determine what this module should do with the execution
results when called through the main/1 entry point (i.e., if compiled to an executable).
It is defined as

benchmark_usage(’--estimation’).
benchmark_usage(’--no-machine’).
benchmark_usage(’--no-human’).
benchmark_usage(’--send-info’).
benchmark_usage(’--base-file-name’).

with the following meaning:

• ’--no-human’: do not dump human-readable data.

• ’--no-machine’: do not dump data as a series of facts (which is a machine-
readable format) which can be saved to a file and later read back in Prolog.

• ’--send-info’: send a mail to the Ciao developers with the information gath-
ered plus a terse description of the machine (O.S., architecture, CPU type and
speed). The existence of a suitable user command to send mail is expected. No
message is sent otherwise. No sensible (personal, etc.) information is gathered
or sent.

• --base-file-name file-name: use file-name as a base to generate file with the
reports this module generates. The machine-oriented file will have the .pl ex-
tension and the human-oriented file will have the .txt extension.

The options aboce can be used when calling main/1 predicate or as command-line
options for an executable built from this file. Note that the default options print
available data both in human-readable and machine-readable formats.

− Call and exit should be compatible with:

Flag is an atom. (basic props:atm/1)

PREDICATEjust benchmarks/0:
Usage:

− Description: Run the set of benchmarks in this program and save the speed informa-
tion gathered. They can be later accessed using the predicates generate_machine_
file/0 or generate_human_file/0.

PREDICATEgenerate human file/0:
Usage:

− Description: Print to standard output a human-readable report of the information
gathered by running just_benchmarks/0.

PREDICATEgenerate machine file/0:
Usage:

− Description: Print to standard output a machine-readable report of the information
gathered by running just_benchmarks/0.

390 The Ciao System

PREDICATEsend info to developers/0:
Usage:

− Description: Send a message to the Ciao developers with a report of the information
gathered by running just_benchmarks/0.

PREDICATEarithm average/2:
No further documentation available for this predicate.

PREDICATEgeom average/2:
No further documentation available for this predicate.

63.11 Known bugs and planned improvements (ecrc)

• The actual logical inferences each benchmark does has to be checked.

Chapter 64: Parse and return command-line options 391

64 Parse and return command-line options

Author(s): Manuel Carro.

64.1 Usage and interface (getopts)
� �

• Library usage:

:- use_module(library(getopts)).

• Exports:

− Predicates:

getopts/4, cl_option/2.

• Other modules used:

− System library modules:

lists.

 	

64.2 Documentation on exports (getopts)

PREDICATEgetopts/4:
Usage: getopts(Arguments,Opts,Matched,Rest)

− Description: Ciao Prolog parses the command-line arguments of its executables and
passes them as a list of atoms to the main/1 predicate. Thus, a shell invocation such
as

./my_program -file input.txt -file input2.txt --output_file out.txt
-create-dir --decode --unsorte

makes main/1 receive an argument such as

[’-file’, ’input.txt’, ’-file’, ’input2.txt’, ’--output_file’,
’out.txt’, ’-create-dir’, ’--decode’, ’--unsorte’]

getopts/4 can be used to parse such an command-line option list. passed in the
Arguments parameter. Opts is a list of expected options, each option being an option
spec, i.e., a term of the form atom/arity. For every atom a command-line option of
the form ’--atom’ or ’-atom’ is expected, with arity arguments following it. An
arity of zero can be omitted. For each matched option spec, the list Matched will
contain a term of the form atom(Arg1, Arg2, ..., Argn), where n = arity. The list
Rest will contain the unmatched element in Arguments.

Rest will respect the relative order of the elements in Arguments. The matching
elements in Matched appear in the same order as the options in Opts, and for every
option in Opts, its matches appear in the order as they came in Arguments.

Assuming Arguments is [’-file’, ’input.txt’, ’-file’, ’input2.txt’, ’-
-output_file’, ’out.txt’, ’-create-dir’, ’--decode’, ’--unsorte’], some
possible uses of getopts/4 follow.

• Check that a simple option has been selected:

?- getopts(Args, [’create-dir’], M, R).
Args = ...
M = [’create-dir’],
R = [’-file’,’input.txt’,’-file’,’input2.txt’,’--output_file’,

’out.txt’,’--decode’,’--unsorte’]

392 The Ciao System

• Which argument was given to an option expecting an additional value?

1 ?- getopts(Args, [output_file/1], M, R).
Args = ...
M = [output_file(’out.txt’)],
R = [’-file’,’input.txt’,’-file’,’input2.txt’,’-create-dir’,

’--decode’,’--unsorte’]

1 ?- getopts(Args, [output_file/1], [output_file(F)], R).
Args = ..
F = ’out.txt’,
R = [’-file’,’input.txt’,’-file’,’input2.txt’,’-create-dir’,

’--decode’,’--unsorte’]

• Extract options (and associated values) which can appear several times.

1 ?- getopts(Args, [file/1], M, R).
Args = ...
M = [file(’input.txt’),file(’input2.txt’)],
R = [’--output_file’,’out.txt’,’-create-dir’,’--decode’,

’--unsorte’]

• Was decoding selected?

1 ?- getopts(Args, [decode], [_], R).
Args = ...
R = [’-file’,’input.txt’,’-file’,’input2.txt’,’--output_file’,

’out.txt’, ’-create-dir’,’--unsorte’]

• Was encoding selected?

1 ?- getopts(Args, [encoding], [_], R).
no

• Was decoding not selected?

1 ?- getopts(Args, [decode], [], R).
no

• Are all the options passed to the program legal options? If this is not the case,
which option(s) is/are not legal?

1 ?- getopts(Args, [file/1, output_file/1, ’create-dir’,
encode, decode, unsorted], _, R).

Args = ...
R = [’--unsorte’] ?

The complexity of getopts/1 is currently O(La x Lo), where La is the length of the
argument list and Lo is the length of the option list.

− Call and exit should be compatible with:

Arguments is a list of atoms. (basic props:list/2)

Opts is a list of specs. (basic props:list/2)

Matched is a list of terms. (basic props:list/2)

Rest is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

Arguments is currently a term which is not a free variable. (term typing:nonvar/1)

Opts is currently a term which is not a free variable. (term typing:nonvar/1)

Chapter 64: Parse and return command-line options 393

PREDICATEcl option/2:
Usage: cl_option(Arguments,Option)

− Description: Check that Option is an option in Arguments.

− Call and exit should be compatible with:

Arguments is a list of atoms. (basic props:list/2)

Option is AtomName/Arity (getopts:spec/1)

− The following properties should hold at call time:

Arguments is currently a term which is not a free variable. (term typing:nonvar/1)

Option is currently a term which is not a free variable. (term typing:nonvar/1)

64.3 Documentation on internals (getopts)

REGTYPEspec/1:
Usage: spec(Spec)

− Description: Spec is AtomName/Arity

394 The Ciao System

Chapter 65: llists (library) 395

65 llists (library)

65.1 Usage and interface (llists)
� �

• Library usage:

:- use_module(library(llists)).

• Exports:

− Predicates:

append/2, flatten/2, collect_singletons/2, transpose/2.

• Other modules used:

− System library modules:

lists.

 	

65.2 Documentation on exports (llists)

PREDICATEappend/2:
Usage:

− Description: Concatenates a list of lists into a list.

− Call and exit should be compatible with:

Arg1 is a list of lists. (basic props:list/2)

Arg2 is a list. (basic props:list/1)

PREDICATEflatten/2:
Usage:

− Description: Flattens out nested lists into a list.

− Call and exit should be compatible with:

Arg2 is a list. (basic props:list/1)

− The following properties should hold at call time:

Arg1 is any term. (basic props:term/1)

− The following properties should hold upon exit:

Arg2 is a list. (basic props:list/1)

PREDICATEcollect singletons/2:
Usage:

− Description: Collects in a list the singletons lists appearing in a list of lists.

− Call and exit should be compatible with:

Arg2 is a list. (basic props:list/1)

− The following properties should hold at call time:

Arg1 is a list of lists. (basic props:list/2)

− The following properties should hold upon exit:

Arg2 is a list. (basic props:list/1)

396 The Ciao System

PREDICATEtranspose/2:
Usage:

− Description: Transposes a list of lists, that is, viewing it as a matrix changes rows by
columns.

− Call and exit should be compatible with:

Arg2 is a list of lists. (basic props:list/2)

− The following properties should hold at call time:

Arg1 is a list of lists. (basic props:list/2)

− The following properties should hold upon exit:

Arg2 is a list of lists. (basic props:list/2)

Chapter 66: Structured stream handling 397

66 Structured stream handling

66.1 Usage and interface (streams)
� �

• Library usage:

:- use_module(library(streams)).

• Exports:

− Predicates:

open_null_stream/1, open_input/2, close_input/1, open_output/2, close_
output/1.

 	

66.2 Documentation on exports (streams)

PREDICATEopen null stream/1:
Usage: open_null_stream(S)

− The following properties should hold upon exit:

S is an open stream. (streams basic:stream/1)

PREDICATEopen input/2:
Usage: open_input(FileName,InputStreams)

− The following properties should hold at call time:

FileName is a source name. (streams basic:sourcename/1)

− The following properties should hold upon exit:

streams:input handler(InputStreams) (streams:input handler/1)

PREDICATEclose input/1:
Usage: close_input(InputStreams)

− The following properties should hold at call time:

streams:input handler(InputStreams) (streams:input handler/1)

− The following properties should hold upon exit:

streams:input handler(InputStreams) (streams:input handler/1)

PREDICATEopen output/2:
Usage: open_output(FileName,OutputStreams)

− The following properties should hold at call time:

FileName is a source name. (streams basic:sourcename/1)

− The following properties should hold upon exit:

streams:output handler(OutputStreams) (streams:output handler/1)

398 The Ciao System

PREDICATEclose output/1:
Usage: close_output(OutputStreams)

− The following properties should hold at call time:

streams:output handler(OutputStreams) (streams:output handler/1)

− The following properties should hold upon exit:

streams:output handler(OutputStreams) (streams:output handler/1)

Chapter 67: Dictionaries 399

67 Dictionaries

Author(s): The CLIP Group.

This module provides predicates for implementing dictionaries. Such dictionaries are cur-
rently implemented as ordered binary trees of key-value pairs.

67.1 Usage and interface (dict)
� �

• Library usage:

:- use_module(library(dict)).

• Exports:

− Predicates:

dictionary/5, dic_node/2, dic_lookup/3, dic_lookup/4, dic_get/3, dic_
replace/4.

− Regular Types:

dictionary/1, old_or_new/1, non_empty_dictionary/1.

 	

67.2 Documentation on exports (dict)

REGTYPEdictionary/1:
Usage: dictionary(D)

− Description: D is a dictionary.

PREDICATEdictionary/5:
Usage: dictionary(D,K,V,L,R)

− Description: The dictionary node D has key K, value V, left child L, and right child R.

− The following properties should hold upon exit:

D is a non-empty dictionary. (dict:non empty dictionary/1)

PREDICATEdic node/2:
Usage: dic_node(D,N)

− Description: N is a sub-dictionary of D.

− The following properties should hold at call time:

D is a non-empty dictionary. (dict:non empty dictionary/1)

− The following properties should hold upon exit:

N is a dictionary. (dict:dictionary/1)

PREDICATEdic lookup/3:
Usage: dic_lookup(D,K,V)

− Description: D contains value V at key K. If it was not already in D it is added.

− The following properties should hold upon exit:

D is a non-empty dictionary. (dict:non empty dictionary/1)

400 The Ciao System

PREDICATEdic lookup/4:
Usage: dic_lookup(D,K,V,O)

− Description: Same as dic_lookup(D,K,V). O indicates if it was already in D (old)
or not (new).

− The following properties should hold upon exit:

D is a non-empty dictionary. (dict:non empty dictionary/1)

dict:old or new(O) (dict:old or new/1)

PREDICATEdic get/3:
Usage: dic_get(D,K,V)

− Description: D contains value V at key K. Fails if it is not already in D.

− The following properties should hold at call time:

D is currently a term which is not a free variable. (term typing:nonvar/1)

D is a dictionary. (dict:dictionary/1)

− The following properties should hold upon exit:

D is a non-empty dictionary. (dict:non empty dictionary/1)

PREDICATEdic replace/4:
Usage: dic_replace(D,K,V,D1)

− Description: D and D1 are identical except for the element at key K, which in D1
contains value V, whatever has (or whether it is) in D.

− The following properties should hold at call time:

D is a dictionary. (dict:dictionary/1)

D1 is a dictionary. (dict:dictionary/1)

− The following properties should hold upon exit:

D is a dictionary. (dict:dictionary/1)

D1 is a dictionary. (dict:dictionary/1)

REGTYPEold or new/1:
A regular type, defined as follows:

old_or_new(old).
old_or_new(new).

REGTYPEnon empty dictionary/1:
Usage: non_empty_dictionary(D)

− Description: D is a non-empty dictionary.

67.3 Known bugs and planned improvements (dict)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 68: String processing 401

68 String processing

Author(s): Daniel Cabeza.

This module provides predicates for doing input/output with strings (character code lists)
and for including in grammars defining strings.

68.1 Usage and interface (strings)
� �

• Library usage:

:- use_module(library(strings)).

• Exports:

− Predicates:

get_line/2, get_line/1, write_string/2, write_string/1, whitespace/2,
whitespace0/2, string/3.

− Regular Types:

line/1.

 	

68.2 Documentation on exports (strings)

PREDICATEget line/2:
get_line(Stream,Line)

Reads from Stream a line of text and unifies Line with it. The end of the line can have
UNIX [10] or MS-DOS [13 10] termination, which is not included in Line. At EOF, the
term end of file is returned.

Usage: get_line(S,L)

− The following properties should hold at call time:

S is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

strings:line(L) (strings:line/1)

PREDICATEget line/1:
get_line(Line)

Behaves like current_input(S), get_line(S,Line).

Usage: get_line(L)

− The following properties should hold upon exit:

strings:line(L) (strings:line/1)

REGTYPEline/1:
A regular type, defined as follows:

line(L) :-
string(L).

line(end_of_file).

402 The Ciao System

PREDICATEwrite string/2:
write_string(Stream,String)

Writes String onto Stream.

Usage: write_string(Stream,String)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

String is a string (a list of character codes). (basic props:string/1)

PREDICATEwrite string/1:
write_string(String)

Behaves like current_input(S), write_string(S, String).

Usage: write_string(String)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic props:string/1)

PREDICATEwhitespace/2:
whitespace(String,Rest)

In a grammar rule, as whitespace/0, represents whitespace (a positive number of space
(32), tab (9), newline (10) or return (13) characters). Thus, Rest is a proper suffix of
String with one or more whitespace characters removed. An example of use would be:

attrs([]) --> ""
attrs([N|Ns]) -->

whitespace,
attr(N),
attrs(Ns).

Usage: whitespace(S1,S2)

− The following properties should hold at call time:

S1 is a string (a list of character codes). (basic props:string/1)

− The following properties should hold upon exit:

S2 is a string (a list of character codes). (basic props:string/1)

PREDICATEwhitespace0/2:
whitespace0(String,Rest)

In a grammar rule, as whitespace0/0, represents possible whitespace (any number of
space (32), tab (9), newline (10) or return (13) characters). Thus, Rest is String or a
proper suffix of String with one or more whitespace characters removed. An example of
use would be:

assignment(N,V) -->
variable_name(N), whitespace0, "=", whitespace0, value(V).

Usage: whitespace0(S1,S2)

− The following properties should hold at call time:

S1 is a string (a list of character codes). (basic props:string/1)

− The following properties should hold upon exit:

S2 is a string (a list of character codes). (basic props:string/1)

Chapter 68: String processing 403

PREDICATEstring/3:
string(String,Head,Tail)

In a grammar rule, as string/1, represents literally String. An example of use would
be:

double(A) -->
string(A),
string(A).

Usage 1:

− Call and exit should be compatible with:

String is a string (a list of character codes). (basic props:string/1)

Head is a string (a list of character codes). (basic props:string/1)

Tail is a string (a list of character codes). (basic props:string/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

Head is a string (a list of character codes). (basic props:string/1)

Tail is a string (a list of character codes). (basic props:string/1)

Usage 2: string(A,B,C)

− The following properties should hold at call time:

C is a list. (basic props:list/1)

− The following properties should hold upon exit:

A is a list. (basic props:list/1)

B is a list. (basic props:list/1)

404 The Ciao System

Chapter 69: Printing status and error messages 405

69 Printing status and error messages

Author(s): The CLIP Group.

This is a very simple library for printing status and error messages to the console.

69.1 Usage and interface (messages)
� �

• Library usage:

:- use_module(library(messages)).

• Exports:

− Predicates:

error_message/1, error_message/2, error_message/3, warning_message/1,
warning_message/2, warning_message/3, note_message/1, note_message/2,
note_message/3, simple_message/1, simple_message/2, optional_message/2,
optional_message/3, debug_message/1, debug_message/2, debug_goal/2, debug_
goal/3, show_message/2, show_message/3, show_message/4.

− Regular Types:

message_t/1.

− Multifiles:

issue_debug_messages/1.

• Other modules used:

− System library modules:

format, lists, write, filenames, compiler/c_itf_internal.

 	

69.2 Documentation on exports (messages)

PREDICATEerror message/1:
Usage: error_message(Text)

− Description: Same as message(error,Text).

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic props:string/1)

PREDICATEerror message/2:
Meta-predicate with arguments: error_message(?,addmodule(?)).

Usage: error_message(Text,ArgList)

− Description: Same as message(error,Text,ArgList).

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

406 The Ciao System

PREDICATEerror message/3:
Meta-predicate with arguments: error_message(?,?,addmodule(?)).

Usage: error_message(Lc,Text,ArgList)

− Description: Same as message(error,Lc,Text,ArgList).

− The following properties should hold at call time:

Identifies a source line range in a file.

location_t(loc(File,L1,L2)) :-
atm(File),
int(L1),
int(L2).

(c itf internal:location t/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

PREDICATEwarning message/1:
Usage: warning_message(Text)

− Description: Same as message(warning,Text).

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic props:string/1)

PREDICATEwarning message/2:
Meta-predicate with arguments: warning_message(?,addmodule(?)).

Usage: warning_message(Text,ArgList)

− Description: Same as message(warning,Text,ArgList).

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

PREDICATEwarning message/3:
Meta-predicate with arguments: warning_message(?,?,addmodule(?)).

Usage: warning_message(Lc,Text,ArgList)

− Description: Same as message(warning,Lc,Text,ArgList).

− The following properties should hold at call time:

Identifies a source line range in a file.

location_t(loc(File,L1,L2)) :-
atm(File),
int(L1),
int(L2).

(c itf internal:location t/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

Chapter 69: Printing status and error messages 407

PREDICATEnote message/1:
Usage: note_message(Text)

− Description: Same as message(note,Text).

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic props:string/1)

PREDICATEnote message/2:
Meta-predicate with arguments: note_message(?,addmodule(?)).

Usage: note_message(Text,ArgList)

− Description: Same as message(note,Text,ArgList).

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

PREDICATEnote message/3:
Meta-predicate with arguments: note_message(?,?,addmodule(?)).

Usage: note_message(Lc,Text,ArgList)

− Description: Same as message(note,Lc,Text,ArgList).

− The following properties should hold at call time:

Identifies a source line range in a file.

location_t(loc(File,L1,L2)) :-
atm(File),
int(L1),
int(L2).

(c itf internal:location t/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

PREDICATEsimple message/1:
Usage: simple_message(Text)

− Description: The text provided in Text is printed.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic props:string/1)

PREDICATEsimple message/2:
Usage: simple_message(Text,ArgList)

− Description: The text provided in Text is printed as a message, using the arguments
in ArgList.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

408 The Ciao System

PREDICATEoptional message/2:
Usage: optional_message(Text,Opts)

− Description: The text provided in Text is printed as a message, but only if the atom
-v is a member of Opts. These predicates are meant to be used for optional messages,
which are only to be printed when verbose output is requested explicitly.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic props:string/1)

Opts is a list of atms. (basic props:list/2)

PREDICATEoptional message/3:
Usage: optional_message(Text,ArgList,Opts)

− Description: The text provided in Text is printed as a message, using the arguments
in ArgList, but only if the atom -v is a member of Opts. These predicates are meant
to be used for optional messages, which are only to be printed when verbose output
is requested explicitly.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

Opts is a list of atms. (basic props:list/2)

PREDICATEdebug message/1:
Usage: debug_message(Text)

− Description: The text provided in Text is printed as a debugging message. These
messages are turned on by defining a fact of issue_debug_messages/1 with the
module name as argument.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

PREDICATEdebug message/2:
Meta-predicate with arguments: debug_message(?,addmodule(?)).

Usage: debug_message(Text,ArgList)

− Description: The text provided in Text is printed as a debugging message, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text. These messages are turned on by defining a fact of issue_debug_
messages/1 which the module name as argument.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

Chapter 69: Printing status and error messages 409

PREDICATEdebug goal/2:
Usage: debug_goal(Goal,Text)

− Description: Goal is called. The text provided in Text is then printed as a debugging
message. The whole process (including running Goal) is turned on by defining a fact
of issue_debug_messages/1 with the module name as argument.

PREDICATEdebug goal/3:
Meta-predicate with arguments: debug_goal(goal,?,addmodule(?)).

Usage: debug_goal(Goal,Text,ArgList)

− Description: Goal is called. The text provided in Text is then printed as a debugging
message, using the arguments in ArgList to interpret any variable-related formatting
commands embedded in Text. Note that the variables in ArgList can be computed
by Goal. The whole process (including running Goal) is turned on by defining a fact
of issue_debug_messages/1 with the module name as argument.

PREDICATEshow message/2:
Usage: show_message(Type,Text)

− Description: The text provided in Text is printed as a message of type Type.

− The following properties should hold at call time:

The types of messaes supported by the message predicate (messages:message t/1)

Text is a string (a list of character codes). (basic props:string/1)

PREDICATEshow message/3:
Meta-predicate with arguments: show_message(?,?,addmodule(?)).

Usage: show_message(Type,Text,ArgList)

− Description: The text provided in Text is printed as a message of type Type, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text.

− The following properties should hold at call time:

The types of messaes supported by the message predicate (messages:message t/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

PREDICATEshow message/4:
Meta-predicate with arguments: show_message(?,?,?,addmodule(?)).

Usage: show_message(Type,Lc,Text,ArgList)

− Description: The text provided in Text is printed as a message of type Type, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text, and reporting error location Lc (file and line numbers).

− The following properties should hold at call time:

The types of messaes supported by the message predicate (messages:message t/1)

Identifies a source line range in a file.

410 The Ciao System

location_t(loc(File,L1,L2)) :-
atm(File),
int(L1),
int(L2).

(c itf internal:location t/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

REGTYPEmessage t/1:
Usage:

− Description: The types of messaes supported by the message predicate

(UNDOC REEXPORT)location t/1:
Imported from c_itf_internal (see the corresponding documentation for details).

69.3 Documentation on multifiles (messages)

PREDICATEissue debug messages/1:
The predicate is multifile.

The predicate is of type data.

Usage: issue_debug_messages(Module)

− Description: Printing of debugging messages is enabled for module Module.

− The following properties hold upon exit:

Module is an atom. (basic props:atm/1)

69.4 Known bugs and planned improvements (messages)

• Debug message switching should really be done with an expansion, for performance.

Chapter 70: Accessing and redirecting the stream aliases 411

70 Accessing and redirecting the stream aliases

Author(s): Manuel Carro.

This library allows the redefinition of the files to which the special streams user_input,
user_output, and user_error point to. On startup they point to the standard input, standard
output, and standard error, in Unix style (Windows users may find that standard error stream
does not work properly). Changing the file pointed to is useful for, e.g., redirecting the place to
which the Prolog’s standard error stream goes from within Prolog (e.g., to start a log file).

70.1 Usage and interface (io_alias_redirection)
� �

• Library usage:

:- use_module(library(io_alias_redirection)).

• Exports:

− Predicates:

set_stream/3, get_stream/2.

 	

70.2 Documentation on exports (io_alias_redirection)

PREDICATEset stream/3:
Usage: set_stream(StreamAlias,NewStream,OldStream)

− Description: Associate StreamAlias with an open stream newStream. Returns in
OldStream the stream previously associated with the alias. The mode of NewStream
must match the intended use of StreamAlias.

− The following properties should hold at call time:

StreamAlias is currently a term which is not a free variable. (term typing:nonvar/1)

NewStream is currently a term which is not a free variable. (term typing:nonvar/1)

StreamAlias is the alias of an open stream, i.e., an atom which represents a stream
at Prolog level. (streams basic:stream alias/1)

NewStream is an open stream. (streams basic:stream/1)

OldStream is an open stream. (streams basic:stream/1)

PREDICATEget stream/2:
Usage: get_stream(StreamAlias,Stream)

− Description: Return in Stream the stream associated with StreamAlias.

− The following properties should hold at call time:

StreamAlias is currently a term which is not a free variable. (term typing:nonvar/1)

StreamAlias is the alias of an open stream, i.e., an atom which represents a stream
at Prolog level. (streams basic:stream alias/1)

Stream is an open stream. (streams basic:stream/1)

412 The Ciao System

Chapter 71: Atom to term conversion 413

71 Atom to term conversion

Author(s): Francisco Bueno, Daniel Cabeza, Manuel Hermenegildo.

This module implements predicates for atom or string to term conversion.

71.1 Usage and interface (atom2term)
� �

• Library usage:

:- use_module(library(atom2term)).

• Exports:

− Predicates:

atom2term/2, string2term/2, parse_term/3, parse_term/4.

 	

71.2 Documentation on exports (atom2term)

PREDICATEatom2term/2:
General properties: atom2term(A,T)

− If the following properties should hold at call time:

term basic:A=a (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=a (term basic:= /2)

atom2term(A,T)

− If the following properties should hold at call time:

term basic:A=1 (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=1 (term basic:= /2)

atom2term(A,T)

− If the following properties should hold at call time:

term basic:A=A (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=A (term basic:= /2)

atom2term(A,T)

− If the following properties should hold at call time:

term basic:A=f(a) (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f(a) (term basic:= /2)

atom2term(A,T)

− If the following properties should hold at call time:

term basic:A=f/2 (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f/2 (term basic:= /2)

414 The Ciao System

Usage: atom2term(Atom,Term)

− Description: Convert an atom into a term. Atom is an atom, but must have term
syntax. Term is a term resulting from parsing Atom char by char. The term is assumed
to be ground.

− The following properties should hold at call time:

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

Term is a free variable. (term typing:var/1)

PREDICATEstring2term/2:
General properties: string2term(A,T)

− If the following properties should hold at call time:

term basic:A=[97] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=a (term basic:= /2)

string2term(A,T)

− If the following properties should hold at call time:

term basic:A=[49] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=1 (term basic:= /2)

string2term(A,T)

− If the following properties should hold at call time:

term basic:A=[65] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=A (term basic:= /2)

string2term(A,T)

− If the following properties should hold at call time:

term basic:A=[102,40,97,41] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f(a) (term basic:= /2)

string2term(A,T)

− If the following properties should hold at call time:

term basic:A=[102,47,50] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f/2 (term basic:= /2)

Usage: string2term(String,Term)

− Description: Same as atom2term/2 but first argument is a string (containing a term).

− The following properties should hold at call time:

String is currently a term which is not a free variable. (term typing:nonvar/1)

Term is a free variable. (term typing:var/1)

Chapter 71: Atom to term conversion 415

PREDICATEparse term/3:
General properties: parse_term(A,T,R)

− If the following properties should hold at call time:

term basic:A=[102,40,97,41] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f(a) (term basic:= /2)

term basic:R=[] (term basic:= /2)

parse_term(A,T,R)

− If the following properties should hold at call time:

term basic:A=[102,40,97,41,32,102,111,111,32] (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f(a) (term basic:= /2)

term basic:R=[32,102,111,111,32] (term basic:= /2)

Usage: parse_term(String,Term,Rest)

− Description: String is parsed into Term up to Rest (which is the non-parsed rest of
the list). The term is assumed to be ground.

− The following properties should hold at call time:

String is currently a term which is not a free variable. (term typing:nonvar/1)

Term is a free variable. (term typing:var/1)

PREDICATEparse term/4:
General properties: parse_term(A,T,R,V)

− If the following properties should hold at call time:

term basic:A=[102,40,88,41] (term basic:= /2)

term basic:V=nonvars (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f(X) (term basic:= /2)

term basic:R=[] (term basic:= /2)

parse_term(A,T,R,V)

− If the following properties should hold at call time:

term basic:A=[102,40,88,41] (term basic:= /2)

term basic:V=vars (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f([88]) (term basic:= /2)

term basic:R=[] (term basic:= /2)

parse_term(A,T,R,V)

− If the following properties should hold at call time:

term basic:A=[102,40,88,41,32,102,111,111,32] (term basic:= /2)

term basic:V=vars (term basic:= /2)

then the following properties should hold upon exit:

term basic:T=f([88]) (term basic:= /2)

term basic:R=[32,102,111,111,32] (term basic:= /2)

416 The Ciao System

Usage: parse_term(String,Term,Rest,Vars)

− Description: String is parsed into Term up to Rest (which is the non-parsed rest
of the list). The term is assumed to be ground. If Vars is vars then upper case
identifiers in the term are turned into variables.

− The following properties should hold at call time:

String is currently a term which is not a free variable. (term typing:nonvar/1)

Term is a free variable. (term typing:var/1)

Vars is currently a term which is not a free variable. (term typing:nonvar/1)

71.3 Known bugs and planned improvements (atom2term)

• This is just a quick hack written mainly for parsing daVinci’s messages. There should be a
call to the standard reader to do this!

Chapter 72: ctrlcclean (library) 417

72 ctrlcclean (library)

72.1 Usage and interface (ctrlcclean)
� �

• Library usage:

:- use_module(library(ctrlcclean)).

• Exports:

− Predicates:

ctrlc_clean/1, delete_on_ctrlc/2, ctrlcclean/0.

• Other modules used:

− System library modules:

system.

 	

72.2 Documentation on exports (ctrlcclean)

PREDICATEctrlc clean/1:
No further documentation available for this predicate.

Meta-predicate with arguments: ctrlc_clean(goal).

PREDICATEdelete on ctrlc/2:
No further documentation available for this predicate.

PREDICATEctrlcclean/0:
No further documentation available for this predicate.

418 The Ciao System

Chapter 73: errhandle (library) 419

73 errhandle (library)

73.1 Usage and interface (errhandle)
� �

• Library usage:

:- use_module(library(errhandle)).

• Exports:

− Predicates:

error_protect/1, handle_error/2.

• Other modules used:

− System library modules:

system.

 	

73.2 Documentation on exports (errhandle)

PREDICATEerror protect/1:
No further documentation available for this predicate.

Meta-predicate with arguments: error_protect(goal).

PREDICATEhandle error/2:
No further documentation available for this predicate.

420 The Ciao System

Chapter 74: Fast reading and writing of terms 421

74 Fast reading and writing of terms

Author(s): Daniel Cabeza, Oscar Portela Arjona.

This library provides predicates to support reading / writing of terms on a format designed
to be handled on read faster than standard representation.

74.1 Usage and interface (fastrw)
� �

• Library usage:

:- use_module(library(fastrw)).

• Exports:

− Predicates:

fast_read/1, fast_write/1, fast_read/2, fast_write/2,
fast_write_to_string/3.

 	

74.2 Documentation on exports (fastrw)

PREDICATEfast read/1:
fast_read(Term)

The next term is read from current standard input and is unified with Term. The syntax
of the term must agree with fast read / fast write format. If the end of the input has
been reached, Term is unified with the term ’end of file’. Further calls to fast_read/1
will then cause an error.

PREDICATEfast write/1:
fast_write(Term)

Output Term in a way that fast_read/1 and fast_read/2 will be able to read it back.

PREDICATEfast read/2:
fast_read(Stream,Term)

The next term is read from Stream and unified with Term. The syntax of the term must
agree with fast read / fast write format. If the end of the input has been reached, Term is
unified with the term ’end of file’. Further calls to fast_read/2 will then cause an error.

Usage:

− Call and exit should be compatible with:

Term is any term. (basic props:term/1)

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

Term is any term. (basic props:term/1)

422 The Ciao System

PREDICATEfast write/2:
fast_write(Stream,Term)

Output Term to Stream in a way that fast_read/1 and fast_read/2 will be able to read
it back.

Usage:

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

− The following properties should hold upon exit:

Term is any term. (basic props:term/1)

− The following properties should hold globally:

Term is not further instantiated. (basic props:not further inst/2)

PREDICATEfast write to string/3:
No further documentation available for this predicate.

74.3 Known bugs and planned improvements (fastrw)

• Both fast_read/2 and fast_write/2 simply set the current output/input and call fast_
read/1 and fast_write/1. Therefore, in the event an error hapens during its execution,
the current input / output streams may be left pointing to the Stream

Chapter 75: File name manipulation 423

75 File name manipulation

Author(s): Daniel Cabeza, Angel Fernandez Pineda.

This library provides some small utilities to handle file name syntax.

75.1 Usage and interface (filenames)
� �

• Library usage:

:- use_module(library(filenames)).

• Exports:

− Predicates:

no_path_file_name/2, file_directory_base_name/3, file_name_extension/3,
basename/2, extension/2.

− Regular Types:

atom_or_str/1.

• Other modules used:

− System library modules:

assertions/native_props, lists.

 	

75.2 Documentation on exports (filenames)

PREDICATEno path file name/2:
This predicate will extract the last item (usually the file name) from a given path.

The first argument must be instantiated to a string or atom. Whenever the first argument
is an atom, the second argument will be an atom. Whenever the first argument is a string,
the second argument will be a string.

This predicate will fail under any of the following conditions:

• First argument is not an atom, nor a string.

• Second argument is not the last given path item (given path is the first argument).

Those are the most usual usages of no path file name/2:

?- no_path_file_name("/home/nexusV/somefile.txt",K).

K = "somefile.txt" ?

yes
?- no_path_file_name(’/home/nexusV/somefile.txt’,K).

K = ’somefile.txt’ ?

yes
?-

Usage: no_path_file_name(Path,FileName)

− Description: FileName is the file corresponding to the given Path.

424 The Ciao System

− Call and exit should be compatible with:

Path is an atom or a string (filenames:atom or str/1)

FileName is an atom or a string (filenames:atom or str/1)

PREDICATEfile directory base name/3:
Usage: file_directory_base_name(Path,Directory,BaseName)

− Description: Given a file path Path, Directory is the directory part and BaseName
is the filename part. Directory does not end in ’/’ unless it is just ’/’. Directory is
’.’ if Path does not contain ’/’.

− Call and exit should be compatible with:

Path is an atom or a string (filenames:atom or str/1)

Directory is an atom or a string (filenames:atom or str/1)

BaseName is an atom or a string (filenames:atom or str/1)

PREDICATEfile name extension/3:
This predicate may be used in two ways:

• To create a file name from its components: name and extension. For instance:

?- file_name_extension(File,mywork,’.txt’).

File = ’mywork.txt’ ?

yes
?-

• To split a file name into its name and extension. For Instance:

?- file_name_extension(’mywork.txt’,A,B).

A = mywork,
B = ’.txt’ ?

yes
?-

Any other usage of file name extension/3 will cause the predicate to fail. Notice that valid
arguments are accepted both as atoms or strings.

General properties: file_name_extension(File,Name,Ext)

− Description: This is a bug, this test must succeeds.

− If the following properties do not hold at call time:

term basic:File=/home/user/emacs.d/dummy (term basic:= /2)

then the following properties do not hold upon exit:

term basic:Name=/home/user/emacs.d/dummy (term basic:= /2)

term basic:Ext= (term basic:= /2)

then the following properties do not hold globally:

All calls of the form file_name_extension(File,Name,Ext) are deterministic. (na-
tive props:is det/1)

All the calls of the form file_name_extension(File,Name,Ext) do not fail. (na-
tive props:not fails/1)

Chapter 75: File name manipulation 425

Usage: file_name_extension(FileName,BaseName,Extension)

− Description: Splits a FileName into its BaseName and Extension.

− Call and exit should be compatible with:

FileName is an atom or a string (filenames:atom or str/1)

BaseName is an atom or a string (filenames:atom or str/1)

Extension is an atom or a string (filenames:atom or str/1)

PREDICATEbasename/2:
basename(FileName,BaseName)

BaseName is FileName without extension. Equivalent
to file_name_extension(FileName,BaseName,_). Useful to extract the base name of
a file using functional syntax.

Usage:

− Call and exit should be compatible with:

FileName is an atom or a string (filenames:atom or str/1)

BaseName is an atom or a string (filenames:atom or str/1)

REGTYPEatom or str/1:
Usage: atom_or_str(X)

− Description: X is an atom or a string

PREDICATEextension/2:
extension(FileName,Extension)

Extension is the extension (suffix) of FileName. Equivalent to file_name_
extension(FileName,_,Extension). Useful to extract the extension of a file using func-
tional syntax.

Usage:

− Call and exit should be compatible with:

FileName is an atom or a string (filenames:atom or str/1)

Extension is an atom or a string (filenames:atom or str/1)

426 The Ciao System

Chapter 76: Symbolic filenames 427

76 Symbolic filenames

Author(s): Francisco Bueno.

This module provides a predicate for file opening which can use any term as an alias for
the filename (i.e., symbolic filenames) instead of the usual constants which are file system path
names of the actual files.

The correspondence between an alias and the actual file path is done dynamically, without
having to recompile the program. It is possible to define the correspondence via facts for
file_alias/2 in a file declared with multifile:alias_file/1 in the program: those facts will
be dynamically loaded when running the program. Alternatively, the correspondence can be
defined via shell environment variables, by defining the value of a variable by the (symbolic)
name of the file to be the path of the actual file.

76.1 Usage and interface (symfnames)
� �

• Library usage:

:- use_module(library(symfnames)).

• Exports:

− Predicates:

open/3.

− Multifiles:

alias_file/1, file_alias/2.

• Other modules used:

− System library modules:

read, system.

 	

76.2 Documentation on exports (symfnames)

PREDICATEopen/3:
open(File,Mode,Stream)

Open File with mode Mode and return in Stream the stream associated with the file. It
is like streams_basic:open/3, but File is considered a symbolic name: either defined
by user:file_alias/2 or as an environment variable. Predicate user:file_alias/2 is
inspected before the environment variables.

Usage:

− Calls should, and exit will be compatible with:

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

File is any term. (basic props:term/1)

Mode is an opening mode (’read’, ’write’ or ’append’). (streams basic:io mode/1)

− The following properties hold upon exit:

Stream is an open stream. (streams basic:stream/1)

428 The Ciao System

76.3 Documentation on multifiles (symfnames)

PREDICATEalias file/1:
alias_file(File)

Declares File to be a file defining symbolic names via file_alias/2. Anything else in
File is simply ignored.

The predicate is multifile.

PREDICATEfile alias/2:
file_alias(Alias,File)

Declares Alias as a symbolic name for File, the real name of an actual file (or directory).

The predicate is multifile.

The predicate is of type data.

76.4 Other information (symfnames)

The example discussed here is included in the distribution files. There is a main application
file which uses module mm. This module reads a line from a file; the main predicate in the main
file then prints this line. The important thing is that the file read is named by a symbolic name
"file". The main application file declares another file where the symbolic names are assigned
actual file names:

:- use_module(mm).

:- multifile alias_file/1.
alias_file(myfiles).

main :- p(X), display(X), nl.

Now, the file myfiles.pl can be used to change the file you want to read from without
having to recompile the application. The current assignment is:

%:- use_package([]).
file_alias(file,’mm.pl’).

so the execution of the application will show the first line of mm.pl. However, you can change
to:

file_alias(file,’main.pl’).

and then execution of the same executable will show the first line of main.pl.

Chapter 77: File I/O utilities 429

77 File I/O utilities

Author(s): The CLIP Group.

This module implements the file I/O utilities.

77.1 Usage and interface (file_utils)
� �

• Library usage:

:- use_module(library(file_utils)).

• Exports:

− Predicates:

file_terms/2, copy_stdout/1, file_to_string/2, file_to_string/3, string_to_
file/2, stream_to_string/2, stream_to_string/3, output_to_file/2.

• Other modules used:

− System library modules:

read, streams, strings.

 	

77.2 Documentation on exports (file_utils)

PREDICATEfile terms/2:
Usage 1: file_terms(File,Terms)

− Description: Unifies Terms with the list of all terms in File.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

Terms is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Terms is a list. (basic props:list/1)

Usage 2: file_terms(File,Terms)

− Description: Writes the terms in list Terms (including the ending ’.’) onto file File.

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

Terms is a list. (basic props:list/1)

PREDICATEcopy stdout/1:
Usage: copy_stdout(File)

− Description: Copies file File to standard output.

− The following properties should hold at call time:

File is currently a term which is not a free variable. (term typing:nonvar/1)

File is a source name. (streams basic:sourcename/1)

430 The Ciao System

PREDICATEfile to string/2:
Usage: file_to_string(FileName,String)

− Description: Reads all the characters from the file FileName and returns them in
String.

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

String is a free variable. (term typing:var/1)

FileName is a source name. (streams basic:sourcename/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

PREDICATEfile to string/3:
Usage: file_to_string(FileName,String,Tail)

− Description: Reads all the characters from the file FileName and returns them in
String. Tail is the end of String.

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

String is a free variable. (term typing:var/1)

FileName is a source name. (streams basic:sourcename/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

PREDICATEstring to file/2:
Usage: string_to_file(String,FileName)

− Description: Reads all the characters from the string String and writes them to file
FileName.

− The following properties should hold at call time:

String is currently a term which is not a free variable. (term typing:nonvar/1)

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

String is a string (a list of character codes). (basic props:string/1)

FileName is a source name. (streams basic:sourcename/1)

PREDICATEstream to string/2:
Usage: stream_to_string(Stream,String)

− Description: Reads all the characters from Stream, returns them in String, and
closes Stream.

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

String is a free variable. (term typing:var/1)

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

Chapter 77: File I/O utilities 431

PREDICATEstream to string/3:
Usage: stream_to_string(Stream,String,Tail)

− Description: Reads all the characters from Stream, returns them in String, and
closes Stream. Tail is the end of String

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

String is a free variable. (term typing:var/1)

Stream is an open stream. (streams basic:stream/1)

PREDICATEoutput to file/2:
No further documentation available for this predicate.

Meta-predicate with arguments: output_to_file(goal,?).

432 The Ciao System

Chapter 78: File locks 433

78 File locks

Author(s): José Manuel Gómez Pérez, Daniel Cabeza, Manuel Carro.

This module implements file locks: the ability to lock a fiel so that other processes cannot
access it until the file is unlocked. It is, however, not working. The predicates do nothing.
Proper implementation is planned for a near future.

78.1 Usage and interface (file_locks)
� �

• Library usage:

:- use_module(library(file_locks)).

• Exports:

− Predicates:

lock_file/3, unlock_file/2.

 	

78.2 Documentation on exports (file_locks)

PREDICATElock file/3:
Usage: lock_file(File,LockType,Result)

− Description: Tries to lock File with LockType and returns the result (either true or
false) in Result.

− Call and exit should be compatible with:

File is an atom. (basic props:atm/1)

LockType is an atom. (basic props:atm/1)

Result is an atom. (basic props:atm/1)

PREDICATEunlock file/2:
Usage: unlock_file(File,Result)

− Description: Tries to unlock File the result (either true or false) in Result.

− Call and exit should be compatible with:

File is an atom. (basic props:atm/1)

Result is an atom. (basic props:atm/1)

78.3 Known bugs and planned improvements (file_locks)

• No doing anything helpful.

434 The Ciao System

Chapter 79: Lists and conjunctions and disjunctions 435

79 Lists and conjunctions and disjunctions

79.1 Usage and interface (formulae)
� �

• Library usage:

:- use_module(library(formulae)).

• Exports:

− Predicates:

list_to_conj/3, list_to_conj/2, conj_to_list/2, list_to_disj/2, disj_to_
list/2, conj_to_llist/2, llist_to_conj/2, disj_to_llist/2, llist_to_disj/2,
body2list/2, asbody_to_conj/2, list_to_disj2/2.

− Properties:

assert_body_type/1.

− Regular Types:

conj_disj_type/1, t_conj/1, t_disj/1.

• Other modules used:

− System library modules:

messages.

 	

79.2 Documentation on exports (formulae)

PREDICATElist to conj/3:
list_to_conj(List,Conj,End)

Conj is the conjunction made up of the elements of List plus a final element End.

PREDICATElist to conj/2:
Usage 1: list_to_conj(A,B)

− Description: Conj is the conjunction made up of the elements of List. ([] is true).
It runs in both ways.

?- list_to_conj(A , a).

A = [a] ? ;

no
?- list_to_conj(A , (a,V)).

A = [a,V] ? ;

no
?- list_to_conj(A , (a,V,b)).

A = [a,V,b] ? ;

436 The Ciao System

no
?- list_to_conj([A] , B).

B = A ? ;

no
?- list_to_conj([a,A] , B).

B = (a,A) ? ;

no
?- list_to_conj([a,A,b] , B).

B = (a,A,b) ? ;

no
?- list_to_conj([] , B).

B = true ? ;

no

− The following properties should hold at call time:

A is a list. (basic props:list/1)

B is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Conjuntions. (formulae:t conj/1)

Usage 2: list_to_conj(A,B)

− The following properties should hold at call time:

A is a free variable. (term typing:var/1)

Conjuntions. (formulae:t conj/1)

− The following properties should hold upon exit:

A is a list. (basic props:list/1)

PREDICATEconj to list/2:
conj_to_list(Conj,List)

List is the list made up of the elements of conjunction Conj (true is []).

PREDICATElist to disj/2:
Usage: list_to_disj(A,B)

− Description: Disj is the disjunction made up of the elements of List. ([] is true).
It runs in both ways. Examples:

?- list_to_disj([a] , A).

A = a ? ;

no

Chapter 79: Lists and conjunctions and disjunctions 437

?- list_to_disj([a,b] , A).

A = (a;b) ? ;

no
?- list_to_disj([a,B,b] , A).

A = (a;B;b) ? ;

no
?- list_to_disj([a,b,B] , A).

A = (a;b;B) ? ;

no
?- list_to_disj(A , (a)).

A = [a] ? ;

no
?- list_to_disj(A , (a;b)).

A = [a,b] ? ;

no
?- list_to_disj(A , (a;B;b)).

A = [a,B,b] ? ;

no
?-

− The following properties should hold at call time:

A is a list. (basic props:list/1)

B is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Conjuntions. (formulae:t disj/1)

PREDICATEdisj to list/2:
disj_to_list(Disj,List)

List is the list made up of the elements of disjunction Disj (true is []).

PREDICATEconj to llist/2:
Turns a conjunctive (normal form) formula into a list (of lists of ...). As a side-effect, inner
conjunctions get flattened. No special care for true.

PREDICATEllist to conj/2:
Inverse of conj_to_llist/2. No provisions for anything else than a non-empty list on
input (i.e., they will go ‘as are’ in the output.

438 The Ciao System

PREDICATEdisj to llist/2:
Turns a disjunctive (normal form) formula into a list (of lists of ...). As a side-effect, inner
disjunctions get flattened. No special care for true.

PREDICATEllist to disj/2:
Inverse of disj_to_llist/2. No provisions for anything else than a non-empty list on
input (i.e., they will go ‘as are’ in the output.

PREDICATEbody2list/2:
No further documentation available for this predicate.

PREDICATEasbody to conj/2:
Usage 1: asbody_to_conj(A,B)

− Description: Transforms assertion body A into a conjuntion (B). It runs in both ways

− The following properties should hold at call time:

formulae:assert body type(A) (formulae:assert body type/1)

B is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

The usual prolog way of writting conjuntions and disjuntions in a body using ’,’ and
’;’ (formulae:conj disj type/1)

Usage 2: asbody_to_conj(A,B)

− The following properties should hold at call time:

A is a free variable. (term typing:var/1)

The usual prolog way of writting conjuntions and disjuntions in a body using ’,’ and
’;’ (formulae:conj disj type/1)

− The following properties should hold upon exit:

formulae:assert body type(A) (formulae:assert body type/1)

PROPERTYassert body type/1:
A property, defined as follows:

assert_body_type(X) :-
list(X,assert_body_type__).

REGTYPEconj disj type/1:
Usage:

− Description: The usual prolog way of writting conjuntions and disjuntions in a body
using ’,’ and ’;’

REGTYPEt conj/1:
Usage:

− Description: Conjuntions.

Chapter 79: Lists and conjunctions and disjunctions 439

REGTYPEt disj/1:
Usage:

− Description: Conjuntions.

PREDICATElist to disj2/2:
No further documentation available for this predicate.

440 The Ciao System

Chapter 80: Term manipulation utilities 441

80 Term manipulation utilities

Author(s): The CLIP Group.

This module implements some utils to do term manipulation.

80.1 Usage and interface (terms)
� �

• Library usage:

:- use_module(library(terms)).

• Exports:

− Predicates:

term_size/2, copy_args/3, arg/2, atom_concat/2.

• Other modules used:

− System library modules:

assertions/native_props.

 	

80.2 Documentation on exports (terms)

PREDICATEterm size/2:
General properties: term_size(A,B)

− If the following properties should hold at call time:

term basic:A=p(a,b,c(d,e)) (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=6 (term basic:= /2)

term_size(A,B)

− If the following properties should hold at call time:

term basic:A=p(a,b,c(d, 120328)) (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=6 (term basic:= /2)

term_size(A,B)

− If the following properties should hold at call time:

term basic:A=[1,2,3] (term basic:= /2)

then the following properties should hold upon exit:

term basic:B=7 (term basic:= /2)

Usage: term_size(Term,N)

− Description: Determines the size of a term.

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

N is a non-negative integer. (basic props:nnegint/1)

442 The Ciao System

PREDICATEcopy args/3:
General properties: copy_args(N,Term,Copy)

− If the following properties hold at call time:

N is currently ground (it contains no variables). (term typing:ground/1)

Term is currently a term which is not a free variable. (term typing:nonvar/1)

then the following properties hold globally:

copy_args(N,Term,Copy) is evaluable at compile-time. (basic props:eval/1)

copy_args(N,Term,Copy)

− The following properties hold globally:

copy_args(N,Term,Copy) is side-effect free. (basic props:sideff/2)

Usage: copy_args(N,Term,Copy)

− Description: Term and Copy have the same first N arguments.

− The following properties should hold at call time:

N is a non-negative integer. (basic props:nnegint/1)

PREDICATEarg/2:
Usage: arg(Term,Arg)

− Description: Arg is an argument of Term. Gives each of the arguments on backtrack-
ing.

PREDICATEatom concat/2:
atom_concat(Atms,Atm)

Atm is the atom resulting from concatenating all atoms in the list Atms in the order in
which they appear. If Atm is an atom at call then Atms can contain free variables.

General properties: atom_concat(A,B)

− If the following properties should hold at call time:

term basic:A=[/home/edison/svn/dist/CiaoDE/bin,/,X,-,1.11,] (term basic:= /2)

term basic:B=/home/edison/svn/dist/CiaoDE/bin/fileinfo-1.11 (term basic:= /2)

then the following properties should hold upon exit:

The terms X and fileinfo are strictly identical. (term compare:== /2)

atom_concat(A,B)

− If the following properties should hold at call time:

term basic:A=[a,b,c] (term basic:= /2)

then the following properties should hold upon exit:

The terms B and abc are strictly identical. (term compare:== /2)

atom_concat(X,Y)

− Description: atom concat that generates several solutions.

− If the following properties should hold at call time:

term basic:X=[a,B|C] (term basic:= /2)

term basic:Y=abcde (term basic:= /2)

then the following properties should hold upon exit:

B,C is an element of
[(,[b,c,d,e]),(,[b,c,de]),(,[b,cd,e]),(,[b,cde]),(,[bc,d,e]),(,[bc,de]),(,[bcd,e]
(basic props:member/2)

Chapter 80: Term manipulation utilities 443

atom_concat(X,Y)

− Description: atom concat that generates several solutions.

− If the following properties should hold at call time:

term basic:X=[a,B|C] (term basic:= /2)

term basic:Y=abcde (term basic:= /2)

then the following properties should hold globally:

Goal atom_concat(X,Y) produces the solutions listed in
[atom_concat([a,,b,c,d,e],abcde),atom_concat([a,,b,c,de],abcde),atom_
concat([a,,b,cd,e],abcde),atom_concat([a,,b,cde],abcde),atom_
concat([a,,bc,d,e],abcde),atom_concat([a,,bc,de],abcde),atom_
concat([a,,bcd,e],abcde),atom_concat([a,,bcde],abcde),atom_
concat([a,b,c,d,e],abcde),atom_concat([a,b,c,de],abcde),atom_
concat([a,b,cd,e],abcde),atom_concat([a,b,cde],abcde),atom_
concat([a,bc,d,e],abcde),atom_concat([a,bc,de],abcde),atom_
concat([a,bcd,e],abcde),atom_concat([a,bcde],abcde)]. (na-
tive props:solutions/2)

atom_concat(X,Y)

− If the following properties should hold at call time:

term basic:X=[A,b,C] (term basic:= /2)

term basic:Y=abc (term basic:= /2)

then the following properties should hold upon exit:

The terms A and a are strictly identical. (term compare:== /2)

The terms C and c are strictly identical. (term compare:== /2)

atom_concat(X,Y)

− If the following properties should hold at call time:

term basic:X=[A,b,] (term basic:= /2)

term basic:Y=ab (term basic:= /2)

then the following properties should hold upon exit:

term basic:A=a (term basic:= /2)

Usage 1: atom_concat(Atms,Atm)

− The following properties should hold at call time:

Atms is a list of atms. (basic props:list/2)

− The following properties should hold upon exit:

Atm is an atom. (basic props:atm/1)

Usage 2: atom_concat(Atms,Atm)

− Call and exit should be compatible with:

Atms is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Atm is an atom. (basic props:atm/1)

− The following properties should hold upon exit:

Atms is a list of atms. (basic props:list/2)

444 The Ciao System

Chapter 81: Term checking utilities 445

81 Term checking utilities

Author(s): The CLIP Group.

This module implements the term checking utilities.

81.1 Usage and interface (terms_check)
� �

• Library usage:

:- use_module(library(terms_check)).

• Exports:

− Predicates:

ask/2, variant/2, most_general_instance/3, most_specific_generalization/3.

− Properties:

instance/2.

 	

81.2 Documentation on exports (terms_check)

PREDICATEask/2:
ask(Term1,Term2)

Term1 and Term2 unify without producing bindings for the variables of Term1. I.e.,
instance(Term1,Term2) holds.

PROPERTYinstance/2:
Usage: instance(Term1,Term2)

− Description: Term1 is an instance of Term2.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEvariant/2:
variant(Term1,Term2)

Term1 and Term2 are identical up to renaming.

PREDICATEmost general instance/3:
most_general_instance(Term1,Term2,Term)

Term satisfies instance(Term,Term1) and instance(Term,Term2) and there is no term
more general than Term (modulo variants) that satisfies it.

PREDICATEmost specific generalization/3:
most_specific_generalization(Term1,Term2,Term)

Term satisfies instance(Term1,Term) and instance(Term2,Term) and there is no term
less general than Term (modulo variants) that satisfies it.

446 The Ciao System

81.3 Other information (terms_check)

Currently, ask/2 and instance/2 are exactly the same. However, ask/2 is more general,
since it is also applicable to constraint domains (although not yet implemented): for the par-
ticular case of Herbrand terms, it is just instance/2 (which is the only ask check currently
implemented).

81.4 Known bugs and planned improvements (terms_check)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 82: Sets of variables in terms 447

82 Sets of variables in terms

Author(s): The CLIP Group.

This module implements predicates to handle sets of variables in terms.

82.1 Usage and interface (terms_vars)
� �

• Library usage:

:- use_module(library(terms_vars)).

• Exports:

− Predicates:

varset/2, intersect_vars/3, member_var/2, diff_vars/3, varsbag/3, varset_in_
args/2.

• Other modules used:

− System library modules:

idlists, sort.

 	

82.2 Documentation on exports (terms_vars)

PREDICATEvarset/2:
varset(Term,Xs)

Xs is the sorted list of all the variables in Term.

PREDICATEintersect vars/3:
No further documentation available for this predicate.

PREDICATEmember var/2:
No further documentation available for this predicate.

PREDICATEdiff vars/3:
No further documentation available for this predicate.

PREDICATEvarsbag/3:
varsbag(Term,Vs,Xs)

Vs is the list of all the variables in Term ordered as they appear in Term right-to-left
depth-first (including duplicates) plus Xs.

448 The Ciao System

PREDICATEvarset in args/2:
Usage: varset_in_args(T,LL)

− Description: Each list of LL contains the variables of an argument of T, for each
argument, and in left to right order.

− The following properties should hold at call time:

T is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold upon exit:

LL is a list of list(var)s. (basic props:list/2)

Chapter 83: Cyclic terms handling 449

83 Cyclic terms handling

Author(s): Daniel Cabeza.

This module implements predicates related to cyclic terms. Cyclic (or infinite) terms are
produced when unifying a variable with a term which contains that variable.

83.1 Usage and interface (cyclic_terms)
� �

• Library usage:

:- use_module(library(cyclic_terms)).

• Exports:

− Predicates:

cyclic_term/1, acyclic_term/1, uncycle_term/2, recycle_term/2.

• Other modules used:

− System library modules:

lists.

 	

83.2 Documentation on exports (cyclic_terms)

PREDICATEcyclic term/1:
Usage: cyclic_term(T)

− Description: True if T is cyclic (infinite).

PREDICATEacyclic term/1:
Usage: acyclic_term(T)

− Description: True if T is acyclic (finite).

PREDICATEuncycle term/2:
Usage: uncycle_term(T,U)

− Description: Given a term T, U is a finite representation of T as an acyclic term. This
representation can be converted back to T using recycle_term/2.

PREDICATErecycle term/2:
Usage: recycle_term(U,T)

− Description: Given U, a finite representation of a term as an acyclic term as uncycle_
term/2 produces, T is the represented term. U is modified by the predicate, thus to
maintain it untouched copy_term/2 should be used.

450 The Ciao System

Chapter 84: A simple pretty-printer for Ciao programs 451

84 A simple pretty-printer for Ciao programs

Author(s): The CLIP Group.

This library module writes out to standard output a clause or a list of clauses.

84.1 Usage and interface (pretty_print)
� �

• Library usage:

:- use_module(library(pretty_print)).

• Exports:

− Predicates:

pretty_print/2, pretty_print/3, pretty_print/4.

• Other modules used:

− System library modules:

operators, vndict, write.

 	

84.2 Documentation on exports (pretty_print)

PREDICATEpretty print/2:
Usage: pretty_print(Cls,Flags)

− Description: Prints each clause in the list Cls after numbering its variables.

− The following properties should hold at call time:

pretty print:clauses(Cls) (pretty print:clauses/1)

Flags is a list of flags. (basic props:list/2)

PREDICATEpretty print/3:
Usage: pretty_print(Cls,Flags,Ds)

− Description: Prints each clause in the list Cls after using the corresponding variable
names dictionary in Ds to name its variables.

− The following properties should hold at call time:

pretty print:clauses(Cls) (pretty print:clauses/1)

Flags is a list of flags. (basic props:list/2)

Ds is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEpretty print/4:
No further documentation available for this predicate.

452 The Ciao System

84.3 Documentation on internals (pretty_print)

REGTYPEclauses/1:
A regular type, defined as follows:

clauses([]).
clauses([_1|_2]) :-

clause(_1),
clauses(_2).

clauses(_1) :-
clause(_1).

REGTYPEclause/1:
A regular type, defined as follows:

clause(_1) :-
clterm(_1).

clause((_1,_2)) :-
clterm(_1),
term(_2).

REGTYPEclterm/1:
A regular type, defined as follows:

clterm(clause(_1,_2)) :-
callable(_1),
body(_2).

clterm(directive(_1)) :-
body(_1).

clterm((_1:-_2)) :-
callable(_1),
body(_2).

clterm(_1) :-
callable(_1).

REGTYPEbody/1:
A well formed body, including cge expressions and &-concurrent expressions. The atomic
goals may or may not have a key in the form ^(goal:any), and may or may not be module
qualified, but if they are it has to be in the form ^(^(moddesc:goal):any).

Usage: body(X)

− Description: X is a printable body.

REGTYPEflag/1:
A keyword ask/1 flags whether to output asks or whens and nl/1 whether to separate
clauses with a blank line or not.

Usage: flag(X)

− Description: X is a flag for the pretty-printer.

Chapter 84: A simple pretty-printer for Ciao programs 453

84.4 Known bugs and planned improvements (pretty_print)

• 2.- If the priority of and operator, &/1 or &/2, is redefined with lower priority than :-/2
or ./1, the written term is incorrect because it does not include parenthesis to make Ciao
associate and operator first.

454 The Ciao System

Chapter 85: Pretty-printing assertions 455

85 Pretty-printing assertions

Author(s): Francisco Bueno.

This module defines some predicates which are useful for writing assertions in a readable
form.

85.1 Usage and interface (assrt_write)
� �

• Library usage:

:- use_module(library(assrt_write)).

• Exports:

− Predicates:

write_assertion/6, write_assertion/7, write_assertion_as_comment/6, write_
assertion_as_comment/7, write_assertion_as_double_comment/6,
write_assertion_as_double_comment/7.

• Other modules used:

− System library modules:

format, assertions/assrt_lib, messages, assertions/assertions_props, vndict.

 	

85.2 Documentation on exports (assrt_write)

PREDICATEwrite assertion/6:
Usage: write_assertion(Goal,Status,Type,Body,Dict,Flag)

− Description: Writes the (normalized) assertion to current output.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions props:assrt status/1)

Type is an admissible kind of assertion. (assertions props:assrt type/1)

Body is a normalized assertion body. (assertions props:nabody/1)

Dict is a dictionary. (dict:dictionary/1)

Flag is status or nostatus. (assrt write:status flag/1)

PREDICATEwrite assertion/7:
Usage: write_assertion(Stream,Goal,Status,Type,Body,Dict,Flag)

− Description: Writes the (normalized) assertion to stream Stream.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions props:assrt status/1)

Type is an admissible kind of assertion. (assertions props:assrt type/1)

Body is a normalized assertion body. (assertions props:nabody/1)

Dict is a dictionary. (dict:dictionary/1)

Flag is status or nostatus. (assrt write:status flag/1)

456 The Ciao System

PREDICATEwrite assertion as comment/6:
Usage: write_assertion_as_comment(Goal,Status,Type,Body,Dict,Flag)

− Description: Writes the (normalized) assertion to current output as a Prolog com-
ment.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions props:assrt status/1)

Type is an admissible kind of assertion. (assertions props:assrt type/1)

Body is a normalized assertion body. (assertions props:nabody/1)

Dict is a dictionary. (dict:dictionary/1)

Flag is status or nostatus. (assrt write:status flag/1)

PREDICATEwrite assertion as comment/7:
Usage: write_assertion_as_comment(Stream,Goal,Status,Type,Body,Dict,Flag)

− Description: Writes the (normalized) assertion to stream Stream as a Prolog com-
ment.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions props:assrt status/1)

Type is an admissible kind of assertion. (assertions props:assrt type/1)

Body is a normalized assertion body. (assertions props:nabody/1)

Dict is a dictionary. (dict:dictionary/1)

Flag is status or nostatus. (assrt write:status flag/1)

PREDICATEwrite assertion as double comment/6:
Usage: write_assertion_as_double_comment(Goal,Status,Type,Body,Dict,Flag)

− Description: Writes the (normalized) assertion to current output as a Prolog double
comment.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions props:assrt status/1)

Type is an admissible kind of assertion. (assertions props:assrt type/1)

Body is a normalized assertion body. (assertions props:nabody/1)

Dict is a dictionary. (dict:dictionary/1)

Flag is status or nostatus. (assrt write:status flag/1)

PREDICATEwrite assertion as double comment/7:
Usage:
write_assertion_as_double_comment(Stream,Goal,Status,Type,Body,Dict,Flag)

− Description: Writes the (normalized) assertion to stream Stream as a Prolog double
comment.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions props:assrt status/1)

Type is an admissible kind of assertion. (assertions props:assrt type/1)

Body is a normalized assertion body. (assertions props:nabody/1)

Dict is a dictionary. (dict:dictionary/1)

Flag is status or nostatus. (assrt write:status flag/1)

Chapter 86: The Ciao library browser 457

86 The Ciao library browser

Author(s): Angel Fernandez Pineda.

The librowser library provides a set of predicates wich enable the user to interactively find
Ciao libraries and/or any predicate exported by them.

This is a simple example:

?- apropos(’*find*’).
persdbrt_sql: dbfindall/4
persdbrtsql: dbfindall/4
conc_aggregates: findall/3
linda: rd_findall/3
vndict: find_name/4
internals: $find_file/8
aggregates: findall/4,findall/3

yes
?-

Librowser is specially useful when inside GNU Emacs: just place the cursor over a librowser
response and press C-cTAB in order to get help on the related predicate. Refer to the "Using
Ciao inside GNU Emacs" chapter for further information.

86.1 Usage and interface (librowser)
� �

• Library usage:

It is not necesary to use this library at user programs. It is designed to be used at the Ciao
toplevel shell: ciaosh. In order to do so, just make use of use_module/1 as follows:

use_module(library(librowser)).

Then, the library interface must be read. This is automatically done when calling any
predicate at librowser, and the entire process will take a little moment.So, you should want
to perform such a process after loading the Ciao toplevel:

Ciao 0.9 #75: Fri Apr 30 19:04:24 MEST 1999
?- use_module(library(librowser)).

yes
?- update.

Whether you want this process to be automatically performed when loading ciaosh, you
may include those lines in your .ciaorc personal initialization file.

• Exports:

− Predicates:

update/0, browse/2, where/1, describe/1, system_lib/1, apropos/1.

• Other modules used:

− System library modules:

regexp/regexp_code, read, fastrw, system, streams, lists.

 	

458 The Ciao System

86.2 Documentation on exports (librowser)

PREDICATEupdate/0:
This predicate will scan the Ciao system libraries for predicate definitions. This may be
done once time before calling any other predicate at this library.

update/0 will also be automatically called (once) when calling any other predicate at
librowser.

Usage:

− Description: Creates an internal database of modules at Ciao system libraries.

PREDICATEbrowse/2:
This predicate is fully reversible, and is provided to inspect concrete predicate specifica-
tions. For example:

?- browse(M,findall/A).

A = 3,
M = conc_aggregates ? ;

A = 4,
M = aggregates ? ;

A = 3,
M = aggregates ? ;

no
?-

Usage: browse(Module,Spec)

− Description: Asocciates the given Spec predicate specification with the Module which
exports it.

− The following properties should hold at call time:

Module is a module name (an atom) (librowser:module name/1)

Spec is a Functor/Arity predicate specification (librowser:pred spec/1)

PREDICATEwhere/1:
This predicate will print at the screen the module needed in order to import a given
predicate specification. For example:

?- where(findall/A).
findall/3 exported at module conc_aggregates
findall/4 exported at module aggregates
findall/3 exported at module aggregates

yes
?-

Usage: where(Spec)

− Description: Display what module to load in order to import the given Spec.

− The following properties should hold at call time:

Spec is a Functor/Arity predicate specification (librowser:pred spec/1)

Chapter 86: The Ciao library browser 459

PREDICATEdescribe/1:
This one is used to find out which predicates were exported by a given module. Very
usefull when you know the library, but not the concrete predicate. For example:

?- describe(librowser).
Predicates at library librowser :

apropos/1
system_lib/1
describe/1
where/1
browse/2
update/0

yes
?-

Usage: describe(Module)

− Description: Display a list of exported predicates at the given Module

− The following properties should hold at call time:

Module is a module name (an atom) (librowser:module name/1)

PREDICATEsystem lib/1:
It retrieves on backtracking all Ciao system libraries stored in the internal database.
Certainly, those which were scanned at update/0 calling.

Usage: system_lib(Module)

− Description: Module variable will be successively instantiated to the system libaries
stored in the internal database.

− The following properties should hold at call time:

Module is a module name (an atom) (librowser:module name/1)

PREDICATEapropos/1:
This tool makes use of regular expresions in order to find predicate specifications. It is
very usefull whether you can’t remember the full name of a predicate. Regular expresions
take the same format as described in library patterns. Example:

?- apropos(’atom_*’).

terms: atom_concat/2
concurrency: atom_lock_state/2
atomic_basic: atom_concat/3,atom_length/2,atom_codes/2
iso_byte_char: atom_chars/2

yes
?-

Usage: apropos(RegSpec)

− Description: This will search any predicate specification Spec which matches the
given RegSpec incomplete predicate specification.

− The following properties should hold at call time:

RegSpec is a Pattern/Arity specification. (librowser:apropos spec/1)

460 The Ciao System

86.3 Documentation on internals (librowser)

REGTYPEapropos spec/1:
Defined as:

apropos_spec(_1).
apropos_spec(_1/Arity) :-

int(Arity).

Usage: apropos_spec(S)

− Description: S is a Pattern/Arity specification.

Chapter 87: Code translation utilities 461

87 Code translation utilities

Author(s): Angel Fernandez Pineda.

This library offers a general way to perform clause body expansions. Goal, fact and spec trans-
lation predicates are authomatically called when needed, while this utility navigates through the
meta-argument specification of the body itself. All predicates within this library must be called
at second-pass expansions, since it uses information stored at c_itf library.

87.1 Usage and interface (expansion_tools)
� �

• Library usage:

This library is provided as a tool for those modules which performs source-to-source code
translation, usually known as code expanders. It may be loaded as other modules using a
use_module/1. Nothing special needs to be done.

• Exports:

− Predicates:

imports_meta_pred/3, body_expander/6, arg_expander/6.

• Other modules used:

− System library modules:

compiler/c_itf.

 	

87.2 Documentation on exports (expansion_tools)

PREDICATEimports meta pred/3:
Macro provided in order to know meta-predicate specifications accessible from a module.

Usage: imports_meta_pred(Module,MetaSpec,AccessibleAt)

− Description: Tells whether MetaSpec meta-predicate specification is accessible from
Module. AccessibleAt will be binded to ’-’ whether meta-predicate is a builtin one.
If not, it will be unified with the module which defines the meta-predicate.

− The following properties should hold at call time:

Module is an atom. (basic props:atm/1)

MetaSpec is any term. (basic props:term/1)

PREDICATEbody expander/6:
This predicate is the main translation tool. It navigates through a clause body, when a
single goal appears, user-code is called in order to perform a translation. Whether user-
code fails to translate the involved goal, it remains the same. Regardless that goal is
translated or not, an argument expansion will be performed over all goals if applicable
(see arg_expander/6 predicate).

Variable (unknown at compile time) goals will also be attempt to translate.

Meta-predicate with arguments: body_expander((pred 3),(pred 3),(pred 3),?,?,?).

Usage:
body_expander(GoalTrans,FactTrans,SpecTrans,Module,Body,ExpandedBody)

462 The Ciao System

− Description: Translates Body to ExpandedBody by the usage of user-defined trans-
lators GoalTrans, FactTrans and SpecTrans. The module where the original body
appears must be unified with Module argument.

− The following properties should hold at call time:

GoalTrans is a user-defined predicate which performs goal meta-type translation (ex-
pansion tools:goal expander/1)

FactTrans is a user-defined predicate which performs fact meta-type translation (ex-
pansion tools:fact expander/1)

SpecTrans is a user-defined predicate which performs spec meta-type translation (ex-
pansion tools:spec expander/1)

Module is an atom. (basic props:atm/1)

ExpandedBody is a free variable. (term typing:var/1)

PREDICATEarg expander/6:
This predicate is an auxiliary translation tool, which is used by body_expander/6 predi-
cate. It remains exported as a macro. The predicate navigates through the meta-argument
specification of a goal. Whether a goal,fact or spec argument appears, user-code is called
in order to perform a translation. Whether user-code fails to translate the involved argu-
ment, it remains the same. Builtins as ’,’/2 or ’;’/2 are treated as meta-predicates defining
goal meta-arguments. When a goal meta-argument is located, body_expander/6 will be
called in order to navigate through it. Notice that a goal meta-argument may be unified
with another goal defining another meta-argument, so navigation is required. If arguments
are not known to arg expander/6, translation will not occur. This is posible whether goal
or qualifing module are variables.

Meta-predicate with arguments: arg_expander((pred 3),(pred 3),(pred 3),?,?,?).

Usage:
arg_expander(GoalTrans,FactTrans,SpecTrans,Module,Goal,ExpandedGoal)

− Description: Translates Goal to ExpandedGoal by applying user-defined translators
(GoalTrans, FactTrans and SpecTrans) to each meta-argument present at such goal.
The module where the original goal appears must be unified with Module argument.

− The following properties should hold at call time:

GoalTrans is a user-defined predicate which performs goal meta-type translation (ex-
pansion tools:goal expander/1)

FactTrans is a user-defined predicate which performs fact meta-type translation (ex-
pansion tools:fact expander/1)

SpecTrans is a user-defined predicate which performs spec meta-type translation (ex-
pansion tools:spec expander/1)

Module is an atom. (basic props:atm/1)

ExpandedBody is a free variable. (term typing:var/1)

87.3 Documentation on internals (expansion_tools)

PROPERTYexpander pred/1:
Usage: expander_pred(Pred)

Chapter 87: Code translation utilities 463

− Description: Pred is a user-defined predicate used to perform code translations. First
argument will be binded to the corresponding term to be translated. Second argument
must be binded to the corresponding translation. Third argument will be binded to
the current module were first argument appears. Additional arguments will be user-
defined.

87.4 Known bugs and planned improvements (expansion_tools)

• pred(N) meta-arguments are not supported at this moment.

464 The Ciao System

Chapter 88: Low-level concurrency/multithreading primitives 465

88 Low-level concurrency/multithreading primitives

Author(s): Manuel Carro.

This module provides basic mechanisms for using concurrency and implementing multi-goal
applications. It provides a means for arbitrary goals to be specified to be run in a separate stack
set; in that case, they are assigned a goal identifier with which further accesses (e.g., asking for
more solutions) to the goal can be made. Additionally, in some architectures, these goals can
be assigned an O.S. thread, separate from the one which made the initial call, thus providing
concurrency and, in multiprocessors, parallelism capabilities.

88.1 Usage and interface (concurrency)
� �

• Library usage:

:- use_module(library(concurrency)).

• Exports:

− Predicates:

eng_call/4, eng_call/3, eng_backtrack/2, eng_cut/1, eng_release/1, eng_
wait/1, eng_kill/1, eng_killothers/0, eng_self/1, goal_id/1, eng_goal_id/1,
eng_status/0, lock_atom/1, unlock_atom/1, atom_lock_state/2, concurrent/1.

• Other modules used:

− System library modules:

foreign_interface/foreign_interface_properties, prolog_sys.

 	

88.2 Documentation on exports (concurrency)

PREDICATEeng call/4:
Meta-predicate with arguments: eng_call(goal,?,?,?).

Usage: eng_call(Goal,EngineCreation,ThreadCreation,GoalId)

− Description: Calls Goal in a new engine (stack set), possibly using a new thread,
and returns a GoalId to designate this new goal henceforth. EngineCreation can
be either wait or create; the distinction is not yet meaningful. ThreadCreation
can be one of self, wait, or create. In the first case the creating thread is used
to execute Goal, and thus it has to wait until its first result or failure. The call
will fail if Goal fails, and succeed otherwise. However, the call will always suceed
when a remote thread is started. The space and identifiers reclaimed for the thread
must be explicitly deallocated by calling eng_release/1. GoalIds are unique in each
execution of a Ciao Prolog program.

− The following properties should hold at call time:

Goal is currently a term which is not a free variable. (term typing:nonvar/1)

EngineCreation is currently a term which is not a free variable.
(term typing:nonvar/1)

ThreadCreation is currently a term which is not a free variable.
(term typing:nonvar/1)

GoalId is a free variable. (term typing:var/1)

466 The Ciao System

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

EngineCreation is an atom. (basic props:atm/1)

ThreadCreation is an atom. (basic props:atm/1)

GoalId is an integer. (basic props:int/1)

PREDICATEeng call/3:
Meta-predicate with arguments: eng_call(goal,?,?).

Usage: eng_call(Goal,EngineCreation,ThreadCreation)

− Description: Similar to eng_call/4, but the thread (if created) and stack areas are
automatically released upon success or failure of the goal. No GoalId is provided for
further interaction with the goal.

− The following properties should hold at call time:

Goal is currently a term which is not a free variable. (term typing:nonvar/1)

EngineCreation is currently a term which is not a free variable.
(term typing:nonvar/1)

ThreadCreation is currently a term which is not a free variable.
(term typing:nonvar/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

EngineCreation is an atom. (basic props:atm/1)

ThreadCreation is an atom. (basic props:atm/1)

PREDICATEeng backtrack/2:
Usage: eng_backtrack(GoalId,ThreadCreation)

− Description: Performs backtracking on the goal designed by GoalId. A new thread
can be used to perform backtracking, according to ThreadCreation (same as in eng_
call/4). Fails if the goal is backtracked over by the local thread, and there are no
more solutions. Always succeeds if executed by a remote thread. The engine is not
automatically released up upon failure: eng_release/1 must be called to that end.

− The following properties should hold at call time:

GoalId is currently a term which is not a free variable. (term typing:nonvar/1)

ThreadCreation is currently a term which is not a free variable.
(term typing:nonvar/1)

GoalId is an integer. (basic props:int/1)

ThreadCreation is an atom. (basic props:atm/1)

PREDICATEeng cut/1:
Usage: eng_cut(GoalId)

− Description: Performs a cut in the execution of the goal GoalId. The next call to
eng_backtrack/2 will therefore backtrack all the way and fail.

− The following properties should hold at call time:

GoalId is currently a term which is not a free variable. (term typing:nonvar/1)

GoalId is an integer. (basic props:int/1)

Chapter 88: Low-level concurrency/multithreading primitives 467

PREDICATEeng release/1:
Usage: eng_release(GoalId)

− Description: Cleans up and releases the engine executing the goal designed by GoalId.
The engine must be idle, i.e., currently not executing any goal. eng_wait/1 can be
used to ensure this.

− The following properties should hold at call time:

GoalId is currently a term which is not a free variable. (term typing:nonvar/1)

GoalId is an integer. (basic props:int/1)

PREDICATEeng wait/1:
Usage: eng_wait(GoalId)

− Description: Waits for the engine executing the goal denoted by GoalId to finish
the computation (i.e., it has finished searching for a solution, either with success or
failure).

− The following properties should hold at call time:

GoalId is currently a term which is not a free variable. (term typing:nonvar/1)

GoalId is an integer. (basic props:int/1)

PREDICATEeng kill/1:
Usage: eng_kill(GoalId)

− Description: Kills the thread executing GoalId (if any), and frees the memory used up
by the stack set. Usually one should wait (eng_wait/1) for a goal, and then release
it, but killing the thread explicitly allows recovering from error states. A goal cannot
kill itself. This feature should be used with caution, because there are situations
where killing a thread might render the system in an unstable state. Threads should
cooperate in their killing, but if the killed thread is blocked in a I/O operation, or
inside an internal critical region, this cooperation is not possible and the system,
although stopped, might very well end up in a incosistent state.

− The following properties should hold at call time:

GoalId is currently a term which is not a free variable. (term typing:nonvar/1)

GoalId is an integer. (basic props:int/1)

PREDICATEeng killothers/0:
Usage:

− Description: Kills threads and releases stack sets of all active goals, but the one calling
eng_killothers. Again, a safety measure. The same cautions as with eng_kill/1
should be taken.

PREDICATEeng self/1:
Usage: eng_self(GoalId)

− Description: GoalId is unified with the identifier of the goal within which eng_self/1
is executed. eng_self/1 is deprecated, and eng goal id/1 should be used instead.

− The following properties should hold at call time:

GoalId is an integer. (basic props:int/1)

468 The Ciao System

PREDICATEgoal id/1:
Usage: goal_id(GoalId)

− Description: GoalId is unified with the identifier of the goal within which goal_id/1
is executed. goal_id/1 is deprecated, and eng goal id/1 should be used instead.

− The following properties should hold at call time:

GoalId is an integer. (basic props:int/1)

PREDICATEeng goal id/1:
Usage: eng_goal_id(GoalId)

− Description: GoalId is unified with the identifier of the goal within which eng_goal_
id/1 is executed.

− The following properties should hold at call time:

GoalId is an integer. (basic props:int/1)

PREDICATEeng status/0:
Usage:

− Description: Prints to standard output the current status of the stack sets.

PREDICATElock atom/1:
Usage 1:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Usage 2: lock_atom(Atom)

− Description: The semaphore associated to Atom is accessed; if its value is nonzero,
it is atomically decremented and the execution of this thread proceeds. Otherwise,
the goal waits until a nonzero value is reached. The semaphore is then atomically
decremented and the execution of this thread proceeds.

− The following properties should hold at call time:

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

Atom is an integer. (basic props:int/1)

PREDICATEunlock atom/1:
Usage 1:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Chapter 88: Low-level concurrency/multithreading primitives 469

Usage 2: unlock_atom(Atom)

− Description: The semaphore associated to Atom is atomically incremented.

− The following properties should hold at call time:

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

Atom is an integer. (basic props:int/1)

PREDICATEatom lock state/2:
Usage 1:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

Arg2 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Usage 2: atom_lock_state(Atom,Value)

− Description: Sets the semaphore associated to Atom to Value. This is usually done
at the beginning of the execution, but can be executed at any time. If not called,
semaphore associated to atoms are by default inited to 1. It should be used with cau-
tion: arbitrary use can transform programs using locks in a mess of internal relations.
The change of a semaphore value in a place other than the initialization stage of a
program is not among the allowed operations as defined by Dijkstra [Dij65,BA82].

− The following properties should hold at call time:

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

Value is currently a term which is not a free variable. (term typing:nonvar/1)

Atom is an integer. (basic props:int/1)

Value is an integer. (basic props:int/1)

Usage 3: atom_lock_state(Atom,Value)

− Description: Consults the Value of the semaphore associated to Atom. Use sparingly
and mainly as a medium to check state correctness. Not among the operations on
semaphore by Djikstra.

− The following properties should hold at call time:

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

Value is a free variable. (term typing:var/1)

Atom is an atom. (basic props:atm/1)

Value is an integer. (basic props:int/1)

PREDICATEconcurrent/1:
concurrent PredName

The predicate named PredName is made concurrent in the current module at runtime
(useful for predicate names generated on-the-fly). This difficults a better compile-time
analysis, but in turn offers more flexibility to applications. It is also faster for some
applications: if several agents have to share data in a stuctured fashion (e.g., the generator
knows and wants to restrict the data generated to a set of other threads), a possibility

470 The Ciao System

is to use the same concurrent fact and emply a field within the fact to distinguish the
receiver/sender. This can cause many threads to access and wait on the same fact, which
in turns can create contention problems. It is much better to create a new concurrent
fact and to use that new name as a channel to communicate the different threads.
concurrent/1 can either be given a predicate spec in the form Name/Arity, with Name
and Arity bound, or to give a value only to Arity, and let the system choose a new,
unused Name for the fact.

Usage:

− The following properties should hold at call time:

PredName is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

88.3 Known bugs and planned improvements (concurrency)

• Available only for Windows 32 environments and for architectures implementing POSIX
threads.

• Some implementation of threads have a limit on the total number of threads that can be
created by a process. Thread creation, in this case, just hangs. A better solution is planned
for the future.

Chapter 89: All solutions concurrent predicates 471

89 All solutions concurrent predicates

Author(s): Manuel Carro (concurrency-safeness).

This module implements thread-safe aggregation predicates. Its use and results should be
the same as those in the aggregates library, but several goals can use them concurrently without
the interference and wrong results (due to implementation reasons) aggregates might lead to.
This particular implementation is completely based on the one used in the aggregates library
(whose original authors were Richard A. O’Keefe and David H.D. Warren).

89.1 Usage and interface (conc_aggregates)
� �

• Library usage:

:- use_module(library(conc_aggregates)).

• Exports:

− Predicates:

findall/3, setof/3, bagof/3.

• Other modules used:

− System library modules:

assertions/native_props, prolog_sys.

 	

89.2 Documentation on exports (conc_aggregates)

PREDICATEfindall/3:
Meta-predicate with arguments: findall(?,goal,?).

Usage: findall(Template,Generator,List) 〈 • ISO • 〉

− Description: A special case of bagof, where all free variables in the Generator are
taken to be existentially quantified. Safe in concurrent applications.

− The following properties should hold at call time:

Generator is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Set is a list. (basic props:list/1)

− The following properties should hold globally:

All calls of the form findall(Template,Generator,List) are deterministic. (na-
tive props:is det/1)

PREDICATEsetof/3:
Usage: setof(Template,Goal,Set) 〈 • ISO • 〉

472 The Ciao System

− Description: Finds the Set of instances of the Template satisfying the Generator.
The set is in ascending order (see compare/3 for a definition of this order) without
duplicates, and is non-empty. If there are no solutions, setof/3 fails. setof/3 may
succeed in more than one way, binding free variables in the Generator to different
values. This can be avoided by using existential quantifiers on the free variables in
front of the Generator, using ^/2. E.g., in A^p(A,B), A is existentially quantified.
Safe in concurrent apllications.

− The following properties should hold at call time:

Goal is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Set is a list. (basic props:list/1)

− The following properties should hold globally:

Template is not further instantiated. (basic props:not further inst/2)

PREDICATEbagof/3:
Usage: bagof(Template,Generator,Bag) 〈 • ISO • 〉

− Description: Finds all the instances of the Template produced by the Generator,
and returns them in the Bag in the order in which they were found. If the Generator
contains free variables which are not bound in the Template, it assumes that this is
like any other Prolog question and that you want bindings for those variables. This
can be avoided by using existential quantifiers on the free variables in front of the
Generator, using ^/2. Safe in concurrent applications.

− The following properties should hold at call time:

Generator is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold upon exit:

Template is any term. (basic props:term/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Set is a list. (basic props:list/1)

− The following properties should hold globally:

Template is not further instantiated. (basic props:not further inst/2)

89.3 Known bugs and planned improvements (conc_aggregates)

• Thread-safe setof/3 is not yet implemented.

• Thread-safe bagof/3 is not yet implemented.

Chapter 90: The socket interface 473

90 The socket interface

Author(s): Manuel Carro, Daniel Cabeza.

This module defines primitives to open sockets, send, and receive data from them. This allows
communicating with other processes, on the same machine or across the Internet. The reader
should also consult standard bibliography on the topic for a proper use of these primitives.

90.1 Usage and interface (sockets)
� �

• Library usage:

:- use_module(library(sockets)).

• Exports:

− Predicates:

connect_to_socket_type/4, connect_to_socket/3, bind_socket/3, socket_
accept/2, select_socket/5, socket_send/2, socket_recv_code/3, socket_recv/2,
socket_shutdown/2, hostname_address/2.

− Regular Types:

socket_type/1, shutdown_type/1.

• Other modules used:

− System library modules:

foreign_interface/foreign_interface_properties.

 	

90.2 Documentation on exports (sockets)

PREDICATEconnect to socket type/4:
Usage: connect_to_socket_type(Host,Port,Type,Stream)

− Description: Returns a Stream which connects to Host. The Type of connection can
be defined. A Stream is returned, which can be used to write/2 to, to read/2, to
socket_send/2 to, or to socket_recv/2 from the socket.

− Calls should, and exit will be compatible with:

Host is currently instantiated to an atom. (term typing:atom/1)

Port is an integer. (basic props:int/1)

Type is a valid socket type. (sockets:socket type/1)

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

Host is currently a term which is not a free variable. (term typing:nonvar/1)

Port is currently a term which is not a free variable. (term typing:nonvar/1)

Type is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is a free variable. (term typing:var/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

474 The Ciao System

PREDICATEconnect to socket/3:
Usage: connect_to_socket(Host,Port,Stream)

− Description: Calls connect_to_socket_type/4 with SOCK STREAM connection
type. This is the connection type you want in order to use the write/2 and read/2
predicates (and other stream IO related predicates).

− Call and exit should be compatible with:

Host is an atom. (basic props:atm/1)

Port is an integer. (basic props:int/1)

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

Host is currently a term which is not a free variable. (term typing:nonvar/1)

Port is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is a free variable. (term typing:var/1)

PREDICATEbind socket/3:
Usage: bind_socket(Port,Length,Socket)

− Description: Returs an AF INET Socket bound to Port (which may be assigned by
the OS or defined by the caller), and listens to it (hence no listen call in this set of
primitives). Length specifies the maximum number of pending connections.

− Calls should, and exit will be compatible with:

Port is an integer. (basic props:int/1)

Length is an integer. (basic props:int/1)

Socket is an integer. (basic props:int/1)

− The following properties should hold at call time:

Length is currently a term which is not a free variable. (term typing:nonvar/1)

Socket is a free variable. (term typing:var/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATEsocket accept/2:
Usage: socket_accept(Sock,Stream)

− Description: Creates a new Stream connected to Sock.

− Calls should, and exit will be compatible with:

Sock is an integer. (basic props:int/1)

Stream is an open stream. (streams basic:stream/1)

− The following properties should hold at call time:

Sock is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is a free variable. (term typing:var/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Chapter 90: The socket interface 475

PREDICATEselect socket/5:
Usage: select_socket(Socket,NewStream,TO_ms,Streams,ReadStreams)

− Description: Wait for data available in a list of Streams and in a Socket. Streams
is a list of Prolog streams which will be tested for reading. Socket is a socket (i.e.,
an integer denoting the O.S. port number) or a free variable. TO_ms is a number
denoting a timeout. Within this timeout the Streams and the Socket are checked
for the availability of data to be read. ReadStreams is the list of streams belonging
to Streams which have data pending to be read. If Socket was a free variable, it is
ignored, and NewStream is not checked. If Socket was instantiated to a port number
and there are connections pending, a connection is accepted and connected with the
Prolog stream in NewStream.

− Calls should, and exit will be compatible with:

Socket is an integer. (basic props:int/1)

NewStream is an open stream. (streams basic:stream/1)

TO_ms is an integer. (basic props:int/1)

Streams is a list of streams. (basic props:list/2)

ReadStreams is a list of streams. (basic props:list/2)

− The following properties should hold at call time:

Socket is currently a term which is not a free variable. (term typing:nonvar/1)

NewStream is a free variable. (term typing:var/1)

TO_ms is currently a term which is not a free variable. (term typing:nonvar/1)

Streams is currently a term which is not a free variable. (term typing:nonvar/1)

ReadStreams is a free variable. (term typing:var/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATEsocket send/2:
Usage: socket_send(Stream,String)

− Description: Sends String to the socket associated to Stream. The socket has to
be in connected state. String is not supposed to be NULL terminated, since it is a
Prolog string. If a NULL terminated string is needed at the other side, it has to be
explicitly created in Prolog.

− Calls should, and exit will be compatible with:

Stream is an open stream. (streams basic:stream/1)

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

String is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

476 The Ciao System

PREDICATEsocket recv code/3:
Usage: socket_recv_code(Stream,String,Length)

− Description: Receives a String from the socket associated to Stream, and returns its
Length. If Length is -1, no more data is available.

− Calls should, and exit will be compatible with:

Stream is an open stream. (streams basic:stream/1)

String is a string (a list of character codes). (basic props:string/1)

Length is an integer. (basic props:int/1)

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATEsocket recv/2:
Usage: socket_recv(Stream,String)

− Description: As socket_recv_code/3, but the return code is ignored.

− Call and exit should be compatible with:

Stream is an open stream. (streams basic:stream/1)

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEsocket shutdown/2:
Usage: socket_shutdown(Stream,How)

− Description: Shut down a duplex communication socket with which Stream is asso-
ciated. All or part of the communication can be shutdown, depending on the value
of How. The atoms read, write, or read_write should be used to denote the type of
closing required.

− Calls should, and exit will be compatible with:

Stream is an open stream. (streams basic:stream/1)

How is a valid shutdown type. (sockets:shutdown type/1)

− The following properties should hold at call time:

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

How is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Chapter 90: The socket interface 477

PREDICATEhostname address/2:
Usage: hostname_address(Hostname,Address)

− Description: Address is unified with the atom representing the address (in AF INET
format) corresponding to Hostname.

− Calls should, and exit will be compatible with:

Hostname is an atom. (basic props:atm/1)

Address is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Hostname is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

REGTYPEsocket type/1:
Defines the atoms which can be used to specify the socket type recognized by connect_
to_socket_type/4. Defined as follows:

socket_type(stream).
socket_type(dgram).
socket_type(raw).
socket_type(seqpacket).
socket_type(rdm).

Usage: socket_type(T)

− Description: T is a valid socket type.

REGTYPEshutdown type/1:
Usage: shutdown_type(T)

− Description: T is a valid shutdown type.

478 The Ciao System

Chapter 91: Sockets I/O 479

91 Sockets I/O

Author(s): Francisco Bueno.

This module provides two useful predicates for programming with sockets.

91.1 Usage and interface (sockets_io)
� �

• Library usage:

:- use_module(library(sockets_io)).

• Exports:

− Predicates:

serve_socket/3, safe_write/2.

• Other modules used:

− System library modules:

lists, sockets/sockets.

 	

91.2 Documentation on exports (sockets_io)

PREDICATEserve socket/3:
Meta-predicate with arguments: serve_socket(?,(pred 1),(pred 1)).

Usage: serve_socket(Socket,Server,Handler)

− Description: Handles the streams associated to Socket calling Server on one request
of each stream (as Server(Stream)), and Handler(Stream) if the stream is empty
(connection closed).

− The following properties should hold at call time:

Socket is a socket id. (sockets io:socket/1)

Server is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEsafe write/2:
Usage: safe_write(Stream,Term)

− Description: Writes Term to Stream in a way that it is safe for a socket connection
on Stream.

− The following properties should hold at call time:

Stream is an open stream. (streams basic:stream/1)

Term is any term. (basic props:term/1)

480 The Ciao System

Chapter 92: The Ciao Make Package 481

92 The Ciao Make Package

Author(s): Manuel Hermenegildo.

This package is used mainly in two main ways:

• When writing Makefiles for lpmake.

• When writing applications which use the make library.

In both cases, this is the package that defines the syntax and meaning of the dependency rules
used.

92.1 Usage and interface (make_doc)
� �

• Library usage:

• When writing Makefiles for lpmake, such makefiles start with:

:- module(_,_,[make]).

or

:- make(_,_).

(The latter uses the feature that an undefined declaration at the beginning of a file is
interpreted by Ciao as a use_module/3 including as third argument a package with the
same name, in this case make.)

• When writing applications which use the make package, then it is loaded as any other
package within the application.

Note: It is often useful to use the fsyntax package inside a Makefile (or when when using
the make library in other applications). If both make and fsyntax are used, then make
should appear before fsyntax in the list of packages.

• New operators defined:

::/2 [978,xfy], <-/2 [977,xfy], <=/2 [975,xfy], <-/1 [977,yf].

• Other modules used:

− System library modules:

make/make_rt.

 	

92.2 Other information (make_doc)

92.2.1 The Dependency Rules

The package allows defining the following types of rules:

TargetSuffix <= SourceSuffix :: SourceRoot :- BodyLiterals.
A rule of this form declares that in order to produce the file with suffix TargetSuf-
fix from a source file with the suffix SourceSuffix and root name SourceRoot the
commands in BodyLiterals must be executed. BodyLiterals is a standard Ciao Pro-
log clause body, i.e., a comma-separated conjunction of literals. When writing the
script, SourceRoot is typically left as a variable, to be instantiated by lpmake when
the script is run to the root of name of the file to be processed. This allows using
the value of SourceRoot in BodyLiterals. For example, the following rule:

482 The Ciao System

:- use_module(library(terms), [atom_concat/2]).

dvi <= tex :: FileRoot :-
atom_concat([’latex ’,FileRoot,’.tex’],Command),
system(Command).

states that we can generate a file File.dvi if we have a file named File.tex and
that the command to do so is latex File.tex. Thus, if this rule appears in file
Makefile.pl and we issue the command lpmake paper.dvi the following occurs:

• If paper.dvi does not exist and paper.tex exists, then paper.dvi is generated
from paper.tex by issuing the system command latex paper.tex.

• If paper.dvi already exists, nothing is done.

• If paper.tex does not exist, an error is reported.

Target <- :- BodyLiterals.
A rule of this form declares that in order to produce the file Target the commands
in BodyLiterals must be executed. Target need not be a real file: it can also be
simply the name of the rule, which is used to invoke it (as a procedure name). For
example, the following rule, when the command lpmake realclean is issued, deletes
temporary files in the LaTeX application:

:- use_module(library(make(system_extra))).

clean <- :-
ls(’*aux|*log|*~’,Files)
delete_files(Files).

Target <- Deps :- BodyLiterals.
A rule of this form declares that in order to produce the file Target, first targets
Deps will be called (i.e., the elements of Deps are either other targets with rules
defined for them, or a file or files which are already present or which can –and will
be– generated from other available files using other rules). Then, the commands
in BodyLiterals will be executed. Deps may be one target or a list of targets. For
example, the following rule, when the command lpmake realclean is issued, cleans
all the temporary files in the LaTeX application (including .dvi and .ps files). It
requires that clean be executed first:

:- use_package(fsyntax).
:- use_module(library(make(system_extra))).

realclean <- clean :-
delete_files(~ls(’*dvi|*ps’)).

The following rule states that in order to meet the target view, target paper.ps
must be available or generated. For example, lpmake view can be used to call the
ghostview visualizer on paper.ps. Note the use of a globally defined predicate main
which is called in two places in the rule, and could be used in other rules in the
same file (main := paper. is equivalent to the fact main(paper). –see the fsyntax
library):

:- use_package(fsyntax).
:- use_module(library(make(system_extra))).
:- use_module(library(terms), [atom_concat/2]).

main := paper.

view <- ~atom_concat([~main,’.ps’]) :-

Chapter 92: The Ciao Make Package 483

system(~atom_concat([’ghostview ’,~main,’.ps’])).

In addition to these rules, the configuration file can define normal predicates in the usual
way, or import predicates from other modules, all of which can be called from the bodies of the
dependency rules. For example, the system_extra library (an extension of the system library)
defines many system predicates in a form which makes them very useful inside Makefiles,
specially if the fsyntax package is used (see the examples below).

If lpmake is called without an explicit target as argument, then the first target rule in the
Makefile is used. This is useful in that the first rule can be seen as the default rule.

92.2.2 Specifying Paths

Using the vpath/1 predicate it is possible in configuration files to define several paths in
which files related to the rules can be located. In this way, not all files need to be in the same
directory as the configuration file. For example:

:- use_package(fsyntax).

vpath := ’/home/clip/Systems/ciao/lib’.
vpath := ’/home/clip/Systems/ciao/library’.
vpath := ’/home/clip/Systems/lpdoc/lib’.

92.2.3 Documenting Rules

It is also possible to define documentation for the rules:

target_comment(Target) :- BodyLiterals.
A rule of this form allows documenting the actions related to the target. The body
(BodyLiterals) will be called in two circumstances:

• If Target is called during execution of ’lpmake commands’.

• When calling ’lpmake -h’.

Using noun forms (generation of foo instead of generating foo) in comments helps
this dual purpose. For example, the following rule:

target_comment(realclean) :-
display(’Cleanup of all generated files.’).

will produce output in the two cases pointed out above.

dependency_comment(SourceSuffix, TargetSuffix, SourceRoot) :- BodyLiterals.
Same as the previous rule, but for suffix rules. See, for example, the following generic
rule:

:- use_module(library(terms), [atom_concat/2]).

dependency_comment(SSuffix,TSuffix,FileBase) :-
display(~atom_concat([’Generation of ’,FileBase,’.’,
TSuffix, ’ from ’,FileBase,’.’,SSuffix])).

92.2.4 An Example of a Makefile

The following is a simple example of a Makefile showing some basic functionality (this is
MakefileExample.pl in the example_simple directory in the make library.):

%% ---
:- module(_,_,[make,fsyntax]).
:- use_module(library(make(system_extra))).

484 The Ciao System

:- use_module(library(lists), [append/3]).
:- use_module(library(terms), [atom_concat/2]).

:- discontiguous(comment/2).

%% ---
%% A simple target. Defines how to produce file ’hw’.

hw <- [] :-
writef("Hello world", hw).

%% A comment describing this target (see below):
comment(hw,[’Generation of file hw’]).

%% ---
%% A target with a dependency. ’hwhw’ requires ’hw’.

hwhw <- [hw] :-
readf(hw,Content),
append(Content,[0’\n|Content],DoubleContent),
writef(DoubleContent,hwhw).

comment(hwhw,[’Generation of file hwhw’]).

%% ---
%% A simple target. Defines how to produce file ’datafile.simple’.

’datafile.simple’ <- :-
writef("Hello world", ’datafile.simple’).

comment(’datafile.simple’,[’Generation of file datafile.simple’]).

%% ---
%% A dependency based on suffixes:
%% <file>.double is generated always from <file>.simple

double <= simple :: Name :-
readf(~atom_concat([Name,’.simple’]),Content),
append(Content,[0’\n|Content],DoubleContent),
writef(DoubleContent,~atom_concat([Name,’.double’])).

%% ---
%% A dependency based on suffixes with a precondition.
%% <file>.double is generated always from <file>.simple, once
%% precond is done

boo <- :-
display((double <= simple :: name <- precond :- body1, body2)).

%% ---
%% Example using library predicates

Chapter 92: The Ciao Make Package 485

clean <- [] # "Cleanup of temporary files " :-
delete_files(~ls(’*~|*.asr|*.itf|*.po’)).

realclean <- clean :-
delete_files(~ls(’hw|hwhw|*simple|*double’)).

comment(realclean,[’Cleanup of all generated files’]).

%% ---
%% Reporting progress and documenting commands:
%% If target_comment/1 is defined it can be used to produce user-defined
%% output when targets are processed and/or documentation on what each
%% target does (used for example when lpmake is called with -h). Using
%% ’generation of foo’ instead of ’generating foo’ in comments helps in this
%% dual purpose.
%% ---

:- push_prolog_flag(multi_arity_warnings,off).
%% Make calls target_comment/1 for simple targets:
target_comment(Target) :-

comment(Target,Comment),
display(~atom_concat([~atom_concat(Comment), ’\n’])).

:- pop_prolog_flag(multi_arity_warnings).

%% Similarly, make calls dependency_comment/3 for dependencies (only
%% during execution, not when documenting -h).
dependency_comment(SSuffix,TSuffix,FileBase) :-

display(~atom_concat([’Generation of ’,FileBase,TSuffix,
’ from ’,FileBase,SSuffix,’\nl’])).

The following are a few commands that can be used on the previous file (see file
CommandsToTry in the example_simple directory in the make library):

lpmake -m MakefileExample.pl hwhw
(Generate file hwhw --needs to generate file hw first)

lpmake -m MakefileExample.pl datafile.double
(Generate file datafile.double --needs to generate file
datafile.simple first)

lpmake -m MakefileExample.pl realclean
(Cleanup)

lpmake -h -m MakefileExample.pl
(Help on general use of lpmake and commands available in MakefileExample.pl)

See also the LaTeX example in the example_latex directory in the make library.

486 The Ciao System

Chapter 93: Predicates Available When Using The Make Package 487

93 Predicates Available When Using The Make
Package

Author(s): Manuel Hermenegildo, Edison Mera.

This is the run-time module which implements the predicates which are provided when using
the make library package in a given application. For example, they are used internally by
lpmake.

93.1 Usage and interface (make_rt)
� �

• Library usage:

This module is loaded automatically when the make library package is used.

• Exports:

− Predicates:

make/1, make_option/1, verbose_message/1, verbose_message/2, dot_concat/2,
call_unknown/1, all_values/2,
get_value/2, get_value_def/3, get_all_values/2, name_value/2, set_name_
value/2, cp_name_value/2, get_name_value/3, get_name_value_string/3, add_
name_value/2, del_name_value/1, check_var_exists/1, find_file/2, vpath/1,
add_vpath/1, vpath_mode/3, add_vpath_mode/3, bold_message/1, bold_message/2,
normal_message/2, bolder_message/1, bolder_message/2, newer/2, register_
module/1, unregister_module/1, push_name_value/3, pop_name_value/1, push_
active_config/1, pop_active_config/0, get_active_config/1, dyn_load_cfg_
module_into_make/1, get_settings_nvalue/1, apply_vpath_mode/4, get_name/2.

− Regular Types:

target/1.

• Other modules used:

− System library modules:

compiler/compiler, filenames, terms, system, format, lists, messages, make/up_
to_date, aggregates.

 	

93.2 Documentation on exports (make_rt)

PREDICATEmake/1:
Usage: make(TargetList)

− Description: This is the main entry point to the make library. It makes the list
of targets one by one as well as any intermediate targets needed as dictated by the
dependency rules.

− The following properties should hold at call time:

TargetList is a list of targets. (basic props:list/2)

REGTYPEtarget/1:
Usage: target(T)

− Description: T is a Makefile target.

488 The Ciao System

PREDICATEmake option/1:
The predicate is of type data.

Usage: make_option(Option)

− Description: Asserting/retracting facts of this predicate sets/clears library options.
Default is no options (i.e., the predicate is undefined). The following values are
supported:

make_option(’-v’). % Verbose: prints progress messages (useful
% for debugging rules).

− The following properties should hold at call time:

Option is an atom. (basic props:atm/1)

PREDICATEverbose message/1:
No further documentation available for this predicate.

PREDICATEverbose message/2:
Usage: verbose_message(Text,ArgList)

− Description: The text provided in Text is printed as a message, using the arguments
in ArgList, if make_option(’-v’) is defined. Otherwise nothing is printed.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format control/1)

ArgList is a list. (basic props:list/1)

PREDICATEdot concat/2:
No further documentation available for this predicate.

PREDICATEcall unknown/1:
No further documentation available for this predicate.

PREDICATEall values/2:
No further documentation available for this predicate.

PREDICATEget value/2:
No further documentation available for this predicate.

PREDICATEget value def/3:
No further documentation available for this predicate.

Chapter 93: Predicates Available When Using The Make Package 489

PREDICATEget all values/2:
Usage: get_all_values(Name,Values)

− Description: Values are all the possible values of Name.

PREDICATEname value/2:
No further documentation available for this predicate.

The predicate is of type data.

PREDICATEset name value/2:
No further documentation available for this predicate.

PREDICATEcp name value/2:
Usage: cp_name_value(Source,Target)

− Description: Copy the variable values from Source to Target

− The following properties should hold at call time:

Source is an atom. (basic props:atm/1)

Target is an atom. (basic props:atm/1)

PREDICATEget name value/3:
No further documentation available for this predicate.

PREDICATEget name value string/3:
No further documentation available for this predicate.

PREDICATEadd name value/2:
No further documentation available for this predicate.

PREDICATEdel name value/1:
No further documentation available for this predicate.

PREDICATEcheck var exists/1:
Usage: check_var_exists(Var)

− Description: Fails printing a message if variable Var does not exist.

PREDICATEfind file/2:
No further documentation available for this predicate.

490 The Ciao System

PREDICATEvpath/1:
No further documentation available for this predicate.

The predicate is of type data.

PREDICATEadd vpath/1:
No further documentation available for this predicate.

PREDICATEvpath mode/3:
No further documentation available for this predicate.

The predicate is of type data.

PREDICATEadd vpath mode/3:
No further documentation available for this predicate.

PREDICATEbold message/1:
No further documentation available for this predicate.

PREDICATEbold message/2:
No further documentation available for this predicate.

PREDICATEnormal message/2:
No further documentation available for this predicate.

PREDICATEbolder message/1:
No further documentation available for this predicate.

PREDICATEbolder message/2:
No further documentation available for this predicate.

PREDICATEnewer/2:
No further documentation available for this predicate.

PREDICATEregister module/1:
No further documentation available for this predicate.

Chapter 93: Predicates Available When Using The Make Package 491

PREDICATEunregister module/1:
No further documentation available for this predicate.

PREDICATEpush name value/3:
Usage: push_name_value(Name,Var,R)

− Description: Push variable name Name with all values of variable Var and returns
R, an abstract type to pass to pop_name_value/1 to undo the push changes. Push
cannot be nested.

PREDICATEpop name value/1:
Usage: pop_name_value(R)

− Description: Restores the value of the variable indicated by the abstract type R.
Notice that R must be the argument returned by push_name_value/2.

PREDICATEpush active config/1:
No further documentation available for this predicate.

PREDICATEpop active config/0:
No further documentation available for this predicate.

PREDICATEget active config/1:
No further documentation available for this predicate.

PREDICATEdyn load cfg module into make/1:
Usage: dyn_load_cfg_module_into_make(ConfigFile)

− Description: Used to load dynamically a module (typically, a Makefile) into the
make library from the application using the library.

− The following properties should hold at call time:

ConfigFile is a source name. (streams basic:sourcename/1)

PREDICATEget settings nvalue/1:
Usage: get_settings_nvalue(Pred)

− Description: Executes Pred as unkown call, in other words, it is useful to execute
predicates that have been loaded by register_module/1.

Example: get settings nvalue(component options(ciao, A, B)).

− The following properties should hold at call time:

Pred is any term. (basic props:term/1)

492 The Ciao System

PREDICATEapply vpath mode/4:
No further documentation available for this predicate.

PREDICATEget name/2:
Usage: get_name(Path,Name)

− Description: Name is the file name for the path Path

(UNDOC REEXPORT)up to date/2:
Imported from up_to_date (see the corresponding documentation for details).

93.3 Known bugs and planned improvements (make_rt)

• The current handle of help messages is defficient. It must be in a standar form, and the
user of this library only must be allowed to add messages, not procedures to print it.

• target comment/1 does not work, why? :-(.

Chapter 94: Additional operating system utilities 493

94 Additional operating system utilities

Author(s): Manuel Hermenegildo.

This is a (temporary) extension to library system (which it reexports). It implements func-
tionality that is often convenient in Makefiles. Much of this should probably end up eventually
in system, but once we have worked out the best interface and, in some cases, the proper im-
plementation (the implementations in here are in some cases just calls to Un*x shell primitives
or commands).

94.1 Usage and interface (system_extra)
� �

• Library usage:

:- use_module(library(system_extra)).

• Exports:

− Predicates:

del_dir_if_empty/1, move_files/2, move_file/2, copy_files/2, copy_files/3,
copy_files_nofail/3, cat/2, cat_append/2, symbolic_link/2, symbolic_link/3,
delete_files/1, del_files_nofail/1, del_file_nofail/1, del_file_nofail/2,
del_endings_nofail/2, ls/3, ls/2, filter_alist_pattern/3, --/1, do/2, do/3,
do/4, do/5, try_finally/3, set_owner/2, readf/2, datime_string/1, datime_
string/2, datime_atom/1, datime_atom/2, no_tr_nl/2, replace_strings/3,
replace_strings_in_file/3, writef/3, writef/2, add_suffix/3, add_preffix/3,
writef_list/3, writef_list/2, etags/2, any_to_term/2, touch/1, get_perms/2,
set_
perms/2, set_exec_perms/2, mkdir_perm/2, convert_permissions/2, convert_
permissions/4, execute_permissions/2, execute_permissions/4, do_str/3, do_
str_without_nl/3, do_str_without_nl__popen/2, do_atmlist__popen/2.

− Regular Types:

pattern/1, do_options/1.

• Other modules used:

− System library modules:

regexp/regexp_code, system, messages, terms, lists, llists, sort, read, write,
file_utils, strings.

 	

94.2 Documentation on exports (system_extra)

PREDICATEdel dir if empty/1:
No further documentation available for this predicate.

PREDICATEmove files/2:
move_files(Files,Dir)

Move Files to directory Dir (note that to move only one file to a directory, rename_
file/2 can be used).

Usage:

494 The Ciao System

− The following properties should hold at call time:

Files is a list of atms. (basic props:list/2)

Dir is an atom. (basic props:atm/1)

PREDICATEmove file/2:
No further documentation available for this predicate.

PREDICATEcopy files/2:
copy_files(Files,Dir)

Copy Files to directory Dir (note that to move only one file to a directory, rename_
file/2 can be used).

Usage:

− The following properties should hold at call time:

Files is a list of atms. (basic props:list/2)

Dir is an atom. (basic props:atm/1)

PREDICATEcopy files/3:
No further documentation available for this predicate.

PREDICATEcopy files nofail/3:
No further documentation available for this predicate.

PREDICATEcat/2:
No further documentation available for this predicate.

PREDICATEcat append/2:
No further documentation available for this predicate.

PREDICATEsymbolic link/2:
Usage: symbolic_link(Source,Dir)

− Description: Create a symbolic link in Dir pointing to file or directory Source (per-
forms a copy in Windows).

PREDICATEsymbolic link/3:
Usage: symbolic_link(Source,Dir,NewName)

− Description: Create a symbolic link in Dir pointing to file or directory Source and
give it name NewName (performs a copy in Windows).

Chapter 94: Additional operating system utilities 495

PREDICATEdelete files/1:
No further documentation available for this predicate.

PREDICATEdel files nofail/1:
No further documentation available for this predicate.

PREDICATEdel file nofail/1:
No further documentation available for this predicate.

PREDICATEdel file nofail/2:
No further documentation available for this predicate.

PREDICATEdel endings nofail/2:
No further documentation available for this predicate.

PREDICATEls/3:
ls(Directory,Pattern,FileList)

FileList is the unordered list of entries (files, directories, etc.) in Directory whose
names match Pattern.If Directory does not exist FileList is empty.

Usage:

− The following properties should hold at call time:

Directory is an atom. (basic props:atm/1)

system extra:pattern(Pattern) (system extra:pattern/1)

FileList is a free variable. (term typing:var/1)

− The following properties hold upon exit:

FileList is a list of atms. (basic props:list/2)

PREDICATEls/2:
ls(Pattern,FileList)

FileList is the unordered list of entries (files, directories, etc.) in the current directory
whose names match Pattern (same as ls(’.’,Pattern,FileList)).

Usage:

− The following properties should hold at call time:

system extra:pattern(Pattern) (system extra:pattern/1)

FileList is a free variable. (term typing:var/1)

− The following properties hold upon exit:

FileList is a list of atms. (basic props:list/2)

496 The Ciao System

PREDICATEfilter alist pattern/3:
filter_alist_pattern(UnFiltered,Pattern,Filtered)

Filtered contains the elements of UnFiltered which match with Pattern.

Usage:

− The following properties should hold at call time:

UnFiltered is a list of atms. (basic props:list/2)

system extra:pattern(Pattern) (system extra:pattern/1)

Filtered is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Filtered is a list of atms. (basic props:list/2)

PREDICATE-/1:
No further documentation available for this predicate.

Meta-predicate with arguments: -goal.

PREDICATE–/1:
No further documentation available for this predicate.

Meta-predicate with arguments: --goal.

PREDICATEdo/2:
Usage: do(Command,Action)

− Description: Same as do/3 but omitting the return code.

− The following properties should hold at call time:

Command is a list of atms. (basic props:list/2)

Action is a list of do_optionss. (basic props:list/2)

PREDICATEdo/3:
Usage: do(Command,Action,ReturnCode)

− Description: Same as do/5 but omitting the files.

− The following properties should hold at call time:

Command is a list of atms. (basic props:list/2)

Action is a list of do_optionss. (basic props:list/2)

− The following properties should hold upon exit:

ReturnCode is a number. (basic props:num/1)

PREDICATEdo/4:
Usage: do(Command,OutputFile,ErrorFile,Action)

− Description: Same as do/5 but omitting the returned code.

Chapter 94: Additional operating system utilities 497

− The following properties should hold at call time:

Command is a list of atms. (basic props:list/2)

OutputFile is an atom. (basic props:atm/1)

ErrorFile is an atom. (basic props:atm/1)

Action is a list of do_optionss. (basic props:list/2)

PREDICATEdo/5:
Usage: do(Command,OutputFile,ErrorFile,Action,ReturnCode)

− Description: Executes Command redirecting standard output to OutputFile and stan-
dard error to ErrorFile. ReturnCode is the code returned by the execution of
Command. Action is a list of atoms that specify the actions to be completed in case
the Command fails. Three of these options: fail, exception, and nofail are mutually
exclusive. The rest of the options are flags that mean (type do_options/1):

inform_nofail: informs about the error code returned by the execution of the
command.

show_output_on_error: shows the content of OutputFile in case of error.

show_error: shows the content of ErrorFile in case of error.

silent: do not print any error message. The option inform_nofail overrides this
option in case of fail.

verbose_command: shows the command before being executed. Useful for tracing.

verbose: verbose_command plus overrides the error and output file settings and
outputs everything to user_output and user_error.

− The following properties should hold at call time:

Command is a list of atms. (basic props:list/2)

OutputFile is an atom. (basic props:atm/1)

ErrorFile is an atom. (basic props:atm/1)

Action is a list of do_optionss. (basic props:list/2)

− The following properties should hold upon exit:

ReturnCode is a number. (basic props:num/1)

PREDICATEtry finally/3:
Meta-predicate with arguments: try_finally(goal,goal,goal).

Usage: try_finally(Start,Goal,End)

− Description: Calls initialization goal Start and then calls Goal Goal, but always con-
tinues with the evaluation of End. If Goal is non-deterministic, in case of backtracking
Start is called again before redoing Goal.

PREDICATEset owner/2:
No further documentation available for this predicate.

PREDICATEreadf/2:
No further documentation available for this predicate.

498 The Ciao System

PREDICATEdatime string/1:
No further documentation available for this predicate.

PREDICATEdatime string/2:
No further documentation available for this predicate.

PREDICATEdatime atom/1:
No further documentation available for this predicate.

PREDICATEdatime atom/2:
No further documentation available for this predicate.

PREDICATEno tr nl/2:
No further documentation available for this predicate.

PREDICATEreplace strings/3:
No further documentation available for this predicate.

PREDICATEreplace strings in file/3:
No further documentation available for this predicate.

PREDICATEwritef/3:
No further documentation available for this predicate.

PREDICATEwritef/2:
No further documentation available for this predicate.

PREDICATEadd suffix/3:
No further documentation available for this predicate.

PREDICATEadd preffix/3:
No further documentation available for this predicate.

PREDICATEwritef list/3:
No further documentation available for this predicate.

Chapter 94: Additional operating system utilities 499

PREDICATEwritef list/2:
No further documentation available for this predicate.

PREDICATEetags/2:
No further documentation available for this predicate.

PREDICATEany to term/2:
any_to_term(Any,Term)

Interprets the result of print Any as a term Term

PREDICATEtouch/1:
touch(File)

Updates the access and modification time of File to current time.

PREDICATEget perms/2:
No further documentation available for this predicate.

PREDICATEset perms/2:
No further documentation available for this predicate.

PREDICATEset exec perms/2:
No further documentation available for this predicate.

PREDICATEmkdir perm/2:
No further documentation available for this predicate.

PREDICATEconvert permissions/2:
No further documentation available for this predicate.

PREDICATEconvert permissions/4:
No further documentation available for this predicate.

PREDICATEexecute permissions/2:
No further documentation available for this predicate.

500 The Ciao System

PREDICATEexecute permissions/4:
No further documentation available for this predicate.

REGTYPEpattern/1:
A regular type, defined as follows:

pattern(A) :-
atom(A).

REGTYPEdo options/1:
A regular type, defined as follows:

do_options(fail).
do_options(nofail).
do_options(silent).
do_options(exception).
do_options(halt).
do_options(inform_nofail).
do_options(show_output_on_error).
do_options(show_error_on_error).
do_options(verbose).
do_options(verbose_command).

PREDICATEdo str/3:
No further documentation available for this predicate.

PREDICATEdo str without nl/3:
No further documentation available for this predicate.

PREDICATEdo str without nl popen/2:
No further documentation available for this predicate.

PREDICATEdo atmlist popen/2:
No further documentation available for this predicate.

(UNDOC REEXPORT)system error report/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)replace characters/4:
Imported from system (see the corresponding documentation for details).

Chapter 94: Additional operating system utilities 501

(UNDOC REEXPORT)no swapslash/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)cyg2win/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)winpath c/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)winpath/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)winpath/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)using windows/0:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)rename file/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete file/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)set exec mode/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)chmod/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)chmod/2:
Imported from system (see the corresponding documentation for details).

502 The Ciao System

(UNDOC REEXPORT)fmode/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time0/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file properties/6:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file property/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)mktemp in tmp/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)mktemp/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)directory files/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)wait/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/8:
Imported from system (see the corresponding documentation for details).

Chapter 94: Additional operating system utilities 503

(UNDOC REEXPORT)exec/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/4:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen mode/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/0:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)cd/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)working directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make dirpath/1:
Imported from system (see the corresponding documentation for details).

504 The Ciao System

(UNDOC REEXPORT)make dirpath/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)umask/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current executable/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current host/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get address/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get tmp dir/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get grnam/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get pwnam/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get gid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get uid/1:
Imported from system (see the corresponding documentation for details).

Chapter 94: Additional operating system utilities 505

(UNDOC REEXPORT)get pid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file dir name/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)extract paths/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)dir path/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)copy file/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)copy file/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)c errno/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)del env/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)set env/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current env/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)setenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)getenvstr/2:
Imported from system (see the corresponding documentation for details).

506 The Ciao System

(UNDOC REEXPORT)datime struct/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime/9:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)time/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)pause/1:
Imported from system (see the corresponding documentation for details).

PART VII - Ciao extensions 507

PART VII - Ciao extensions

� �

Author(s): The CLIP Group.

The libraries documented in this part extend the Ciao language in several different ways.
The extensions include:

• pure Prolog programming (well, this can be viewed more as a restriction than an extension);

• feature terms or records (i.e., structures with names for each field);

• parallel programming (e.g., &-Prolog style);

• functional syntax;

• higher-order;

• global variables;

• setarg and undo;

• delaying predicate execution;

• active modules;

• breadth-first execution;

• iterative deepening-based execution;

• constraint logic programming;

• object oriented programming.

 	

508 The Ciao System

Chapter 95: Pure Prolog package 509

95 Pure Prolog package

Author(s): The CLIP Group.

This library package allows the use of pure Prolog in a Ciao module/program. It is based on
the fact that if an engine module is imported explicitly then all of them have to be imported
explicitly. The engine modules are:

• engine(arithmetic)

Chapter 20 [Arithmetic], page 151.

• engine(atomic_basic)

Chapter 19 [Basic predicates handling names of constants], page 141.

• engine(attributes)

Chapter 28 [Attributed variables], page 201.

• engine(basic_props)

Chapter 15 [Basic data types and properties], page 105.

• engine(basiccontrol)

Chapter 13 [Control constructs/predicates], page 99.

• engine(data_facts)

Chapter 25 [Fast/concurrent update of facts], page 187.

• engine(exceptions)

Chapter 23 [Exception and Signal handling], page 177.

• engine(io_aux)

Chapter 27 [Message printing primitives], page 197.

• engine(io_basic)

Chapter 22 [Basic input/output], page 169.

• engine(prolog_flags)

Chapter 24 [Changing system behaviour and various flags], page 181.

• engine(streams_basic)

Chapter 21 [Basic file/stream handling], page 159.

• engine(system_info)

〈undefined〉 [Gathering some basic internal info], page 〈undefined〉.

• engine(term_basic)

Chapter 17 [Basic term manipulation], page 129.

• engine(term_compare)

Chapter 18 [Comparing terms], page 135.

• engine(term_typing)

Chapter 16 [Extra-logical properties for typing], page 121.

Note that if any of these modules is explicitely imported in a program then the language
defaults to Pure Prolog, plus the functionality added by the modules explicitely imported.

It is recommended that if you explicitely import an engine module you also use this package,
which will guarantee that the predicate true/0 is defined (note that this is the only Ciao builtin
which cannot be redefined).

510 The Ciao System

95.1 Usage and interface (pure_doc)
� �

• Library usage:

:- use_package(pure).

or

:- module(...,...,[pure]).

 	

95.2 Known bugs and planned improvements (pure_doc)

• Currently, the following builtin predicates/program constructs cannot be redefined, in ad-
dition to true/0: (->)/2 (,)/2 (+)/1 if/3

Chapter 96: Multiple Argument Indexing 511

96 Multiple Argument Indexing

Author(s): Anil Nair (original work), Tom Howland
(http://home.pacbell.net/tomjdnh/pd.html, derived the original work), Francisco Bueno
(port to Ciao).

This package is an extension of the idea of Prolog indexing, usually performed, in a limited
way, on the first argument. This package provides more powerful indexing schemes. It lets you
pick different arguments to index on, and provides for different combinations of arguments to
index on. E.g., it will let you index on the first and third argument or the second and the third
argument of a predicate.

The indexing is based on computing a hash value for the terms to be indexed upon. Note,
however, that the current implementation of the package is done at the source level, so it may
sometimes not be as fast as expected. Given this, this version of the package pays off only when
the amount of clashing that your original predicate causes without the package superseeds the
cost of the hashing function in the package. Such amount of course depends on the number and
the form of the facts in your predicate.

96.1 Usage and interface (indexer_doc)
� �

• Library usage:

This facility is used as a package, thus either including indexer in the package list of the
module, or by using the use_package/1 declaration. The facility predicate hash_term/2,
documented here, is defined in library module indexer(hash).

• Exports:

− Predicates:

hash_term/2.

• Other modules used:

− System library modules:

assertions/native_props, indexer/hash.

 	

96.2 Documentation on exports (indexer_doc)

PREDICATEhash term/2:
hash_term(Term,HashValue)

Provides an efficient way to calculate an integer HashValue for a ground Term.

Usage 1: hash_term(T,N)

− Description: N is a hashing index for T.

− The following properties should hold at call time:

T is currently ground (it contains no variables). (term typing:ground/1)

N is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

N is an integer. (basic props:int/1)

Usage 2: hash_term(T,N)

512 The Ciao System

− The following properties should hold at call time:

T is not ground. (native props:nonground/1)

N is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

N is a free variable. (term typing:var/1)

96.3 Documentation on internals (indexer_doc)

DECLARATIONindex/1:
Usage: :- index(IndexSpecs).

− Description: Declares an indexing scheme for a predicate. All specs of IndexSpecs
must be terms for the same predicate. Each spec declares an indexing on a com-
bination of the arguments. Indexing will be performed using any of the specs in
IndexSpecs (being thus interpreted as an or).

You should use a * in an argument position if you wish to hash on the entire term in
that argument. If a + is used only one level of the term in the argument is used for
hashing. An i is used to indicate that argument is already an integer, and therefore
its own value will be used for hashing. The argspec ? simply indicates not to use the
argument for indexing.

For example, the index specification:

:- index foo(+,?,*,i), foo(?,?,?,i).

declares indexing for foo/4 either on a combination of the first, third, and fourht
arguments, or only on the last argument, which is an integer. In the first case, only
the principal functor of the first argument will be used for hashing; the third argument
will be used in its entirety.

The argspec n is a pragmatic extension and can not be used in conjunction with the
other specifiers aside from ?. It stands for "nonvar" and implies that the argument will
not be used for hashing, since only ground terms can effectively be used in hashing.
Thus, it can not be used in combination with other specifiers within a particular index
specification. It is often the fastest thing to use.

− The following properties should hold upon exit:

IndexSpecs is an index specification. (indexer doc:indexspecs/1)

REGTYPEindexspecs/1:
An index specification is defined as follows:

indexspecs(Spec) :-
indexspec(Spec).

indexspecs((Spec,Specs)) :-
indexspec(Spec),
indexspecs(Specs).

indexspec(Spec) :-
Spec=..[_F|Args],
list(Args,argspec).

Usage: indexspecs(IndexSpecs)

− Description: IndexSpecs is an index specification.

Chapter 96: Multiple Argument Indexing 513

REGTYPEargspec/1:
An argument hash specification is defined as follows:

argspec(+).
argspec(*).
argspec(i).
argspec(n).
argspec(?).

Usage: argspec(Spec)

− Description: Spec is an argument hash specification.

514 The Ciao System

Chapter 97: Higher-order 515

97 Higher-order

Author(s): Daniel Cabeza.

This module is a wrapper for the implementation-defined predicate call/1, and it implements
the call/2 predicate.

97.1 Usage and interface (hiord_rt)
� �

• Library usage:

:- use_module(library(hiord_rt)).

• Exports:

− Predicates:

call/1, call/2, SYSCALL/1, $nodebug_call/1, $meta_call/1.

 	

97.2 Documentation on exports (hiord_rt)

PREDICATEcall/1:
call(G)

Executes goal G, restricting the scope of the cuts to the execution of G. Equivalent to
writing a variable G in a goal position.

Meta-predicate with arguments: call(goal).

Usage: 〈 • ISO • 〉

− The following properties should hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

PREDICATEcall/2:
call(Pred,Arg1)

There exists a set of builtin predicates of the form call/N with N > 1 which execute
predicate Pred given arguments Arg1 ... ArgX. If Pred has already arguments Arg1 is
added to the start, the rest to the end. This predicate, when Pred is a variable, can be
written using the special Ciao syntax Pred(Arg1,...,ArgX).

Usage:

− Call and exit should be compatible with:

Arg1 is any term. (basic props:term/1)

− The following properties should hold at call time:

Pred is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Arg1 is any term. (basic props:term/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic props:native/1)

516 The Ciao System

PREDICATESYSCALL/1:
Usage:

− The following properties should hold at call time:

Arg1 is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATE$nodebug call/1:
Meta-predicate with arguments: $nodebug_call(goal).

Usage:

− The following properties should hold at call time:

Arg1 is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATE$meta call/1:
Usage: $meta_call(A)

− The following properties should hold at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

A is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as call(A). (basic props:native/2)

97.3 Known bugs and planned improvements (hiord_rt)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 98: Higher-order predicates 517

98 Higher-order predicates

Author(s): Daniel Cabeza, Manuel Carro, Edison Mera.

This library implements a few basic higher-order predicates. These add functionality to the
basic higher-order functionality of Ciao. Examples of the latter are:

Using pred(1):

list(L, functor(_,2))
list(L, >(0))

Using pred(2):

98.1 Usage and interface (hiordlib)
� �

• Library usage:

:- use_module(library(hiordlib)).

• Exports:

− Predicates:

map/3, map/4, foldl/4, minimum/3, split/4.

• Other modules used:

− System library modules:

assertions/native_props.

 	

98.2 Documentation on exports (hiordlib)

PREDICATEmap/3:
Meta-predicate with arguments: map(?,(pred 2),?).

General properties: map(A,B,C)

− If the following properties should hold at call time:

term basic:A=[1,3,2] (term basic:= /2)

term basic:B=arg(f(a,b,c,d)) (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[a,c,b] (term basic:= /2)

then the following properties should hold globally:

All the calls of the form map(A,B,C) do not fail. (native props:not fails/1)

All calls of the form map(A,B,C) are deterministic. (native props:is det/1)

map(A,B,C)

− If the following properties should hold at call time:

term basic:A=[1,3,2] (term basic:= /2)

term basic:B=nth([a,b,c,d]) (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[a,c,b] (term basic:= /2)

then the following properties should hold globally:

All the calls of the form map(A,B,C) do not fail. (native props:not fails/1)

All calls of the form map(A,B,C) are deterministic. (native props:is det/1)

518 The Ciao System

map(A,B,C)

− If the following properties should hold at call time:

term basic:A=[[68],[67]] (term basic:= /2)

term basic:B=append([46]) (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[[68,46],[67,46]] (term basic:= /2)

then the following properties should hold globally:

All the calls of the form map(A,B,C) do not fail. (native props:not fails/1)

All calls of the form map(A,B,C) are deterministic. (native props:is det/1)

Usage: map(LList,Op,RList)

− Description: Examples of use:

map([1,3,2], arg(f(a,b,c,d)), [a,c,b]) or
map([1,3,2], nth([a,b,c,d]), [a,c,b])
map(["D","C"], append("."), ["D.","C."])

PREDICATEmap/4:
Meta-predicate with arguments: map(?,(pred 3),?,?).

General properties: map(A,B,C,D)

− If the following properties should hold at call time:

term basic:A=[1,3,2] (term basic:= /2)

term basic:B=((L,[E|T],T):-arg(L,f(a,b,c,d),E)) (term basic:= /2)

term basic:D=[x,y] (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[a,c,b,x,y] (term basic:= /2)

then the following properties should hold globally:

All the calls of the form map(A,B,C,D) do not fail. (native props:not fails/1)

All calls of the form map(A,B,C,D) are deterministic. (native props:is det/1)

Usage: map(LList,Op,RList,Tail)

− Description: DCG version of map.

PREDICATEfoldl/4:
Meta-predicate with arguments: foldl(?,?,(pred 3),?).

Usage: foldl(List,Seed,Op,Result)

− Description: Example of use:

?- foldl(["daniel","cabeza","gras"], "",
(’’(X,Y,Z) :- append(X, " "||Y, Z)), R).

R = "daniel cabeza gras " ?

Chapter 98: Higher-order predicates 519

PREDICATEminimum/3:
Meta-predicate with arguments: minimum(?,(pred 2),?).

Usage: minimum(List,SmallerThan,Minimum)

− Description: Minimum is the smaller in the nonempty list List according to the
relation SmallerThan: SmallerThan(X, Y) succeeds iff X is smaller than Y.

− The following properties should hold at call time:

SmallerThan is currently a term which is not a free variable. (term typing:nonvar/1)

List is a list. (basic props:list/1)

SmallerThan is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Minimum is any term. (basic props:term/1)

PREDICATEsplit/4:
Meta-predicate with arguments: split(?,(pred 1),?,?).

General properties: split(A,B,C,D)

− If the following properties should hold at call time:

term basic:A=[1,2,3,4,5,6] (term basic:= /2)

term basic:B= >(4) (term basic:= /2)

then the following properties should hold upon exit:

term basic:C=[5,6] (term basic:= /2)

term basic:D=[1,2,3,4] (term basic:= /2)

then the following properties should hold globally:

All the calls of the form split(A,B,C,D) do not fail. (native props:not fails/1)

Usage: split(List,Condition,Left,Right)

− Description: Divides List in two list, where Left contains the elements for which
the call to Condition succeeds, and Right the remaining elements.

− The following properties should hold at call time:

List is currently a term which is not a free variable. (term typing:nonvar/1)

Condition is currently a term which is not a free variable. (term typing:nonvar/1)

List is a list. (basic props:list/1)

Condition is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Left is any term. (basic props:term/1)

Right is any term. (basic props:term/1)

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

Condition is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Left is a list. (basic props:list/1)

Right is a list. (basic props:list/1)

520 The Ciao System

Chapter 99: Terms with named arguments -records/feature terms 521

99 Terms with named arguments -records/feature
terms

Author(s): Daniel Cabeza, Manuel Hermenegildo, Jose F. Morales.

This library package provides syntax which allows accessing term arguments by name (these
terms are sometimes also referred to as records, and are also similar to feature terms [AKPS92]).

99.1 Usage and interface (argnames_doc)
� �

• Library usage:

:- use_package(argnames).

or

:- module(...,...,[argnames]).

• Exports:

− Predicates:

$~/3.

• New operators defined:

$/2 [150,xfx], =>/2 [950,xfx], argnames/1 [1150,fx].

• New declarations defined:

argnames/1.

 	

99.2 Documentation on new declarations (argnames_doc)

DECLARATIONargnames/1:
Usage: :- argnames ArgNamedPredSpec.

− Description: An argnames/1 declaration assigns names to the argument positions
of terms (or literal/goals) which use a certain functor/arity. This allows referring to
these arguments by their name rather than by their argument position. Sometimes,
argument names may be clearer and easier to remember than argument positions,
specially for predicates with many arguments. Also, in some cases this may allow
adding arguments to certain predicates without having to change the code that uses
them. These terms with named arguments are sometimes also referred to as records,
and are also similar to feature terms [AKPS92]. For example, in order to write a
program for the zebra puzzle we might declare:

:- use_package([argnames]).
:- argnames house(color, nation, pet, drink, car).

which first includes the package and then assigns a name to each of the arguments of
any term (or literal/goal) with house/5 as the main functor.

For convenience the package extends the built-in data/1 declaration so that names
to arguments can be asigned as with the argnames/1 declaration, as for example:

:- data product(id, description, brand, quantity).

Once an argnames/1 is given, it is possible to use the names to refer to the arguments
of any term (or literal/goal) which has the same main functor as that of the term
which appears in the argnames/1 declaration. This is done by first writing the functor
name, then the infix operator $, and then, between curly brackets, zero, one, or more
pairs argument-name=>argument-value, separated by commas (i.e., the infix operator

522 The Ciao System

=> is used between the name and the value). Again, argument names must be atomic.
Argument values can be any term. Arguments which are not specified are assumed
to have a value of “_” (i.e., they are left unconstrained).

Thus, after the declaration for house/5 in the example above, any ocurrence in that
code of, for example, house${nation=>Owns_zebra,pet=>zebra} is exactly equiva-
lent to house(_,Owns_zebra,zebra,_,_). Also, house${} is equivalent to house(_
,_,_,_,_). The actual zebra puzzle specification might include a clause such as:

zebra(Owns_zebra, Drinks_water, Street) :-
Street = [house${},house${},house${},house${},house${}],
member(house${nation=>Owns_zebra,pet=>zebra}, Street),
member(house${nation=>Drinks_water,drink=>water}, Street),
member(house${drink=>coffee,color=>green}, Street),
left_right(house${color=>ivory}, house${color=>green}, Street),
member(house${car=>porsche,pet=>snails}, Street),

...

Another syntax supported, useful mainly in declarations to avoid specifying the arity,
is house${/}, which is equivalent in our example to house/5 (but for data declarations
there is a special syntax as we have seen).

Any number of argnames/1 declarations can appear in a file, one for each functor
whose arguments are to be accessed by name. As with other packages, argument name
declarations are local to the file in which they appear. The argnames/1 declarations
affect only program text which appears after the declaration. It is easy to make a
set of declarations affect several files for example by putting such declarations in a
sepatate file which is included by all such files.

An argnames/1 declaration does not change in any way the internal representation
of the associated terms and does not affect run-time efficiency. It is simply syntactic
sugar.

Runtime support

It is possible to write pairs with unbound argument names. In that case, runtime
information is emitted to resolve the argument name at execution time.

99.3 Documentation on exports (argnames_doc)

PREDICATE$~/3:
Usage: $~(Term,Replacement,NewTerm)

− Description: NewTerm is as Term but with the arguments specified in Replacement
changed (they need to be in argnames syntax). The predicate is in fact virtual,
since it is translated by the package to a pair of unifications. For example, given the
declaration :- argnames house(color, nation, pet, drink, car), the goal

$~(House, house${car => seat, pet => mouse}, NewHouse)

would be compiled to the unifications

House = house(C,N,_,D,_), NewHouse = house(C,N,mouse,D,seat).

99.4 Other information (argnames_doc)

Two simple examples of the use of the argnames library package follow.

Chapter 99: Terms with named arguments -records/feature terms 523

99.4.1 Using argument names in a toy database

:- module(simple_db,_,[argnames,assertions,regtypes]).
:- use_module(library(aggregates)).

:- doc(title,"A simple database application using argument names").

:- data
product(id, description, brand, quantity).
% --
product(1, "Keyboard", "Logitech", 6).
product(2, "Mouse", "Logitech", 5).
product(3, "Monitor", "Philips", 3).
product(4, "Laptop", "Dell", 4).
% (${/} must go after argnames)
:- pred product${/}

:: int * string * string * int.

% Compute the stock of products from a given brand.
% Note call to findall is equivalent to: findall(Q,product(_,_,Brand,Q),L).

brand_stock(Brand,Stock) :-
findall(Q,product${brand=>Brand,quantity=>Q},L),
sumlist(L,Stock).

sumlist([],0).
sumlist([X|T],S) :-

sumlist(T,S1),
S is X + S1.

99.4.2 Complete code for the zebra example

:- module(_,zebra/3,[argnames]).

/* There are five consecutive houses, each of a different
color and inhabited by men of different nationalities. They each
own a different pet, have a different favorite drink, and drive a
different car.

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. Coffee is drunk in the green house.
4. The Ukrainian drinks tea.
5. The green house is immediately to the right of the ivory

house.
6. The Porsche driver owns snails.
7. The Masserati is driven by the man who lives in the yellow

house.
8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house on the left.

524 The Ciao System

10. The man who drives a Saab lives in the house next to the man
with the fox.

11. The Masserati is driven by the man in the house next to the
house where the horse is kept.

12. The Honda driver drinks orange juice.
13. The Japanese drives a Jaguar.
14. The Norwegian lives next to the blue house.

The problem is: Who owns the Zebra? Who drinks water?
*/

:- argnames house(color, nation, pet, drink, car).

zebra(Owns_zebra, Drinks_water, Street) :-
Street = [house${},house${},house${},house${},house${}],
member(house${nation => Owns_zebra, pet => zebra}, Street),
member(house${nation => Drinks_water, drink => water}, Street),
member(house${nation => englishman, color => red}, Street),
member(house${nation => spaniard, pet => dog}, Street),
member(house${drink => coffee, color => green}, Street),
member(house${nation => ukrainian, drink => tea}, Street),
left_right(house${color => ivory}, house${color => green}, Street),
member(house${car => porsche, pet => snails}, Street),
member(house${car => masserati, color => yellow}, Street),
Street = [_, _, house${drink => milk}, _, _],
Street = [house${nation => norwegian}|_],
next_to(house${car => saab}, house${pet => fox}, Street),
next_to(house${car => masserati}, house${pet => horse}, Street),
member(house${car => honda, drink => orange_juice}, Street),
member(house${nation => japanese, car => jaguar}, Street),
next_to(house${nation => norwegian}, house${color => blue}, Street).

member(X,[X|_]).
member(X,[_|Y]) :- member(X,Y).

left_right(L,R,[L,R|_]).
left_right(L,R,[_|T]) :- left_right(L,R,T).

next_to(X,Y,L) :- left_right(X,Y,L).
next_to(X,Y,L) :- left_right(Y,X,L).

99.5 Known bugs and planned improvements (argnames_doc)

• It would be nice to add a mechanism to portray terms with named arguments in a special
(user definable) way.

• The predicate $~ still does not support runtime argnames.

Chapter 100: Functional notation 525

100 Functional notation

Author(s): Daniel Cabeza, Amadeo Casas, Manuel Hermenegildo, Jose F. Morales.

This library package allows the use of functional notation in a Ciao module/program. It
supports function application, predefined evaluable functors, functional definitions, quoting,
and (combined with the lazy library) lazy evaluation. The extensions implemented by this
library are also composable with higher-order features and can be combined with other Ciao
packages such as constraints, assertions, etc.

The package provides syntactic sugar for defining and using predicates as if they were func-
tions. However, they can still retain the power of predicates. Any function definition written
using this package is in fact defining a predicate, and any predicate can be used as a function.

The predicate associated with a function has the same name and one more argument, meant
as the place holder for the “result” of the function. In fact, this argument is just the one that
will be syntactically connected to the surrounding goal or function, but it does not necessarily
imply any directionality, i.e., it does not necessarily mean that this argument is an output or an
input. This argument is by default added to the right, i.e., it is the last argument, but can be
changed by using a declaration, as explained below.

100.1 Function applications

Any term preceded by the ~ /1 operator is a function application, as can be seen in the goal
write(~arg(1,T)), which is strictly equivalent to the sequence arg(1,T,A), write(A). The
declaration fun_return/1 allows using a predicate argument other than the last as the return
argument. For example with :- fun_return functor(~,_,_) the expression ~functor(f,2)
will be evaluated to the term f(_,_). This definition of the return argument can also be done
on the fly in each invocation in the following way: ~functor(~,f,2).

Functors can be declared as evaluable by using the declaration fun_eval/1. This al-
lows avoiding the need to use the ~ operator. Thus, :- fun_eval arg/2 allows writing
write(arg(1,T)) instead of write(~arg(1,T)) as above. This declaration can be combined
with the previous one: :- fun_eval functor(~,_,_).

100.2 Predefined evaluable functors

By using the declaration :- fun_eval arith(true), all the functors understood by is/2
will be also evaluated. This is active from the declaration downwards until a :- fun_eval
arith(false) declaration or the end of the module is reached. Beware that arithmetic functors
are used in some cases for other purposes than arithmetic: e.g. abolish(p/2). But this is not
so disturbing as it may appear because this package is not active in declarations, except for the
goal-including declarations initialization/1 and on_abort/1. Note that all the declarations
introduced by this package, as is customary in Ciao, are local to the module where they are
included.

In addition to functors declared with the declaration fun_eval/1, the package defines as
evaluable the functors used for disjunctive and conditional expressions: | /2 and ? /2 (defined
as operators). A disjunctive expression has the form (V1|V2), and its value when first evaluated
is V1, and on backtracking V2. A conditional expression has the form (Cond ? V1), or more
commonly (Cond ? V1 | V2), and its value, if the execution of Cond as a goal succeeds, is V1,
otherwise in the first form it causes backtracking, and on the second form its value is V2. Note
that due to the operator precedences, these expressions normally need to be surrounded by
parenthesis. Also, a nested expression: (Cond1 ? V1 | Cond2 ? V2 | V3) is evaluated as (Cond1
? V1 | (Cond2 ? V2 | V3)).

526 The Ciao System

100.3 Functional definitions

A functional definition is composed of one or more functional clauses. A functional clause is
written using the binary operator := /2, as in:

opposite(red) := green.

which is equivalent to opposite(red,green). or

addlast(X,L) := ~append(L,[X]).

which is equivalent to addlast(X,L,R) :- append(L,[X],R).

Functional clauses can also have a body, which is executed before the result value is computed.
It can serve as a guard for the clause or to provide the equivalent of where-clauses in functional
languages:

fact(0) := 1.
fact(N) := N * ~fact(--N) :- N > 0.

Note that guards can often be defined more compactly using conditional expressions:

fact(N) := N = 0 ? 1
| N > 0 ? N * ~fact(--N).

The declaration :- fun_eval defined(true) allows to locally define as evaluable functions
being defined, so that the ~ operator does not need to be used within a functional definition
for the functor being defined. For example, for the fact invocations in the previous definitions,
which can now be written as, e.g. (we provide the full module definition):

:- module(_,_,[fsyntax]).

:- fun_eval arith(true).
:- fun_eval defined(true).

fact(0) := 1.
fact(N) := N * fact(--N) :- N > 0.

%% Or,alternatively:
%
% fact(N) := N=0 ? 1
% | N>0 ? N * fact(--N).

This behaviour is reverted using :- fun_eval defined(false).

The translation of functional clauses has the following properties:

• The translation produces steadfast predicates, that is, output arguments are unified after
possible cuts.

• Defining recursive predicates in functional style maintains the tail recursion of the original
predicate, thus allowing the usual compiler optimizations.

Some implementation details and a discussion of the recent combination of this library (which
dates from Ciao version 0.2) with the lazy evaluation library can be found in [CCH06].

100.4 Quoting functors

Functors (either in functional or predicate clauses) can be prevented from being evaluated
by using the ^ /1 prefix operator (read as “quote”), as in

Chapter 100: Functional notation 527

:- fun_eval arith(true).
pair(A,B) := ^(A-B).

Note that this just prevents the evaluation of the principal functor of the enclosed term, not
the possible occurrences of other evaluable functors inside.

100.5 Some scoping issues

When using function applications inside the goal arguments of meta-predicates, there is an
ambiguity as they could be evaluated either in the scope of the outer execution or the in the
scope of the inner execution. The chosen behavior is by default to evaluate function applications
in the scope of the outer execution. If they should be evaluated in the inner scope, the goal
containing the function application needs to be escaped with the ^^ /1 prefix operator, as
in findall(X, (d(Y), ^^(X = ~f(Y)+1)), L) (which could also be written as findall(X, ^^
(d(Y), X = ~f(Y)+1), L)) and which expands into findall(X, (d(Y),f(Y,Z),T is Z+1,X=T),
L). With no escaping the function application is evaluated in the scope of the outer execution,
i.e., it expands to f(Y,Z), T is Z+1, findall(X, (d(Y),X=T), L).

100.6 Other functionality

In addition to the basic package fsyntax, a package functional is also provided, to allow
programming with a more functional-flavored style. That package activates the declarations :-
fun_eval arith(true) and :- fun_eval defined(true), and defines the . /2 operator for use
in lists (but be careful: this period cannot be followed by a whitespace!) and the operator ++ /2
as a function for appending lists. The factorial example above can be written as follows using
the functional package:

:- module(_,_,[fsyntax]).

:- fun_eval arith(true).
:- fun_eval defined(true).

fact(0) := 1.
fact(N) := N * fact(--N) :- N > 0.

%% Or,alternatively:
%
% fact(N) := N=0 ? 1
% | N>0 ? N * fact(--N).

See the end of this chapter for additional examples.

100.7 Combining with higher order

Ciao provides in its standard library the hiord package, which supports a form of higher-
order untyped logic programming with predicate abstractions [CH99a,Cab04,CHL04]. Predicate
abstractions are Ciao’s translation to logic programming of the lambda expressions of functional
programming: they define unnamed predicates which will be ultimately executed by a higher-
order call, unifying its arguments appropriately. A function abstraction is provided as functional
syntactic sugar for predicate abstractions:

Predicate abstraction: ’’(X,Y) :- p(X,Z), q(Z,Y).

528 The Ciao System

Function abstraction: ’’(X) := ~q(~p(X)).

and function application is syntactic sugar over predicate application:

Predicate application: ..., P(X,Y), ... Function application: ..., Y = ~P(X), ...

The combination of this hiord package with the fsyntax and lazy packages (and, option-
ally, the type inference and checking provided by the Ciao preprocessor [HPBLG05]) basically
provide the functionality present in modern functional languages (currying is not syntactically
implemented, but its results can be obtained by deriving higher-order data from any other
higher-order data (see [Cab04]), as well as some of the functionality of full higher-order logic
programming.

At this moment, it is necessary to specify the :- fun_eval hiord(true) option to enable
correct handling of function abstractions.

100.8 Usage and interface (fsyntax_doc)
� �

• Library usage:

:- use_package(fsyntax).

or

:- module(...,...,[fsyntax]).

 	

100.9 Other information (fsyntax_doc)

100.10 Some examples using functional syntax

We now illustrate some of the uses of the package through examples. The following example
defines a simple unary function der(X) which returns the derivative of a polynomial arithmetic
expression:

der(x) := 1.
der(C) := 0 :- number(C).
der(A + B) := der(A) + der(B).
der(C * A) := C * der(A) :- number(C).
der(x ** N) := N * x ** ~(N - 1) :- integer(N), N > 0.

Note that if we include the directive mentioned before which makes arithmetic functors
evaluable then we would have to write the program in the following (clearly, less pleasant and
more obfuscated) way:

:- fun_eval(arith(true)).
der(x) := 1.
der(C) := 0 :- number(C).
der(^(A + B)) := ^(der(A) + der(B)).
der(^(C * A)) := ^(C * der(A)) :- number(C).
der(^(x ** N)) := ^(N * ^(x ** (N - 1))) :- integer(N), N > 0.

Both of the previous code fragments translate to the following code:

der(x, 1).
der(C, 0) :-

number(C).
der(A + B, X + Y) :-

der(A, X),

Chapter 100: Functional notation 529

der(B, Y).
der(C * A, C * X) :-

number(C),
der(A, X).

der(x ** N, N * x ** N1) :-
integer(N),
N > 0,
N1 is N - 1.

Functional notation interacts well with other Ciao language features. For example, it provides
compact and familiar notation for regular types and other properties:

:- module(_,_,[hiord,functional,assertions,regtypes,’bf/bfall’]).

:- regtype color/1. color := red | blue | green.

:- regtype slist/1. slist := [] | [_ | slist].

:- regtype list_of/1. list_of(T) := [] | [~T | list_of(T)].

where the functional clauses expand to (note the use of higher-order in the third example):

color(red). color(blue). color(green).
list([]).
list([_|T]) :- list(T).
list_of(_, []).
list_of(T, [X|Xs]) :- T(X), list_of(T, Xs).

Such types and properties are then admissible in the usual way in assertions, e.g.:

:- pred append/3 :: list * list * list.
:- pred color_value/2 :: list(color) * int.

The combination of functional syntax and user-defined operators brings significant flexibil-
ity, as can be seen in the following definition of a list concatenation (append) operator (note
that these are the definitions mentioned before which are active by default in the functional
package):

:- op(600, xfy, (.)).
:- op(650, xfy, (++)).
:- fun_eval (++)/2.
[] ++ L := L.
X.Xs ++ L := X.(Xs ++ L).

This definition will be compiled exactly to the standard definition of append (and, thus, will be
reversible). The functional syntax and user-defined operators allow writing for example Space
= ’ ’, write("Hello" ++ Space ++ "world!") instead of the equivalent forms Space = ’ ’,
write(append("Hello", append(Space, "world!"))) (if append/2 is defined as evaluable)
or Space = ’ ’, append(Space, "world!", T1), append("Hello", T1, T2), write(T2).

As another example, we can define an array indexing operator for fixed-size, multi-
dimensional arrays. Assume that arrays are built using nested structures whose main functor
is a and whose arities are determined by the specified dimensions, i.e., a two-dimensional ar-
ray A of dimensions [N,M] will be represented by the nested structure a(a(A11,...,A1M),
a(A21,..,A2M), ..., a(AN1,..., ANM)), where A11,... ANM may be arbitrary terms
(we ignore for simplicity arity limitations, solved in any case typically by further nesting with
logarithmic access time). The following recursive definition defines the property fixed_array/2
and also the array access operator @:

fixed_array([N|Ms],A):-

530 The Ciao System

functor(A,a,N),
rows(N,Ms,A).
fixed_array([N],A):-
functor(A,a,N).

rows(0,_,_).
rows(N,Ms,A) :-

N > 0,
arg(N,A,Arg),
array(Ms,Arg),
rows(N-1,Ms,A).

:- pred @(Array,Index,Elem) :: array * list(int) * int
"@var{Elem} is the @var{Index}-th element of @var{Array}.".

:- op(55, xfx, ’@’).
:- fun_eval (@)/2.
V@[I] := ~arg(I,V). %% Or: V@[] := V.
V@[I|Js] := ~arg(I,V)@Js.

This allows writing, e.g., M = fixed_array([2,2]), M@[2,1] = 3 (which could also be ex-
pressed as fixed_array([2,2])@[2,1] = 3), where the call to the fixed_array property gen-
erates an empty 2 x 2 array M and M@[2,1] = 3 puts 3 in M[2,1]. This can be done in the top
level:

?- M = ~fixed_array([2,2]), M@[2,1] = 3.

provided the op and function declarations are loaded into the top level also. Another example
of use is: A3@[N+1,M] = A1@[N-1,M] + A2@[N,M+2].

Such functionality can be grouped into a package as follows. The package main file
(arrays.pl) might be:

:- package(arrays).
:- include(arrays_ops).

:- use_module(arrays_rt).

where file arrays_ops.pl may contain:

:- use_package(functional).

:- op(150,xfx,[@]).
:- fun_eval ’@’/2.

:- op(500,yfx,<+>).
:- fun_eval ’<+>’/2.

:- op(400,yfx,<*>).
:- fun_eval ’<*>’/2.

The main file is arrays_rt.pl which would contain for example (note that it also uses arrays_
ops.pl, and that is why the contents of arrays_ops.pl were not put directly in arrays.pl):

:- module(arrays_rt,_,[functional,hiord,assertions,regtypes,isomodes]).

Chapter 100: Functional notation 531

:- include(arrays_ops).

:- doc(title,"Some simple array operations with syntactic support").
:- doc(author,"Pro Grammer").

:- doc(module,"This library implements a very simple set of
operations on arrays. The idea is to illustrate the use of
functional syntax (operators) by providing syntactic support for
invoking array operations such as element access, array (vector)
addition, etc.").

%%%
%% Regtypes

%% :- doc(doinclude,array/1).
%% :- doc(doinclude,vector/1).
%% :- doc(doinclude,dim/1).

:- regtype array(A) #"@var{A} is a multi-dimensional array.".
% Should obviously be defined in more detail...
array(A) :- struct(A).

:- regtype dim(D) # "@var{D} represents the dimensions of an array.".
dim(D) :- list(D,int).

:- regtype vector(V) # "@var{V} is a one-dimensional fixed-size array.".
vector(V) :- fixed_array([N],V), int(N).

%%%

:- pred fixed_array(Dim,Array) :: dim * array
"@var{Array} is an array of fixed dimensions @var{Dim}.".

fixed_array([N|Ms],A):-
functor(A,a,N),
rows(N,Ms,A).

fixed_array([N],A):-
functor(A,a,N).

rows(0,_Ms,_A).
rows(N,Ms,A):-

N > 0,
arg(N,A,Arg),
fixed_array(Ms,Arg),
rows(N-1,Ms,A).

:- pred @(Array,Index,Elem):: array * dim * int
"@var{Elem} is the @var{Index}-th element of @var{Array}.".

V@[I] := ~arg(I,V).
V@[I|Js] := ~arg(I,V)@Js.

532 The Ciao System

:- pred <+>(V1,V2,V3) :: vector * vector * vector
"@var{V3} is @var{V1} + @var{V2}.".

V1 <+> V2 := V3 :-
V1 = ~fixed_array([N]),
V2 = ~fixed_array([N]),
V3 = ~fixed_array([N]),
V3 = ~vecplus_(N,V1,V2).

vecplus_(0,_,_,_).
vecplus_(N,V1,V2,V3) :-

N > 0,
V3@[N] = V1@[N] + V2@[N],
vecplus_(N-1,V1,V2,V3).

:- pred <*>(V1,V2,V3) :: vector * vector * vector
"@var{V3} is @var{V1} * @var{V2} (inner product).".

V1 <*> V2 := ~vecmul_(N,V1,V2,0) :-
V1 = ~fixed_array([N]),
V2 = ~fixed_array([N]).

vecmul_(0, _, _, Acc, Acc).
vecmul_(N, V1, V2, Acc, IP) :-

N > 0,
vecmul_(N-1, V1, V2, Acc + (V1@[N] * V2@[N]), IP).

A file using this package would be:

:- module(_,_).

:- use_package(library(fsyntax(examples(arrays)))).

main(M) :-
V1 = a(1,3,4,5),
V2 = a(5,4,3,1),
I = 1,
display(V2@[I+1]),
M = V1 <*> (V2 <+> V1).

100.11 Examples of combining with higher order

The following map and foldl definitions (from the hiordlib library) illustrate the combina-
tion of functional syntax and higher-order logic programming:

:- fun_eval map/2.
:- meta_predicate map(_,pred(2),_).
map([], _) := [].
map([X|Xs], P) := [P(X) | map(Xs, P)].

:- fun_eval foldl/3.

Chapter 100: Functional notation 533

:- meta_predicate foldl(_,_,pred(3),_).
foldl([], Seed, _Op) := Seed.
foldl([X|Xs], Seed, Op) := ~Op(X,~foldl(Xs,Seed,Op)).

With this definition:

?- L = ~map([1,2,3], (_(X,Y):- Y = f(X))).

L = [f(1),f(2),f(3)] ?

?- [f(1),f(2),f(3)] = ~map(L, (_(X,f(X)) :- true)).

L = [1,2,3] ?

Also, after running:

?- ["helloworld", "byeworld"] = map(["hello", "bye"], ++(X)).

(where (++)/2 corresponds to the above definition of append) X will be bound to "world", which
is the only solution to the equation.

And when calling:

map(L, ++(X), ["hello.", "bye."]).

several values for L and X are returned through backtracking:

L = ["hello","bye"], X = "." ? ;
L = ["hello.","bye."], X = [] ?

(remember to set the flag write_strings to on in these examples so that the top level prints
strings as strings of characters instead of lists of ASCII codes).

100.12 Some additional examples using functional syntax

A definition of the Fibonacci function, written in functional notation:

:- module(_,_,[functional]).

fib(0) := 0.
fib(1) := 1.
fib(N) := fib(N-1) + fib(N-2) :- integer(N), N > 1.

write_fib(N):-
message([’The ’,N,’. Fibonacci number is: ’,~fib(N),’.’]).

This is the factorial example, written in functional notation and including some assertions:

:- module(_,_,[assertions,nativeprops,functional]).

:- pred fact(+int,-int) + is_det.
:- pred fact(-int,+int) + non_det.

fact(N) := N=0 ? 1
| N>0 ? N * fact(--N).

And, the same example written using clpq constraints:

:- module(_,_,[assertions,nativeprops,fsyntax,clpqf]).

:- fun_eval .=. /1.

534 The Ciao System

:- op(700,fx,[.=.]).
:- fun_eval fact/1.

:- pred fact(+int,-int) + is_det.
:- pred fact(-int,-int) + non_det.

fact(.=. 0) := .=. 1.
fact(N) := .=. N*fact(.=. N-1) :- N .>. 0.

which allows for example calling it “backwards:”

?- 24 = ~fact(X).

X = 4 ?

A very simple example using lazy evaluation:

:- module(_,_,[functional,lazy]).
:- use_module(library(lazy(lazy_lib)), [take/3]).

nums(N) := ~take(N,nums_from(0)).

:- lazy fun_eval nums_from/1.

nums_from(X) := [X | nums_from(X+1)].

A naive reverse example, using functional notation:

:- module(_, [nrev/2], [functional]).

nrev([]) := [].
nrev([H|T]) := ~conc(nrev(T),[H]).

conc([], L) := L.
conc([H|T], K) := [H | conc(T,K)].

And the same example using some assertions:

:- module(_, [nrev/2], [assertions,fsyntax,nativeprops]).

:- entry nrev/2 : {list, ground} * var.

:- pred nrev(A,B) : list(A) => list(B)
+ (not_fails, is_det, steps_o(exp(length(A),2))).

nrev([]) := [].
nrev([H|L]) := ~conc(~nrev(L),[H]).

:- pred conc(A,_,_) + (terminates, is_det, steps_o(length(A))).

conc([], L) := L.
conc([H|L], K) := [H | ~conc(L,K)].

Chapter 100: Functional notation 535

Finally, a simple stream creation example where assertions are used to define a safety policy
(that no file outside /tmp should be opened):

:- module(_,[create_streams/2],[fsyntax,assertions,regtypes]).

:- entry create_streams(A,B) : list(A,num).

create_streams([]) := [].
create_streams([N|NL]) := [~open_file(Fname,write) | ~create_streams(NL)]

:-
app("/tmp/../",~number_codes(N),Fname).

% app("/tmp/",~number_codes(N),Fname).

app([],L) := L.
app([X|Xs],L) := [X|~app(Xs,L)].

%%%
% open_file library:

open_file(Fname,Mode) := ~open(File,Mode) :- atom_codes(File,Fname).

%%%
% Safety policy:

:- check calls open_file(Fname,_,_) : safe_name(Fname).

:- regtype safe_name/1. safe_name("/tmp/" || L) :- list(L,alphnum_code).

:- regtype alphnum_code/1. alphnum_code := ~alph_code | ~num_code.

:- regtype alph_code/1. alph_code := 0’a | 0’b | 0’c | 0’d | 0’e | 0’f .

%%

100.13 Known bugs and planned improvements (fsyntax_doc)

• Assumes that is/2 is imported.

• Lazy functions declarations require translation priorities to move it to the lazy package.

• Detect automatically when hiord is being used, deprecate eval_hiord.

• I am not sure if shared variables are working for predicate abstractions.

• Find out if predicate abstractions are being fully translated at compile time (see output for
hiordfun example).

536 The Ciao System

Chapter 101: global (library) 537

101 global (library)

101.1 Usage and interface (global)
� �

• Library usage:

:- use_module(library(global)).

• Exports:

− Predicates:

set_global/2, get_global/2, push_global/2, pop_global/2, del_global/1.

 	

101.2 Documentation on exports (global)

PREDICATEset global/2:
No further documentation available for this predicate.

PREDICATEget global/2:
No further documentation available for this predicate.

PREDICATEpush global/2:
No further documentation available for this predicate.

PREDICATEpop global/2:
No further documentation available for this predicate.

PREDICATEdel global/1:
No further documentation available for this predicate.

538 The Ciao System

Chapter 102: Andorra execution 539

102 Andorra execution

Author(s): Claudio Vaucheret, Francisco Bueno.

This package allows the execution under the Basic Andorra Model [War88]. The model
classifies goals as a determinate goal, if at most one clause matches the goal, or nondeterminate
goal, otherwise. In this model a goal is delayed until either it becomes determinate or it becomes
the leftmost goal and no determinate goal is available. The implementation of this selection rule
is based on the use of attributed variables [Hol92,Hol90].

In order to test determinacy we verify only the heads of clauses and builtins in the bodies of
clauses before the first cut, if any. By default, determinacy of a goal is detected dynamically:
when called, if at most one clause matches, it is executed; otherwise, it is delayed. For goals
delayed the test is repeated each time a variable appearing in the goal is instantiated. In addition,
efficiency can be improved by using declarations that specify the determinacy conditions. These
will be considered for testing instead of the generic test on all clauses that can match.

As with any other Ciao package, the andorra computation rule affects only the module
that uses the package. If execution passes across two modules that use the computation rule,
determinate goals are run in advance within one module and also within the other module. But
determinate goals of one module do not run ahead of goals of the other module.

It is however possible to preserve the computation rule for calls to predicates defined in other
modules. These modules should obviously also use this package. In addition all predicates from
such modules should imported, i.e., the directive :- use_module(module), should be used in
this case instead of :- use_module(module,[...]). Otherwise calls to predicates outside the
module will only be called when they became the leftmost goal.

102.1 Usage and interface (andorra_doc)
� �

• Library usage:

:- use_package(andorra).

or

:- module(...,...,[andorra]).

• Exports:

− Regular Types:

detcond/1, path/1.

• New operators defined:

?\=/2 [700,xfx], ?=/2 [700,xfx].

• New declarations defined:

determinate/2.

 	

102.2 Documentation on new declarations (andorra_doc)

DECLARATIONdeterminate/2:
:- determinate(Pred,Cond).

Declares determinacy conditions for a predicate. Conditions Cond are on variables of
arguments of Pred. For example, in:

540 The Ciao System

:- determinate(member(A,B,C), (A ?= term(B,[1]) ; C?=[_|_])).

member(A,[A|B],B).
member(A,[B|C],[B|D]) :-

A==B,
member(A,C,D).

the declaration states that a call member(A,B,C) is determinate when either A doesn’t
unify with the first argument of B or C doesn’t unify with [_|_].

Usage: :- determinate(Pred,Cond).

− Description: States that the predicate Pred is determinate when Cond holds.

− The following properties should hold at call time:

Pred is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Cond is a determinacy condition.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/library/andorra/andorra doc):detcond/1)

102.3 Documentation on exports (andorra_doc)

REGTYPEdetcond/1:
Defined by:

detcond(ground(X)) :-
var(X).

detcond(nonvar(X)) :-
var(X).

detcond(instatiated(A,Path)) :-
var(A),
list(Path,int).

detcond(?\=(Term1,Term2)) :-
path(Term1),
path(Term2).

detcond(?=(Term1,Term2)) :-
path(Term1),
path(Term2).

detcond(Test) :-
(test Test).

• ground/1 and nonvar/1 have the usual meaning.

• instatiated(A,Path) means that the subterm of A addressed by Path is not a vari-
able. Path is a list of integer numbers describing a path to the subterm regarding the
whole term A as a tree. For example, instantiated(f(g(X),h(i(Z),Y)),[2,1])
tests whether i(Z) is not a variable.

• Term1 ?\= Term2 means “terms Term1 and Term2 do not unify (when instantiated)”.
Term1 and Term2 can be either an argument of the predicate or a term term(V,Path),
which refers to the subterm of V addressed by Path.

• Term1 ?= Term2 means “terms Term1 and Term2 unify (when instantiated)”. The
same considerations above apply to Term1 and Term2.

Chapter 102: Andorra execution 541

• any other test that does not unify variables can also be used (==/2, \==/2, atomic/1).

Usage: detcond(X)

− Description: X is a determinacy condition.

REGTYPEpath/1:
Defined by:

path(X) :-
var(X).

path(X) :-
list(X,int).

102.4 Other information (andorra_doc)

The andorra transformation will include the following predicates into the code of the module
that uses the package. Be careful not to define predicates by these names:

• detcond_andorra/4

• path_andorra/4

• detcond_susp/4

• path_susp/4

• list_andorra2/5

• test_andorra2/4

542 The Ciao System

Chapter 103: And-parallel execution 543

103 And-parallel execution

Author(s): Amadeo Casas (http://www.cs.unm.edu/~amadeo, University of New Mexico).

This library allows and-parallel execution of goals in (Herbrand-)independent fashion. It
resembles the execution rules of &-Prolog.

103.1 Usage and interface (andprolog_doc)
� �

• Library usage:

The AND PARALLEL EXECUTION flag must be set to "yes" in order to compile the
engine with support for the and-parallel execution of goals. Concurrency primitives are
defined in the apll library. That flag may be set to "visandor" to, in addition, add support
for VisAndOr’s events for deterministic parallel goals.

• New operators defined:

&/2 [950,xfy], &>/2 [950,xfy], &&>/2 [950,xfy], &&/2 [950,xfy], <&/1 [950,xf], <&&/1 [950,xf],
&/1 [950,xf], &&/1 [950,xf], &!/2 [950,xfy], &!>/2 [950,xfy], &&!>/2 [950,xfy], &&!/2
[950,xfy], <&!/1 [950,xf], <&&!/1 [950,xf], &!/1 [950,xf], &&!/1 [950,xf], <?/1 [950,xf],
&?/1 [950,xf].

• Other modules used:

− System library modules:

andprolog/andprolog_rt.

 	

544 The Ciao System

Chapter 104: Low-level concurrency primitives for and-parallelism support 545

104 Low-level concurrency primitives for and-
parallelism support

Author(s): Amadeo Casas (http://www.cs.unm.edu/~amadeo, University of New Mexico).

This module provides basic mechanisms to start threads, wait for their completion, push
goals, search for goals, access to locks, etc. Most of these primitives need to refer to an explicit
goal and need to use some information related to its state, stored in the data structure Handler.

This primitives allow to efficiently implement at a higher-level different approaches to ex-
ploiting independent and-parallelism.

546 The Ciao System

104.1 Usage and interface (apll)
� �

• Library usage:

:- use_package(apll).

or

:- module(...,...,[apll]).

• Exports:

− Predicates:

initial/0, $start_thread/1, $number_agents/1, $push_goal/3, $find_goal/3,
$goal_available/1, $cancellation/1, $retrieve_goal/2, $goal_det/1, $set_
goal_det/1, $set_goal_nondet/1,
$goal_not_executed/1, $set_goal_not_executed/1, $goal_rem_executing/1,
$set_goal_rem_executing/1, $goal_finished/1, $set_goal_finished/1, $goal_
tobacktrack/1, $set_goal_tobacktrack/1, $goal_toreexecute/1, $set_goal_
toreexecute/1, $goal_failed/1, $set_goal_failed/1, $goal_cancelled/1,
$show_handler/1, $set_goal_cancelled/1, $send_event/1, $read_event/1,
$save_init_execution/1, $save_end_execution/1, $more_solutions/1, $move_
execution_top/1, $waiting/1, $suspend/0, $release/1, $release_remote/1,
$release_some_suspended_thread/0, $release_all_for_unwinding/0, $enter_
mutex/1, $enter_mutex_self/0, $enter_mutex_remote/1, $exit_mutex/1, $exit_
mutex_self/0, $exit_mutex_remote/1, $clean_measures/0, $print_measures/0,
$new_measure/0, $not_measure/0, $incr_num_local_backtr/0, start_thread/1,
number_agents/1, push_goal/3, push_goal/1, find_goal/2, find_det_goal/2,
goal_available/1, cancellation/1, retrieve_goal/2, goal_det/1, set_goal_
det/1, set_goal_nondet/1, goal_not_executed/1, set_goal_not_executed/1,
goal_rem_executing/1, set_goal_rem_executing/1, goal_finished/1, set_goal_
finished/1, goal_tobacktrack/1, set_goal_tobacktrack/1, goal_toreexecute/1,
set_goal_toreexecute/1, goal_failed/1, set_goal_failed/1, show_handler/1,
goal_cancelled/1, set_goal_cancelled/1, send_event/1, read_event/1, save_
init_execution/1, save_end_execution/1, more_solutions/1, move_execution_
top/1, waiting/1, suspend/0, release/1, release_remote/1, release_some_
suspended_thread/0, release_all_for_unwinding/0, enter_mutex/1, enter_
mutex_self/0, enter_mutex_remote/1, exit_mutex/1, exit_mutex_self/0, exit_
mutex_remote/1, clean_measures/0, print_measures/0, new_measure/0, not_
measure/0, incr_num_local_backtr/0.

• New operators defined:

?/1 [200,fy], @/1 [200,fy], ?/1 [500,fx], @/1 [500,fx], regtype/1 [1150,fx], regtype/2
[1150,xfx], -->/2 [1100,xfy].

• New modes defined:

+/1, @/1, -/1, ?/1, */1, +/2, @/2, -/2, ?/2, */2, in/1, out/1, go/1, in/2, out/2, go/2.

• New declarations defined:

regtype/1, regtype/2.

• Other modules used:

− System library modules:

foreign_interface/foreign_interface_properties, apll/visandor.

 	

Chapter 104: Low-level concurrency primitives for and-parallelism support 547

104.2 Documentation on new declarations (apll)

(UNDOC REEXPORT)regtype/1:
Imported from basic_props (see the corresponding documentation for details).

DECLARATIONregtype/2:
No further documentation available for this predicate.

104.3 Documentation on new modes (apll)

MODE+/1:
Usage 1: +A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

Usage 2: +A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

MODE@/1:
Usage 1: @A

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

Usage 2: @A

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODE-/1:
Usage 1: -A

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

Usage 2: -A

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

MODE?/1:

MODE*/1:

548 The Ciao System

MODE+/2:
Usage 1: A+X

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

Usage 2: A+X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

MODE@/2:
Usage 1: @(A,X)

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

Usage 2: @(A,X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODE-/2:
Usage 1: A-X

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

Usage 2: A-X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

MODE?/2:
Usage 1: A?X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

Chapter 104: Low-level concurrency primitives for and-parallelism support 549

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

Usage 2: A?X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

MODE*/2:
Usage: A*X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

MODEin/1:
Usage: in(A)

− The following properties are added at call time:

A is currently ground (it contains no variables). (term typing:ground/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEout/1:
Usage: out(A)

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEgo/1:
Usage: go(A)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEin/2:
Usage: in(A,X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is currently ground (it contains no variables). (term typing:ground/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

550 The Ciao System

MODEout/2:
Usage: out(A,X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

MODEgo/2:
Usage: go(A,X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term typing:ground/1)

104.4 Documentation on exports (apll)

PREDICATEinitial/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$start thread/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$number agents/1:
Usage:

− The following properties should hold at call time:

Arg1 is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Chapter 104: Low-level concurrency primitives for and-parallelism support 551

PREDICATE$push goal/3:
Usage:

− Calls should, and exit will be compatible with:

Arg3 is an integer. (basic props:int/1)

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

Arg2 is an integer. (basic props:int/1)

− The following properties hold upon exit:

Arg3 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$find goal/3:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

Arg2 is an integer. (basic props:int/1)

Arg3 is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Arg3 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal available/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$cancellation/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

552 The Ciao System

PREDICATE$retrieve goal/2:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

Arg2 is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Arg2 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal det/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal det/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal nondet/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal not executed/1:
Usage:

Chapter 104: Low-level concurrency primitives for and-parallelism support 553

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal not executed/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal rem executing/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal rem executing/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal finished/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

554 The Ciao System

PREDICATE$set goal finished/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal tobacktrack/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal tobacktrack/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal toreexecute/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal toreexecute/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Chapter 104: Low-level concurrency primitives for and-parallelism support 555

PREDICATE$goal failed/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal failed/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$goal cancelled/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$show handler/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$set goal cancelled/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

556 The Ciao System

PREDICATE$send event/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$read event/1:
Usage:

− The following properties should hold at call time:

Arg1 is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$save init execution/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$save end execution/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$more solutions/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

Chapter 104: Low-level concurrency primitives for and-parallelism support 557

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$move execution top/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$waiting/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$suspend/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$release/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$release remote/1:
Usage:

558 The Ciao System

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$release some suspended thread/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$release all for unwinding/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$enter mutex/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$enter mutex self/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$enter mutex remote/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

Chapter 104: Low-level concurrency primitives for and-parallelism support 559

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$exit mutex/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$exit mutex self/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$exit mutex remote/1:
Usage:

− The following properties should hold at call time:

Arg1 is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$clean measures/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$print measures/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

560 The Ciao System

PREDICATE$new measure/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$not measure/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATE$incr num local backtr/0:
Usage:

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATEstart thread/1:
Meta-predicate with arguments: start_thread(goal).

Usage: start_thread(Goal)

− Description: Executes Goal in a new stack set, using a new thread. Used herein to
create a number of parallel agents.

− The following properties should hold at call time:

Goal is currently a term which is not a free variable. (term typing:nonvar/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEnumber agents/1:
Usage: number_agents(N)

− Description: Returns in N the number of agents in the system.

− The following properties should hold at call time:

N is a free variable. (term typing:var/1)

N is an integer. (basic props:int/1)

PREDICATEpush goal/3:
Meta-predicate with arguments: push_goal(goal,?,?).

Usage: push_goal(Goal,Det,Handler)

Chapter 104: Low-level concurrency primitives for and-parallelism support 561

− Description: Atomically creates the handler (an arbitrary structure in the heap)
associated to Goal, described as deterministic or not by Det, and adds to the goal list
a pointer to Handler. Det states whether the goal is deterministic or not.

− The following properties should hold at call time:

Goal is currently a term which is not a free variable. (term typing:nonvar/1)

Det is currently a term which is not a free variable. (term typing:nonvar/1)

Goal is an integer. (basic props:int/1)

Det is an integer. (basic props:int/1)

Handler is an integer. (basic props:int/1)

PREDICATEpush goal/1:
Usage: push_goal(Handler)

− Description: Atomically adds a pointer to the particular handler Handler to the goal
list in order to reexecute the goal associated to it.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEfind goal/2:
Usage: find_goal(GS,Handler)

− Description: Searches for a goal handler Handler published in some goal list and
succeeds if one is found, failing otherwise. The access to each goal list is made
atomically.

− The following properties should hold at call time:

GS is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is a free variable. (term typing:var/1)

GS is an integer. (basic props:int/1)

Handler is an integer. (basic props:int/1)

PREDICATEfind det goal/2:
Usage: find_det_goal(GS,Handler)

− Description: Searches for a deterministic goal associated to Handler and succeeds if
one is found, failing otherwise. The access to each goal list is made atomically.

− The following properties should hold at call time:

GS is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is a free variable. (term typing:var/1)

GS is an integer. (basic props:int/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal available/1:
Usage: goal_available(Handler)

562 The Ciao System

− Description: Succeeds if Handler is still in the goal list, and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEcancellation/1:
Usage: cancellation(Handler)

− Description: Frees the memory used by Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEretrieve goal/2:
Usage: retrieve_goal(Handler,Goal)

− Description: Returns in Goal the parallel goal associated to Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Goal is a free variable. (term typing:var/1)

Handler is an integer. (basic props:int/1)

Goal is an integer. (basic props:int/1)

PREDICATEgoal det/1:
Usage: goal_det(Handler)

− Description: Succeeds if the the goal associated to Handler is deterministic, and fails
otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal det/1:
Usage: set_goal_det(Handler)

− Description: Marks the goal associated to Handler as deterministic.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal nondet/1:
Usage: set_goal_nondet(Handler)

− Description: Marks the goal associated to Handler as non-deterministic.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

Chapter 104: Low-level concurrency primitives for and-parallelism support 563

PREDICATEgoal not executed/1:
Usage: goal_not_executed(Handler)

− Description: Succeeds if the goal associated to Handler has not been executed yet,
and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal not executed/1:
Usage: set_goal_not_executed(Handler)

− Description: Sets the execution of the goal associated to Handler to never executed.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal rem executing/1:
Usage: goal_rem_executing(Handler)

− Description: Succeeds if the goal associated to Handler is remotely executing, and
fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal rem executing/1:
Usage: set_goal_rem_executing(Handler)

− Description: Sets the execution of the goal associated to Handler to being remotely
executing.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal finished/1:
Usage: goal_finished(Handler)

− Description: Succeeds if the execution of the goal associated to Handler has finished,
and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

564 The Ciao System

PREDICATEset goal finished/1:
Usage: set_goal_finished(Handler)

− Description: Sets the execution of the goal associated to Handler to finished.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal tobacktrack/1:
Usage: goal_tobacktrack(Handler)

− Description: Succeeds if the execution of the goal associated to Handler has to back-
track, and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal tobacktrack/1:
Usage: set_goal_tobacktrack(Handler)

− Description: Sets the execution of the goal associated to Handler to backtrack.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal toreexecute/1:
Usage: goal_toreexecute(Handler)

− Description: Succeeds if the execution of the goal associated to Handler has to back-
track, and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal toreexecute/1:
Usage: set_goal_toreexecute(Handler)

− Description: Sets the execution of the goal associated to Handler to be reexecuted.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal failed/1:
Usage: goal_failed(Handler)

− Description: Succeeds if the execution of the goal associated to Handler has failed,
and fails otherwise.

Chapter 104: Low-level concurrency primitives for and-parallelism support 565

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal failed/1:
Usage: set_goal_failed(Handler)

− Description: Sets the execution of the goal associated to Handler to failed.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEshow handler/1:
Usage: show_handler(Handler)

− Description: Succeeds if the execution of the goal associated to Handler has cancelled,
and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEgoal cancelled/1:
Usage: goal_cancelled(Handler)

− Description: Succeeds if the execution of the goal associated to Handler has cancelled,
and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEset goal cancelled/1:
Usage: set_goal_cancelled(Handler)

− Description: Sets the execution of the goal associated to Handler to cancelled.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEsend event/1:
Usage: send_event(Handler)

− Description: Sends the handler to the agent that picked up the goal associated to the
handler Handler in order to perform backtracking over it.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

566 The Ciao System

PREDICATEread event/1:
Usage: read_event(Handler)

− Description: Succeeds if the event queue of the agent is not empty and unifies Handler
with the handler associated to the goal to backtrack over.

− The following properties should hold at call time:

Handler is a free variable. (term typing:var/1)

Handler is an integer. (basic props:int/1)

PREDICATEsave init execution/1:
Usage: save_init_execution(Handler)

− Description: Saves the choice point that marks the starting point of the execution of
the parallel goal associated to the handler Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEsave end execution/1:
Usage: save_end_execution(Handler)

− Description: Saves the choice point that marks the final point of the execution of the
parallel goal associated to the handler Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEmore solutions/1:
Usage: more_solutions(Handler)

− Description: Succeeds whether the goal associated to Handler has more solutions to
compute, and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEmove execution top/1:
Usage: move_execution_top(Handler)

− Description: Moves the choice point of the goal saved into the handler Handler to
the top of the stack.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

Chapter 104: Low-level concurrency primitives for and-parallelism support 567

PREDICATEwaiting/1:
Usage: waiting(Handler)

− Description: Succeeds when the execution of the publishing agent associated to
Handler is suspended, and fails otherwise.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEsuspend/0:
Usage:

− Description: Suspends the execution of the current thread.

PREDICATErelease/1:
Usage: release(Handler)

− Description: Releases the execution of the publishing agent associated to Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATErelease remote/1:
Usage: release_remote(Handler)

− Description: Releases the execution of the agent that picked up the goal associated
to Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATErelease some suspended thread/0:
Usage:

− Description: Selects one out of any suspended threads and sends it a signal to resume
its execution.

PREDICATErelease all for unwinding/0:
Usage:

− Description: Releases the execution of all agents to perform stack unwinding.

PREDICATEenter mutex/1:
Usage: enter_mutex(Handler)

− Description: Attemps to enter into a mutual exclusion to access shared variables of
the publishing agent associated to Handler.

568 The Ciao System

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEenter mutex self/0:
Usage:

− Description: The mutual exclusion is to access the shared variables of the calling
thread.

PREDICATEenter mutex remote/1:
Usage: enter_mutex_remote(Handler)

− Description: The mutual exclusion is to access the shared variables of the remote
thread associated to Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEexit mutex/1:
Usage: exit_mutex(Handler)

− Description: Exits from the mutual exclusion of the publishing agent associated to
Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEexit mutex self/0:
Usage:

− Description: Exits from the local mutual exclusion.

PREDICATEexit mutex remote/1:
Usage: exit_mutex_remote(Handler)

− Description: Exits from the mutual exclusion of the remote agent associated to
Handler.

− The following properties should hold at call time:

Handler is currently a term which is not a free variable. (term typing:nonvar/1)

Handler is an integer. (basic props:int/1)

PREDICATEclean measures/0:
Usage:

− Description: Restarts the statistical measures for nondeterministic parallel programs.

Chapter 104: Low-level concurrency primitives for and-parallelism support 569

PREDICATEprint measures/0:
Usage:

− Description: Prints the value of the statistical measures for nondeterministic parallel
goals.

PREDICATEnew measure/0:
Usage:

− Description: Prepares the statistical values for a new execution.

PREDICATEnot measure/0:
Usage:

− Description: Avoids measuring.

PREDICATEincr num local backtr/0:
Usage:

− Description: Increments the number of times that backwards execution has been
performed over nondeterministic parallel goals.

570 The Ciao System

Chapter 105: Call on determinate 571

105 Call on determinate

Author(s): Jose F. Morales, Manuel Carro.

Offers an enriched variant of call and cut !!/0 which executes pending goals when the
computation has no more alternatives.

This library is useful to, for example, get rid of external connections once the necessary data
has been obtained.

105.1 Usage and interface (det_hook_doc)
� �

• Library usage:

:- use_module(library(det_hook_rt)).

in which case, !!/0 is not available.

Typically, this library is used as a package:

:- use_package(det_hook).

• New operators defined:

?/1 [200,fy], @/1 [200,fy].

• New modes defined:

+/1, @/1, -/1, ?/1, */1, +/2, @/2, -/2, ?/2, */2.

• Other modules used:

− System library modules:

det_hook/det_hook_rt.

 	

105.2 Documentation on new modes (det_hook_doc)

MODE+/1:
Usage: +A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term typing:nonvar/1)

MODE@/1:
Usage: @A

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODE-/1:
Usage: -A

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

572 The Ciao System

MODE?/1:

MODE*/1:

MODE+/2:
Usage: A+X

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

MODE@/2:
Usage: @(A,X)

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

− The following properties are added globally:

A is not further instantiated. (basic props:not further inst/2)

MODE-/2:
Usage: A-X

− The following properties are added at call time:

A is a free variable. (term typing:var/1)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

MODE?/2:
Usage: A?X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

MODE*/2:
Usage: A*X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

Chapter 105: Call on determinate 573

105.3 Other information (det_hook_doc)

As an example, the program

:- module(_, _, [det_hook]).

enumerate(X):-
display(enumerating), nl,
OnCut = (display(’goal cut’), nl),
OnFail = (display(’goal failed’), nl),
det_try(enum(X), OnCut, OnFail).

enum(1).
enum(2).
enum(3).

behaves as follows:

?- enumerate(X).
enumerating

X = 1 ? ;

X = 2 ? ;

X = 3 ? ;
goal failed

(note the message inserted on failure). The execution can be cut as follows:

?- use_package(det_hook).
{Including /home/clip/lib/ciao/ciao-1.7/library/det_hook/det_hook.pl
}

yes
?- enumerate(X), ’!!’.
enumerating
goal cut

X = 1 ? ;

no

105.4 Known bugs and planned improvements (det_hook_doc)

• If the started goals do not exhaust their solutions, and ’ !!’/0 is not used, the database will
populate with facts which will be consulted the next time a ’ !!’/0 is used. This could cause
incorrect executions.

574 The Ciao System

Chapter 106: Runtime predicates for call on determinate 575

106 Runtime predicates for call on determinate

Author(s): Jose F. Morales, Manuel Carro.

Implementation of variant of call and cut which executes pending goals when the computation
has no more alternatives.

106.1 Usage and interface (det_hook_rt)
� �

• Library usage:

:- use_module(library(det_hook_rt)).

• Exports:

− Predicates:

det_try/3.

 	

106.2 Documentation on exports (det_hook_rt)

PREDICATEdet try/3:
Meta-predicate with arguments: det_try(goal,goal,goal).

Usage: det_try(Goal,OnCut,OnFail)

− Description: Action is called, and OnCut and OnFail are goals to be executed when
Goal is cut or when it finitely fails, respectively. In order for this to work, cutting
must be performed in a special way, by using the !!/0 predicate, also provided by
this module.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

OnCut is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

OnFail is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

576 The Ciao System

Chapter 107: Miscellaneous predicates 577

107 Miscellaneous predicates

Author(s): Manuel Carro, Daniel Cabeza.

This module implements some miscellaneous non-logical (but sometimes very useful) predi-
cates.

107.1 Usage and interface (odd)
� �

• Library usage:

:- use_module(library(odd)).

• Exports:

− Predicates:

setarg/3, undo/1.

 	

107.2 Documentation on exports (odd)

PREDICATEsetarg/3:
Usage: setarg(Index,Term,NewArg)

− Description: Replace destructively argument Index in Term by NewArg. The assign-
ment is undone on backtracking. This is a major change to the normal behavior of
data assignment in Ciao Prolog.

− The following properties should hold at call time:

Index is currently instantiated to an integer. (term typing:integer/1)

Term is a compound term. (basic props:struct/1)

NewArg is any term. (basic props:term/1)

PREDICATEundo/1:
Meta-predicate with arguments: undo(goal).

Usage: undo(Goal)

− Description: call(Goal) is executed on backtracking. This is a major change to the
normal control of Ciao Prolog execution.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

578 The Ciao System

Chapter 108: Delaying predicates (freeze) 579

108 Delaying predicates (freeze)

Author(s): Remy Haemmerle, Manuel Carro, Daniel Cabeza.

This library offers a
simple implementation of freeze/2, frozen/2, etc. [Col82,Nai85,Nai91,Car87] based on the
use of attributed variables [Hol92,Hol90].

108.1 Usage and interface (freeze)
� �

• Library usage:

:- use_module(library(freeze)).

• Exports:

− Predicates:

freeze/2, frozen/2.

 	

108.2 Documentation on exports (freeze)

PREDICATEfreeze/2:
Meta-predicate with arguments: freeze(?,goal).

Usage: freeze(X,Goal)

− Description: If X is free delay Goal until X is non-variable.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEfrozen/2:
Meta-predicate with arguments: frozen(?,goal).

Usage: frozen(X,Goal)

− Description: Goal is currently delayed until variable X becomes bound.

− The following properties should hold upon exit:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

108.3 Known bugs and planned improvements (freeze)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

580 The Ciao System

Chapter 109: Delaying predicates (when) 581

109 Delaying predicates (when)

Author(s): Manuel Carro.

when/2 delays a predicate until some condition in its variable is met. For example, we
may want to find out the maximum of two numbers, but we are not sure when they will be
instantiated. We can write the standard max/3 predicate (but changing its name to gmax/3 to
denote that the first and second arguments must be ground) as

gmax(X, Y, X):- X > Y, !.
gmax(X, Y, Y):- X =< Y.

and then define a ’safe’ max/3 as

max(X, Y, Z):-
when((ground(X),ground(Y)), gmax(X, Y, Z)).

which can be called as follows:

?- max(X, Y, Z) , Y = 0, X = 8.

X = 8,
Y = 0,
Z = 8 ?

yes

Alternatively, max/3 could have been defined as

max(X, Y, Z):-
when(ground((X, Y)), gmax(X, Y, Z)).

with the same effects as above. More complex implementations are possible. Look, for exam-
ple, at the max.pl implementation under the when library directory, where a max/3 predicate is
implemented which waits on all the arguments until there is enough information to determine
their values:

?- use_module(library(when(max))).

yes
?- max(X, Y, Z), Z = 5, Y = 4.

X = 5,
Y = 4,
Z = 5 ?

yes

582 The Ciao System

109.1 Usage and interface (when)
� �

• Library usage:

:- use_module(library(when)).

• Exports:

− Predicates:

when/2.

− Regular Types:

wakeup_exp/1.

• Other modules used:

− System library modules:

terms_vars, sort, sets.

 	

109.2 Documentation on exports (when)

PREDICATEwhen/2:
Meta-predicate with arguments: when(?,goal).

Usage: when(WakeupCond,Goal)

− Description: Delays / executes Goal according to WakeupCond given. The
WakeupConds now acceptable are ground(T) (Goal is delayed until T is ground),
nonvar(T) (Goal is delayed until T is not a variable), and conjunctions and disjunc-
tions of conditions:

wakeup_exp(ground(_1)).
wakeup_exp(nonvar(_1)).
wakeup_exp((C1,C2)) :-

wakeup_exp(C1),
wakeup_exp(C2).

wakeup_exp((C1;C2)) :-
wakeup_exp(C1),
wakeup_exp(C2).

when/2 only fails it the WakeupCond is not legally formed. If WakeupCond is met at
the time of the call no delay mechanism is involved — but there exists a time penalty
in the condition checking.

In case that an instantiation fires the execution of several predicates, the order in
which these are executed is not defined.

− The following properties should hold at call time:

WakeupCond is a legal expression for delaying goals. (when:wakeup exp/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

REGTYPEwakeup exp/1:
Usage: wakeup_exp(T)

− Description: T is a legal expression for delaying goals.

Chapter 109: Delaying predicates (when) 583

109.3 Known bugs and planned improvements (when)

• Redundant conditions are not removed.

• Floundered goals are not appropriately printed.

584 The Ciao System

Chapter 110: Active modules (high-level distributed execution) 585

110 Active modules (high-level distributed
execution)

Author(s): Manuel Hermenegildo, Daniel Cabeza.

Active modules [CH95] provide a high-level model of inter-process communication and
distributed execution (note that this is also possible using Ciao’s communication and concur-
rency primitives, such as sockets, concurrent predicates, etc., but at a lower level of abstraction).
An active module (or an active object) is an ordinary module to which computational resources
are attached, and which resides at a given location on the network. Compiling an active module
produces an executable which, when running, acts as a server for a number of predicates: the
predicates exported by the module. Predicates exported by an active module can be accessed
by a program on the network by simply “using” the module, which then imports such “remote
predicates.” The process of “using” an active module does not involve transferring any code,
but rather setting up things so that calls in the module using the active module are executed
as remote procedure calls to the active module. This occurs in the same way independently
of whether the active module and the using module are in the same machine or in different
machines across the network.

Except for having to compile it in a special way (see below), an active module is identical
from the programmer point of view to an ordinary module. A program using an active module
imports it and uses it in the same way as any other module, except that it uses “ use_active_
module” rather than “ use_module” (see below). Also, an active module has an address (network
address) which must be known in order to use it. In order to use an active module it is necessary
to know its address: different “protocols” are provided for this purpose (see below).1

From the implementation point of view, active modules are essentially daemons: executables
which are started as independent processes at the operating system level. Communication with
active modules is implemented using sockets (thus, the address of an active module is an IP
socket address in a particular machine). Requests to execute goals in the module are sent
through the socket by remote programs. When such a request arrives, the process running the
active module takes it and executes it, returning through the socket the computed answers.
These results are then taken and used by the remote processes. Backtracking over such remote
calls works as usual and transparently. The only limitation (this may change in the future, but
it is currently done for efficiency reasons) is that all alternative answers are precomputed (and
cached) upon the first call to an active module and thus an active module should not export a
predicate which has an infinite number of answers.

The first thing to do is to select a method whereby the client(s) (the module(s) that will use
the active module) can find out in which machine/port (IP address/socket number) the server
(i.e., the active module) will be listening once started, i.e., a “protocol” to communicate with the
active module. The easiest way to do this is to make use of the rendezvous methods which are
provided in the Ciao distribution in the library/actmods directory; currently, tmpbased...,
filebased..., webbased..., and platformbased....

The first one is based on saving the IP address and socket number of the server in a file
in a predefined directory (generally /tmp, but this can be changed by changing tmpbased_
common.pl).

The second one is similar but saves the info in the directory in which the server is started
(as <module name>.addr), or in the directory that a .addr file, if it exists, specifies. The
clients must be started in the same directory (or have access to a file .addr specifying the same
directory). However, they can be started in different machines, provided this directory is shared
(e.g., by NFS or Samba), or the file can be moved to an appropriate directory on a different
machine –provided the full path is the same.

1 It is also possible to provide active modules via a WWW address. However, we find it more
straightforward to simply use socket addresses. In any case, this is generally hidden inside
the access method and can be thus made transparent to the user.

586 The Ciao System

The third one is based on a name server for active modules. When an active module is
started, it communicates its address to the name server. When the client of the active module
wants to communicate with it, it asks the name server the active module address. This is all
done transparently to the user. The name server must be running when the active module is
started (and, of course, when the application using it is executed). The location of the name
server for an application must be specified in an application file named webbased_common.pl
(see Section 3.1 below).

The fourth one is also based on a name server, but the address of the name server is given
as a parameter to the active modules when started.

The rendezvous methods (or protocols) are encoded in two modules: a first one, called
...publish.pl, is used by the server to publish its info. The second one, called ...locate.pl,
is used by the client(s) to locate the server info. For efficiency, the client methods maintain a
cache of addresses, so that the server information only needs to be read from the file system the
first time the active module is accessed.

Active modules are compiled using the -a option of the Ciao compiler (this can also be done
from the interactive top-level shell using make_actmod/2). For example, issuing the following
command:

ciaoc -a ’actmods/filebased_publish’ simple_server

compiles the simple server example that comes with the distribution (in the actmods/example
directory). The simple_client_with_main example (in the same directory) can be compiled
as usual:

ciaoc simple_client_with_main

Note that the client uses the actmods package, specifies the rendezvous method by import-
ing library(actmods(filebased_locate)), and explicitely imports the “remote” predicates
(implicit imports will not work). Each module using the actmods package should only use one
of the rendezvous methods.

Now, if the server is running (e.g., simple_server & in Un*x or double-clicking on it in
Win32) when the client is executed it will connect with the server to access the predicate(s) that
it imports from it.

A simpler even client simple_client.pl can be loaded into the top level and its predicates
called as usual (and they will connect with the server if it is running).

110.1 Active modules as agents

It is rather easy to turn Ciao active modules into agents for some kind of applications. The
directory examples/agents contains a (hopefully) self-explanatory example.

110.2 Usage and interface (actmods_doc)
� �

• Library usage:

:- use_package(actmods).

or

:- module(...,...,[actmods]).

• New declarations defined:

use_active_module/2.

 	

Chapter 110: Active modules (high-level distributed execution) 587

110.3 Documentation on new declarations (actmods_doc)

DECLARATIONuse active module/2:
Usage: :- use_active_module(AModule,Imports).

− Description: Specifies that this code imports from the active module defined in
AModule the predicates in Imports. The imported predicates must be exported by
the active module.

− The following properties should hold at call time:

AModule is a source name. (streams basic:sourcename/1)

Imports is a list of prednames. (basic props:list/2)

110.4 Other information (actmods_doc)

The protocols webbased and platformbased are described in this section with a bit more
detail.

110.5 Active module name servers (webbased protocol)

An application using a name server for active modules must have a file named webbased_
common.pl that specifies where the name server resides. It must have the URL and the path
which corresponds to that URL in the file system of the server machine (the one that hosts the
URL) of the file that will hold the name server address.

The current distribution provides a file webbased_common.pl that can be used (after proper
setting of its contents) for a server of active modules for a whole installation. Alternatively,
particular servers for each application can be set up (see below).

The current distribution also provides a module that can be used as name server by any
application. It is in file examples/webbased_server/webbased_server.pl.

To set up a name server edit webbased_common.pl to change its contents appropriately as
described above (URL and corresponding complete file path). Then recompile this library module:

ciaoc -c webbased_common

The name server has to be compiled as an active module itself:

ciaoc -a actmods/webserver_publish webbased_server

It has to be started in the server machine before the application and its active modules are
compiled.

Alternatively, you can copy webbased_common.pl and use it to set up name servers for
particular applications. Currently, this is a bit complicated. You have to ensure that the name
server, the application program, and all its active modules are compiled and executed with the
same webbased_common.pl module. One way to do this is to create a subdirectory actmods
under the directory of your application, copy webbased_common.pl to it, modify it, and then
compile the name server, the application program, and its active modules using a library path
that guarantees that your actmods directory is located by the compiler before the standard Ciao
library. The same applies for when running all of them if the library loading is dynamic.

One way to do the above is using the -u compiler option. Assume the following file:

:- module(paths,[],[]).
:- multifile library_directory/1.
:- dynamic library_directory/1.

588 The Ciao System

:- initialization(asserta_fact(
library_directory(’/root/path/to/my/particular/application’))).

then you have file webbased_common.pl in a subdirectory actmods of the above cited path.
You have to compile the name server, the active modules, and the rest of the application with:

ciaoc -u paths -s ...

to use your particular webbased_common.pl and to make executables statically link libraries.
If they are dynamic, then you have to provide for the above library directory path to be set
up upon execution. This can be done, for example, by including module paths into your
executables.

Addresses of active modules are saved by the name server in a subdirectory webbased_db of
the directory where you start it —see examples/webbased_server/webbased_db/webbased_
server). This allows to restart the server right away if it dies (since it saves its state). This
directory should be cleaned up regularly of addresses of active modules which are no more active.
To do this, stop the server —by killing it (its pid is in PATH/FILE), and restart it after cleaning
up the files in the above mentioned directory.

110.6 Platforms (platformbased protocol)

This protocol is also based on a name server. There are, however, two differences with the
above one: the name server address and the active modules names are dynamic. On the one
hand, the name server address (IP address/socket number) is given to the active modules when
they are started up. This might be convenient when using the same name server executable for
different applications starting up a different name server process for each application. On the
other hand, the name assigned to a given active module can also be given as a parameter to the
active module when it is started up. This makes it easier to maintain a local name space for
particular applications (e.g., two modules with the same name can be used as active modules in
the same application).

The code of a name server for the previous section protocol can also be used for this protocol
(e.g., file examples/webbased_server/webbased_server.pl).

110.7 Known bugs and planned improvements (actmods_doc)

• The package provides no means for security: the accessing application must take care of
this (?).

• It can happen that there is a unique process for an active module serving calls from several
different simultaneous executions of the same application (or even different applications).
In this case, there might be unwanted interactions (e.g., if the active module has state).

• Applications may fail if the name server or an active module is restarted during execution
of the application (since they might restart at a different port than the one cached by the
application).

• One may want name servers to reside at a fixed and known machine and port number (this
is known as a service and is defined in /etc/services in a Un*x machine).

Chapter 111: Agents 589

111 Agents

Author(s): Francisco Bueno.

An agent is an active module which has a main execution thread. Simultaneously (i.e., in
concurrent execution with the main thread), the agent receives messages from other agents,
which trigger the execution of a predicate by the name of the message. Messages can also be
sent to other agents, by calling the predicate by the name of the message in the context of the
receiver agent (see ::/2 below). Agents are identified by name. The name of an agent is usually
the name of its (main) file, but this depends on the protocol used (see protocol/1 below).

A simple agent that sends inform messages and at the same time receives them from other
agents, answering back ok, will look like:

:- agent(simple,[inform/2,ok/1]).
:- protocol(’actmods/filebased’).

agent :-
repeat,
display(’Agent id:message?- ’), read(Agent:Mess),
Agent::inform(Mess),
fail.

inform(Agent,Mess):-
display(Agent), display(’ has sent: ’, display(Mess), nl,
Agent::ok.

ok(_Agent).

111.1 Usage and interface (agent_doc)
� �

• Library usage:

:- agent(AgentName,[Message|...]).

for the main file of the agent.

:- use_module(library(agent(agent_call))).

for the rest of modules of the agent that need to send messages.

• New operators defined:

::/2 [550,xfx].

• New declarations defined:

protocol/1.

 	

111.2 Documentation on new declarations (agent_doc)

DECLARATIONprotocol/1:
A protocol is formed by a pair of modules which allow to locate connection addresses of
agents. By convention, the names of these modules have a common prefix, which makes
reference to the protocol, and have suffixes ’ locate’ and ’ publish’. The ’publish’ part
of the protocol must define a multifile predicate save_addr_actmod/1 and the ’locate’
part export a predicate module_address/2. The first one publishes an agent address; the

590 The Ciao System

second one locates the address of an agent. Together, both make it possible for agents
to send and receive messages. All agents in a multi-agent system must therefore use
the same protocol. Upon compilation, they will then be (automatically) instrumented as
active modules under the corresponding rendezvous method.

Usage: :- protocol(Protocol).

− Description: Protocol is the prefix to a library path where an active module ren-
dezvous protocol can be found.

111.3 Documentation on multifiles (agent_doc)

PREDICATEsave addr actmod/1:
The predicate is multifile.

Usage: save_addr_actmod(Address)

− Description: (protocol defined) publishes the agent’s Address.

111.4 Documentation on internals (agent_doc)

PREDICATEmodule address/2:
Usage: module_address(Agent,Address)

− Description: (protocol defined) gives the Address of Agent.

PREDICATE::/2:
No further documentation available for this predicate.

PREDICATEself/1:
No further documentation available for this predicate.

111.5 Other information (agent_doc)

This package is intended as a sample of how to program agents in Ciao, based on active
modules. It probably lacks many features that an agent might need. In particular, it lacks
language-independence: it is thought for multi-agent systems where all agents are programmed
in Ciao.

You are welcome to add any feature that you may be missing!

111.5.1 Platforms

A platform is an active module which holds connection addresses of agents in a multi-agent
system. A protocol is provided which enables the use of platforms: agent/platformbased.
A suitable platform must be up and running when agents which run under this protocol are
started up. The host id and port number (IP address/socket number) of the platform must
then be given as arguments to the agents executables. The protocol also allows to give an
agent name to the agent upon start-up. A module suitable for a platform can be found in
library(actmods/examples/webbased_server/webbased_server).

Chapter 111: Agents 591

111.6 Known bugs and planned improvements (agent_doc)

• Currently, the agent has to be compiled explicitely as an active module. The same protocol
than in the agent source code must be used for this. Automatic compilation is not working.

• It seems that there are running-ahead problems with threads that prevent to correctly
publish agent addresses, sometimes.

592 The Ciao System

Chapter 112: Breadth-first execution 593

112 Breadth-first execution

Author(s): Daniel Cabeza, Manuel Carro, Manuel Hermenegildo.

This package implements breadth-first execution of predicates. This may be useful in search
problems when a proof procedure is needed that will find all solutions (even if it may still loop
for some failures). This is in contrast with the default depth-first search, which may loop in
some cases even if there are correct answers to a given query. This library is also useful when
experimenting with pure programs as well as when teaching logic programming, for illustrating
the expected theoretical results that should be expected from the declarative semantics (see for
example the slides in http://www.cliplab.org/proglog).

It is important to realize, however, that the improved behaviour of breadth first execution
comes at a high (exponential!) price in terms of both time ad memory. This library allows the
programmer to control this overhead by selecting which predicates will be executed in breadth-
first mode and which predicates in depth-first mode. More concretely, predicates written with
operators ’<-’/1 (facts) and ’<-’/2 (clauses) are executed using breadth-first search, while
predicates using the standard syntax will be executed depth-first.

The following example implements two versions of a predicate meant to succeed if two nodes
of a directed graph are connected. The chain/2 predicate (which will be executed depth-first)
loops without finding the connection between a and d, while the bfchain/2 predicate (which
will be executed breadth-first) will find the connection correctly:

:- module(chain, _, [bf]).

test(bf) :- bfchain(a,d).
test(df) :- chain(a,d). % loops!

bfchain(X,X) <- .
bfchain(X,Y) <- arc(X,Z), bfchain(Z,Y).

chain(X,X).
chain(X,Y) :- arc(X,Z), chain(Z,Y).

arc(a,b).
arc(a,d).
arc(b,c).
arc(c,a).

A second package, ’bf/bfall’, allows executing all the predicates in a given module in
breadth-first mode. In this case, predicates should be written using the standard syntax. This
is useful to be able to switch easily between depth-first and breadth-first execution (e.g., for
testing purposes) for all predicates in a given module without having to modify the program.
The following program (written in standard syntax) runs breadth-first:

:- module(chain_bfall, _, [’bf/bfall’]).

test :- chain(a,d).

chain(X,X).
chain(X,Y) :- arc(X,Z), chain(Z,Y).

arc(a,b).
arc(a,d).
arc(b,c).

594 The Ciao System

arc(c,a).

There is another version, package ’bf/af’, which ensures AND-fairness by goal shuffling.
This reduces the number of cases in which an execution that is a failure loops instead (infinite
failures) at a small additional cost. For example, by using ’bf/af’ the following code correctly
answers “no” when executing test/0:

:- module(sublistapp, [test/0, sublistapp/2], [’bf/af’]).

:- push_prolog_flag(unused_pred_warnings, no).

test :- sublistapp([a], [b]).

sublistapp(S, L) <- append(_, S, Y), append(Y, _, L).

append([], L, L) <- .
append([X|Xs], L, [X|Ys]) <- append(Xs, L, Ys).

:- pop_prolog_flag(unused_pred_warnings).

There is also a package ’bf/bfall’ which again allows executing all the predicates in a given
module in breadth-first, and-fair mode, where also all predicates should be written using the
standard syntax. This package offers (at a cost, of course) very nice results for many programs,
and is used extensively in programming courses by the Ciao developers.

Finally, it should be noted that a separate library, id, implements iterative-deepening search,
which can in many cases be a better alternative to breadth-first search, since it achieves the
same improvement in the completeness results in many cases at a greatly reduced execution cost
(but the enumeration order of solutions is not as nice, and that is why these packages are very
attractive for prototyping and teaching).

112.1 Usage and interface (bf_doc)
� �

• Library usage:

:- use_package(bf).

or

:- module(...,...,[bf]).

• New operators defined:

<-/2 [1200,xfx], <-/1 [1200,xf].

 	

112.2 Known bugs and planned improvements (bf_doc)

• Does not correctly work in user files.

Chapter 113: Iterative-deepening execution 595

113 Iterative-deepening execution

Author(s): Rémy Haemmerlé, Manuel Carro, Claudio Vaucheret, Manuel Hermenegildo.

This package applies a compiling control technique to implement depth first iterative deepen-
ing execution [Kor85]. It changes the usual depth-first computation rule by iterative-deepening
on those predicates specifically marked. This is very useful in search problems when a complete
proof procedure is needed.

When this computation rule is used, first all goals are expanded only up to a given depth. If
no solution is found or more solutions are needed by backtracking, the depth limit is incremented
and the whole goal is repeated. Although it might seem that this approach is very inefficient
because all higher levels are repeated for the deeper ones, it has been shown that is performs only
about b/(b - 1) times as many operations than the corresponding breadth-first search, (where b
is the branching factor of the proof tree) while the waste of memory is the same as depth first.

The usage is by means of the following directive:

:- iterative(Name, FirstCut, Formula).

which states than the predicate ’Name’ given in functor/arity form will be executed using
iterative deepening rule starting at the depth ’FirstCut’ with depth being incremented by the
predicate ’Formula’. This predicate compute the new depth using the previous one. It must
implement a dilating function i.e. the new depth must be greater. For example, to start with
depth 5 and increment by 10 you can write:

:- iterative(p/1,5,f).

f(X,Y) :- Y is X + 10.

or if you prefer,

:- iterative(p/1,5,(_(X,Y):- Y is X + 10)).

You can also use a fourth parameter to set a limiting depth. All goals below the given depth
limit simply fail. Thus, with the following directive:

:- iterative(p/1,5,(_(X,Y):- Y is X + 10),100).

all goals deeper than 100 will fail.

An example of code using this package would be:

:- module(example_id, _,[id]).

test(id) :-
idchain(a,d).

test(df) :-
chain(a,d). % loops!

:- iterative(idchain/2, 3, (_(X,Z) :- Z is X + 1)).

idchain(X,X).
idchain(X,Y) :-

arc(X,Z),
idchain(Z,Y).

chain(X,X).
chain(X,Y) :-

arc(X,Z),
chain(Z,Y).

arc(a,b).

596 The Ciao System

arc(a,d).
arc(b,c).
arc(c,a).

The order of solutions are first the shallower and then the deeper. Solutions which are
between two cutoff are given in the usual left to right order. For example,

:- module(_,_,[id]).

% All goals deeper than 2 will fail
:- iterative(p/1,0,(_(X,Z) :- Z is X + 1),2).

% Change the solutions’ order to goal p(X).
%:- iterative(p/1,1,(_(X,Z) :- Z is X + 3)).

p(X) :- q(X).
p(a).

q(X) :- r(X).
q(b).

r(X) :- s(X).
r(c).

s(d).

Another complete proof procedure implemented is the bf package (breadth first execution).

113.1 Usage and interface (id_doc)
� �

• Library usage:

:- use_package(id).

or

:- module(...,...,[id]).

 	

Chapter 114: Constraint programming over rationals 597

114 Constraint programming over rationals

Author(s): Christian Holzbaur, Daniel Cabeza, Samir Genaim (Meta-programming predi-
cates).

Note: This package is currently being adapted to the new characteristics of the Ciao module
system. This new version works right now with limitations, but it is under further development
at the moment. Use with (lots of) caution.

114.1 Usage and interface (clpq_doc)
� �

• Library usage:

:- use_package(clpq).

or

:- module(...,...,[clpq]).

• New operators defined:

.=./2 [700,xfx], .<>./2 [700,xfx], .<./2 [700,xfx], .=<./2 [700,xfx], .>./2 [700,xfx], .>=./2
[700,xfx].

 	

114.2 Other information (clpq_doc)

114.2.1 Some CLP(Q) examples

(Other examples can be found in the source and library directories.)

• ’Reversible’ Fibonacci (clpq):

:- module(_, [fib/2], []).
:- use_package(clpq).

fib(X,Y):- X .=. 0, Y .=. 0.
fib(X,Y):- X .=. 1, Y .=. 1.
fib(N,F) :-

N .>. 1,
N1 .=. N - 1,
N2 .=. N - 2,
fib(N1, F1),
fib(N2, F2),
F .=. F1+F2.

• Matrix multiplication (clpq):

:- use_package(clpq).
:- use_module(library(write)).

mmultiply([],_,[]).
mmultiply([V0|Rest], V1, [Result|Others]):-

mmultiply(Rest, V1, Others),
multiply(V1,V0,Result).

598 The Ciao System

multiply([],_,[]).
multiply([V0|Rest], V1, [Result|Others]):-

multiply(Rest, V1, Others),
vmul(V0,V1,Result).

vmul([],[],0).
vmul([H1|T1], [H2|T2], Result):-

vmul(T1,T2, Newresult),
Result .=. H1*H2+Newresult.

matrix(1,[[1,2,3,4,5],[4,0,-1,5,6],[7,1,-2,8,9],[-1,0,1,3,2],[1,5,-3,2,4]]).
matrix(2,[[3,2,1,0,-1],[-2,1,3,0,2],[1,2,0,-1,5],[1,3,2,4,5],[-5,1,4,2,2]]).

%% Call with: ?- go(M).

go(M):-
matrix(1,M1),
matrix(2,M2),
mmultiply(M1, M, M2).

• Queens (clpq):

:- use_package(clpq).

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-

N .>. 0, X .>. 0, X .=<. Range,
N1 .=. N - 1,
constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-

Queen .<>. Y+Nb,
Queen .<>. Y-Nb,
Nb1 .=. Nb + 1,
no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-

N > 0, member(N, Q), N1 is N-1, place_queens(N1, Q).

114.2.2 Meta-programming with CLP(Q)

The implementation of CLP(Q) in Ciao compiles the constraints in the program to a sequence
of calls to the underlying constraints solver (at compile-time). This results in efficient implemen-
tation, since the structure of the constraints is processed only at compile-time, but requires the
constraints to be known at static time which can be a limitation for metaprogramming-based
applications such as static program analyzers. For example, the call:

Chapter 114: Constraint programming over rationals 599

?- X=(A+B), Y=(C-D), X .>. Y.

no

fails because X .>. Y is translated first to a sequence of calls that require (when they invoked)
X and Y to be either numbers or free variables. To overcome this limitation, you can use clp_
meta/1 which delays the translation of the constraints from compile-time to run-time (i.e., when
clp_meta/1 is called), For example:

?- X=(A+B),Y=(C-D), clp_meta([X .>. Y]).

X = A+B,
Y = C-D,
C.<.D+A+B ?

The argument of clp_meta/1 accepts a goal or lists of goals, where each goal is limited to
conjunctions, disjunctions, or CLP(Q) constraints. Other operations on constraints which are
extensively used in meta-programming, in particular in static program analysis, are projection
and entailment check. The projection operation restricts the constraints (that are available in
the store) to a given set of variables and turns the answer into terms. You can use the multifile
predicate dump_constraints/3 for that purpose:

?- A .>. C, C .>. B, dump_constraints([A,B],[X,Y],Cs).

Cs = [X.>.Y],
C.>.B,
C.<.A ?

?- C=(B+D), clp_meta([A .>. C, D .>. 0]), dump_constraints([A,B],[X,Y],Cs).

C = B+D,
Cs = [Y.<.X],
D.<. -B+A,
D.>.0 ?

The entailment check is used to check if a list of constrains is entailed by the store. You can
use the predicate clp_entailed/1 for that purpose:

?- A .>. C, C .>. B, B .>. D, clp_entailed([A .>. B, A .>. D]).

B.>.D,
C.>.B,
C.<.A ?

yes

?- A .>=. B, clp_entailed([A .>. B]).

no

114.3 Known bugs and planned improvements (clpq_doc)

• clp(Q) and clp(R) cannot be used simultaneously in the same program, or even within the
same toplevel session.

600 The Ciao System

Chapter 115: Constraint programming over reals 601

115 Constraint programming over reals

Author(s): Christian Holzbaur, Daniel Cabeza, Samir Genaim (Meta-programming predi-
cates).

Note: This package is currently being adapted to the new characteristics of the Ciao module
system. This new version now works right now to some extent, but it under further development
at the moment. Use with (lots of) caution.

115.1 Usage and interface (clpr_doc)
� �

• Library usage:

:- use_package(clpr).

or

:- module(...,...,[clpr]).

• New operators defined:

.=./2 [700,xfx], .<>./2 [700,xfx], .<./2 [700,xfx], .=<./2 [700,xfx], .>./2 [700,xfx], .>=./2
[700,xfx].

 	

115.2 Other information (clpr_doc)

115.2.1 Some CLP(R) examples

(Other examples can be found in the source and library directories.)

• ’Reversible’ Fibonacci (clpr):

:- module(_, [fib/2], []).
:- use_package(clpr).

fib(X,Y):- X .=. 0, Y .=. 0.
fib(X,Y):- X .=. 1, Y .=. 1.
fib(N,F) :-

N .>. 1,
N1 .=. N - 1,
N2 .=. N - 2,
fib(N1, F1),
fib(N2, F2),
F .=. F1+F2.

• Dirichlet problem for Laplace’s equation (clpr):

%
% Solve the Dirichlet problem for Laplace’s equation using
% Leibman’s five-point finit-differenc approximation.
% The goal ?- go1 is a normal example, while the goal ?- go2
% shows output constraints for a small region where the boundary conditions

602 The Ciao System

% are not specified.
%
:- use_package(clpq).
:- use_module(library(format)).

laplace([_, _]).
laplace([H1, H2, H3|T]):-

laplace_vec(H1, H2, H3),
laplace([H2, H3|T]).

laplace_vec([_, _], [_, _], [_, _]).
laplace_vec([_TL, T, TR|T1], [ML, M, MR|T2], [_BL, B, BR|T3]):-

B + T + ML + MR - 4 * M .=. 0,
laplace_vec([T, TR|T1], [M, MR|T2], [B, BR|T3]).

printmat([]).
printmat([H|T]):-

printvec(H),
printmat(T).

printvec([]):- nl.
printvec([H|T]):-

printrat(H),
printvec(T).

printrat(rat(N,D)) :- !,
X is N/D,
format(" ~2f",X).

printrat(N) :-
X is N*100,
format(" ~2d",X).

go1:-
X = [

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
],

laplace(X),
printmat(X).

% Answer:
% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Chapter 115: Constraint programming over reals 603

% 100.00 51.11 32.52 24.56 21.11 20.12 21.11 24.56 32.52 51.11 100.00
% 100.00 71.91 54.41 44.63 39.74 38.26 39.74 44.63 54.41 71.91 100.00
% 100.00 82.12 68.59 59.80 54.97 53.44 54.97 59.80 68.59 82.12 100.00
% 100.00 87.97 78.03 71.00 66.90 65.56 66.90 71.00 78.03 87.97 100.00
% 100.00 91.71 84.58 79.28 76.07 75.00 76.07 79.28 84.58 91.71 100.00
% 100.00 94.30 89.29 85.47 83.10 82.30 83.10 85.47 89.29 94.30 100.00
% 100.00 96.20 92.82 90.20 88.56 88.00 88.56 90.20 92.82 96.20 100.00
% 100.00 97.67 95.59 93.96 92.93 92.58 92.93 93.96 95.59 97.67 100.00
% 100.00 98.89 97.90 97.12 96.63 96.46 96.63 97.12 97.90 98.89 100.00
% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

go2([B31, M32, M33, B34, B42, B43, B12, B13, B21, M22, M23, B24]) :-
laplace([

[_B11, B12, B13, _B14],
[B21, M22, M23, B24],
[B31, M32, M33, B34],
[_B41, B42, B43, _B44]

]).

% Answer:
%
% B34.=. -4*M22+B12+B21+4*M33-B43,
% M23.=.4*M22-M32-B12-B21,
% B31.=. -M22+4*M32-M33-B42,
% B24.=.15*M22-4*M32-4*B12-4*B21-M33-B13 ?

115.2.2 Meta-programming with CLP(R)

see Section 114.2.2 [Meta-programming with CLP(Q)], page 598

115.3 Known bugs and planned improvements (clpr_doc)

• clp(Q) and clp(R) cannot be used simultaneously in the same program, or even within the
same toplevel session.

604 The Ciao System

Chapter 116: Fuzzy Prolog 605

116 Fuzzy Prolog

Author(s): Claudio Vaucheret, Sergio Guadarrama, Francisco Bueno.

This package impements an extension of prolog to deal with uncertainty. We implement a
fuzzy prolog that models interval-valued fuzzy logic. This approach is more general than other
fuzzy prologs in two aspects:

1. Truth values are sub-intervals on [0,1]. In fact, it could be a finite union of sub-intervals, as
we will see below. Having a unique truth value is a particular case modeled with a unitary
interval.

2. Truth values are propagated through the rules by means of a set of aggregation operators.
The definition of an aggregation operator is a generalization that subsumes conjunctive
operators (triangular norms as min, prod, etc.), disjunctive operators (triangular co-norms
as max, sum, etc.), average operators (averages as arithmetic average, cuasi-linear average,
etc.) and hybrid operators (combinations of previous operators).

We add uncertainty using CLP(R) instead of implementing a new fuzzy resolution as other
fuzzy prologs. In this way, we use the original inference mechanism of Prolog, and we use the
constraints and its operations provided by CLP(R) to handle the concept of partial truth. We
represent intervals as constrains over real numbers and aggregation operators as operations with
constraints.

Each fuzzy predicate has an additional argument which represents its truth value. We use
“:~” instead of “:-” to distinguish fuzzy clauses from prolog clauses. In fuzzy clauses, truth
values are obtained via an aggregation operator. There is also some syntactic sugar for defining
fuzzy predicates with certain membership functions, the fuzzy counterparts of crisp predicates,
and the fuzzy negation of a fuzzy predicate.

116.1 Usage and interface (fuzzy_doc)
� �

• Library usage:

:- use_package(fuzzy).

or

:- module(...,...,[fuzzy]).

• Exports:

− Predicates:

:#/2, fuzzy_predicate/1, fuzzy/1, fnot/1, :~/2, =>/4.

− Properties:

fuzzybody/1.

− Regular Types:

faggregator/1.

• New operators defined:

:~/2 [1200,xfx], :~/1 [1200,xf], :=/2 [1200,xfx], :=/1 [1200,xf], :#/2 [1200,xfx], =>/1
[1175,fx], fnot/1 [1150,fx], aggr/1 [1150,fx], ##/2 [1120,xfy], <#/2 [1120,xfy], #>/2
[1120,xfy], fuzzy/1 [1150,fx], fuzzy_predicate/1 [1190,fx], fuzzy_discrete/1 [1190,fx].

• New declarations defined:

aggr/1.

 	

606 The Ciao System

116.2 Documentation on new declarations (fuzzy_doc)

DECLARATIONaggr/1:
Usage: :- aggr(Name).

− Description: Declares Name an aggregator. Its binary definition has to be provided.
For example:

:- aggr myaggr.

myaggr(X,Y,Z):- Z .=. X*Y.

defines an aggregator identical to prod.

− The following properties hold at call time:

Name is an atomic term (an atom or a number). (basic props:constant/1)

116.3 Documentation on exports (fuzzy_doc)

PREDICATE:#/2:
Usage: :#(Name,Decl)

− Description: Defines fuzzy predicate Name from the declaration Decl.

− The following properties hold upon exit:

Name is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Decl is one of the following three:

fuzzydecl(fuzzy_predicate(_1)).
fuzzydecl(fuzzy(_1)).
fuzzydecl(fnot(_1)).

(user(/home/ciaotester/tests/auto/CiaoDE/ciao/library/fuzzy/fuzzy doc):fuzzydecl/1)

PREDICATEfuzzy predicate/1:
Usage: fuzzy_predicate(Domain)

− Description: Defines a fuzzy predicate with piecewise linear continuous membership
function. This is given by Domain, which is a list of pairs of domain-truth values, in
increasing order and exhaustive. For example:

young :# fuzzy_predicate([(0,1),(35,1),(45,0),(120,0)]).

defines the predicate:

young(X,1):- X .>=. 0, X .<. 35.
young(X,M):- X .>=. 35, X .<. 45, 10*M .=. 45-X.
young(X,0):- X .>=. 45, X .=<. 120.

− The following properties should hold at call time:

Domain is a list. (basic props:list/1)

Chapter 116: Fuzzy Prolog 607

PREDICATEfuzzy/1:
Usage: fuzzy(Name)

− Description: Defines a fuzzy predicate as the fuzzy counterpart of a crisp predicate
Name. For example,

p_f :# fuzzy p/2

defines a new fuzzy predicate p_f/3 (the last argument is the truth value) with truth
value equal to 0 if p/2 fails and 1 otherwise.

− The following properties should hold at call time:

Name is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

PREDICATEfnot/1:
Usage: fnot(Name)

− Description: Defines a fuzzy predicate as the fuzzy negation of another fuzzy predicate
Name. For example,

notp_f :# fnot p_f/3

defines the predicate:

notp_f(X,Y,M) :-
p_f(X,Y,Mp),
M .=. 1 - Mp.

− The following properties should hold at call time:

Name is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

PREDICATE:~/2:
Usage: :~(Head,Body)

− Description: Defines a fuzzy clause for a fuzzy predicate. The clause contains calls to
either fuzzy or crisp predicates. Calls to crisp predicates are automatically fuzzified.
The last argument of Head is the truth value of the clause, which is obtained as the
aggregation of the truth values of the body goals. An example:

:- module(young2,_,[fuzzy]).

young_couple(X,Y,Mu) :~ min
age(X,X1),
age(Y,Y1),
young(X1,MuX),
young(Y1,MuY).

age(john,37).

608 The Ciao System

age(rose,39).

young :# fuzzy_predicate([(0,1),(35,1),(45,0),(120,0)]).

so that:

?- young_couple(john,rose,M).

M .=. 0.6 ?

− The following properties should hold at call time:

Head is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Body is a clause body plus an optional aggregation operator.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/library/fuzzy/fuzzy doc):fuzzybody/1)

PROPERTYfuzzybody/1:
A clause body, optionally prefixed by the name of an aggregation operator. The agregators
currently provided are listed under faggregator/1. By default, the aggregator used is
min.

Usage: fuzzybody(B)

− Description: B is a clause body plus an optional aggregation operator.

REGTYPEfaggregator/1:
The first three are, respectively, the T-norms: minimum, product, and Lukasiewicz’s. The
last three are their corresponding T-conorms. Aggregators can be defined by the user, see
aggr/1.

faggregator(min).
faggregator(prod).
faggregator(luka).
faggregator(max).
faggregator(dprod).
faggregator(dluka).

Usage: faggregator(Aggr)

− Description: Aggr is an aggregator which is cumulative, i.e., its application to several
values by iterating pairwise the binary operation is safe.

PREDICATE=>/4:
Usage: =>(Aggr,A,B,Truth)

− Description: The fuzzy implication A => B defined by aggregator Aggr, resulting in
the truth value Truth.

− The following properties should hold at call time:

Aggr is an aggregator which is cumulative, i.e., its application to
several values by iterating pairwise the binary operation is safe.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/library/fuzzy/fuzzy doc):faggregator/1)

A is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Chapter 116: Fuzzy Prolog 609

B is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Truth is a free variable. (term typing:var/1)

116.4 Other information (fuzzy_doc)

An example program:

:- module(dicesum5,_,[fuzzy]).

% this example tries to measure which is the possibility
% that a couple of values, obtained throwing two loaded dice, sum 5. Let
% us suppose we only know that one die is loaded to obtain a small value
% and the other is loaded to obtain a large value.
%
% the query is ? sum(5,M)
%

small :# fuzzy_predicate([(1,1),(2,1),(3,0.7),(4,0.3),(5,0),(6,0)]).
large :# fuzzy_predicate([(1,0),(2,0),(3,0.3),(4,0.7),(5,1),(6,1)]).

die1(X,M) :~
small(X,M).

die2(X,M) :~
large(X,M).

two_dice(X,Y,M):~ prod
die1(X,M1),
die2(Y,M2).

sum(2,M) :~
two_dice(1,1,M1).

sum(5,M) :~ dprod
two_dice(4,1,M1),
two_dice(1,4,M2),
two_dice(3,2,M3),
two_dice(2,3,M4).

There are more examples in the subdirectory fuzzy/examples of the distribution.

116.5 Known bugs and planned improvements (fuzzy_doc)

• General aggregations defined by users.

• Inconsistent behaviour of meta-calls in fuzzy clauses.

• Some meta-predicate constructions need be added, specially for ’disjunctive’ fuzzy clauses,
e.g., sum/2 in the dice example.

610 The Ciao System

Chapter 117: Object Oriented Programming 611

117 Object Oriented Programming

Author(s): Angel Fernandez Pineda.

O’Ciao is a set of libraries which allows object-oriented programming in Ciao Prolog. It
extends the Ciao Prolog module system by introducing two new concepts:

• Inheritance.

• Instantiation.

Polymorphism is the third fundamental concept provided by object oriented programming.
This concept is not mentioned here since traditional PROLOG systems are polymorphic by
nature.

Classes are declared in the same way as modules. However, they may be enriched with inher-
itance declarations and other object-oriented constructs. For an overview of the fundamentals
of O’Ciao, see http://www.clip.dia.fi.upm.es/~clip/papers/ociao-tr.ps.gz. However,
we will introduce the concepts in a tutorial way via examples.

117.1 Early examples

The following one is a very simple example which declares a class – a simple stack. Note
that if you replace class/1 declaration with a module/1 declaration, it will compile correctly,
and can be used as a normal Prolog module.

%%--%%
%% A class for stacks. %%
%%--%%

%% Class declaration: the current source defines a class.
:- class(stack,[],[]).

% State declaration: storage/1 is an attribute.
:- dynamic storage/1.

% Interface declaration: the following predicates will
% be available at run-time.
:- export(push/1).
:- export(pop/1).
:- export(top/1).
:- export(is_empty/0).

% Methods

push(Item) :-
nonvar(Item),
asserta_fact(storage(Item)).

pop(Item) :-
var(Item),
retract_fact(storage(Item)).

top(Top) :-
storage(Top), !.

612 The Ciao System

is_empty :-
storage(_), !, fail.

is_empty.

If we load this code at the Ciao toplevel shell:

?- use_package(objects).

yes
?- use_class(library(’class/examples/stack’)).

yes
?-

we can create two stack instances :

?- St1 new stack,St2 new stack.

St1 = stack(’9254074093385163’),
St2 = stack(’9254074091’) ? ,

and then, we can operate on them separately:

1 ?- St1:push(8),St2:push(9).

St1 = stack(’9254074093385163’),
St2 = stack(’9254074091’) ?

yes
1 ?- St1:top(I),St2:top(K).

I = 8,
K = 9,
St1 = stack(’9254074093385163’),
St2 = stack(’9254074091’) ?

yes
1 ?-

The interesting point is that there are two stacks. If the previous example had been a normal
module, we would have a stack , but only one stack.

The next example introduces the concepts of inheritable predicate, constructor, destructor
and virtual method. Refer to the following sections for further explanation.

%%--%%
%% A generic class for item storage. %%
%%--%%
:- class(generic).

% Public interface declaration:
:- export([set/1,get/1,callme/0]).

% An attribute
:- data datum/1.

% Inheritance declaration: datum/1 will be available to
% descendant classes (if any).

Chapter 117: Object Oriented Programming 613

:- inheritable(datum/1).

% Attribute initialization: attributes are easily initialized
% by writing clauses for them.
datum(none).

% Methods

set(X) :-
type_check(X),
set_fact(datum(X)).

get(X) :-
datum(X).

callme :-
a_virtual(IMPL),
display(IMPL),
display(’ implementation of a_virtual/0 ’),
nl.

% Constructor: in this case, every time an instance
% of this class is created, it will display a message.
generic :-

display(’ generic class constructor ’),
nl.

% Destructor: analogous to the previous constructor,
% it will display a message every time an instance
% of this class is eliminated.
destructor :-

display(’ generic class destructor ’),
nl.

% Predicates:
% cannot be called as messages (X:method)

% Virtual declaration: tells the system to use the most
% descendant implementation of a_virtual/1 when calling
% it from inside this code (see callme/0).
% If there is no descendant implementation for it,
% the one defined bellow will be used.
:- virtual a_virtual/1.

a_virtual(generic).

:- virtual type_check/1.

type_check(X) :-
nonvar(X).

614 The Ciao System

And the following example, is an extension of previous class. This is performed by establishing
an inheritance relationship:

%%--%%
%% This class provides additional functionality %%
%% to the "generic" class. %%
%%--%%
:- class(specific).

% Establish an inheritance relationship with class "generic".
:- inherit_class(library(’class/examples/generic’)).

% Override inherited datum/1.
% datum/1 is said to be overriden because there are both an
% inherited definition (from class "generic") and a local one,
% which overrides the one inherited.
:- data datum/1.
:- inheritable datum/1.

% Extend the public interface inherited from "generic".
% note that set/1 and a_virtual/0 are also overriden.
% undo/0 is a new functionality added.
:- export([set/1,undo/0]).

% Methods

set(Value) :-
inherited datum(OldValue),
!,
inherited set(Value),
asserta_fact(datum(OldValue)).

set(Value) :-
inherited set(Value).

undo :-
retract_fact(datum(Last)), !,
asserta_fact(inherited(datum(Last))).

undo :-
retractall_fact(inherited(datum(_))).

% Constructor
specific :-

generic,
retractall_fact(inherited(datum(_))),
display(’ specific class constructor ’),
nl.

% Destructor
destructor :-

display(’ specific class destructor ’),
nl.

Chapter 117: Object Oriented Programming 615

% Predicates

% New implementation of a_virtual/1.
% Since this predicate was declared virtual, the
% implementation below will be called from the inherited
% method callme/0 instead of the version defined at "generic".
a_virtual(specific).

Additional examples may be found on the library/class/examples directory relative to your
Ciao Prolog instalation.

117.2 Recommendations on when to use objects

We would like to give some advice in the use of object oriented programming, in conjunction
with the declarative paradigm.

You should reconsider using O’Ciao in the following cases:

• The pretended "objects" have no state,i.e., no data or dynamic predicates. In this case, a
normal module will suffice.

• There is state, but there will be only one instance of a pretended class. Again, a module
suffices.

• The "objects" are data structures (list,trees,etc) already supported by Prolog. However, it
does make sense to model, using objects, data structures whose change implies a side-effect
such as drawing a particular window on the screen.

We recommend the usage of O’Ciao in the following cases:

• You feel you will need to have several copies of a "module".

• Local copies of a module are needed instead of a global module beeing modified by several
ones.

• The "classes" are a representation of external entities to Prolog. For example: the X-
Window system.

• There is state or code outside the Prolog system which needs to be manipulated. For
example: interfaces to Java or Tcl/Tk code.

• You are not familiar with Prolog, but you know about object oriented programming. O’Ciao
may be used as a learning tool to introduce yourself on the declarative programming
paradigm.

117.3 Limitations on object usage

O’Ciao run-time speed is limited by the usage of meta-programming structures, for instance:
X = (Object:mymethod(25)), call(X). O’Ciao will optimize static manipulation of objects
(those that can be determined at compile time).

616 The Ciao System

Chapter 118: Declaring classes and interfaces 617

118 Declaring classes and interfaces

Author(s): Angel Fernandez Pineda.

O’Ciao classes are declared in the same way as traditional prolog modules. The general
mechanism of source expansion will translate object-oriented declarations to normal prolog code.
This is done transparently to the user.

Abstract interfaces are restricted classes which declare exported predicates with no imple-
mentation. The implementation itselt will be provided by some class using an implements/1
declaration. Only export/1 and data/1 declarations are allowed when declaring an interface.
Normal classes may treated as interfaces just ignoring all exported predicate implementations.

118.1 Usage and interface (class_doc)
� �

• Library usage:

To declare a class the compiler must be told to use the class source expansion. To do so,
source code must start with a module declaration which loads the class package:

:- class(ClassName).

or a module/3 declaration, as follows:

:- module(ClassName,[],[class]).

interfaces are declared in a similar way:

:- interface(InterfaceName).

Please, do not use SICStus-like module declaration, with a non-empty export list. In other
case, some non-sense errors will be reported by normal Ciao module system.

Most of the regular Ciao declarations may be used when defining a class, such as
concurrent/1, dynamic/1, discontiguous/1, multifile/1, and so on.

However, there are some restrictions wich apply to those declarations:

• meta_predicate/1 declaration is not allowed to hold addmodule and pred(N) meta-
arguments, except for previously declared multifiles.

• Attribute and multifile predicates must be declared before any clause of the related
predicate.

• There is no sense in declaring an attribute as meta predicate.

It is a good practique to put all your declarations at the very begining of the file, just before
the code itself.

• Exports:

− Predicates:

inherited/1, self/1, constructor/0, destructor/0.

• New declarations defined:

export/1, public/1, inheritable/1, data/1, dynamic/1, concurrent/1, inherit_
class/1, implements/1, virtual/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 	

618 The Ciao System

118.2 Documentation on new declarations (class_doc)

DECLARATIONexport/1:
Declares a method or attribute to be part of the public interface.

The public interface is the set of predicates wich will be accesible from any code estab-
lishing an usage relationship with this class (see use_class/1 for further information).

Publishing an attribute or method is very similar to exporting a predicate in a Prolog
module.

Whether an inherited and exported predicate is overriden, it must be explicitly exported
again.

An inherited (but not exported) predicate may become exported, without overriding it by
the usage of this declaration.

Usage: :- export(Spec).

− Description: Spec will be part of the public (exported) interface.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects rt:method spec/1)

DECLARATIONpublic/1:
Just an alias for export/1.

Usage: :- public(Spec).

− Description: This declaration may be used instead of export/1.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects rt:method spec/1)

DECLARATIONinheritable/1:
Declares a method or attribute to be inherited by descendant classes. Notice that all public
predicates are inheritable by default. There is no need to mark them as inheritable.

Traditionaly, object oriented languages makes use of the protected concept. Inheritable/1
may be used as the same concept.

The set of inheritable predicates is called the inheritable interface.

Usage: :- inheritable(MethodSpec).

− Description: MethodSpec is accessible to descendant classes.

− The following properties should hold at call time:

MethodSpec is a method or attribute specification. (objects rt:method spec/1)

DECLARATIONdata/1:
Declares an attribute at current class. Attributes are used to build the internal state of
instances. So, each instance will own a particular copy of those attribute definitions. In
this way, one instance may have different state from another.

O’Ciao attributes are restricted to hold simple facts. It is not possible to hold a Head :-
Body clause at an instance attribute.

Notice that attributes are multi-evaluated by nature, and may be manipulated by the
habitual assert/retract family of predicates.

Chapter 118: Declaring classes and interfaces 619

Attributes may also be initialized. In order to do so, simply put some clauses after the
attribute definition. Each time an instance is created, its initial state will be built from
those initialization clauses.

Note: whether a data/1 declaration appears inside an interface, it will be automatically
exported.

Usage: :- data Spec.

− Description: Spec is an attribute.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects rt:method spec/1)

DECLARATIONdynamic/1:
Just an alias for data/1.

Usage: :- dynamic Spec.

− Description: You may use this declaration instead of data/1.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects rt:method spec/1)

DECLARATIONconcurrent/1:
Declares a concurrent attribute at current class. Concurrent attributes are just the same
as normal attributes, those declared using data/1, except for they may freeze the calling
thread instead of failing when no more choice points are remaining on the concurrent
attribute.

In order to get more information about concurrent behavior take a look to the concurrent/1
built-in declaration on Ciao Prolog module system.

Usage: :- concurrent Spec.

− Description: Declares Spec to be a concurrent attribute.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects rt:method spec/1)

DECLARATIONinherit class/1:
Makes any public and/or inheritable predicate at inherited class to become accesible by
any instance derived from current class.

Inherited class is also called the super class.

Only one inherit class/1 declaration is allowed to be present at current source.

Notice that inheritance is public by default. Any public and/or inheritable declaration
will remain the same to descendant classes. However, any inherited predicate may be
overriden (redefined).

A predicate is said to be overriden when it has been inherited from super class, but there
are clauses (or a data/1 declaration) present at current class for such a predicate.

Whether a public predicate is overriden, the local definition must also be exported, oth-
erwise an error is reported.

Whether an inheritable predicate (not public) is overriden, the local definition must also
be marked as inheritable or exported, otherwise an error is also reported.

Note: whether inherit class/1 appears inside an interface, it will be used as an
implements/1 declaration.

Usage: :- inherit_class(Source).

620 The Ciao System

− Description: Establish an inheritance relationship between current class and the class
defined at Source file.

− The following properties should hold at call time:

Source is a valid path to a prolog file containing a class declaration (without .pl
extension). (objects rt:class source/1)

DECLARATIONimplements/1:
Forces current source to provide an implementation for the given interface file. Such
interface file may declare another class or a specific interface.

Every public predicate present at given interface file will be automatically declared as
public at current source, so you must provide an implementation for such predicates.

The effect of this declaration is called interface inheritance,and there is no restriction on
the number of implements/1 declarations present at current code.

Usage: :- implements(Interface).

− Description: Current source is supposed to provide an implementation for Interface.

− The following properties should hold at call time:

Interface is a valid path to a prolog file containing a class declaration or an interface
declaration (without .pl extension). (objects rt:interface source/1)

DECLARATIONvirtual/1:
This declaration may be used whenever descendant classes are to implement different
versions of a given predicate.

virtual predicates give a chance to handle, in an uniform way, different implementations
of the same functionality.

Whether a virtual predicate is declared as a method, there must be at least one clause of it
present at current source. Whenever no special implementation is needed at current class,
a never-fail/allways-fail clause may be defined (depending on your needs). For example:

:- virtual([test1/1 , test2/2]).
test1(_).
test2(_,_) :- fail.

This kind of virtual methods are also known as abstract methods, since implementation is
fully delegated to descendant classes.

An attribute may be also declared as a virtual one, but there is no need to write clauses
for it.

Usage: :- virtual(VirtualMethodSpec).

− Description: All calls to VirtualMethodSpec predicate in current source will use the
most descendant implementation of it.

− The following properties should hold at call time:

VirtualMethodSpec is a method specification. (objects rt:virtual method spec/1)

Chapter 118: Declaring classes and interfaces 621

118.3 Documentation on exports (class_doc)

PREDICATEinherited/1:
This predicate qualificator may be used whenever you need to reference an attribute or
method on the super class.

Since methods and attributes may be redefined, this qualificator is need to distinguish
between a locally declared predicate and the inherited one, which has the same name.

There is no need to use inherited/1 if a particular inherited predicate has not been redefined
at current class.

Usage: inherited(Goal)

− Description: References a given Goal at the super class

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEself/1:
Determines which instance is currently executing self/1 goal.

Predicate will fail if argument is not a free variable. Otherwise, it will allways succeed,
retrieving the instance identifier which is executing current code.

This functionality is very usefull since an object must have knowledge of other object’s
identifier in order to send messages to it.For example:

:- concurrent ack/0.

send data to object(Data,Obj) :- self(X), Obj:take this(Data,X), current fact(ack).

acknowledge :- asserta fact(ack).

take this(Data,Sender) :- validate data(Data), Sender:acknowledge.

Usage: self(Variable)

− Description: Retrieves current instance identifier in Variable

− The following properties should hold at call time:

Variable is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Variable is an unique term which identifies an object. (objects rt:instance id/1)

PREDICATEconstructor/0:
A constructor is a special case of method which complains the following conditions:

• The constructor functor matches the current class name.

• A constructor may hold any number of arguments.

• If an inheritance relationship was defined, an inherited constructor must be manually
called (see below).

• When instance creation takes place, any of the declared constructors are implicitly
called. The actual constructor called depends on the new/2 goal specified by the user.

This is a simple example of constructor declaration for the foo class:

622 The Ciao System

foo :-
display(’an instance was born’).

Constructor declaration is not mandatory, and there may be more than one constructor
declarations (with different arity) at the source code.

This functionality is usefull when some computation is needed at instance creation. For
example: opening a socket, clearing the screen, etc.

Whenever an inheritance relationship is established, and there is any constructor defined
at the super class, you must call manually an inherited constructor. Here is an example:

:- class(foo).
:- inherit_class(myclass).

foo :-
myclass(0),
display(’an instance was born’).

foo(N) :- myclass(N).

Consequences may be unpredictable, if you forget to call an inherited constructor. You
should also take care not to call an inherited constructor twice.

All defined constructors are inheritable by default. A constructor may also be declared as
public (by the user), but it is not mandatory.

Usage:

− Description: Constructors are implicitly declared

PREDICATEdestructor/0:
A destructor is a special case of method which will be automatically called when instance
destruction takes place.

A destructor will never be wanted to be part of the public interface, and there is no need to
mark them as inheritable, since all inherited destructors are called by O’Ciao just before
yours.

This is a simple example of destructor declaration:

destructor :-
display(’goodbye, cruel world!!!’).

Destructor declaration is not mandatory. Failure or sucess of destructors will be ignored
by O’Ciao, and they will be called only once.

This functionality is useful when some computation is need at instance destruction. For
example: closing an open file.

Usage:

− Description: Destructors are implicitly declared

118.4 Other information (class_doc)

This describes the errors reported when declaring a class or an interface. The first section
will explain compile-time errors, this is, any semantic error which may be determined at compile
time. The second section will explain run-time errors, this is, any exception that may be raisen
by the incorrect usage of O’Ciao. Some of those errors may be not reported at compile time,
due to the use of meta-programational structures. For example:

functor(X,my_method,0),call(X).

O’Ciao is not able to check whether my method/0 is a valid method or not. So, this kind of
checking is left to run time.

Chapter 118: Declaring classes and interfaces 623

118.4.1 Class and Interface error reporting at compile time

• ERROR : multiple inheritance not allowed.

There are two or more inherit class/1 declarations found at your code. Only one declaration
is allowed, since there is no multiple code inheritance support.

• ERROR : invalid inheritance declaration.

The given parameter to inherit class/1 declaration is not a valid path to a Prolog source.

• ERROR : sorry, addmodule meta-arg is not allowed at F/A.

You are trying to declare F/A as meta-predicate, and one of the meta-arguments is ad-
dmodule. This is not allowed in O’Ciao due to implementation restrictions. For example:

:- meta_predicate example(addmodule).

example(X,FromModule) :- call(FromModule:X).

• ERROR : invalid attribute declaration for Arg.

Argument to data/1 or dynamic/1 declaration is not a valid predicate specification of the
form Functor/Arity. For example:

:- data attr.

:- dynamic attr(_).

:- data attr/m.

etc,etc...

• ERROR : pretended attribute F/A was assumed to be a method.

You put some clauses of F/A before the corresponding data/1 or dynamic/1 declaration.
For example:

attr(initial_value).

:- data attr/1.

It is a must to declare attributes before any clause of the given predicate.

• ERROR : destructor/0 is not allowed to be an attribute.

There is a :- data(destructor/0) or :- dynamic(destructor/0). declaration in your code. This
is not allowed since destructor/0 is a reserved predicate, and must be allways a method.

• ERROR : Constructor is not allowed to be an attribute.

As the previos error, you are trying to declare a constructor as an attribute. A constructor
must be allways a method.

• ERROR : invalid multifile: destructor/0 is a reserved predicate.

There is a :- multifile(destructor/0). declaration in your code. This is not allowed since
destructor/0 is a reserved predicate, and must be allways a method.

• ERROR : invalid multifile: Constructor is a reserved predicate.

As the previos error, you are trying to declare a constructor as a multifile. Any constructor
must allways be a method.

• ERROR : multifile declaration of F/A ignored: it was assumed to be a method.

You put some clauses of F/A before the corresponding multifile/1 declaration. For example:

example(a,b).

:- multifile example/2.

Multifile predicates must be declared before any clause of the given predicate.

• ERROR : invalid multifile declaration: multifile(Arg).

Given argument to multifile/1 declaration is not a valid predicate specification, of the form
Functor/Arity.

624 The Ciao System

• ERROR : invalid public declaration: Arg.

Given argument Arg to public/1 or export/1 declaration is not a valid predicate specifica-
tion, of the form Functor/Arity.

• ERROR : invalid inheritable declaration: inheritable(Arg).

Given argument Arg to inheritable/1 declaration is not a valid predicate specification, of
the form Functor/Arity.

• ERROR : destructor/0 is not allowed to be virtual.

There is a :- virtual(destructor/0) declaration present at your code. Destructors and/or
constructors are not allowed to be virtual.

• ERROR : Constructor is not allowed to be virtual.

As the previous error, you are trying to declare a constructor as virtual. This is not allowed.

• ERROR : invalid virtual declaration: virtual(Arg).

Given argument to virtual/1 declaration is not a valid predicate specification, of the form
Functor/Arity.

• ERROR : clause of F/A ignored : only facts are allowed as initial state.

You declared F/A as an attribute, then you put some clauses of that predicate in the form
Head :- Body. For example:

:- data my_attribute/1.

my_attribute(X) :- X>=0 , X<=2.

This is not allowed since attributes are assumed to hold simple facts. The correct usage for
those initialization clauses is:

:- data my_attribute/1.

my_attribute(0).

my_attribute(1).

my_attribute(2).

• ERROR : multifile F/A is not allowed to be public.

The given F/A predicate is both present at multifile/1 and public/1 declarations. For
example:

:- public(p/1).

:- multifile(p/1).

This is not allowed since multifile predicates are not related to Object Oriented Program-
ming.

• ERROR : multifile F/A is not allowed to be inheritable.

Analogous to previous error.

• ERROR : multifile F/A is not allowed to be virtual.

Analogous to previous error.

• ERROR : virtual F/A must be a method or attribute defined at this class.

There is a virtual/1 declaration for F/A, but there is not any clause of that predicate nor a
data/1 declaration. You must declare at least one clause for every virtual method. Virtual
attributes does not require any clause but a data/1 declaration must be present.

• ERROR : implemented interface Module is not a valid interface.

There is an implements/1 declaration present at your code where given Module is not
declared as class nor interface.

• ERROR : predicate F/A is required both as method (at Itf1 interface) and attribute (at
Itf2 interface).

There is no chance to give a correct implementation for F/A predicate since Itf1 and Itf2
interfaces require different definitions. To avoid this error, you must remove one of the
related implements/1 declaration.

Chapter 118: Declaring classes and interfaces 625

• ERROR : inherited Source must be a class.

There is an :- inherit class(Source) declaration, but that source was not declared as a class.

• ERROR : circular inheritance: Source is not a valid super-class.

Establishing an inheritance relationship with Source will cause current class to be present
twice in the inheritance line. This is not allowed. The cause of this is error is simple : There
is some inherited class from Source which also establishes an inheritance relationship with
current source.

• ERROR : method/attribute F/A must be implemented.

Some of the implemented interfaces requires F/A to be defined, but there is no definition
for such predicate, even an inherited one.

• ERROR : local implementation of F/A hides inheritable/public definition.

There is an inherited definition for F/A which is been redefined at current class, but there is
no valid inheritable/public declaration for the last one. Overriden public predicates must be
also declared as public. Overriden inheritable predicates must be declared either as public
or inheritable.

• ERROR : public predicate F/A was not defined nor inherited.

There is a public/1 declaration for F/A, but there is no definition for it at current class
nor an inherited one.

• ERROR : argument to self/1 must be a free variable.

Argument to self/1 is not a variable, for example: self(abc).

• ERROR : unknown inherited attribute in Goal.

Goal belongs to assert/retract family of predicates, and given argument is not a valid
inherited attribute. The most probable causes of this error are:

• The given predicate is defined at super-class, but you forgot to mark it as inheritable
(or public), at such class.

• The given predicate was not defined (at super-class) as an attribute, just as a method.

• ERROR : unknown inherited goal: Goal.

The given Goal was not found at super-class, or it is not accessible. Check whether Goal
was marked as inheritable (or public) at super-class.

• ERROR : invalid argument: F/A is not an attribute.

You are trying to pass a method as an argument to any predicate which expect a fact
predicate.

• ERROR : unknown inherited fact: Fact.

There is a call to any predicate which expects a fact argument (those declared as data or
dynamic),but the actual argument is not an inherited attribute.For example:

asserta_fact(inherited(not_an_attribute(8)))

where not an attribute/1 was not declared as data or dynamic by the super-class (or cor-
responding ascendant).

• ERROR : unknown inherited spec: F/A.

There is a reference to an inherited predicate specification, but the involved predicate has
not been inherited.

• WARNING : meta-predicate specification of F/A ignored since this is an attribute.

You declared F/A both as an attribute and a meta-predicate. For example:

:- meta_predicate attr(goal).

:- data attr/1.

There is no sense in declaring an attribute as meta-predicate.

626 The Ciao System

• WARNING : class destructor is public

There is a :- public(destructor/0) declaration present at your code. Marking a destructor
as public is a very bad idea since anybody may destroy or corrupt an instance before the
proper time.

• WARNING : class destructor is inheritable

Analogous to previous error.

• WARNING : There is no call to inherited constructor/s

You have not declared any constructor at your class, but there is any inherited constructor
that should be called. Whenever you do not need constructors, but there is an inheri-
tance relationship (where super-class declares a constructor), you should write a simple
constructor as the following example:

:- class(myclass).
:- inherit_class(other_class).

myclass :-
other_class.

• WARNING : multifile F/A hides inherited predicate.

You declared as multifle a predicate which matches an inherited predicate name. Any
reference to the inherited predicate must be done by the ways of the inherited/1 qualificator.

118.4.2 Class and Interface error reporting at run time

• EXCEPTION : error(existence error(object goal,Goal),Mod).

Called Goal from module (or class) Mod is unknown or has not been published.

118.4.3 Normal Prolog module system interaction

O’Ciao works in conjunction with the Ciao Prolog module system, which also reports its
own error messages. This will cause Ciao to report a little criptic error messages due to the
general mechanism of source-to-source expansion. Those are some tips you must consider when
compiling a class:

• Any error relative to method ’m’ with arity A will be reported for predicate ’obj$m’/A+1.
For example :

WARNING: (lns 28-30) [Item,Itema] - singleton variables in obj$remove/2

This error is relative to method remove/1.

• set_prolog_flag/1 declaration will be usefull when declaring multiple constructors. It
will avoid some awful warnings. Example:

:- class(myclass).

%% Use this declaration whenever several constructors are needed.

:- set_prolog_flag(multi_arity_warnings,off).

myclass(_).

myclass(_,_).

:- set_prolog_flag(multi_arity_warnings,on).

Chapter 118: Declaring classes and interfaces 627

118.5 Known bugs and planned improvements (class_doc)

• addmodule and pred(N) meta-arguments are not allowed on meta-predicates.

628 The Ciao System

Chapter 119: Compile-time usage of objects 629

119 Compile-time usage of objects

Author(s): Angel Fernandez Pineda.

This package is required to enable user code to create objects and manipulate them, as well
as loading any needed class.

119.1 Usage and interface (objects_doc)
� �

• Library usage:

Any code which needs to use objects must include the objects package:

:- module(ModuleName,Exports,[objects]).

You can use objects even if your code is a class. Note that declaring a class does not
automatically enables the code to create instances.

:- class(ModuleName,[],[objects]).

This package enables both static and dynamic usage of objects.

• New declarations defined:

use_class/1, instance_of/2, new/2.

• Other modules used:

− System library modules:

objects/objects_rt.

 	

119.2 Documentation on new declarations (objects_doc)

DECLARATIONuse class/1:
It establishes an usage relationship between the given file (which is supposed to declare a
class) and current source. Usage relationships are needed in order to enable code to create
instances of the given class, and to make calls to instances derived from such class.

Since an interface is some kind of class, they may be used within this declaration but only
for semantic checking porpouses. Instances will not be derived from interfaces.

use class/1 is used in the same way as use_module/1.

Usage: :- use_class(ClassSource).

− Description: Establish usage relationship with ClassSource.

− The following properties should hold at call time:

ClassSource is a valid path to a prolog file containing a class declaration (without
.pl extension). (objects rt:class source/1)

DECLARATIONinstance of/2:
Statically declares an identifier to be an instance of a given class.

It may be used as new/2 predicate except for:

• The instance identifier will not be a variable, it must be provided by the user, and
must be unique.

• Instance creation will never fail, even if the constructor fails.

630 The Ciao System

For every statically declared object the given constructor will be called at program startup.
Those instances may be destroyed manually, but it is not recommended.

When reloading the involved class from the Ciao toplevel shell. It may destroy statically
declared instances, and create them again.

Statically declared instances must be called using a specifically designed module-
qualification: ClassName(Object):Goal. For example:

:- module(example,[main/0],[objects]).
:- use_class(library(counter)).
:- cnt instance_of counter(10).

main :-
counter(cnt):decrease(1),
counter(cnt):current_value(X),
display(X).

But statically written code (only) is allowed to use module-style qualifications as a macro:

main :-
cnt:decrease(1),
cnt:current_value(X),
display(X).

Notice that dynamically expanded goals such as X=cnt,X:decrease(1) will not work, use
X=counter(cnt),X:decrease(1) instead.

Usage: :- instance_of(Object,Constructor).

− Description: Declares Object to be an instance of the class denoted by Constructor.

− The following properties should hold at call time:

Object is an unique term which identifies an object. (objects rt:instance id/1)

Constructor is a term whose functor matches a class name. (ob-
jects rt:constructor/1)

DECLARATIONnew/2:
This declaration has the same effect as instance_of/2.

Usage: :- new(Object,Constructor).

− Description: Just an alias for instance_of/2.

− The following properties should hold at call time:

Object is an unique term which identifies an object. (objects rt:instance id/1)

Constructor is a term whose functor matches a class name. (ob-
jects rt:constructor/1)

119.3 Other information (objects_doc)

Compile-time errors are restricted to some local analysis. Since there is no type declaration
in the Prolog language, there is no posibility to determine whenever a given variable will hold
an instance of any class.

However, little semantic analysis is performed. User may aid to perform such an analysis by
the usage of run time checks (which are also detected at compile time), or static declarations.
For example:

clause(Obj) :- Obj:a_method(334).

Chapter 119: Compile-time usage of objects 631

O’Ciao may be not able to determine whenever a method/1 is a valid method for instance
Obj, unless some help is provided:

clause(Obj) :- Obj instance_of myclass,Obj:a_method(334).

In such case, O’Ciao will report any semantic error at compile-time.

Most of the run-time errors are related to normal Ciao Prolog module system. Since objects
are treated as normal Prolog modules at run time, there is no further documentation here about
that stuff.

119.3.1 Error reporting at compile time (objects)

• ERROR : invalid instance identifier ID : must be an atom

There is a instance_of/2 or new/2 declaration where first argument ID must be an unique
atom, but currently it is not. Statically declared instances needs an identifier to be provided
by the user.

• ERROR : instance identifier ID already in use

There are two or more instance_of/2 declarations with the same first argument ID. In-
stance identifiers must be unique.

• ERROR : invalid use class/1 declaration: SourceFile is not a class

Those are the causes for this error:

• The given SourceFile does not exist, or is not accesible.

• The given SourceFile is not a Prolog source.

• The given SourceFile is a valid Prolog source, but it does not declare a class.

• ERROR : unknown class on ID instance declaration

The class defined on the instance_of/2 declaration for ID instance has not been loaded
by a use_class/1 declaration.

• ERROR : instance identifier ID is an exisisting Prolog module

There is an statically declared instance whose identifier may cause interference with the
Ciao Prolog module system. Use another instance identifier.

• ERROR : unknown constructor on ID instance declaration

The given constructor on the instance_of/2 declaration for ID has not been defined at
the corresponding class.

• ERROR : constructor is needed on ID instance declaration

No constructor was defined on the instance_of/2 declaration for ID and default construc-
tor is not allowed. You must provide a constructor.

• ERROR : static instance ID was derived from a different constructor at AnotherModule

ID has been declared to be an static instance both on AnotherModule and current source,
but different constructors were used. The most probable causes for this error are:

• Occasionally, there is another module using the same instance identifier and it was not
noticed by you. Another different identifier may be used instead.

• It was you intention to use the same object as declared by the other module. In this
case, the same constructor must be used.

• ERROR : invalid first argument in call to new(Arg,)

There is a new/1 goal in your code where first argument is not a free variable. For example:

myobj new myclass

First argument must be a variable in order to receive a run-time generated object identifier.

• ERROR : unknown class in call to new(?,Constructor)

The given Constructor in call to new/2 does not correspond to any used class at current
code. The most probable cause of this may be:

632 The Ciao System

• You forgot to include a use_class/1 declaration in your code.

• There is a spelling mistake in the constructor.For example:

:- use class(myclass).

foo(X) :- X new mclass.

• ERROR : can not create an instance from an interface: new(?,Constructor)

Given Constructor references an interface rather than a class. Instances can not be derived
from interface-expanded code.

• ERROR : unknown constructor in call to new(?,Constructor)

As the previous error, there is a mistake in the given Constructor. This error is reported
when you are trying to call a constructor which was not defined at the corresponding class.
Check the class definition to find what is going on.

Another cause for this error is the incorrect usage of the default constructor. Whenever
there are one or more constructors defined at the involved class, you are restricted to chose
one of them. This seems that default constructor will be available, if and only if, there are
no constructors defined at the involved class.

• ERROR : call to non-public ID:Goal

You are trying to call a method which was not declared as public by the class specified in
instance_of/2 declaration for ID.

• ERROR : call to inaccessible predicate at instance ID:Goal

There is a call to Goal at statically declared instance ID which is unknown or was not
declared as public.

• ERROR : unknown instance ID of class Class at Goal

There is a call to Goal where involved statically declared instance ID is unknown or is not
derived from Class. Check whether it was declared by a instance_of/2 declaration.

• ERROR : inaccessible attribute Fact at instance ID

There is an attempt to use ID:Fact but it was not declared as public.

• ERROR : unknown attribute Fact at instance ID

There is an attempt to use ID:Fact but it is unknown or it is not an attribute (may be a
method).

• WARNING : invalid call to new(?,)

There is a call to new/2 in you code where first argument variable has been determined to
hold any other instance. For example:

foo :- X new myclass,X new otherclass.

or

foo(X) :- X instance_of myclass, X new myclass.

The related call to new/2 will allways fail.

• WARNING : called Goal is not public at any used class

There is a call to Var :Goal where Var has not been determined to be compatible with any
class. However, Goal is not public at any class specified by the use_class/1 declaration.

This is a warning (not an error) since Var :Goal may be not related to Object Oriented
Programing.

119.3.2 Error reporting at run time (objects)

• EXCEPTION : instantiation error(’1st argument must be free variable’)

Calling to new/1 requieres first argument to be a free variable. For example:

X = this_will_raise_an_exception,X new myclass.

Chapter 119: Compile-time usage of objects 633

• EXCEPTION : instantiation error(’class not given’)

You called new/2 using a free variable as second argument.

• EXCEPTION : instantiation error(inaccesible class(Class), from(Module))

Module tried to create an instance of Class by the ways of new/2, but there is no usage
relationship between Module and Class.

• EXCEPTION : instantiation error(invalid constructor(Constructor))

Constructor was not defined by the corresponding class.

634 The Ciao System

Chapter 120: Run time usage of objects 635

120 Run time usage of objects

Author(s): Angel Fernandez Pineda, Angel Fernandez Pineda.

This library provides run-time support for object creation and manipulation. Objects are
also called class instances, or simply instances.

Objects in Ciao are treated as normal modules. This is, an object is a run-time generated
Prolog module, which may be identified by an unique term across the whole application.

This is a very simple example of how to create an instance, and how to make calls to it:

AnObj new myclass,
AnObj:mymethod.

In order to make any object accessible from code, an usage relationship must be established
between the class (from which instances are derived) and the code itself. Refer to use_class/1
predicate or use_class/1 declaration in order to do so.

120.1 Usage and interface (objects_rt)
� �

• Library usage:

This library is automatically loaded when using the objects package:

:- module(ModuleName,Exports,[objects]).

Nothing special needs to be done.

• Exports:

− Predicates:

new/2, instance_of/2, derived_from/2, interface/2, instance_codes/2,
destroy/1, use_class/1.

− Properties:

constructor/1, class_name/1, interface_name/1,
instance_id/1, class_source/1, interface_source/1, method_spec/1, virtual_
method_spec/1.

• Other modules used:

− System library modules:

compiler/compiler, prolog_sys.

 	

120.2 Documentation on exports (objects_rt)

PREDICATEnew/2:
Dynamic instance creation takes place by the ways of this predicate.

It takes a free variable as first argument which will be instantiated to an internal object
identifier.

Second argument must be instantiated to a class constructor. Class constructors are
designed to perform an initialization on the new created instance. Notice that instance
initialization may involve some kind of computation, not only state initialization.

A class constructor is made by a functor, which must match the intended class name, and
any number of parameters. For example:

636 The Ciao System

Obj new myclass(1500,’hello, world!!!’)

Those parameters depends (obviously) on the constructors defined at the class source.
If no constructors where defined, no parameters are needed. This is called the default
constructor. An example:

Obj new myclass

The default constructor can not be called if there is any constructor available at the class
source.

Instantiation will raise an exception and fail whenever any of this conditions occur:

• First argument is not a free variable.

• Second argument functor is a class, but there is no usage relationship with it.

• Second argument functor is not a class.

• The given constructor is unknown.

• The given constructor fails (notice that default constructor never fails).

Objects may also be statically declared, refer to instance_of/2 declaration.

Usage: new(InstanceVar,Constructor)

− Description: Creates a new instance of the class specified by Constructor returning
its identifier in InstanceVar

− The following properties should hold at call time:

InstanceVar is a free variable. (term typing:var/1)

Constructor is a term whose functor matches a class name. (ob-
jects rt:constructor/1)

− The following properties should hold upon exit:

InstanceVar is an unique term which identifies an object. (objects rt:instance id/1)

PREDICATEinstance of/2:
This predicate is used to perform dynamic type checking. You may check whether a
particular instance belongs to a particular class or related descendants.

instance of/2 is used to perform static semantic analisys over object oriented code con-
structions.

By the use of instance of/2 you may help to perform such analisys.

Usage 1: instance_of(Instance,Class)

− Description: Test whether Instance was derived from any descendant of Class, or
that class itself

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

Class is an atom denoting a class. (objects rt:class name/1)

Usage 2: instance_of(Instance,Class)

− Description: Retrieves, on backtracking, the inheritance line of Instance commenc-
ing on the creation class (that specified on call to new/2) and continuing on the rest
of ascendant classes, if any.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

Class is a free variable. (term typing:var/1)

Chapter 120: Run time usage of objects 637

− The following properties should hold upon exit:

Class is an atom denoting a class. (objects rt:class name/1)

PREDICATEderived from/2:
Test whether an object identifier was derived directly from a class, by the usage of new/2
or a static instance declaration (instance_of/2).

Usage 1: derived_from(Instance,Class)

− Description: Test derivation of Instance from Class

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

Class is an atom denoting a class. (objects rt:class name/1)

Usage 2: derived_from(Instance,Class)

− Description: Retrieves the Class responsable of the derivation of Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

Class is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Class is an atom denoting a class. (objects rt:class name/1)

PREDICATEinterface/2:
This predicate is used to ensure a given interface to be implemented by a given instance.

Usage 1: interface(Instance,Interface)

− Description: Check whether Instance implements the given Interface.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

Interface is an unique atom which identifies a public interface. (ob-
jects rt:interface name/1)

Usage 2: interface(Instance,Interfaces)

− Description: Retrieves on backtracking all the implemented Interfaces of Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

Interfaces is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Interfaces is an unique atom which identifies a public interface. (ob-
jects rt:interface name/1)

PREDICATEinstance codes/2:
Retrieves a character string representation from an object identifier and vice-versa.

Usage 1: instance_codes(Instance,String)

− Description: Retrieves a String representation of given Instance.

638 The Ciao System

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

String is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

Usage 2: instance_codes(Instance,String)

− Description: Reproduces an Instance from its String representation. Such an in-
stance must be alive across the application: this predicate will fail whether the in-
volved instance has been destroyed.

− The following properties should hold at call time:

Instance is a free variable. (term typing:var/1)

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold upon exit:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

PREDICATEdestroy/1:
As well as instances are created, they must be destroyed when no longer needed in order
to release system resources.

Unfortunately, current O’Ciao implementation does not support automatic instance de-
struction, so user must manually call destroy/1 in order to do so.

The programmer must ensure that no other references to the involved object are left in
memory when destroy/1 is called. If not, unexpected results may be obtained.

Usage: destroy(Instance)

− Description: Destroys the object identified by Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects rt:instance id/1)

PREDICATEuse class/1:
The behaviour of this predicate is identical to that provided by the declaration of the
same name use_class/1. It allows user programs to dynamically load classes. Whether
the given source is not a class it will perform a use_module/1 predicate call.

Usage: use_class(ClassSource)

− Description: Dynamically loads the given ClassSource

− The following properties should hold at call time:

ClassSource is a valid path to a prolog file containing a class declaration (without
.pl extension). (objects rt:class source/1)

PROPERTYconstructor/1:
Usage: constructor(Cons)

− Description: Cons is a term whose functor matches a class name.

Chapter 120: Run time usage of objects 639

PROPERTYclass name/1:
Usage: class_name(ClassName)

− Description: ClassName is an atom denoting a class.

PROPERTYinterface name/1:
Usage: interface_name(Interface)

− Description: Interface is an unique atom which identifies a public interface.

PROPERTYinstance id/1:
Usage: instance_id(ID)

− Description: ID is an unique term which identifies an object.

PROPERTYclass source/1:
Usage: class_source(Source)

− Description: Source is a valid path to a prolog file containing a class declaration
(without .pl extension).

PROPERTYinterface source/1:
Usage: interface_source(Source)

− Description: Source is a valid path to a prolog file containing a class declaration or
an interface declaration (without .pl extension).

PROPERTYmethod spec/1:
There is no difference between method or attribute specifications, and habitual predicate
specifications. It is just a Functor/Arity term.

Usage: method_spec(Spec)

− Description: Spec is a method or attribute specification.

PROPERTYvirtual method spec/1:
Usage: virtual_method_spec(Spec)

− Description: Spec is a method specification.

120.3 Known bugs and planned improvements (objects_rt)

• Usage of objects from the user module does not work properly. It is better to use the
objects package in a (proper) module.

• Not really a bug: when loading code which declares static instances from the toplevel shell,
predicate use_module/1) will not work properly: those instances may be not correctly
created, and predicates will fail whenever they are not supposed to do. This may be
avoided by reloading again the involved module, but make sure it is modified and saved to
disk before doing so.

640 The Ciao System

Chapter 121: Declaring abstract interfaces for classes 641

121 Declaring abstract interfaces for classes

Author(s): Angel Fernandez Pineda.

O’CIAO abstract interfaces are simple modules which declares exported predicates with
no implementation. The implementation itself will be provided by some class using an
implements/1 declaration.

O’CIAO classes may be also treated as interfaces just ignoring all exported predicate imple-
mentation.

In order to get information about error reporting, consult the class_doc chapter on this
documentation.

121.1 Usage and interface (interface_doc)
� �

• Library usage:

To declare an interface, the interface source expansion package must be loaded:

:- interface(ItfName).

or using a module/3 declaration, as follows:

:- module(ItfName,[],[interface]).

Note: interfaces does not declare any code, so there is no need to load them from the CIAO
toplevel shell.

 	

642 The Ciao System

PART VIII - Interfaces to other languages and systems 643

PART VIII - Interfaces to other languages and
systems

� �

Author(s): The CLIP Group.

The following interfaces to/from Ciao are documented in this part:

• External interface (e.g., to C).

• Socket interface.

• Tcl/tk interface.

• Web interface (http, html, xml, etc.);

• Persistent predicate databases (interface between the Ciao internal database and the exter-
nal file system).

• SQL-like database interface (interface between the Ciao internal database and external
SQL/ODBC systems).

• Java interface.

• Calling emacs from Ciao.

 	

644 The Ciao System

Chapter 122: Foreign Language Interface 645

122 Foreign Language Interface

Author(s): Jose F. Morales, Manuel Carro.

Ciao Prolog includes a high-level, flexible way to interface C and Prolog, based on the use
of assertions to declare what are the expected types and modes of the arguments of a Prolog
predicate, and which C files contain the corresponding code. To this end, the user provides:

• A set of C files, or a precompiled shared library,

• A Ciao Prolog module defining whith predicates are implemented in the C files and the
types and modes of their arguments, and

• an (optional) set of flags required for the compilation of the files.

The Ciao Prolog compiler analyzes the Prolog code written by the user and gathers this
information in order to generate automatically C "glue" code implementing the data translation
between Prolog and C, and to compile the C code into dynamically loadable C object files, which
are linked automatically when needed.

122.1 Declaration of Types

Each predicate implemented as a foreign C function must have accompanying declarations
in the Ciao Prolog associated file stating the types and modes of the C function. A sample
declaration for prolog_predicate which is implemented as foreign_function_name is:

:- true pred prolog_predicate(m1(Arg1), ... mN(ArgN)) ::
type1 * ... * typeN +
(foreign(foreign_function_name), returns(ArgR)).

where m1, ..., mN and type1, ..., typeN are respectively the modes and types of the arguments.
foreign_function_name is the name of the C function implementing prolog_predicate/N,
and the result of this function is unified with ArgR, which must be one of Arg1 ... ArgN.

This notation can be simplified in several ways. If the name of the foreign function is the same
as the name of the Ciao Prolog predicate, foreign(foreign_function_name) can be replaced
by foreign/0. returns(ArgR) specifies that the result of the function corresponds to the ArgR
argument of the Ciao Prolog predicate. If the foreign function does not return anything (or if
its value is ignored), then returns(ArgR) must be removed. Note that returns cannot be used
without foreign. A simplified, minimal form is thus:

:- true pred prolog_predicate(m1(Arg1), ... mN(ArgN)) ::
type1 * ... * typeN + foreign.

122.2 Equivalence between Ciao Prolog and C types

The automatic translation between Ciao Prolog and C types is defined (at the moment) only
for some simple but useful types. The translation to be performed is solely defined by the types
of the arguments in the Ciao Prolog file (i.e., no inspection of the corresponding C file is done).
The names (and meaning) of the types known for performing that translation are to be found in
Chapter 123 [Foreign Language Interface Properties], page 661; they are also summarized below
(Prolog types are on the left, and the corresponding C types on the right):

• num <-> double

• int <-> int

• atm <-> char *

• string <-> char * (with trailing zero)

646 The Ciao System

• byte list <-> char * (a buffer of bytes, with associated length)

• int list <-> int * (a buffer of integers, with associated length)

• double list <-> double * (a buffer of doubles, with associated length)

• address <-> void *

Strings, atoms, and lists of bytes are passed to (and from) C as dynamically (ciao_malloc)
created arrays of characters (bytes). Those arrays are freed by Ciao Prolog upon return of the
foreign function unless the property do_not_free/2 is specified (see examples below). This
caters for the case in which the C files save in a private state (either by themselves, or by a
library function being called by them) the values passed on from Prolog. The type byte_list/1
requires an additional property, size_of/2, to indicate which argument represents its size.

Empty lists of bytes and integers are converted into C NULL pointers, and vice versa. Empty
strings ([]) and null atoms (”) are converted into zero-length, zero-ended C strings (""). C
NULL strings and empty buffers (i.e., buffers with zero length) are transformed into the empty
list or the null atom (’’).

Most of the work is performed by the predicates in the Chapter 125 [Foreign Language
Interface Builder], page 669, which can be called explicitly by the user. Doing that is not
usually needed, since the Ciao Prolog Compiler takes care of building glue code files an of
compiling and linking whatever is necessary.

122.3 Equivalence between Ciao Prolog and C modes

The (prefix) +/1 ISO mode (or, equivalently, the in/1 mode) states that the corresponding
Prolog argument is ground at the time of the call, and therefore it is an input argument in the
C part; this groundness is automatically checked upon entry. The (prefix) -/1 ISO mode (or,
equivalently, the go/1 mode) states that Prolog expects the C side to generate a (ground) value
for that argument. Arguments with output mode should appear in C functions as pointers to the
corresponding base type (as it is usual with C), i.e., an argument which is an integer generated
by the C file, declared as

:- true pred get_int(go(ThisInt)) :: int + foreign

or as

:- true pred get_int(-ThisInt) :: int + foreign

should appear in the C code as

void get_int(int *thisint)
{

....
}

Note the type of the (single) argument of the function. Besides, the return value of a function
can always be used as an output argument, just by specifying to which Prolog arguments it
corresponds, using the foreing/1 property. The examples below illustrate this point, and the
use of several assertions to guide the compilation.

122.4 Custom access to Prolog from C

Automatic type conversions does not cover all the possible cases. When the automatic type
conversion is not enough (or if the user, for any reason, does not want to go through the automatic
conversion), it is possible to instruct Ciao Prolog not to make implicit type conversion. The
strategy in that case is to pass the relevant argument(s) with a special type (a ciao_term)
which can represent any term which can be built in Prolog. Operations to construct, traverse,
and test this data abstraction from C are provided. The prototypes of these operations are
placed on the "ciao_prolog.h" file, under the include subdirectory of the installation directory

Chapter 122: Foreign Language Interface 647

(the Ciao Prolog compiler knowns where it has been installed, and gives the C compiler the
appropriate flags). This non direct correspondence mode is activated whenever a Ciao Prolog
type unknown to the foreign interface (i.e., none of these in Chapter 123 [Foreign Language
Interface Properties], page 661) or the type any_term (which is explicitly recognised by the
foreign language interface) is found. The latter is preferred, as it is much more informative, and
external tools, as the the CiaoPP preprocessor, can take advantage of them.

122.4.1 Term construction

All term construction primitives return an argument of type ciao_term, which is the result
of constructing a term. All Ciao Prolog terms can be built using the interface operations ciao_
var(), ciao_structure(), ciao_integer(), and ciao_float(). There are, however, variants
and specialized versions of these operations which can be freely intermixed. Using one version
or another is a matter of taste and convenience. We list below the prototypes of the primitives
in order of complexity.

Throughout this section, true, when referred to a boolean value, correspond to the integer
value 1, and false correspond to the integer value 0, as is customary in C boolean expressions.
These values also available as the (predefined) constants ciao_true and ciao_false, both of
type ciao_bool.

• ciao_term ciao_var();

Returns a fresh, unbound variable.

• ciao_term ciao_integer(int i);

Creates a term, representing an integer from the Prolog point of view, from a C integer.

• ciao_term ciao_float(double i);

Creates a term, representing a floating point number, from a floating point number.

• ciao_term ciao_put_number_chars(char *number_string);

It converts number_string (which must a string representing a syntactically valid number)
into a ciao_term.

• ciao_term ciao_atom(char *name);

Creates an atom whose printable name is given as a C string.

• ciao_term ciao_structure_a(char *name, int arity, ciao_term *args);

Creates a structure with name ’name’ (i.e., the functor name), arity ’arity’ and the com-
ponents of the array ’args’ as arguments: args[0] will be the first argument, args[1] the
second, and so on. The ’args’ array itself is not needed after the term is created, and can
thus be a variable local to a procedure. An atom can be represented as a 0-arity struc-
ture (with ciao_structure(name, 0)), and a list cell can be constructed using the ’.’/2
structure name. The _a suffix stands for array.

• ciao_term ciao_structure(char *name, int arity, ...);

Similar to ciao structure a, but the C arguments after the arity are used to fill in the
arguments of the structure.

• ciao_term ciao_list(ciao_term head, ciao_term tail);

Creates a list from a head and a tail. It is equivalent to ciao_structure(".", 2, head,
tail).

• ciao_term ciao_empty_list();

Creates an empty list. It is equivalent to ciao_atom("[]").

• ciao_term ciao_listn_a(int len, ciao_term *args);

Creates a list with ’len’ elements from the array args. The nth element of the list (starting
at 1) is args[n-1] (starting at zero).

648 The Ciao System

• ciao_term ciao_listn(int length, ...);

Like ciao_listn_a(), but the list elements appear explicitly as arguments in the call.

• ciao_term ciao_dlist_a(int len, ciao_term *args, ciao_term base);

Like ciao_listn_a, but a difference list is created. base whill be used as the tail of the
list, instead of the empty list.

• ciao_term ciao_dlist(int length, ...);

Similar to ciao_dlist_a() with a variable number of arguments. The last one is the tail
of the list.

• ciao_term ciao_copy_term(ciao_term src_term);

Returns a new copy of the term, with fresh variables (as copy_term/2 does).

122.4.2 Testing the Type of a Term

A ciao_term can contain any Prolog term, and its implementation is opaque to the C code.
Therefore the only way to know reliably what data is passed on is using explicit functions to
test term types. Below, ciao_bool is a type defined in "ciao_prolog.h" which can take the
values 1 (for true) and 0 (for false).

• ciao_bool ciao_is_variable(ciao_term term);

Returns true if term is currently an uninstantiated variable.

• ciao_bool ciao_is_number(ciao_term term);

Returns true if term is an integer (of any length) or a floating point number.

• ciao_bool ciao_is_integer(ciao_term term);

Returns true if term is instantiated to an integer.

• ciao_bool ciao_fits_in_int(ciao_term term);

Returns true if term is instantiated to an integer which can be stored in an int, and false
otherwise.

• ciao_bool ciao_is_atom(ciao_term atom);

Returns true if term is an atom.

• ciao_bool ciao_is_list(ciao_term term);

Returns true if term is a list (actually, a cons cell).

• ciao_bool ciao_is_empty_list(ciao_term term);

Returns true if term is the atom which represents the empty list (i.e., []).

• ciao_bool ciao_is_structure(ciao_term term);

Returns true if term is a structure of any arity. This includes atoms (i.e., structures of arity
zero) and lists, but excludes variables and numbers.

122.4.3 Term navigation

The functions below can be used to recover the value of a ciao_term into C variables, or to
inspect Prolog structures.

• int ciao_to_integer(ciao_term term);

Converts term to an integer. ciao_is_integer(term) must hold.

• ciao_bool ciao_to_integer_check(ciao_term term, int *result);

Checks whether term fits into the size of an integer. If so, true is returned and *result is
unified with the integer term represents. Otherwise, false is returned and *result is not
touched.

Chapter 122: Foreign Language Interface 649

• double ciao_to_float(ciao_term term);

Converts term to a float value. ciao_is_number(term) must hold.

• char *ciao_get_number_chars(ciao_term term);

It converts ciao_term (which must be instantiated to a number) into a C string representing
the number in the current radix. The string returned is a copy, which must (eventually) be
explicitly deallocated by the user C code using the operation ciao_free()

• char *ciao_atom_name(ciao_term atom);

Returns the name of the atom. The returned string is the one internally used by Ciao
Prolog, and should not be deallocated, changed or altered in any form. The advantage of
using it is that it is fast, as no data copying is needed.

• char *ciao_atom_name_dup(ciao_term atom);

Obtains a copy of the name of the atom. The string can be modified, and the programmer
has the responsibility of deallocating it after being used. Due to the copy, it is slower than
calling char *ciao_atom_name().

• ciao_term ciao_list_head(ciao_term term);

Extracts the head of the list term. Requires term to be a list.

• ciao_term ciao_list_tail(ciao_term term);

Extracts the tail of the list term. Requires term to be a list.

• char *ciao_structure_name(ciao_term term);

Extracts the name of the structure term. Requires term to be a structure.

• int ciao_structure_arity(ciao_term term);

Extracts the arity of the structure term.

Requires term to be a structure.

• ciao_term ciao_structure_arg(ciao_term term, int n);

Extracts the nth argument of the structure term. It behaves like arg/3, so the first argument
has index 1. Requires term to be a structure.

122.4.4 Testing for Equality and Performing Unification

Variables of type ciao_term cannot be tested directly for equality: they are (currently)
implemented as a sort of pointers which may be aliased (two different pointers may refer to the
same object). The interface provides helper functions for testing term equality and to perform
unification of terms.

• ciao_bool ciao_unify(ciao_term x, ciao_term y);

Performs the unification of the terms x and y, and returns true if the unification was
successful. This is equivalent to calling the (infix) Prolog predicate =/2. The bindings are
trailed and undone on backtracking.

• ciao_bool ciao_equal(ciao_term x, ciao_term y);

Performs equality testing of terms, and returns true if the test was successful. This is
equivalent to calling the (infix) Prolog predicate ==/2. Equality testing does not modify
the terms compared.

122.4.5 Raising Exceptions

The following functions offers a way of throwing exceptions from C that can be caught in
Prolog with catch/3. The term that reaches Prolog is exactly the same which was thrown by
C. The execution flow is broken at the point where ciao_raise_exception() is executed, and
it returns to Prolog.

• void ciao_raise_exception(ciao_term ball);

Raises an exception an throws the term ball.

650 The Ciao System

122.4.6 Creating and disposing of memory chunks

Memory to be used solely by the user C code can be reserved/disposed of using, e.g., the well-
known malloc()/free() functions (or whatever other functions the user may have available).
However, memory explicitly allocated by Ciao Prolog and passed to C code, or allocated by C
code and passed on to Ciao Prolog (and subject to garbage collection by it) should be allotted
and freed (when necessary) by using the functions:

• void *ciao_malloc(int size);

• void ciao_free(void *pointer);

whose behavior is similar to malloc()/free(), but which will cooordinate properly with Ciao
Prolog’s internal memory management.

122.4.7 Calling Prolog from C

It is also possible to make arbitraty calls to Prolog predicates from C. There are two basic
ways of make a query, depending on whether only one solution is needed (or if the predicate to
be called is known to generate only one solution), or if several solutions are required.

When only one solution is needed ciao_commit_call obtains it (the solution obtained will
obviously be the first one) and discards the resources used for finding it:

• ciao_bool ciao_commit_call(char *name, int arity, ...);

Makes a call to a predicate and returns true or false depending on whether the query has
succedeed or not. In case of success, the (possibly) instantiated variables are reachable from
C.

• ciao_bool ciao_commit_call_term(ciao_term goal);

Like ciao_commit_call() but uses the previously built term goal as goal.

If more than one solution is needed, it is necessary to use the ciao_query operations. A
consult begins with a ciao_query_begin which returns a ciao_query object. Whenever an
additional solution is required, the ciao_query_next function can be called. The query ends
by calling ciao_query_end and all pending search branches are pruned.

• ciao_query *ciao_query_begin(char *name, int arity, ...);

The predicate with the given name, arity and arguments (similar to the ciao_structure()
operation) is transformed into a ciao_query object which can be used to make the actual
query.

• ciao_query *ciao_query_begin_term(ciao_term goal);

Like ciao query begin but using the term goal instead.

• ciao_bool ciao_query_ok(ciao_query *query);

Determines whether the query may have pending solutions. A false return value means
that there are no more solutions; a true return value means that there are more possible
solutions.

• void ciao_query_next(ciao_query *query);

Ask for a new solution.

• void ciao_query_end(ciao_query *query);

Ends the query and frees the used resources.

122.5 Examples

Chapter 122: Foreign Language Interface 651

122.5.1 Mathematical functions

In this example, the standard mathematical library is accessed to provide the sin, cos, and
fabs functions. Note that the library is specified simply as

:- use_foreign_library([m]).

The foreign interface adds the -lm at compile time. Note also how some additional options
are added to optimize the compiled code (only glue code, in this case) and mathematics (only
in the case of Linux in an Intel processor).

File math.pl :

:- module(math, [sin/2, cos/2, fabs/2], [foreign_interface]).

:- true pred sin(in(X),go(Y)) :: num * num + (foreign,returns(Y)).
:- true pred cos(in(X),go(Y)) :: num * num + (foreign,returns(Y)).
:- true pred fabs(in(X),go(Y)) :: num * num + (foreign,returns(Y)).

:- extra_compiler_opts([’-O2’]).
:- extra_compiler_opts(’LINUXi86’,[’-ffast-math’]).
:- use_foreign_library(’LINUXi86’, m).

122.5.2 Addresses and C pointers

The address type designates any pointer, and provides a means to deal with C pointers in
Prolog without interpreting them whatsoever. The C source file which implements the operations
accessed from Prolog is declared with the

:- use_foreign_source(objects_c).

directive.

File objects.pl :

:- module(objects, [object/2, show_object/1], [foreign_interface]).

:- true pred object(in(N),go(Object)) ::
int * address + (foreign,returns(Object)).

:- true pred show_object(in(Object)) ::
address + foreign.

:- use_foreign_source(objects_c).
:- extra_compiler_opts(’-O2’).

File objects c.c:

#include <stdio.h>

struct object {
char *name;
char *colour;

};

#define OBJECTS 3

struct object objects[OBJECTS] =

652 The Ciao System

{ {"ring","golden"},
{"table","brown"},
{"bottle","green"} };

struct object *object(int n) {
return &objects[n % OBJECTS];

}

void show_object(struct object *o) {
printf("I show you a %s %s\n", o->colour, o->name);

}

122.5.3 Lists of bytes and buffers

A list of bytes (c.f., a list of ints) corresponds to a byte buffer in C. The length of the buffer
is associated to that of the list using the property size_of/2. The returned buffer is freed
by Ciao Prolog upon its recepction, unless the do_not_free/1 property is specified (see later).
Conversely, a list of natural numbers in the range 0 to 255 can be passed to C as a buffer.

File byte lists.pl :

:- module(byte_lists, [obtain_list/3, show_list/2], [foreign_interface]).

:- true pred obtain_list(in(N),go(Length),go(List)) :: int * int * byte_list
+ (foreign,size_of(List,Length)).

:- true pred show_list(in(Length),in(List)) :: int * byte_list
+ (foreign,size_of(List,Length)).

:- use_foreign_source(bytes_op).

File bytes op.c:

#include <stdlib.h>
#include <stdio.h>

void obtain_list(int n, int *l, char **s) {
int i;
int c;
if (n < 0) n = 0;
*l = n;
*s = (char *)malloc(*l);
for (i = 0; i < *l; i++) {
(*s)[i] = i;

}
}

void show_list(int l, char *s) {
if (s) {
int n;
printf("From C:");
for (n = 0; n < l; n++) {

printf(" %d", s[n]);

Chapter 122: Foreign Language Interface 653

}
printf(".\n");

} else {
printf("From C: []\n");

}
}

122.5.4 Lists of integers

File int lists.pl :

:- module(int_lists, [obtain_list/3, show_list/2], [foreign_interface]).

:- true pred obtain_list(in(N),go(Length),go(List)) :: int * int * int_list
+ (foreign,size_of(List,Length)).

:- true pred show_list(in(Length),in(List)) :: int * int_list
+ (foreign,size_of(List,Length)).

:- use_foreign_source(ints_op).

File ints op.c:

#include <stdlib.h>
#include <stdio.h>

void obtain_list(int n, int *l, int **s) {
int i;
int c;
if (n < 0) n = 0;
*l = n;
*s = (int *)malloc((*l) * sizeof(int));
for (i = 0; i < *l; i++) {
(*s)[i] = i;

}
}

void show_list(int l, int *s) {
if (s) {
int n;
printf("From C:");
for (n = 0; n < l; n++) {

printf(" %d", s[n]);
}
printf(".\n");

} else {

654 The Ciao System

printf("From C: []\n");
}

}

122.5.5 Strings and atoms

A C string can be seen as a buffer whose end is denoted by the trailing zero, and therefore
stating its length is not needed. Two translations are possible into Ciao Prolog: as a Prolog
string (list of bytes, with no trailing zero) and as an atom. These are selected automatically
just by choosing the corresponding type (look at the examples below).

Note how the do_not_free/1 property is specified in the a_string/1 predicate: the string
returned by C is static, and therefore it should not be freed by Prolog.

File strings and atoms.pl :

:- module(strings_and_atoms,
[lookup_string/2,
lookup_atom/2,
a_string/1,
show_string/1,
show_atom/1

],
[foreign_interface]).

:- true pred a_string(go(S)) ::
string + (foreign(get_static_str),returns(S),do_not_free(S)).

:- true pred lookup_string(in(N),go(S)) ::
int * string + (foreign(get_str),returns(S)).

:- true pred lookup_atom(in(N),go(S)) ::
int * atm + (foreign(get_str),returns(S)).

:- true pred show_string(in(S)) :: string + foreign(put_str).
:- true pred show_atom(in(S)) :: atm + foreign(put_str).

:- use_foreign_source(str_op).

File str op.c:

#include <stdlib.h>
#include <stdio.h>

char *get_static_str() {
return "this is a string Prolog should not free";

}

Chapter 122: Foreign Language Interface 655

char *get_str(int n) {
char *s;
int size;
int i;
int c;
if (n < 0) n = -n;
size = (n%4) + 5;
s = (char *)malloc(size+1);
for (i = 0, c = ((i + n) % (’z’ - ’a’ + 1)) + ’a’; i < size; i++,c++) {
if (c > ’z’) c = ’a’;
s[i] = c;

}
s[i] = 0;
return s;

}

void put_str(char *s) {
if (s) {
printf("From C: \"%s\"\n", s);

} else {
printf("From C: null\n");

}
}

122.5.6 Arbitrary Terms

This example shows how data Prolog can be passed untouched to C code, and how it can be
manipulated there.

File any term.pl :

:- module(any_term,
[custom_display_term/1,
custom_create_term/2
],
[foreign_interface]).

:- true pred custom_display_term(in(X)) :: any_term + foreign.
:- true pred custom_create_term(in(L), go(X)) :: int * any_term + (foreign,returns(X)).

:- use_foreign_source(any_term_c).
:- extra_compiler_opts(’-O2’).

File any term c.c:

#include <stdio.h>

656 The Ciao System

#include "ciao_prolog.h"

ciao_term custom_create_term(int n) {
ciao_term t;
t = ciao_empty_list();
while (n > 0) {
t = ciao_list(ciao_integer(n), t);
n--;

}
return t;

}

void custom_display_term(ciao_term term) {
if (ciao_is_atom(term)) {
printf("<atom name=\"%s\"/>", ciao_atom_name(term));

} else if (ciao_is_structure(term)) {
int i;
int a;
a = ciao_structure_arity(term);
printf("<structure name=\"%s\" arity=\"%d\">", ciao_structure_name(term), a);
for (i = 1; i <= a; i++) {

printf("<argument number=\"%d\">", i);
custom_display_term(ciao_structure_arg(term, i));
printf("</argument>");

}
printf("</structure>");

} else if (ciao_is_list(term)) {
printf("<list>");
printf("<head>");
custom_display_term(ciao_list_head(term));
printf("</head>");
printf("<tail>");
custom_display_term(ciao_list_tail(term));
printf("</tail>");
printf("</list>");

} else if (ciao_is_empty_list(term)) {
printf("<empty_list/>");

} else if (ciao_is_integer(term)) {
printf("<integer value=\"%d\"/>", ciao_to_integer(term));

} else if (ciao_is_number(term)) {
printf("<float value=\"%f\"/>", ciao_to_float(term));

} else {
printf("<unknown/>");

}
}

Chapter 122: Foreign Language Interface 657

122.5.7 Exceptions

The following example defines a predicate in C that converts a list of codes into a number
using strtol(). If this conversion fails, then a exception is raised.

File exceptions example.pl :

:- module(exceptions_example,
[codes_to_number_c/2,
safe_codes_to_number/2
],
[foreign_interface]).

:- use_module(library(format)).

% If the string is not a number raises an exception.
:- true pred codes_to_number_c(in(X), go(Y)) :: string * int + (foreign, returns(Y)).

safe_codes_to_number(X, Y) :-
catch(codes_to_number_c(X, Y), Error, handle_exception(Error)).

handle_exception(Error) :- format("Exception caught ~w~n", [Error]).

:- use_foreign_source(exceptions_c).
:- extra_compiler_opts(’-O2’).

File exceptions c.c:

#include <string.h>
#include "ciao_prolog.h"

int codes_to_number_c(char *s) {
char *endptr;
int n;
n = strtol(s, &endptr, 10);
if (endptr == NULL || *endptr != ’\0’) {
ciao_raise_exception(ciao_structure("codes_to_number_exception",

1,
ciao_atom(s)));

}
return n;

}

122.5.8 Testing number types and using unbound length integers

Unbound length integers (and, in general, any number) can be converted to/from ciao_terms
by using strings. The following examples show two possibilities: one which tries to be as smart
as possible (checking whether numbers fit into a machine int or not), and being lazy and simpler
-and probably slower.

File bigints.pl :

:- module(bigints,

658 The Ciao System

[
make_smart_conversion/3, % Checks and uses convenient format
force_string_conversion/2 % Passes around using strings

],
[foreign_interface]).

:- true pred make_smart_conversion_c(in(X), go(Y), go(How))::
any_term * any_term * any_term + foreign #

"Given a number @var{X}, it is unified with @var{Y} by using the most
specific internal representation (short integer, float, or long
integer). @var{How} returns how the conversion was done.
It behaves unpredictably if @var{X} is not a number.".

:- true pred force_string_conversion_c(in(X), go(Y))::
any_term * any_term + foreign #

"Given a number @var{X}, it is unified with @var{Y} by using the most
general internal representation (a string of characters). It behaves
unpredictably if @var{X} is not a number.".

:- use_foreign_source(bigints_c).

make_smart_conversion(A, B, C):-
number(A), % Safety test
make_smart_conversion_c(A, B, C).

force_string_conversion(A, B):-
number(A), % Safety test
force_string_conversion_c(A, B).

File bigints c.c:

#include "ciao_prolog.h"

void make_smart_conversion_c(ciao_term number_in,
ciao_term *number_out,
ciao_term *how_converted) {

int inter_int;
double inter_float;
char * inter_str;

if (ciao_fits_in_int(number_in)) {/* Includes the case of being a float */
inter_int = ciao_to_integer(number_in);
*number_out = ciao_integer(inter_int);
*how_converted = ciao_atom("machine_integer");

} else
if (ciao_is_integer(number_in)) { /* Big number */

inter_str = ciao_get_number_chars(number_in);
*number_out = ciao_put_number_chars(inter_str);
ciao_free(inter_str);
*how_converted = ciao_atom("string");

} else { /* Must be a float */
inter_float = ciao_to_float(number_in);

Chapter 122: Foreign Language Interface 659

*number_out = ciao_float(inter_float);
*how_converted = ciao_atom("float");

}
}

void force_string_conversion_c(ciao_term number_in,
ciao_term *number_out) {

char *inter_str;
inter_str = ciao_get_number_chars(number_in);
*number_out = ciao_put_number_chars(inter_str);
ciao_free(inter_str);

}

122.6 Usage and interface (foreign_interface_doc)
� �

• Library usage:

The foreign interface is used by including foreign_interface in the include list of a module,
or by means of an explicit :- use_package(foreign_interface).

 	

660 The Ciao System

Chapter 123: Foreign Language Interface Properties 661

123 Foreign Language Interface Properties

Author(s): Jose F. Morales, Manuel Carro.

The foreign language interface uses some properties to specify linking regimes, foreign files
to be compiled, types of data available, memory allocation policies, etc.

123.1 Usage and interface (foreign_interface_properties)
� �

• Library usage:

:- use_module(library(foreign_interface_properties)).

• Exports:

− Properties:

foreign_low/1, foreign_low/2, size_of/3, foreign/1, foreign/2, returns/2, do_
not_free/2, needs_state/1, ttr/3.

− Regular Types:

int_list/1, double_list/1, byte_list/1, byte/1, null/1, address/1, any_term/1.

 	

123.2 Documentation on exports (foreign_interface_
properties)

REGTYPEint list/1:
Usage: int_list(List)

− Description: List is a list of integers.

REGTYPEdouble list/1:
Usage: double_list(List)

− Description: List is a list of numbers.

REGTYPEbyte list/1:
Usage: byte_list(List)

− Description: List is a list of bytes.

REGTYPEbyte/1:
Usage: byte(B)

− Description: Byte is a byte.

REGTYPEnull/1:
Usage: null(Address)

− Description: Address is a null adress.

662 The Ciao System

REGTYPEaddress/1:
Usage: address(Address)

− Description: Address is a memory address.

REGTYPEany term/1:
Usage: any_term(X)

− Description: X is any term. The foreign interface passes it to C functions as a general
term.

PROPERTYforeign low/1:
Usage: foreign_low(Name)

− Description: The Prolog predicate Name is implemented using the function Name.
The implementation is not a common C one, but it accesses directly the internal Ciao
Prolog data structures and functions, and therefore no glue code is generated for it.

PROPERTYforeign low/2:
Usage: foreign_low(PrologName,ForeignName)

− Description: The Prolog predicate PrologName is implemented using the function
ForeignName. The same considerations as above example are to be applied.

PROPERTYsize of/3:
Usage: size_of(Name,ListVar,SizeVar)

− Description: For predicate Name, the size of the argument of type byte_list/1,
ListVar, is given by the argument of type integer SizeVar.

PROPERTYforeign/1:
Usage: foreign(Name)

− Description: The Prolog predicate Name is implemented using the foreign function
Name.

PROPERTYforeign/2:
Usage: foreign(PrologName,ForeignName)

− Description: The Prolog predicate PrologName is implemented using the foreign func-
tion ForeignName.

PROPERTYreturns/2:
Usage: returns(Name,Var)

− Description: The result of the foreign function that implements the Prolog predicate
Name is unified with the Prolog variable Var. Cannot be used without foreign/1 or
foreign/2.

Chapter 123: Foreign Language Interface Properties 663

PROPERTYdo not free/2:
Usage: do_not_free(Name,Var)

− Description: For predicate Name, the C argument passed to (returned from) the
foreign function will not be freed after calling the foreign function.

PROPERTYneeds state/1:
Usage: needs_state(Name)

− Description: The foreign function which implementes the predicate Name needs a
ciao_state as its first argument.

PROPERTYttr/3:
Usage: ttr(Name,Var,TTr)

− Description: For predicate Name, the C argument will be translated ussing TTr as
term translator.

123.3 Documentation on internals (foreign_interface_
properties)

DECLARATIONuse foreign source/1:
Usage: :- use_foreign_source(Files).

− Description: Files is the (list of) foreign file(s) that will be linked with the glue-
code file. If the file(s) do(es) not have extension, then the ’.c’ extension will be
automatically added

− The following properties hold at call time:

Files is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONuse foreign source/2:
Usage: :- use_foreign_source(OsArch,Files).

− Description: Files are the OS and architecture dependant foreign files. This allows
compiling and linking different files depending on the O.S. and architecture.

− The following properties hold at call time:

OsArch is an atom. (basic props:atm/1)

Files is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONuse foreign library/1:
Usage: :- use_foreign_library(Libs).

− Description: Libs is the (list of) external library(es) needed to link the C files. Only
the short name of the library (i.e., what would follow the -l in the linker is needed.

− The following properties hold at call time:

Libs is an atom or a list of atoms. (basic props:atm or atm list/1)

664 The Ciao System

DECLARATIONuse foreign library/2:
Usage: :- use_foreign_library(OsArch,Libs).

− Description: Libs are the OS and architecture dependant libraries.

− The following properties hold at call time:

OsArch is an atom. (basic props:atm/1)

Libs is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONextra compiler opts/1:
Usage: :- extra_compiler_opts(Opts).

− Description: Opts is the list of additional compiler options (e.g., optimization options)
that will be used during the compilation.

− The following properties hold at call time:

Opts is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONextra compiler opts/2:
Usage: :- extra_compiler_opts(OsArch,Opts).

− Description: Opts are the OS and architecture dependant additional compiler options.

− The following properties hold at call time:

OsArch is an atom. (basic props:atm/1)

Opts is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONuse compiler/1:
Usage: :- use_compiler(Compiler).

− Description: Compiler is the compiler to use in this file. When this option is used,
the default (Ciao-provided) compiler options are not used; those specified in extra_
compiler_options are used instead.

− The following properties hold at call time:

Compiler is an atom. (basic props:atm/1)

DECLARATIONuse compiler/2:
Usage: :- use_compiler(OsArch,Compiler).

− Description: Compiler is the compiler to use in this file when compiling for the
architecture OsArch. The option management is the same as in use_compiler/2.

− The following properties hold at call time:

OsArch is an atom. (basic props:atm/1)

Compiler is an atom. (basic props:atm/1)

DECLARATIONextra linker opts/1:
Usage: :- extra_linker_opts(Opts).

− Description: Opts is the list of additional linker options that will be used during the
linkage.

− The following properties hold at call time:

Opts is an atom or a list of atoms. (basic props:atm or atm list/1)

Chapter 123: Foreign Language Interface Properties 665

DECLARATIONextra linker opts/2:
Usage: :- extra_linker_opts(OsArch,Opts).

− Description: Opts are the OS and architecture dependant additional linker options.

− The following properties hold at call time:

OsArch is an atom. (basic props:atm/1)

Opts is an atom or a list of atoms. (basic props:atm or atm list/1)

DECLARATIONuse linker/1:
Usage: :- use_linker(Linker).

− Description: Linker is the linker to use in this file. When this option is used, the
default (Ciao-provided) linker options are not used; those specified in extra_linker_
options/1 are used instead.

− The following properties hold at call time:

Linker is an atom. (basic props:atm/1)

DECLARATIONuse linker/2:
Usage: :- use_linker(OsArch,Linker).

− Description: Compiler is the linker to use in this file when compiling for the archi-
tecture OsArch. The option management is the same as in use_compiler/2.

− The following properties hold at call time:

OsArch is an atom. (basic props:atm/1)

Linker is an atom. (basic props:atm/1)

DECLARATIONforeign inline/2:
Usage: :- foreign_inline(Term,Text).

− Description: Term is a predicate name. Text is a source C code that define the
predicate Term. Term is present for future use with the analyzers. Example of this
can be viewed in the hrtimer library.

− The following properties hold at call time:

Term is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Text is a string (a list of character codes). (basic props:string/1)

123.4 Known bugs and planned improvements (foreign_
interface_properties)

• The size_of/3 property has an empty definition

• The byte/1 property has an empty definition. A possible right definition is commented.

666 The Ciao System

Chapter 124: Utilities for on-demand compilation of foreign files 667

124 Utilities for on-demand compilation of foreign
files

Author(s): Manuel Carro, Jose F. Morales.

This module provides two predicates which give the user information regarding how to com-
pile external (C) files in order to link them with the Ciao Prolog engine at runtime.

These predicates are not intended to be called directly by the end-user. Instead, a tool
or module whose aim is generating dynamically loadable files from source files should use the
predicates in this file in order to find out what are the proper compiler and linker to use, and
which options must be passed to them in the current architecture.

124.1 Usage and interface (foreign_compilation)
� �

• Library usage:

:- use_module(library(foreign_compilation)).

• Exports:

− Predicates:

compiler_and_opts/2, linker_and_opts/2.

 	

124.2 Documentation on exports (foreign_compilation)

PREDICATEcompiler and opts/2:
Usage: compiler_and_opts(Compiler,Opts)

− Description: If you want to compile a foreign language file for dynamic linking in the
current operating system and architecture, you have to use the compiler Compiler
and give it the options Opts. A variable in Opts means that no special option is
needed.

− Call and exit should be compatible with:

Compiler is an atom. (basic props:atm/1)

Opts is a list of atms. (basic props:list/2)

PREDICATElinker and opts/2:
Usage: linker_and_opts(Linker,Options)

− Description: If you want to link a foreign language file for dynamic linking in the
current operating system and architecture, you have to use the linker Compiler and
gite it the options Opts. A variable in Opts means that no special option is needed.

− Call and exit should be compatible with:

Linker is an atom. (basic props:atm/1)

Options is a list of atms. (basic props:list/2)

668 The Ciao System

Chapter 125: Foreign Language Interface Builder 669

125 Foreign Language Interface Builder

Author(s): Jose F. Morales, Manuel Carro.

Low-level utilities for building foreign interfaces. End-users should not need to use them, as
the Ciao Prolog Compiler reads the user assertions and calls appropriately the predicates in this
module.

125.1 Usage and interface (build_foreign_interface)
� �

• Library usage:

:- use_module(library(build_foreign_interface)).

• Exports:

− Predicates:

build_foreign_interface/1, rebuild_foreign_interface/1, build_foreign_
interface_explicit_decls/2, rebuild_foreign_interface_explicit_decls/2,
build_foreign_interface_object/1, rebuild_foreign_interface_object/1, do_
interface/1.

• Other modules used:

− System library modules:

write_c/write_c, streams, terms, lists, llists, aggregates, system,
messages, assertions/assrt_lib, foreign_compilation, compiler/c_itf,
compiler/engine_path, ctrlcclean, errhandle, filenames.

 	

125.2 Documentation on exports (build_foreign_interface)

PREDICATEbuild foreign interface/1:
Usage: build_foreign_interface(File)

− Description: Reads assertions from File, generates the gluecode for the Ciao Prolog
interface, compiles the foreign files and the gluecode file, and links everything in a
shared object. Checks modification times to determine automatically which files must
be generated/compiled/linked.

− Call and exit should be compatible with:

File is a source name. (streams basic:sourcename/1)

− The following properties should hold at call time:

File is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

File is currently ground (it contains no variables). (term typing:ground/1)

PREDICATErebuild foreign interface/1:
Usage: rebuild_foreign_interface(File)

− Description: Like build_foreign_interface/1, but it does not check the modifica-
tion time of any file.

− Call and exit should be compatible with:

File is a source name. (streams basic:sourcename/1)

670 The Ciao System

− The following properties should hold at call time:

File is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

File is currently ground (it contains no variables). (term typing:ground/1)

PREDICATEbuild foreign interface explicit decls/2:
Usage: build_foreign_interface_explicit_decls(File,Decls)

− Description: Like build_foreign_interface/1, but use declarations in Decls in-
stead of reading the declarations from File.

− Call and exit should be compatible with:

File is a source name. (streams basic:sourcename/1)

Decls is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

File is currently ground (it contains no variables). (term typing:ground/1)

Decls is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

File is currently ground (it contains no variables). (term typing:ground/1)

Decls is currently ground (it contains no variables). (term typing:ground/1)

PREDICATErebuild foreign interface explicit decls/2:
Usage: rebuild_foreign_interface_explicit_decls(File,Decls)

− Description: Like build_foreign_interface_explicit_decls/1, but it does not
check the modification time of any file.

− Call and exit should be compatible with:

File is a source name. (streams basic:sourcename/1)

Decls is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

File is currently ground (it contains no variables). (term typing:ground/1)

Decls is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

File is currently ground (it contains no variables). (term typing:ground/1)

Decls is currently ground (it contains no variables). (term typing:ground/1)

PREDICATEbuild foreign interface object/1:
Usage: build_foreign_interface_object(File)

− Description: Compiles the gluecode file with the foreign source files producing an
unique object file.

− Call and exit should be compatible with:

File is a source name. (streams basic:sourcename/1)

− The following properties should hold at call time:

File is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

File is currently ground (it contains no variables). (term typing:ground/1)

Chapter 125: Foreign Language Interface Builder 671

PREDICATErebuild foreign interface object/1:
Usage: rebuild_foreign_interface_object(File)

− Description: Compiles (again) the gluecode file with the foreign source files producing
an unique object file.

− Call and exit should be compatible with:

File is a source name. (streams basic:sourcename/1)

− The following properties should hold at call time:

File is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

File is currently ground (it contains no variables). (term typing:ground/1)

PREDICATEdo interface/1:
Usage: do_interface(Decls)

− Description: Given the declarations in Decls, this predicate succeeds if these decla-
rations involve the creation of the foreign interface

− Call and exit should be compatible with:

Decls is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

Decls is currently ground (it contains no variables). (term typing:ground/1)

− The following properties should hold upon exit:

Decls is currently ground (it contains no variables). (term typing:ground/1)

672 The Ciao System

Chapter 126: Interactive Menus 673

126 Interactive Menus

Author(s): The CLIP Group.

This library package allows definition interactive menus

126.1 Usage and interface (menu_doc)
� �

• Library usage:

:- use_package(menu).

or

:- module(...,...,[menu]).

• New operators defined:

::/2 [970,xfx], <-/2 [971,xfx], guard/1 [900,fy], $/2 [150,xfx], =>/2 [950,xfx], argnames/1
[1150,fx].

• Other modules used:

− System library modules:

menu/menu_generator, menu/menu_rt.

 	

126.2 Documentation on multifiles (menu_doc)

PREDICATEmenu default/3:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEmenu opt/6:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEhook menu flag values/3:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEhook menu check flag value/3:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEhook menu flag help/3:
No further documentation available for this predicate.

The predicate is multifile.

674 The Ciao System

PREDICATEhook menu default option/3:
No further documentation available for this predicate.

The predicate is multifile.

Chapter 127: menu generator (library) 675

127 menu generator (library)

127.1 Usage and interface (menu_generator)
� �

• Library usage:

:- use_module(library(menu_generator)).

• Exports:

− Predicates:

menu/1, menu/2, menu/3, menu/4, get_menu_flag/3, set_menu_flag/3, space/1,
get_menu_configs/1, save_menu_config/1, remove_menu_config/1, restore_
menu_config/1, show_menu_configs/0, show_menu_config/1, get_menu_options/2,
get_menu_flags/1, restore_menu_flags_list/1, get_menu_flags/2, restore_
menu_flags/2, generate_js_menu/1, eq/3, neq/3, uni_type/2, vmember/2.

− Regular Types:

menu_flag_values/1.

− Multifiles:

$is_persistent/2, persistent_dir/2, persistent_dir/4, menu_default/3, menu_
opt/6, hook_menu_flag_values/3, hook_menu_check_flag_value/3, hook_menu_
flag_help/3, hook_menu_default_option/3.

• Other modules used:

− System library modules:

persdb/persdbrt, aggregates, write, messages, prompt, lists.

 	

127.2 Documentation on exports (menu_generator)

PREDICATEmenu/1:
Usage: menu(M)

− Description: Like menu(M , true).

PREDICATEmenu/2:
Usage: menu(M,Bool)

− Description: Like menu/4 with no selected options, taking the menu level from the
term M (example: ana(1) is expert, ana is naive), and using Bool to decide whether
print help message or not.

PREDICATEmenu/3:
Usage: menu(M,Level,Bool)

− Description: Like menu/4 with no selected options.

676 The Ciao System

PREDICATEmenu/4:
Usage: menu(M,Level,Bool,AlreadySelectedOpts)

− Description: Execute the menu X. Level specifies the menu level. Bool decides
whether print the help message. AlreadySelectedOpts is a list with the selected
options.

PREDICATEget menu flag/3:
Usage: get_menu_flag(M,F,V)

− Description: Returns the value in V of the flag F in the menu (-branch) M.

− The following properties should hold at call time:

M is currently instantiated to an atom. (term typing:atom/1)

F is currently instantiated to an atom. (term typing:atom/1)

V is a free variable. (term typing:var/1)

PREDICATEset menu flag/3:
Usage: set_menu_flag(M,F,V)

− Description: Set the value V of the flag F in the menu (-branch) M.

− The following properties should hold at call time:

M is currently instantiated to an atom. (term typing:atom/1)

F is currently instantiated to an atom. (term typing:atom/1)

V is a free variable. (term typing:var/1)

PREDICATEspace/1:
Usage: space(N)

− Description: prints N spaces.

− The following properties should hold at call time:

N is a number. (basic props:num/1)

PREDICATEget menu configs/1:
Usage: get_menu_configs(X)

− Description: Returns a list of atoms in X with the name of stored configurations.

− The following properties should hold at call time:

X is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

X is a list of atoms. (basic props:list/2)

PREDICATEsave menu config/1:
Usage: save_menu_config(Name)

− Description: Save the current flags configuration under the Name key.

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

Chapter 127: menu generator (library) 677

PREDICATEremove menu config/1:
Usage: remove_menu_config(Name)

− Description: Remove the configuration stored with the Name key (the same provided
in save_menu_config/1).

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

PREDICATErestore menu config/1:
Usage: restore_menu_config(Name)

− Description: Restore the configuration saved with the Name key (the same provided
in save_menu_config/1).

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

PREDICATEshow menu configs/0:
Usage:

− Description: Show all stored configurations.

PREDICATEshow menu config/1:
Usage: show_menu_config(C)

− Description: Show specific configuration values pointed by C key (the same provided
in save_menu_config/1).

− The following properties should hold at call time:

C is an atom. (basic props:atm/1)

PREDICATEget menu options/2:
Usage: get_menu_options(Flag,V)

− Description: Returns possilbe options in V by fail for the flag Flag.

− The following properties should hold at call time:

F is currently instantiated to an atom. (term typing:atom/1)

PREDICATEget menu flags/1:
Usage: get_menu_flags(L)

− Description: Return a list L of all current menu flags, composed by terms with the
form (M,F,V), where M is the menu, F the flag, and V the value. This list can be
used as argument of restore_flags_list/1

− The following properties should hold at call time:

L is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

L is a list. (basic props:list/1)

678 The Ciao System

PREDICATErestore menu flags list/1:
Usage: restore_menu_flags_list(L)

− Description: Restores menu flags. L is a list of tuple (M,F,V) where M is the menu,
F is the flag, and V is the value of the flag F in the menu M.

− The following properties should hold at call time:

L is a list. (basic props:list/1)

PREDICATEget menu flags/2:
Usage: get_menu_flags(M,L)

− Description: Return a list L of the current menu M composed by terms with the
form (F=V), F the flag, and V the value. This list can be used as argument of
restore_menu_flags/2

− The following properties should hold at call time:

M is any term. (basic props:term/1)

L is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

L is a list. (basic props:list/1)

PREDICATErestore menu flags/2:
Usage: restore_menu_flags(M,F)

− Description: Restore the flag of the menu M. F is a list of terms F=V, which indicate
the flag (F) and the value (V). M is the target menu to which those flags "belong".
Additionally, F can contains terms like changed_to_menu(NM) that will put NM as
the new target menu.

− The following properties should hold at call time:

M is currently instantiated to an atom. (term typing:atom/1)

F is a list. (basic props:list/1)

PREDICATEgenerate js menu/1:
Internal Info. Short description and general ideas about how the JS menu is generated.

The current model for the JS menu is an array of menuq (object in JS).

var assert_rtcheck = menus.length ;
var v_assert_rtcheck ;
menus[menus.length] = new menuq(
"assert_rtcheck",

"Perform Run-Time Checks",
"none,pred,pp_assrt,pp_code",
"none",
’((v_menu_level == "expert") &&
(v_inter_all == "check_assertions"))’) ;

A variable with the same name as the flag name is created with the value of the index
of the menu in the array. Another variable with ’v ’ (v = value) indicates the value (of
the flag) choosed by the user in the combo-boxes that appear on the webpage (note you
should not read this if you have not seen the webpage working). The object menuq holds

Chapter 127: menu generator (library) 679

several things: the flag name (to find out the index in the array in some JS functions),
the title, the options (notice there is no space in the options, this is important!), default
option and the guard.

All the problem here is to generate the (JS) guard, because the rest of informa-
tion is the same as in menu_opt/6. What code does is to execute the guard in
prolog, and obtain a list of the form [flag=value,flag2=value2...]. Aditionally an el-
ement of the list can be another list, which indicates that the join operator (&&
or ||) is swaped. For example: [a=1,[b=2,c=3],d=4] will be translated in JS like
((a==1)&&((b==2)||(c==3))&&(d==4)).

Prolog Guards (the ones in menu opt) have been rewritten in order to do not generate
free variables, i.e., they are finite guards now. So calling them with a variable in its first
argument, we get the list like the named in the previous paragraph.

% Unfortunately, the current CiaoPP menu does not have all information % itself to
concatenate several menus, i.e., when asking which kind of % action the user desire,
depending on the answer one path or another % one is taken. Who decide which path?
’auto inteface’ does. We do have % to take this into account, because generating the
assertions of a % "subpath" will produce the activation of it without permision of the %
father (the menu which launch it).

Also, we have to keep in mind that menu has several submenus (or branches) defined and
ones connect with others. For example, the menu

all, ’Select Menu Level’ # menu_level - naive.
all, ’Select Action Group’ # inter_all - analyze :: all_menu_branch.

check(1), ’Perform Compile-Time Checks’ # assert_ctcheck - on.
...

ana , ’Select Aliasing-Mode Analysis’ # modes - shfr <- true.

defines 3 menus: all, check(1), and ana. It usually happends that one menu invoques
(connect or continue) with another menu (then it is a submenu or a branch). When
generating the guards we have to add additional restrictions to the guards in order to
make submenus do not appear in the incorrect moment. For example, check(1) menu
will be only active if menu_level = expert and inter_all=check_assertions (more on
this come later). How are several menus connected between each other? The process of
connecting the menus is post-processing the selected flags (options) via post hook (the
one defined after :: field). The post-processing hook only have to add the element ask_
menu(Branch,Level) or ask_menu(Branch) to the selected flag list (the argument of the
hook). So let us say that when calling all menu branch(X , Y) we get:

?- all_menu_branch(A,B).

A = [inter_all=optimize,menu_level=naive|_A],
B = [ask_menu(opt,0),inter_all=optimize,menu_level=naive|_A] ? ;

A = [inter_all=optimize,menu_level=expert|_A],
B = [ask_menu(opt,1),inter_all=optimize,menu_level=expert|_A] ? ;

A = [inter_all=analyze,menu_level=naive|_A],
B = [ask_menu(ana,0),inter_all=analyze,menu_level=naive|_A] ? ;

A = [inter_all=analyze,menu_level=expert|_A],
B = [ask_menu(ana,1),inter_all=analyze,menu_level=expert|_A] ? ;

680 The Ciao System

A = [inter_all=check_assertions,menu_level=naive|_A],
B = [ask_menu(check,0),inter_all=check_assertions,menu_level=naive|_A] ? ;

A = [inter_all=check_assertions,menu_level=expert|_A],
B = [ask_menu(check,1),inter_all=check_assertions,menu_level=expert|_A] ? ;

A = [inter_all=check_certificate,menu_level=_B|_A],
B = [inter_all=check_certificate,menu_level=_B|_A] ? ;

A = [inter_all=optimize,_A,menu_level=naive|_B],
B = [ask_menu(opt,0),inter_all=optimize,_A,menu_level=naive|_B] ?

Notice that the last option contains free variables in the list (not taking the tail into
account). That is the indicator for us to stop searching for more solutions. Additionally,
we can have more complex things like:

?- opt_menu_branch(A,B).

A = [menu_level=naive,inter_optimize=_A|_B],
B = [ask_menu(_A,0),menu_level=naive,inter_optimize=_A|_B] ? ;

A = [menu_level=expert,inter_optimize=_A|_B],
B = [ask_menu(_A,1),menu_level=expert,inter_optimize=_A|_B] ? ;

A = [menu_level=naive,_B,inter_optimize=_A|_C],
B = [ask_menu(_A,0),menu_level=naive,_B,inter_optimize=_A|_C] ?

In this situation, the menu that will be asked will depend on the value of the flag inter_
optimize, so we will have to generate as many ask menu as possible values the flag has.
The predicate generate_menu_path/2 solves all this problem: for a given flag, it looks up
to find out the guard composed by flags that will activate the flag. % This predicate also
consider the problem of menu aliasing, % i.e., the option optimize in inter ana menu launch
opt menu, so % optimize is an alias for opt or vice-versa. For example, for the given flag
ass_not_stat_eval, the path is: [v menu level=expert, v inter all=check assertions],
that means that menu_level flag has to have the value "expert" and the inter_all
flag has to have the value "check assertions" (note that menu level and inter all de-
fines two menu branches). If we would execute only the precondition we would get:
[v assert ctcheck=on].

There are % two one limitations imposed to the JS menu. % The menu level indicated by
menu_level flag, is hirewired. The % other limitation is more serious. All flags values in
the JS menu are mapped into one set of flags. In other words, changing a value of a shared
flag by two menu branch will be reflected on the other branch. For example, changing
type analysis in analyze menu branch, will modify the value of the same flag in check
assertions branch.

The last point to name is about generated JS guards. This world is not fair, and sometimes
happends things you just do not expect. Here is one of those things. When calling the
Prolog guards with the list of current selected values, the cases that can occur are much less
than when seeing all the possible combinations. Something like (a=true||a=1)&&(b=2),
in Prolog guard execution (with instantiated things) will mean: the selected options are not
nil, and a=1 and b=2, or in other words: (a==1)&&(b==2). But in JS, unfortunately
means: b=2. Nowadays, this problem is solved by clean_imperative_guard/2 which
tries to remove all stupid true conditions, but I am sure Murphy is listening to me now
and he started to create an user to make the call clean_imperative_guard/2 generates
wrong answer.

Usage: generate_js_menu(DoNotIncludeList)

Chapter 127: menu generator (library) 681

− Description: Reads all multifile menu_opt/6 predicates and writes in default output
a JavaScript Menu.

− The following properties should hold at call time:

DoNotIncludeList is a list. (basic props:list/1)

PREDICATEeq/3:
Usage: eq(Type,A,B)

− Description: Type is the value returned by the 2nd arg of uni_type. A and B are
whatever terms. This predicate success if they are equal (like A=B).

PREDICATEneq/3:
Usage: neq(Type,A,B)

− Description: Type is the value returned by the 2nd arg of uni_type. A and B are
whatever terms. The semantic is similar to A == B.

PREDICATEuni type/2:
Usage: uni_type(Var,Type)

− Description: Var should be the argument passed to the menu guard. Type is an
abstract type that decides how unifications should be done in eq/3 and neq/3.

PREDICATEvmember/2:
Usage: vmember(Var,List)

− Description: It is member equivalent predicate to be used in guards.

REGTYPEmenu flag values/1:
Usage: menu_flag_values(X)

− Description: Flag values

127.3 Documentation on multifiles (menu_generator)

PREDICATE$is persistent/2:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

PREDICATEpersistent dir/2:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

682 The Ciao System

PREDICATEpersistent dir/4:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

PREDICATEmenu default/3:
The predicate is multifile.

Usage 1: menu_default(Menu,Flag,DefaultValue)

− Description: Menu is a term that has to correspond with the 1st argument of Menu.
Flag is the desired flag to have a default value. DefaultValue is the default value of
Flag.

− The following properties should hold at call time:

Menu is any term. (basic props:term/1)

Flag is an atom. (basic props:atm/1)

DefaultValue is an atom. (basic props:atm/1)

Usage 2: menu_default(Menu,Flag,DefaultValue)

− The following properties hold upon exit:

Menu is an atom. (basic props:atm/1)

Flag is an atom. (basic props:atm/1)

DefaultValue is an atom. (basic props:atm/1)

Usage 3: menu_default(Menu,Flag,DefaultValue)

− Description: This call mode can be used to ask which flags and its values has a menu
menu

− The following properties should hold at call time:

Menu is an atom. (basic props:atm/1)

Flag is a free variable. (term typing:var/1)

DefaultValue is a free variable. (term typing:var/1)

Usage 4: menu_default(Menu,Flag,DefaultValue)

− Description: This call mode can be used to ask which value have the flag Flag in the
menu menu

− The following properties should hold at call time:

Menu is an atom. (basic props:atm/1)

Flag is an atom. (basic props:atm/1)

DefaultValue is a free variable. (term typing:var/1)

PREDICATEmenu opt/6:
The predicate is multifile.

Usage 1: menu_opt(Menu,Flag,Text,Guard,BeforePrinting,SelectedHook)

− Description: Menu is a term that specifies the menu name. It can be an atom or just
a predicate of arity 1, where the 1st argument indicates the menu level (i.e., ana(1)
is the level 1 of ’ana’ menu). Flag is the flag that will be asked.

Text is the test that will be printed when asking the Flag.

Chapter 127: menu generator (library) 683

Guard is a predicate of arity 1 that is invoked to see if the flag should be asked.
The argument is the selected menu options till moment in the way: [flag1=value1,
flag2=value2, ...].

BeforePrinting is a predicate of arity 0, that is invoked whenever the menu option
has been selected the validator menu options chooser.

SelectedHook is a predicate of arity 2, that is invoked whenever the flag has been
selected by the user. The 1st argument are the current selected values, including the
current flag, and in the 2nd argument the possible modified list is expected.

In summary, if Guard holds, then BeforePrinting is executed (no action is taken
whether it fails or not), and after the user has types the option SelectedHook is
invoked.

− The following properties should hold at call time:

Menu is any term. (basic props:term/1)

Flag is an atom. (basic props:atm/1)

Text is an atom. (basic props:atm/1)

Guard is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

BeforePrinting is a term which represents a goal, i.e., an atom or a structure.
(basic props:callable/1)

SelectedHook is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 2: menu_opt(Menu,Flag,Text,Guard,BeforePrinting,SelectedHook)

− The following properties should hold at call time:

Menu is any term. (basic props:term/1)

Flag is any term. (basic props:term/1)

Text is any term. (basic props:term/1)

Guard is any term. (basic props:term/1)

BeforePrinting is any term. (basic props:term/1)

SelectedHook is any term. (basic props:term/1)

PREDICATEhook menu flag values/3:
The predicate is multifile.

Usage: hook_menu_flag_values(Menu,Flag,Values)

− Description: It is a hook. It is invoked whenever a menu question is printed. Values
is a term which specifies the possible values. If Values is alist(List) -atom list-, then
menu will check if the typed value by user belongs to List. If Values is a term
ask(T,Flag), the menu will invoke hook_menu_check_flag_value/3 hook to check if
introduced value is valid.

− The following properties should hold at call time:

Menu is currently instantiated to an atom. (term typing:atom/1)

Flag is currently instantiated to an atom. (term typing:atom/1)

Values is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Flag values (menu generator:menu flag values/1)

684 The Ciao System

PREDICATEhook menu check flag value/3:
The predicate is multifile.

Usage: hook_menu_check_flag_value(M,F,V)

− Description: It is a hook. It is invoked whenever the menu needs to check whether
the answer introduced for the menu M is correct. This happens when hook_menu_
flag_values/3 returns in its second argument something different than alist().

PREDICATEhook menu flag help/3:
The predicate is multifile.

Usage: hook_menu_flag_help(M,F,H)

− Description: It is a hook. It is invoked whenever the user ask for a help description,
H, of the flag F in the menu M.

PREDICATEhook menu default option/3:
The predicate is multifile.

Usage: hook_menu_default_option(M,F,D)

− Description: It is a hook. It is invoked whenever the menu needs to offer a default
option to the user in the menu M and it has not been neither introduced before nor
specified by menu_default/3.

127.4 Known bugs and planned improvements (menu_generator)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 128: Interface to daVinci 685

128 Interface to daVinci

Author(s): Francisco Bueno.

This library allows connecting a Ciao Prolog application with daVinci V2.X.

The communication is based on a two-way channel: after daVinci is started, messages are
sent in to it and read in from it on demand by different Prolog predicates. Messages are
sent via writing the term as text; messages are received by reading text and returning an atom.
Commands sent and answers received are treated as terms from the Prolog side, since for daVinci
they are text but have term syntax; the only difficulty lies in strings, for which special Prolog
syntax is provided.

See accompanying file library(davinci(commands)) for examples on the use of this library.

daVinci is developed by U. of Bremen, Germany.

128.1 Usage and interface (davinci)
� �

• Library usage:

:- use_module(library(davinci)).

• Exports:

− Predicates:

davinci/0, topd/0, davinci_get/1, davinci_get_all/1, davinci_put/1, davinci_
quit/0, davinci_ugraph/1, davinci_lgraph/1, ugraph2term/2, formatting/2.

• Other modules used:

− System library modules:

aggregates, prompt, format, read, graphs/ugraphs, write, system.

 	

128.2 Documentation on exports (davinci)

PREDICATEdavinci/0:
Start up a daVinci process.

PREDICATEtopd/0:
A toplevel to send to daVinci commands from standard input.

PREDICATEdavinci get/1:
Usage: davinci_get(Term)

− Description: Get a message from daVinci. Term is a term corresponding to daVinci’s
message.

PREDICATEdavinci get all/1:
Usage: davinci_get_all(List)

− Description: Get all pending messages. List is a list of terms as in davinci_get/1.

686 The Ciao System

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

PREDICATEdavinci put/1:
Usage: davinci_put(Term)

− Description: Send a command to daVinci.

− The following properties should hold at call time:

davinci:davinci command(Term) (davinci:davinci command/1)

PREDICATEdavinci quit/0:
Exit daVinci process. All pending answers are lost!

PREDICATEdavinci ugraph/1:
Usage: davinci_ugraph(Graph)

− Description: Send a graph to daVinci.

− The following properties should hold at call time:

davinci:ugraph(Graph) (davinci:ugraph/1)

PREDICATEdavinci lgraph/1:
Usage: davinci_lgraph(Graph)

− Description: Send a labeled graph to daVinci.

− The following properties should hold at call time:

davinci:lgraph(Graph) (davinci:lgraph/1)

PREDICATEugraph2term/2:
No further documentation available for this predicate.

PREDICATEformatting/2:
No further documentation available for this predicate.

128.3 Documentation on internals (davinci)

PROPERTYdavinci command/1:
Syntactically, a command is a term. Semantically, it has to correspond to a command
understood by daVinci. Two terms are interpreted in a special way: string/1 and
text/1: string(Term) is given to daVinci as "Term"; text(List) is given as "Term1
Term2 ...Term " for each Term in List. If your term has functors string/1 and text/1
that you don’t want to be interpreted this way, use it twice, i.e., string(string(Term))
is given to daVinci as string(Term’) where Term’ is the interpretation of Term.

Chapter 128: Interface to daVinci 687

PROPERTYugraph/1:
ugraph(Graph)

Graph is a term which denotes an ugraph as in library(ugraphs). Vertices of the form
node/2 are interpreted in a special way: node(Term,List) is interpreted as a vertex Term
with attributes List. List is a list of terms conforming the syntax of davinci_put/1 and
corresponding to daVinci’s graph nodes attributes. If your vertex has functor node/2 and
you don’t want it to be interpreted this way, use it twice, i.e., node(node(T1,T2),[])
is given to daVinci as vertex node(T1,T2). A vertex is used both as label and name of
daVinci’s graph node. daVinci’s graph edges have label V1-V2 where V1 is the source and
V2 the sink of the edge. There is no support for multiple edges between the same two
vertices.

PROPERTYlgraph/1:
lgraph(Graph)

Graph is a term which denotes a wgraph as in library(wgraphs), except that the weights
are labels, i.e., they do not need to be integers. Vertices of the form node/2 are interpreted
in a special way. Edge labels are converted into special intermediate vertices. Duplicated
labels are solved by adding dummy atoms ’’. There is no support for multiple edges
between the same two vertices.

688 The Ciao System

Chapter 129: The Tcl/Tk interface 689

129 The Tcl/Tk interface

Author(s): Montse Iglesias Urraca, The CLIP Group.

The tcltk library package is a bidirectional interface to the Tcl language and the Tk toolkit.
Tcl is an interpreted scripting language with many extension packages, particularly the graph-
ical interface toolkit, Tk. The interaction between both languages is expressed in terms of an
interface between the Tcl/Tk process and the Prolog process. This approach allows the devel-
opment of mixed applications where both sides, Tcl/Tk and Prolog, can be combined in order
to exploit their respective capabilities.

This library uses two sockets to connect both the Tcl and the Prolog processes: event socket
and term socket. There are also two Tcl global variables: prolog variables and terms. The value
of any of the bound variables in a goal will be stored in the array prolog_variables with the
variable name as index. Terms is the string which contains the printed representation of prolog
terms.

Prolog to Tcl

The Tcl/Tk side waits for requests from the Prolog side, and executes the Tcl/Tk code
received. Also, the Tcl/Tk side handles the events and exceptions which may be raised on its
side, passing on control to the Prolog side in case it is necessary.

To use Tcl, you must create a Tcl interpreter object and send commands to it. A Tcl
command is specified as follows:

Command --> Atom { other than [] }
| Number
| chars(PrologString)
| write(Term)
| format(Fmt,Args)
| dq(Command)
| br(Command)
| sqb(Command)
| min(Command)
| ListOfCommands

ListOfCommands --> []
|[Command|ListOfCommands]

where:

Atom denotes the printed representation of the atom.

Number denotes their printed representations.

chars(PrologString)
denotes the string represented by PrologString (a list of character codes).

write(Term)
denotes the string that is printed by the corresponding built-in predicate.

format(Term)
denotes the string that is printed by the corresponding built-in predicate.

dq(Command)
denotes the string specified by Command, enclosed in double quotes.

br(Command)
denotes the string specified by Command, enclosed in braces.

sqb(Command)
denotes the string specified by Command, enclosed in square brackets.

690 The Ciao System

min(Command)
denotes the string specified by Command, immediately preceded by a hyphen.

ListOfCommands
denotes the strings denoted by each element, separated by spaces.

The predicates to use Tcl from Prolog are tcl_new/1, tcl_delete/1, tcl_eval/3, and
tcl_event/3.

An example of use with Prolog as master and Tcl as slave, consisting of a GUI to a program
which calculates the factorial of a number:

:- use_module(library(tcltk)).

go :-
tcl_new(X),
tcl_eval(X,[button,’.b’,min(text),dq(’Compute!’)],_),
tcl_eval(X,[button,’.c’,’-text’,dq(’Quit’)],_),
tcl_eval(X,[entry,’.e1’,min(textvariable),’inputval’],_),
tcl_eval(X,[label,’.l1’,min(text),dq(’The factorial of ’)],_),
tcl_eval(X,[pack, ’.l1’,’.e1’],_),
tcl_eval(X,[entry,’.e2’,min(textvariable),’outputval’],_),
tcl_eval(X,[label,’.l2’,min(text),dq(’is ’)],_),
tcl_eval(X,[pack, ’.l2’,’.e2’],_),
tcl_eval(X,[pack,’.b’,’.c’,min(side),’left’],_),
tcl_eval(X,[bind,’.b’,’<ButtonPress-1>’,

br([set,’inputval’,’$inputval’,’\n’,
prolog_one_event,
dq(write(execute(tk_test_aux:factorial(’$inputval’, ’Outputval’)))),
’\n’,
set, ’outputval’,’$prolog_variables(Outputval)’])],
_),

tcl_eval(X,[bind,’.c’,’<ButtonPress-1>’,
br([prolog_one_event,
dq(write(execute(exit_tk_event_loop)))])],
_),

tk_event_loop(X).

Tcl to Prolog

This is the usual way to build a GUI application. The slave, Prolog, behaves as a server that
fulfills eventual requests from the master side, Tcl. At some point, during the user interaction
with the GUI, an action may take place that triggers the execution of some procedure on the
slave side (a form submit, for example). Thus, the slave is invoked, performs a service, and
returns the result to the GUI through the socket connection.

This library includes two main specific Tcl commands:

prolog Goal
Goal is a string containing the printed representation of a Prolog goal. The goal
will be called in the user module unless it is prefixed with another module name.
The call is always deterministic and its can be either of the following:

1, in case of success
The value of any of the variables in the goal that is bound to a term
will be returned to Tcl in the array prolog variables with the variable
name as index.

Chapter 129: The Tcl/Tk interface 691

0, if the execution fails
The Prolog exception Tcl exception is raised. The error message will
be "Prolog Exception: " appended with a string representation of such
exception.

prolog_event Term
Adds the new term to the terms queue. These can be later retrieved through
predicates tcl_event/3 and tk_next_event/2.

Additionally, seven extra Tcl commands are defined.

prolog_delete_event
Deletes the first term of the terms queue.

prolog_list_events
Sends all the terms of the terms queue through the event socket. The last element
is end of event list.

prolog_cmd Command
Receives as an argument the Tcl/Tk code, evaluates it and returns through the
term socket the term tcl error in case of error or the term tcl result with the result
of the command executed. If the command is prolog, upon return, the goal run on
the prolog side is received. In order to get the value of the variables, predicates are
compared using the unify term command. Returns 0 when the sript runs without
errors, and 1 if there is an error.

prolog_one_event Term
Receives as an argument the term associated to one of the Tk events. Sends the term
through the event socket and waits for its unification. Then unify term command
is called to update the prolog variables array.

prolog_thread_event Term
Receives as an argument the term associated to one of the Tk events. Sends the term
through the event socket and waits for its unification. Then unify term command
is called to update the prolog variables array. In this case the term socket is non
blocking.

convert_variables String
Its argument is a string containing symbols that can not be sent through the sockets.
This procedure deletes them from the input string and returns the new string.

unify_term Term1 Term2
Unifies Term1 and Term2 and updates the the prolog variables array.

The predicates to use Prolog from Tcl are tk_event_loop/1, tk_main_loop/1, tk_new/2,
and tk_next_event/2.

An example of use with Tcl as master and Prolog as slave, implementing the well known "Hello,
world!" dummy program (more can be seen in directory examples):

Prolog side:

:- use_module(library(tcltk)).
:- use_package(classic).

hello(’Hello, world!’).

go :-
tk_new([name(’Simple’)], Tcl),
tcl_eval(Tcl, ’source simple.tcl’, _),
tk_main_loop(Tcl),

692 The Ciao System

tcl_delete(Tcl).

Tcl side (simple.tcl):

label .l -textvariable tvar
button .b -text "Go!" -command {run}
pack .l .b -side top

proc run {} {

global prolog_variables
global tvar

prolog hello(X)
set tvar $prolog_variables(X)

}

129.1 Usage and interface (tcltk)
� �

• Library usage:

:- use_module(library(tcltk)).

• Exports:

− Predicates:

tcl_new/1, tcl_eval/3, tcl_delete/1, tcl_event/3, tk_event_loop/1, tk_main_
loop/1, tk_new/2, tk_next_event/2.

− Regular Types:

tclInterpreter/1, tclCommand/1.

• Other modules used:

− System library modules:

tcltk/tcltk_low_level, write.

 	

129.2 Documentation on exports (tcltk)

PREDICATEtcl new/1:
Usage: tcl_new(TclInterpreter)

− Description: Creates a new interpreter, initializes it, and returns a handle to it in
TclInterpreter.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

− The following properties should hold at call time:

TclInterpreter is a free variable. (term typing:var/1)

Chapter 129: The Tcl/Tk interface 693

PREDICATEtcl eval/3:
Meta-predicate with arguments: tcl_eval(?,?,addmodule(?)).

Usage: tcl_eval(TclInterpreter,Command,Result)

− Description: Evaluates the commands given in Command in the Tcl interpreter
TclInterpreter. The result will be stored as a string in Result. If there is an
error in Command an exception is raised. The error messages will be Tcl Exception:
if the error is in the syntax of the Tcl/Tk code or Prolog Exception:, if the error is in
the prolog term.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

Command is a Tcl command. (tcltk:tclCommand/1)

Result is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

Command is currently a term which is not a free variable. (term typing:nonvar/1)

Result is a free variable. (term typing:var/1)

PREDICATEtcl delete/1:
Usage: tcl_delete(TclInterpreter)

− Description: Given a handle to a Tcl interpreter in variable TclInterpreter, it
deletes the interpreter from the system.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEtcl event/3:
Usage: tcl_event(TclInterpreter,Command,Events)

− Description: Evaluates the commands given in Command in the Tcl interpreter whose
handle is provided in TclInterpreter. Events is a list of terms stored from Tcl by
prolog event. Blocks until there is something on the event queue

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

Command is a Tcl command. (tcltk:tclCommand/1)

Events is a list. (basic props:list/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

Command is currently a term which is not a free variable. (term typing:nonvar/1)

Events is a free variable. (term typing:var/1)

694 The Ciao System

REGTYPEtclInterpreter/1:
Usage: tclInterpreter(I)

− Description: I is a reference to a Tcl interpreter.

REGTYPEtclCommand/1:
Usage: tclCommand(C)

− Description: C is a Tcl command.

PREDICATEtk event loop/1:
Usage: tk_event_loop(TclInterpreter)

− Description: Waits for an event and executes the goal associated to it. Events are
stored from Tcl with the prolog command. The unified term is sent to the Tcl
interpreter in order to obtain the value of the tcl array of prolog variables. If the
term received does not have the form execute(Goal), the predicate silently exits. If
the execution of Goal raises a Prolog error, the interpreter is deleted and an error
message is given.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEtk main loop/1:
Usage: tk_main_loop(TclInterpreter)

− Description: Passes control to Tk until all windows are gone.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEtk new/2:
Usage: tk_new(Options,TclInterpreter)

− Description: Performs basic Tcl and Tk initialization and creates the main window
of a Tk application.Options is a list of optional elements according to:

name(+ApplicationName)
Sets the Tk main window title to ApplicationName. It is also used for
communicating between Tcl/Tk applications via the Tcl send command.
Default name is an empty string.

display(+Display)
Gives the name of the screen on which to create the main window. Default
is normally determined by the DISPLAY environment variable.

Chapter 129: The Tcl/Tk interface 695

file Opens the sript file. Commands will not be read from standard input
and the execution returns back to Prolog only after all windows (and the
interpreter) have been deleted.

− Call and exit should be compatible with:

Options is a list. (basic props:list/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

− The following properties should hold at call time:

Options is currently a term which is not a free variable. (term typing:nonvar/1)

TclInterpreter is a free variable. (term typing:var/1)

PREDICATEtk next event/2:
Usage: tk_next_event(TclInterpreter,Event)

− Description: Processes events until there is at least one Prolog event associated with
TclInterpreter. Event is the term correspondig to the head of a queue of events
stored from Tcl with the prolog event command.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

Event is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

Event is a free variable. (term typing:var/1)

696 The Ciao System

Chapter 130: Low level interface library to Tcl/Tk 697

130 Low level interface library to Tcl/Tk

Author(s): Montse Iglesias Urraca.

The tcltk_low_level library defines the low level interface used by the tcltk library. Es-
sentially it includes all the code related directly to the handling of sockets and processes. This
library should normally not be used directly by user programs, which use tcltk instead. On
the other hand in some cases it may be useful to undertand how this library works in order to
understand possible problems in programs that use the tcltk library.

130.1 Usage and interface (tcltk_low_level)
� �

• Library usage:

:- use_module(library(tcltk_low_level)).

• Exports:

− Predicates:

new_interp/1, new_interp/2, new_interp_file/2, tcltk/2, tcltk_raw_code/2,
receive_result/2, send_term/2, receive_event/2, receive_list/2, receive_
confirm/2, delete/1.

• Other modules used:

− System library modules:

terms, sockets/sockets, system, write, read, strings, format.

 	

130.2 Documentation on exports (tcltk_low_level)

PREDICATEnew interp/1:
Usage: new_interp(TclInterpreter)

− Description: Creates two sockets to connect to the wish process, the term socket and
the event socket, and opens a pipe to process wish in a new shell.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

TclInterpreter is a free variable. (term typing:var/1)

PREDICATEnew interp/2:
Usage: new_interp(TclInterpreter,Options)

− Description: Creates two sockets, the term socket and the event socket, and opens a
pipe to process wish in a new shell invoked with the Options.

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

Options is currently instantiated to an atom. (term typing:atom/1)

− The following properties should hold at call time:

TclInterpreter is a free variable. (term typing:var/1)

Options is currently a term which is not a free variable. (term typing:nonvar/1)

698 The Ciao System

PREDICATEnew interp file/2:
Usage: new_interp_file(FileName,TclInterpreter)

− Description: Creates two sockets, the term socket and the event socket, and opens a
pipe to process wish in a new shell invoked with a FileName. FileName is treated as
a name of a sript file

− Call and exit should be compatible with:

FileName is a string (a list of character codes). (basic props:string/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

TclInterpreter is a free variable. (term typing:var/1)

PREDICATEtcltk/2:
Usage: tcltk(Code,TclInterpreter)

− Description: Sends the Code converted to string to the TclInterpreter

− Call and exit should be compatible with:

Code is a Tcl command. (tcltk low level:tclCommand/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

Code is currently a term which is not a free variable. (term typing:nonvar/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEtcltk raw code/2:
Usage: tcltk_raw_code(String,TclInterpreter)

− Description: Sends the tcltk code items of the Stream to the TclInterpreter

− Call and exit should be compatible with:

String is a string (a list of character codes). (basic props:string/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

String is currently a term which is not a free variable. (term typing:nonvar/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEreceive result/2:
Usage: receive_result(Result,TclInterpreter)

− Description: Receives the Result of the last TclCommand into the TclInterpreter.
If the TclCommand is not correct the wish process is terminated and a message
appears showing the error

− Call and exit should be compatible with:

Result is a string (a list of character codes). (basic props:string/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

Chapter 130: Low level interface library to Tcl/Tk 699

− The following properties should hold at call time:

Result is a free variable. (term typing:var/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEsend term/2:
Usage: send_term(String,TclInterpreter)

− Description: Sends the goal executed to the TclInterpreter. String has the pred-
icate with unified variables

− Call and exit should be compatible with:

String is a string (a list of character codes). (basic props:string/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

String is currently a term which is not a free variable. (term typing:nonvar/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEreceive event/2:
Usage: receive_event(Event,TclInterpreter)

− Description: Receives the Event from the event socket of the TclInterpreter.

− Call and exit should be compatible with:

Event is a list. (basic props:list/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

Event is a free variable. (term typing:var/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEreceive list/2:
Usage: receive_list(List,TclInterpreter)

− Description: Receives the List from the event socket of the TclInterpreter.The
List has all the predicates that have been inserted from Tcl/Tk with the command
prolog event. It is a list of terms.

− Call and exit should be compatible with:

List is a list. (basic props:list/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

List is a free variable. (term typing:var/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

700 The Ciao System

PREDICATEreceive confirm/2:
Usage: receive_confirm(String,TclInterpreter)

− Description: Receives the String from the event socket of the TclInterpreter when
a term inserted into the event queue is managed.

− Call and exit should be compatible with:

String is a string (a list of character codes). (basic props:string/1)

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

String is a free variable. (term typing:var/1)

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

PREDICATEdelete/1:
Usage: delete(TclInterpreter)

− Description: Terminates the wish process and closes the pipe, term socket and event
socket. Deletes the interpreter TclInterpreter from the system

− Call and exit should be compatible with:

TclInterpreter is a reference to a Tcl interpreter. (tcltk low level:tclInterpreter/1)

− The following properties should hold at call time:

TclInterpreter is currently a term which is not a free variable.
(term typing:nonvar/1)

130.3 Documentation on internals (tcltk_low_level)

PREDICATEcore/1:
Usage: core(String)

− Description: core/1 is a set of facts which contain Strings to be sent to the Tcl/Tk
interpreter on startup. They implement miscelaneous Tcl/Tk procedures which are
used by the Tcl/Tk interface.

− Call and exit should be compatible with:

String is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

String is a free variable. (term typing:var/1)

Chapter 131: The PiLLoW Web programming library 701

131 The PiLLoW Web programming library

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This package implements the PiLLoW library [CHV96a]. The following three chap-
ters document, respectively, the predicates for HTML/XML/CGI programming, the pred-
icate for HTTP conectivity, and the types used in the definition of the predicates (key
for fully understanding the other predicates). You can find a paper and some ad-
ditional information in the library/pillow/doc directory of the distribution, and in
the WWW at http://clip.dia.fi.upm.es/Software/pillow/pillow.html. There is
also a PiLLoW on-line tutorial (slides) at http://clip.dia.fi.upm.es/logalg/slides/C_
pillow/C_pillow.html which illustrates the basic features and provides a number of examples
of PiLLoW use.

131.1 Installing PiLLoW

To correctly install PiLLoW, first, make sure you downloaded the right version of PiLLoW
(there are different versions for different LP/CLP systems; the version that comes with Ciao is
of course the right one for Ciao). Then, please follow these steps:

1. Copy the files in the images directory to a WWW accessible directory in your server.

2. Edit the file icon_address.pl and change the fact to point to the URL to be used to access
the images above.

3. In the Ciao system the files are in the correct place, in other systems copy the files pillow.pl
and icon_address.pl to a suitable directory so that your Prolog system will find them.

131.2 Usage and interface (pillow_doc)
� �

• Library usage:

:- use_package(pillow).

or

:- module(...,...,[pillow]).

• New operators defined:

$/2 [150,xfx], $/1 [150,fx].

• Other modules used:

− System library modules:

pillow/http, pillow/html.

 	

702 The Ciao System

Chapter 132: HTML/XML/CGI programming 703

132 HTML/XML/CGI programming

Author(s): Daniel Cabeza, Manuel Hermenegildo, Sacha Varma.

This module implements the predicates of the PiLLoW package related to HTML/ XML
generation and parsing, CGI and form handlers programming, and in general all the predicates
which do not imply the use of the HTTP protocol.

132.1 Usage and interface (html)
� �

• Library usage:

:- use_module(library(html)).

• Exports:

− Predicates:

output_html/1, html2terms/2, xml2terms/2, html_template/3, html_report_
error/1, get_form_input/1, get_form_value/3, form_empty_value/1, form_
default/3, set_cookie/2, get_cookies/1, url_query/2, url_query_amp/2, url_
query_values/2, my_url/1, url_info/2, url_info_relative/3, form_request_
method/1, icon_address/2, html_protect/1, http_lines/3.

− Multifiles:

define_flag/3, html_expansion/2.

• Other modules used:

− System library modules:

strings, lists, system, read, pillow/pillow_aux, pillow/pillow_types.

 	

132.2 Documentation on exports (html)

PREDICATEoutput html/1:
output_html(HTMLTerm)

Outputs HTMLTerm, interpreted as an html_term/1, to current output stream.

Usage:

− The following properties should hold at call time:

HTMLTerm is a term representing HTML code. (pillow types:html term/1)

PREDICATEhtml2terms/2:
html2terms(String,Terms)

String is a character list containing HTML code and Terms is its prolog structured rep-
resentation.

Usage 1:

− Description: Translates an HTML-term into the HTML code it represents.

− The following properties should hold at call time:

String is a free variable. (term typing:var/1)

Terms is a term representing HTML code. (pillow types:html term/1)

704 The Ciao System

− The following properties hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

Usage 2:

− Description: Translates HTML code into a structured HTML-term.

− Calls should, and exit will be compatible with:

Terms is a term representing HTML code in canonical form. (pil-
low types:canonic html term/1)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

Terms is a term representing HTML code in canonical form. (pil-
low types:canonic html term/1)

PREDICATExml2terms/2:
xml2terms(String,Terms)

String is a character list containing XML code and Terms is its prolog structured repre-
sentation.

Usage 1:

− Description: Translates a XML-term into the XML code it represents.

− The following properties should hold at call time:

String is a free variable. (term typing:var/1)

Terms is a term representing HTML code. (pillow types:html term/1)

− The following properties hold upon exit:

String is a string (a list of character codes). (basic props:string/1)

Usage 2:

− Description: Translates XML code into a structured XML-term.

− Calls should, and exit will be compatible with:

Terms is a term representing XML code in canonical form. (pil-
low types:canonic xml term/1)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

Terms is a term representing XML code in canonical form. (pil-
low types:canonic xml term/1)

PREDICATEhtml template/3:
html_template(Chars,Terms,Dict)

Interprets Chars as an HTML template returning in Terms the corresponding structured
HTML-term, which includes variables, and unifying Dict with a dictionary of those vari-
ables (an incomplete list of name=Var pairs). An HTML template is standard HTML
code, but in which “slots” can be defined and given an identifier. These slots represent
parts of the HTML code in which other HTML code can be inserted, and are represented
in the HTML-term as free variables. There are two kinds of variables in templates:

Chapter 132: HTML/XML/CGI programming 705

• Variables representing page contents. A variable with name name is defined with the
special tag <V>name</V>.

• Variables representing tag attributes. They occur as an attribute or an attribute value
starting with _, followed by its name, which must be formed by alphabetic characters.

As an example, suposse the following HTML template:

<html>
<body bgcolor=_bgcolor>
<v>content</v>
</body>
</html>

The following query in the Ciao toplevel shows how the template is parsed, and the
dictionary returned:

?- file_to_string(’template.html’,_S), html_template(_S,Terms,Dict).

Dict = [bgcolor=_A,content=_B|_],
Terms = [env(html,[],["
",env(body,[bgcolor=_A],["
",_B,"
"]),"
"]),"
"] ?

yes

If a dictionary with values is supplied at call time, then variables are unified accordingly
inside the template:

?- file_to_string(’template.html’,_S),
html_template(_S,Terms,[content=b("hello world!"),bgcolor="white"]).

Terms = [env(html,[],["
",env(body,[bgcolor="white"],["
",b("hello world!"),"
"]),"
"]),"
"] ?

yes

Usage:

− Calls should, and exit will be compatible with:

Terms is a term representing HTML code in canonical form. (pil-
low types:canonic html term/1)

Dict is a list. (basic props:list/1)

− The following properties should hold at call time:

Chars is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

Terms is a term representing HTML code in canonical form. (pil-
low types:canonic html term/1)

Dict is a list. (basic props:list/1)

706 The Ciao System

PREDICATEhtml report error/1:
Usage: html_report_error(Error)

− Description: Outputs error Error as a standard HTML page.

PREDICATEget form input/1:
get_form_input(Dict)

Translates input from the form (with either the POST or GET methods, and even with
CONTENT TYPE multipart/form-data) to a dictionary Dict of attribute=value pairs. If
the flag raw_form_values is off (which is the default state), it translates empty values
(which indicate only the presence of an attribute) to the atom ’$empty’, values with more
than one line (from text areas or files) to a list of lines as strings, the rest to atoms or
numbers (using name/2). If the flag on, it gives all values as atoms, without translations.

Usage:

− The following properties should hold at call time:

Dict is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Dict is a dictionary of values of the attributes of a form. It is a list of form_
assignment (pillow types:form dict/1)

PREDICATEget form value/3:
get_form_value(Dict,Var,Val)

Unifies Val with the value for attribute Var in dictionary Dict. Does not fail: value is ’’
if not found (this simplifies the programming of form handlers when they can be accessed
directly).

Usage:

− Calls should, and exit will be compatible with:

Val is a value of an attribute of a form. (pillow types:form value/1)

− The following properties should hold at call time:

Dict is a dictionary of values of the attributes of a form. It is a list of form_
assignment (pillow types:form dict/1)

Var is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Val is a value of an attribute of a form. (pillow types:form value/1)

PREDICATEform empty value/1:
Usage: form_empty_value(Term)

− Description: Checks that Term, a value comming from a text area is empty (can have
spaces, newlines and linefeeds).

PREDICATEform default/3:
Usage: form_default(Val,Default,NewVal)

Chapter 132: HTML/XML/CGI programming 707

− Description: Useful when a form is only partially filled, or when the executable can
be invoked either by a link or by a form, to set form defaults. If the value of Val is
empty then NewVal=Default, else NewVal=Val.

− The following properties should hold at call time:

Val is currently a term which is not a free variable. (term typing:nonvar/1)

Default is currently a term which is not a free variable. (term typing:nonvar/1)

NewVal is a free variable. (term typing:var/1)

PREDICATEset cookie/2:
set_cookie(Name,Value)

Sets a cookie of name Name and value Value. Must be invoked before outputting any data,
including the cgi_reply html-term.

Usage:

− The following properties should hold at call time:

Name is an atom. (basic props:atm/1)

Value is an atomic term (an atom or a number). (basic props:constant/1)

PREDICATEget cookies/1:
get_cookies(Cookies)

Unifies Cookies with a dictionary of attribute=value pairs of the active cookies for this
URL. If the flag raw_form_values is on, values are always atoms even if they could be
interpreted as numbers.

Usage:

− The following properties should hold at call time:

Cookies is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Cookies is a dictionary of values. It is a list of pairs atom=constant. (pil-
low types:value dict/1)

PREDICATEurl query/2:
url_query(Dict,URLArgs)

(Deprecated, see url_query_values/2) Translates a dictionary Dict of parameter values
into a string URLArgs for appending to a URL pointing to a form handler.

Usage:

− The following properties should hold at call time:

Dict is a dictionary of values. It is a list of pairs atom=constant. (pil-
low types:value dict/1)

URLArgs is a free variable. (term typing:var/1)

− The following properties hold upon exit:

URLArgs is a string (a list of character codes). (basic props:string/1)

708 The Ciao System

PREDICATEurl query amp/2:
url_query_amp(Dict,URLArgs)

Translates a dictionary Dict of parameter values into a string URLArgs for appending to
a URL pointing to a form handler to be used in the href of a link (uses & instead of
&).

Usage:

− The following properties should hold at call time:

Dict is a dictionary of values. It is a list of pairs atom=constant. (pil-
low types:value dict/1)

URLArgs is a free variable. (term typing:var/1)

− The following properties hold upon exit:

URLArgs is a string (a list of character codes). (basic props:string/1)

PREDICATEurl query values/2:
url_query_values(Dict,URLArgs)

Dict is a dictionary of parameter values and URLArgs is the URL-encoded string of those
assignments, which may appear after an URL pointing to a CGI script preceded by a ’?’.
Dict is computed according to the raw_form_values flag. The use of this predicate is
reversible.

Usage 1:

− The following properties should hold at call time:

Dict is a dictionary of values. It is a list of pairs atom=constant. (pil-
low types:value dict/1)

URLArgs is a free variable. (term typing:var/1)

− The following properties hold upon exit:

URLArgs is a string (a list of character codes). (basic props:string/1)

Usage 2:

− The following properties should hold at call time:

Dict is a free variable. (term typing:var/1)

URLArgs is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

Dict is a dictionary of values. It is a list of pairs atom=constant. (pil-
low types:value dict/1)

PREDICATEmy url/1:
my_url(URL)

Unifies URL with the Uniform Resource Locator (WWW address) of this cgi executable.

Usage:

− Calls should, and exit will be compatible with:

URL is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

URL is a string (a list of character codes). (basic props:string/1)

Chapter 132: HTML/XML/CGI programming 709

PREDICATEurl info/2:
url_info(URL,URLTerm)

Translates a URL URL to a Prolog structure URLTerm which details its various components,
and vice-versa. For now non-HTTP URLs make the predicate fail.

Usage 1:

− Calls should, and exit will be compatible with:

URLTerm specifies a URL. (pillow types:url term/1)

− The following properties should hold at call time:

URL is an atom. (basic props:atm/1)

− The following properties hold upon exit:

URLTerm specifies a URL. (pillow types:url term/1)

Usage 2:

− Calls should, and exit will be compatible with:

URLTerm specifies a URL. (pillow types:url term/1)

− The following properties should hold at call time:

URL is a string (a list of character codes). (basic props:string/1)

− The following properties hold upon exit:

URLTerm specifies a URL. (pillow types:url term/1)

Usage 3:

− The following properties should hold at call time:

URL is a free variable. (term typing:var/1)

URLTerm specifies a URL. (pillow types:url term/1)

− The following properties hold upon exit:

URL is a string (a list of character codes). (basic props:string/1)

PREDICATEurl info relative/3:
url_info_relative(URL,BaseURLTerm,URLTerm)

Translates a relative URL URL which appears in the HTML page refered to by BaseURLTerm
into URLTerm, a Prolog structure containing its absolute parameters. Absolute URLs are
translated as with url_info/2. E.g.

url_info_relative("dadu.html",
http(’www.foo.com’,80,"/bar/scoob.html"), Info)

gives Info = http(’www.foo.com’,80,"/bar/dadu.html").

Usage 1:

− Calls should, and exit will be compatible with:

URLTerm specifies a URL. (pillow types:url term/1)

− The following properties should hold at call time:

URL is an atom. (basic props:atm/1)

BaseURLTerm specifies a URL. (pillow types:url term/1)

− The following properties hold upon exit:

URLTerm specifies a URL. (pillow types:url term/1)

Usage 2:

710 The Ciao System

− Calls should, and exit will be compatible with:

URLTerm specifies a URL. (pillow types:url term/1)

− The following properties should hold at call time:

URL is a string (a list of character codes). (basic props:string/1)

BaseURLTerm specifies a URL. (pillow types:url term/1)

− The following properties hold upon exit:

URLTerm specifies a URL. (pillow types:url term/1)

PREDICATEform request method/1:
Usage: form_request_method(Method)

− Description: Unifies Method with the method of invocation of the form handler (GET
or POST).

− The following properties hold upon exit:

Method is an atom. (basic props:atm/1)

PREDICATEicon address/2:
icon_address(Img,IAddress)

The PiLLoW image Img has URL IAddress.

Usage:

− Calls should, and exit will be compatible with:

Img is an atom. (basic props:atm/1)

IAddress is an atom. (basic props:atm/1)

− The following properties hold upon exit:

Img is an atom. (basic props:atm/1)

IAddress is an atom. (basic props:atm/1)

PREDICATEhtml protect/1:
html_protect(Goal)

Calls Goal. If an error occurs during its execution, or it fails, an HTML page is output
informing about the incident. Normaly the whole execution of a CGI is protected thus.

Meta-predicate with arguments: html_protect(goal).

Usage:

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEhttp lines/3:
Usage: http_lines(Lines,String,Tail)

− Description: Lines is a list of the lines with occur in String until Tail. The lines
may end UNIX-style or DOS-style in String, in Lines they have not end of line
characters. Suitable to be used in DCGs.

Chapter 132: HTML/XML/CGI programming 711

− Calls should, and exit will be compatible with:

Lines is a list of strings. (basic props:list/2)

String is a string (a list of character codes). (basic props:string/1)

Tail is a string (a list of character codes). (basic props:string/1)

132.3 Documentation on multifiles (html)

PREDICATEdefine flag/3:
Defines a flag as follows:

define_flag(raw_form_values,[on,off],off).

(See Chapter 24 [Changing system behaviour and various flags], page 181).

If flag is on, values returned by get_form_input/1 are always atoms, unchanged from its
original value.

The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

PREDICATEhtml expansion/2:
The predicate is multifile.

Usage: html_expansion(Term,Expansion)

− Description: Hook predicate to define macros. Expand occurrences of Term into
Expansion, in output_html/1. Take care to not transform something into itself!

132.4 Other information (html)

The code uses input from from L. Naish’s forms and Francisco Bueno’s previous Chat inter-
face. Other people who have contributed are (please inform us if we leave out anybody): Markus
Fromherz, Samir Genaim.

712 The Ciao System

Chapter 133: HTTP conectivity 713

133 HTTP conectivity

Author(s): Daniel Cabeza.

This module implements the HTTP protocol, which allows retrieving data from HTTP
servers.

133.1 Usage and interface (http)
� �

• Library usage:

:- use_module(library(http)).

• Exports:

− Predicates:

fetch_url/3.

• Other modules used:

− System library modules:

strings, lists, pillow/pillow_aux, pillow/pillow_types, pillow/http_ll.

 	

133.2 Documentation on exports (http)

PREDICATEfetch url/3:
fetch_url(URL,Request,Response)

Fetches the document pointed to by URL from Internet, using request parameters Request,
and unifies Response with the parameters of the response. Fails on timeout. Note that
redirections are not handled automatically, that is, if Response contains terms of the form
status(redirection,301,_) and location(NewURL), the program should in most cases
access location NewURL.

Usage: fetch_url(URL,Request,Response)

− The following properties should hold at call time:

URL specifies a URL. (pillow types:url term/1)

Request is a list of http_request_params. (basic props:list/2)

− The following properties hold upon exit:

Response is a list of http_response_params. (basic props:list/2)

714 The Ciao System

Chapter 134: PiLLoW types 715

134 PiLLoW types

Author(s): Daniel Cabeza.

Here are defined the regular types used in the documentation of the predicates of the PiLLoW
package.

134.1 Usage and interface (pillow_types)
� �

• Library usage:

:- use_module(library(pillow_types)).

• Exports:

− Regular Types:

canonic_html_term/1, canonic_xml_term/1, html_term/1, form_dict/1, form_
assignment/1, form_value/1, value_dict/1, url_term/1, http_request_param/1,
http_response_param/1, http_date/1, weekday/1, month/1, hms_time/1.

 	

134.2 Documentation on exports (pillow_types)

REGTYPEcanonic html term/1:
A term representing HTML code in canonical, structured way. It is a list of terms defined
by the following predicate:

canonic_html_item(comment(S)) :-
string(S).

canonic_html_item(declare(S)) :-
string(S).

canonic_html_item(env(Tag,Atts,Terms)) :-
atm(Tag),
list(Atts,tag_attrib),
canonic_html_term(Terms).

canonic_html_item(Tag$Atts) :-
atm(Tag),
list(Atts,tag_attrib).

canonic_html_item(S) :-
string(S).

tag_attrib(Att) :-
atm(Att).

tag_attrib(Att=Val) :-
atm(Att),
string(Val).

Each structure represents one HTML construction:

env(tag ,attribs,terms)
An HTML environment, with name tag, list of attributes attribs and contents
terms.

$(tag ,attribs)
An HTML element of name tag and list of attributes attribs. ($)/2 is defined
by the pillow package as an infix, binary operator.

716 The Ciao System

comment(string)
An HTML comment (translates to/from <!--string-->).

declare(string)
An HTML declaration, they are used only in the header (translates to/from
<!string>).

string Normal text is represented as a list of character codes.

For example, the term

env(a,[href="www.therainforestsite.com"],
["Visit ",img$[src="TRFS.gif"]])

is output to (or parsed from):

Visit

Usage: canonic_html_term(HTMLTerm)

− Description: HTMLTerm is a term representing HTML code in canonical form.

REGTYPEcanonic xml term/1:
A term representing XML code in canonical, structured way. It is a list of terms defined
by the following predicate (see tag_attrib/1 definition in canonic_html_term/1):

canonic_xml_item(Term) :-
canonic_html_item(Term).

canonic_xml_item(xmldecl(Atts)) :-
list(Atts,tag_attrib).

canonic_xml_item(env(Tag,Atts,Terms)) :-
atm(Tag),
list(Atts,tag_attrib),
canonic_xml_term(Terms).

canonic_xml_item(elem(Tag,Atts)) :-
atm(Tag),
list(Atts,tag_attrib).

In addition to the structures defined by canonic_html_term/1 (the ($)/2 structure ap-
pears only in malformed XML code), the following structures can be used:

elem(tag ,atts)
Specifies an XML empty element of name tag and list of attributes atts. For
example, the term

elem(arc,[weigh="3",begin="n1",end="n2"])

is output to (or parsed from):

<arc weigh="3" begin="n1" end="n2"/>

xmldecl(atts)
Specifies an XML declaration with attributes atts (translates to/from <?xml
atts?>)

Usage: canonic_xml_term(XMLTerm)

− Description: XMLTerm is a term representing XML code in canonical form.

Chapter 134: PiLLoW types 717

REGTYPEhtml term/1:
A term which represents HTML or XML code in a structured way. In addition to the struc-
tures defined by canonic_html_term/1 or canonic_xml_term/1, the following structures
can be used:

begin(tag ,atts)
It translates to the start of an HTML environment of name tag and attributes
atts. There exists also a begin(tag) structure. Useful, in conjunction with the
next structure, when including in a document output generated by an existing
piece of code (e.g. tag = pre). Its use is otherwise discouraged.

end(tag) Translates to the end of an HTML environment of name tag.

start Used at the beginning of a document (translates to <html>).

end Used at the end of a document (translates to </html>).

-- Produces a horizontal rule (translates to <hr>).

\\ Produces a line break (translates to
).

$ Produces a paragraph break (translates to <p>).

image(address)
Used to include an image of address (URL) address (equivalent to
img$[src=address]).

image(address,atts)
As above with the list of attributes atts.

ref(address,text)
Produces a hypertext link, address is the URL of the referenced resource, text
is the text of the reference (equivalent to a([href=address],text)).

label(name,text)
Labels text as a target destination with label name (equivalent to
a([name=name],text)).

heading(n,text)
Produces a heading of level n (between 1 and 6), text is the text to be used as
heading. Useful when one wants a heading level relative to another heading
(equivalent to hn(text)).

itemize(items)
Produces a list of bulleted items, items is a list of corresponding HTML terms
(translates to a environment).

enumerate(items)
Produces a list of numbered items, items is a list of corresponding HTML
terms (translates to a environment).

description(defs)
Produces a list of defined items, defs is a list whose elements are definitions,
each of them being a Prolog sequence (composed by ’,’/2 operators). The
last element of the sequence is the definition, the other (if any) are the defined
terms (translates to a <dl> environment).

nice itemize(img ,items)
Produces a list of bulleted items, using the image img as bullet. The predicate
icon_address/2 provides a colored bullet.

718 The Ciao System

preformatted(text)
Used to include preformatted text, text is a list of HTML terms, each ele-
ment of the list being a line of the resulting document (translates to a <pre>
environment).

verbatim(text)
Used to include text verbatim, special HTML characters (<,>,&," and space)
are translated into its quoted HTML equivalent.

prolog term(term)
Includes any prolog term term, represented in functional notation. Variables
are output as _.

nl Used to include a newline in the HTML source (just to improve human read-
ability).

entity(name)
Includes the entity of name name (ISO-8859-1 special character).

start form(addr ,atts)
Specifies the beginning of a form. addr is the address (URL) of the program
that will handle the form, and atts other attributes of the form, as the method
used to invoke it. If atts is not present (there is only one argument) the method
defaults to POST.

start form Specifies the beginning of a form without assigning address to the handler, so
that the form handler will be the cgi-bin executable producing the form.

end form Specifies the end of a form.

checkbox(name,state)
Specifies an input of type checkbox with name name, state is on if the check-
box is initially checked.

radio(name,value,selected)
Specifies an input of type radio with name name (several radio buttons which
are interlocked must share their name), value is the the value returned by the
button, if selected=value the button is initially checked.

input(type,atts)
Specifies an input of type type with a list of attributes atts. Possible values of
type are text, hidden, submit, reset, ldots

textinput(name,atts,text)
Specifies an input text area of name name. text provides the default text to
be shown in the area, atts a list of attributes.

option(name,val ,options)
Specifies a simple option selector of name name, options is the list of available
options and val is the initial selected option (if val is not in options the first
item is selected by default) (translates to a <select> environment).

menu(name,atts,items)
Specifies a menu of name name, list of attributes atts and list of options
items. The elements of the list items are marked with the prefix operator $
to indicate that they are selected (translates to a <select> environment).

form reply

cgi reply This two are equivalent, they do not generate HTML, rather, the CGI protocol
requires this content descriptor to be used at the beginning by CGI executa-
bles (including form handlers) when replying (translates to Content-type:
text/html).

Chapter 134: PiLLoW types 719

pr Includes in the page a graphical logo with the message “Developed using the
PiLLoW Web programming library”, which points to the manual and library
source.

name(text)
A term with functor name/1, different from the special functors defined herein,
represents an HTML environment of name name and included text text. For
example, the term

address(’clip@clip.dia.fi.upm.es’)

is translated into the HTML source

<address>clip@clip.dia.fi.upm.es</address>

name(atts,text)
A term with functor name/2, different from the special functors defined herein,
represents an HTML environment of name name, attributes atts and included
text text. For example, the term

a([href=’http://www.clip.dia.fi.upm.es/’],"Clip home")

represents the HTML source

Clip home

Usage: html_term(HTMLTerm)

− Description: HTMLTerm is a term representing HTML code.

REGTYPEform dict/1:
Usage: form_dict(Dict)

− Description: Dict is a dictionary of values of the attributes of a form. It is a list of
form_assignment

REGTYPEform assignment/1:
Usage: form_assignment(Eq)

− Description: Eq is an assignment of value of an attribute of a form. It is defined by:

form_assignment(A=V) :-
atm(A),
form_value(V).

form_value(A) :-
atm(A).

form_value(N) :-
num(N).

form_value(L) :-
list(L,string).

REGTYPEform value/1:
Usage: form_value(V)

− Description: V is a value of an attribute of a form.

720 The Ciao System

REGTYPEvalue dict/1:
Usage: value_dict(Dict)

− Description: Dict is a dictionary of values. It is a list of pairs atom=constant.

REGTYPEurl term/1:
A term specifying an Internet Uniform Resource Locator. Currently only HTTP URLs
are supported. Example: http(’www.clip.dia.fi.upm.es’,80,"/Software/Ciao/").
Defined as

url_term(http(Host,Port,Document)) :-
atm(Host),
int(Port),
string(Document).

Usage: url_term(URL)

− Description: URL specifies a URL.

REGTYPEhttp request param/1:
A parameter of an HTTP request:

• head: Specify that the document content is not wanted.

• timeout(T): T specifies the time in seconds to wait for the response. Default is 300
seconds.

• if modified since(Date): Get document only if newer than Date. Date has the format
defined by http_date/1.

• user agent(Agent): Provides a user-agent field, Agent is an atom. The string
"PiLLoW/1.1" (or whatever version of PiLLoW is used) is appended.

• authorization(Scheme,Params): To provide credentials. See RFC 1945 for details.

• option(Value): Any unary term, being Value an atom, can be used to provide another
valid option (e.g. from(’user@machine’)).

Usage: http_request_param(Request)

− Description: Request is a parameter of an HTTP request.

REGTYPEhttp response param/1:
A parameter of an HTTP response:

• content(String): String is the document content (list of bytes). If the head parameter
of the HTTP request is used, an empty list is get here.

• status(Type,Code,Reason): Type is an atom denoting the response type, Code is the
status code (an integer), and Reason is a string holding the reason phrase.

• message date(Date): Date is the date of the response, with format defined by http_
date/1.

• location(Loc): This parameter appears when the document has moved, Loc is an atom
holding the new location.

• http server(Server): Server is the server responding, as a string.

• authenticate(Params): Returned if document is protected, Params is a list of cha-
genges. See RFC 1945 for details.

• allow(Methods): Methods are the methods allowed by the server, as a list of atoms.

Chapter 134: PiLLoW types 721

• content encoding(Encoding): Encoding is an atom defining the encoding.

• content length(Length): Length is the length of the document (an integer).

• content type(Type,Subtype,Params): Specifies the document content type, Type and
Subtype are atoms, Params a list of parameters (e.g. content_type(text,html,[])).

• expires(Date): Date is the date after which the entity should be considered stale.
Format defined by http_date/1.

• last modified(Date): Date is the date at which the sender believes the resource was
last modified. Format defined by http_date/1.

• pragma(String): Miscellaneous data.

• header(String): Any other functor header/1 is an extension header.

Usage: http_response_param(Response)

− Description: Response is a parameter of an HTTP response.

REGTYPEhttp date/1:
http_date(Date)

Date is a term defined as

http_date(date(WeekDay,Day,Month,Year,Time)) :-
weekday(WeekDay),
int(Day),
month(Month),
int(Year),
hms_time(Time).

.

Usage: http_date(Date)

− Description: Date is a term denoting a date.

REGTYPEweekday/1:
Usage: weekday(WeekDay)

− Description: WeekDay is a term denoting a weekday.

REGTYPEmonth/1:
Usage: month(Month)

− Description: Month is a term denoting a month.

REGTYPEhms time/1:
Usage: hms_time(Time)

− Description: Time is an atom of the form hh:mm:ss

722 The Ciao System

Chapter 135: Persistent predicate database 723

135 Persistent predicate database

Author(s): José Manuel Gómez Pérez, Daniel Cabeza, Manuel Hermenegildo, The CLIP
Group.

135.1 Introduction to persistent predicates

This library implements a generic persistent predicate database. The basic notion imple-
mented by the library is that of a persistent predicate. The persistent predicate concept pro-
vides a simple, yet powerful generic persistent data access method [CHGT98,Par97]. A persistent
predicate is a special kind of dynamic, data predicate that “resides” in some persistent medium
(such as a set of files, a database, etc.) that is typically external to the program using such
predicates. The main effect is that any changes made to a persistent predicate from a pro-
gram “survive” across executions. I.e., if the program is halted and restarted the predicate that
the new process sees is in precisely the same state as it was when the old process was halted
(provided no change was made in the meantime to the storage by other processes or the user).

Persistent predicates appear to a program as ordinary predicates, and calls to these predicates
can appear in clause bodies in the usual way. However, the definitions of these predicates do not
appear in the program. Instead, the library maintains automatically the definitions of predicates
which have been declared as persistent in the persistent storage.

Updates to persistent predicates can be made using enhanced versions of asserta_fact/1,
assertz_fact/1 and retract_fact/1. The library makes sure that each update is a
transactional update, in the sense that if the update terminates, then the permanent stor-
age has definitely been modified. For example, if the program making the updates is halted just
after the update and then restarted, then the updated state of the predicate will be seen. This
provides security against possible data loss due to, for example, a system crash. Also, due to
the atomicity of the transactions, persistent predicates allow concurrent updates from several
programs.

135.2 Persistent predicates, files, and relational databases

The concept of persistent predicates provided by this library essentially implements a light-
weight, simple, and at the same time powerful form of relational database (a deductive database),
and which is standalone, in the sense that it does not require external support, other than the
file management capabilities provided by the operating system. This is due to the fact that the
persistent predicates are in fact stored in one or more auxiliary files below a given directory.

This type of database is specially useful when building small to medium-sized standalone
applications in Prolog which require persistent storage. In many cases it provides a much easier
way of implementing such storage than using files under direct program control. For example,
interactive applications can use persistent predicates to represent their internal state in a way
that is close to the application. The persistence of such predicates then allows automatically
restoring the state to that at the end of a previous session. Using persistent predicates amounts
to simply declaring some predicates as such and eliminates having to worry about opening files,
closing them, recovering from system crashes, etc.

In other cases, however, it may be convenient to use a relational database as persistent
storage. This may be the case, for example, when the data already resides in such a database
(where it is perhaps accessed also by other applications) or the volume of data is very large.
persdb_sql [CCG98] is a companion library which implements the same notion of persistent
predicates used herein, but keeping the storage in a relational database. This provides a very
natural and transparent way to access SQL database relations from a Prolog program. In that
library, facilities are also provided for reflecting more complex views of the database relations

724 The Ciao System

as predicates. Such views can be constructed as conjunctions, disjunctions, projections, etc. of
database relations, and may include SQL-like aggregation operations.

A nice characteristic of the notion of persistent predicates used in both of these libraries is
that it abstracts away how the predicate is actually stored. Thus, a program can use persistent
predicates stored in files or in external relational databases interchangeably, and the type of
storage used for a given predicate can be changed without having to modify the program (except
for replacing the corresponding persistent/2 declarations).

An example application of the persdb and persdb_sql libraries (and also the pillow library
[CH97]), is WebDB [GCH98]. WebDB is a generic, highly customizable deductive database engine
with an html interface. WebDB allows creating and maintaining Prolog-based databases as well
as relational databases (residing in conventional relational database engines) using any standard
WWW browser.

135.3 Using file-based persistent predicates

Persistent predicates can be declared statically, using persistent/2 declarations (which is
the preferred method, when possible), or dynamically via calls to make_persistent/2. Cur-
rently, persistent predicates may only contain facts, i.e., they are dynamic predicates of type
data/1.

Predicates declared as persistent are linked to directory, and the persistent state of the
predicate will be kept in several files below that directory. The files in which the persistent
predicates are stored are in readable, plain ASCII format, and in Prolog syntax. One advantage
of this approach is that such files can also be created or edited by hand, in a text editor, or even
by other applications.

An example definition of a persistent predicate implemented by files follows:

:- persistent(p/3,dbdir).

persistent_dir(dbdir, ’/home/clip/public_html/db’).

The first line declares the predicate p/3 persistent. The argument dbdir is a key used to
index into a fact of the relation persistent_dir/2-4, which specifies the directory where the
corresponding files will be kept. The effect of the declaration, together with the persistent_
dir/2-4 fact, is that, although the predicate is handled in the same way as a normal data
predicate, in addition the system will create and maintain efficiently a persistent version of p/3
via files in the directory /home/clip/public_html/db.

The level of indirection provided by the dbdir argument makes it easy to place the storage of
several persistent predicates in a common directory, by specifying the same key for all of them.
It also allows changing the directory for several such persistent predicates by modifying only
one fact in the program. Furthermore, the persistent_dir/2-4 predicate can even be dynamic
and specified at run-time.

135.4 Implementation Issues

We outline the current implementation approach. This implementation attempts to provide
at the same time efficiency and security. To this end, up to three files are used for each predicate
(the persistence set): the data file, the operations file, and the backup file. In the updated state
the facts (tuples) that define the predicate are stored in the data file and the operations file is
empty (the backup file, which contains a security copy of the data file, may or may not exist).

While a program using a persistent predicate is running, any insertion (assert) or deletion
(retract) operations on the predicate are performed on both the program memory and on the
persistence set. However, in order to incurr only a small overhead in the execution, rather
than changing the data file directly, a record of each of the insertion and deletion operations is

Chapter 135: Persistent predicate database 725

appended to the operations file. The predicate is then in a transient state, in that the contents
of the data file do not reflect exactly the current state of the corresponding predicate. However,
the complete persistence set does.

When a program starts, all pending operations in the operations file are performed on the
data file. A backup of the data file is created first to prevent data loss if the system crashes
during this operation. The order in which this updating of files is done ensures that, if at
any point the process dies, on restart the data will be completely recovered. This process of
updating the persistence set can also be triggered at any point in the execution of the program
(for example, when halting) by calling update_files.

135.5 Defining an initial database

It is possible to define an initial database by simply including in the program code facts of
persistent predicates. They will be included in the persistent database when it is created. They
are ignored in successive executions.

135.6 Using persistent predicates from the top level

Special care must be taken when loading into the top level modules or user files which use
persistent predicates. Beforehand, a goal use_module(library(persdb(persdbrt))) must be
issued. Furthermore, since persistent predicates defined by the loaded files are in this way
defined dynamically, a call to initialize_db/0 is commonly needed after loading and before
calling predicates of these files.

135.7 Usage and interface (persdbrt)
� �

• Library usage:

There are two packages which implement persistence: persdb and ’persdb/ll’ (for low
level). In the first, the standard builtins asserta_fact/1, assertz_fact/1, and retract_
fact/1 are replaced by new versions which handle persistent data predicates, behaving as
usual for normal data predicates. In the second package, predicates with names starting
with p are defined, so that there is no overhead in calling the standard builtins. In any
case, each package is used as usual: including it in the package list of the module, or using
the use_package/1 declaration.

• Exports:

− Predicates:

passerta_fact/1, passertz_fact/1, pretract_fact/1, pretractall_fact/1,
asserta_fact/1, assertz_fact/1, retract_fact/1, retractall_
fact/1, initialize_db/0, make_persistent/2, update_files/0, update_files/1,
create/2.

− Regular Types:

meta_predname/1, directoryname/1.

− Multifiles:

$is_persistent/2, persistent_dir/2, persistent_dir/4.

• Other modules used:

− System library modules:

lists, read, aggregates, system, file_locks/file_locks, persdb/persdbcache.

 	

726 The Ciao System

135.8 Documentation on exports (persdbrt)

PREDICATEpasserta fact/1:
Meta-predicate with arguments: passerta_fact(fact).

Usage: passerta_fact(Fact)

− Description: Persistent version of asserta_fact/1: the current instance of Fact is
interpreted as a fact (i.e., a relation tuple) and is added at the beginning of the
definition of the corresponding predicate. The predicate concerned must be declared
persistent. Any uninstantiated variables in the Fact will be replaced by new, private
variables. Defined in the ’persdb/ll’ package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEpassertz fact/1:
Meta-predicate with arguments: passertz_fact(fact).

Usage: passertz_fact(Fact)

− Description: Persistent version of assertz_fact/1: the current instance of Fact is
interpreted as a fact (i.e., a relation tuple) and is added at the end of the definition of
the corresponding predicate. The predicate concerned must be declared persistent.
Any uninstantiated variables in the Fact will be replaced by new, private variables.
Defined in the ’persdb/ll’ package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEpretract fact/1:
pretract_fact(P)

Retracts a predicate in both, the dynamic and the persistent databases.

Meta-predicate with arguments: pretract_fact(fact).

Usage: pretract_fact(Fact)

− Description: Persistent version of retract_fact/1: deletes on backtracking all the
facts which unify with Fact. The predicate concerned must be declared persistent.
Defined in the ’persdb/ll’ package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEpretractall fact/1:
pretractall_fact(P)

Retracts all the instances of a predicate in both, the dynamic and the persistent databases.

Meta-predicate with arguments: pretractall_fact(fact).

Chapter 135: Persistent predicate database 727

PREDICATEasserta fact/1:
Meta-predicate with arguments: asserta_fact(fact).

Usage: asserta_fact(Fact)

− Description: Same as passerta_fact/1, but if the predicate concerned is not persis-
tent then behaves as the builtin of the same name. Defined in the persdb package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEassertz fact/1:
Meta-predicate with arguments: assertz_fact(fact).

Usage: assertz_fact(Fact)

− Description: Same as passertz_fact/1, but if the predicate concerned is not persis-
tent then behaves as the builtin of the same name. Defined in the persdb package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEretract fact/1:
Meta-predicate with arguments: retract_fact(fact).

Usage: retract_fact(Fact)

− Description: Same as pretract_fact/1, but if the predicate concerned is not persis-
tent then behaves as the builtin of the same name. Defined in the persdb package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEretractall fact/1:
Meta-predicate with arguments: retractall_fact(fact).

Usage: retractall_fact(Fact)

− Description: Same as pretractall_fact/1, but if the predicate concerned is not
persistent then behaves as the builtin of the same name. Defined in the persdb
package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEinitialize db/0:
Usage:

− Description: Initializes the whole database, updating the state of the declared per-
sistent predicates. Must be called explicitly after dynamically defining clauses for
persistent_dir/2.

728 The Ciao System

PREDICATEmake persistent/2:
Meta-predicate with arguments: make_persistent(spec,?).

Usage: make_persistent(PredDesc,Keyword)

− Description: Dynamic version of the persistent declaration.

− The following properties should hold at call time:

persdbrt:meta predname(PredDesc) (persdbrt:meta predname/1)

Keyword is an atom corresponding to a directory identifier. (persdbcache:keyword/1)

PREDICATEupdate files/0:
Usage:

− Description: Updates the files comprising the persistence set of all persistent predi-
cates defined in the application.

PREDICATEupdate files/1:
Meta-predicate with arguments: update_files(list(spec)).

Usage: update_files(PredSpecList)

− Description: Updates the files comprising the persistence set of the persistent predi-
cates in PredSpecList.

− Call and exit should be compatible with:

PredSpecList is a list of prednames. (basic props:list/2)

PREDICATEcreate/2:
No further documentation available for this predicate.

REGTYPEmeta predname/1:
A regular type, defined as follows:

meta_predname($:(P)) :-
predname(P).

REGTYPEdirectoryname/1:
Usage: directoryname(X)

− Description: X is an atom, the name of a directory.

Chapter 135: Persistent predicate database 729

135.9 Documentation on multifiles (persdbrt)

PREDICATE$is persistent/2:
$is_persistent(Spec,Key)

Predicate Spec persists within database Key. Programmers should not define this predicate
directly in the program.

The predicate is multifile.

The predicate is of type data.

PREDICATEpersistent dir/2:
The predicate is multifile.

The predicate is of type data.

Usage: persistent_dir(Keyword,Location_Path)

− Description: Relates identifiers of locations (the Keywords) with descriptions of such
locations (Location_Paths). Location_Path is a directory and it means that the
definition for the persistent predicates associated with Keyword is kept in files below
that directory (which must previously exist). These files, in the updated state, con-
tain the actual definition of the predicate in Prolog syntax (but with module names
resolved).

− Call and exit should be compatible with:

Keyword is an atom corresponding to a directory identifier. (persdbcache:keyword/1)

Location_Path is an atom, the name of a directory. (persdbrt:directoryname/1)

PREDICATEpersistent dir/4:
The predicate is multifile.

The predicate is of type data.

Usage: persistent_dir(Keyword,Location_Path,DirPerms,FilePerms)

− Description: The same as persistent_dir/2, but including also the permission
modes for persistent directories and files.

− Call and exit should be compatible with:

Keyword is an atom corresponding to a directory identifier. (persdbcache:keyword/1)

Location_Path is an atom, the name of a directory. (persdbrt:directoryname/1)

DirPerms is an integer. (basic props:int/1)

FilePerms is an integer. (basic props:int/1)

135.10 Documentation on internals (persdbrt)

DECLARATIONpersistent/2:
Usage: :- persistent(PredDesc,Keyword).

− Description: Declares the predicate PredDesc as persistent. Keyword is the identifier
of a location where the persistent storage for the predicate is kept. The location
Keyword is described in the persistent_dir predicate, which must contain a fact in
which the first argument unifies with Keyword.

730 The Ciao System

− The following properties should hold upon exit:

PredDesc is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Keyword is an atom corresponding to a directory identifier. (persdbcache:keyword/1)

PREDICATEkeyword/1:
An atom which identifies a fact of the persistent_dir/2 relation. This fact relates this
atom to a directory in which the persistent storage for one or more persistent predicates
is kept. Storage is expected under a subdirectory by the name of the module and in a file
by the name of the predicate.

135.11 Known bugs and planned improvements (persdbrt)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

• To load in the toplevel a file which uses this package, module library(persdb(persdbrt))
has to be previously loaded.

Chapter 136: Using the persdb library 731

136 Using the persdb library

Author(s): The CLIP Group.

Through the following examples we will try to illustrate the two mains ways of declaring and
using persistent predicates: statically (the preferred method) and dynamically (necessary when
the new persistent predicates have to be defined at run-time). The final example is a small
application implementing a simple persistent queue.

136.1 An example of persistent predicates (static version)

136.2 An example of persistent predicates (dynamic version)

136.3 A simple application / a persistent queue

732 The Ciao System

Chapter 137: Filed predicates 733

137 Filed predicates

Author(s): Francisco Bueno.

This package allows using files as a “ cache” for predicates defined by facts. This is useful
for huge tables of facts that may push the memory limits of the system too far. Goals of a filed
predicate are executed simply by reading from the corresponding file.

Anything in the DB file used for the predicate that is different from a fact for the correspond-
ing predicate is ignored. Each call to a filed predicate forces opening the file, so the use of this
package is subject to the limit on the number of open files that the system can support.

Dynamic modification of the filed predicates is also allowed during execution of the program.
Thus filed predicates are regarded as dynamic, data predicates residing in a file. However,
dynamic modifications to the predicates do not affect the file, unless the predicate is also declared
persistent.

The package is compatible with persdb in the sense that a predicate can be made both filed
and persistent. In this way, the predicate can be used in programs, but it will not be loaded
(saving memory), can also be modified during execution, and modifications will persist in the
file. Thus, the user interface to both packages is the same (so the DB file must be one for both
filing and persistency).

137.1 Usage and interface (factsdb_doc)
� �

• Library usage:

This facility is used as a package, thus either including factsdb in the package list of the
module, or by using the use_package/1 declaration. The facility predicates are defined in
library module factsdb_rt.

• Other modules used:

− System library modules:

factsdb/factsdb_rt.

 	

137.2 Documentation on multifiles (factsdb_doc)

PREDICATE$factsdb$cached goal/3:
No further documentation available for this predicate.

The predicate is multifile.

137.3 Known bugs and planned improvements (factsdb_doc)

• The DB files for persistent predicates have to be used as such from the beginning. Using a
DB file for a filed predicate first, and then using it also when making the predicate persistent
won’t work. Nor the other way around: using a DB file for a persistent predicate first, and
then using it also when making the predicate filed.

734 The Ciao System

Chapter 138: Filed predicates (runtime) 735

138 Filed predicates (runtime)

Author(s): Francisco Bueno.

Runtime module for the factsdb package.

138.1 Usage and interface (factsdb_rt)
� �

• Library usage:

:- use_module(library(factsdb_rt)).

• Exports:

− Predicates:

asserta_fact/1, assertz_fact/1, call/1, current_fact/1, retract_fact/1.

− Multifiles:

$factsdb$cached_goal/3, persistent_dir/2, file_alias/2.

• Other modules used:

− System library modules:

counters, read, persdb/persdbcache.

 	

138.2 Documentation on exports (factsdb_rt)

PREDICATEasserta fact/1:
Meta-predicate with arguments: asserta_fact(fact).

Usage: asserta_fact(Fact)

− Description: Version of data_facts:asserta_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is added at the beginning of the
definition of the corresponding predicate. Therefore, before all the facts filed in the
DB file for the predicate. The predicate concerned must be declared as facts; if it is
not, then data_facts:asserta_fact/1 is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEassertz fact/1:
Meta-predicate with arguments: assertz_fact(fact).

Usage: assertz_fact(Fact)

− Description: Version of data_facts:assertz_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is added at the end of the definition
of the corresponding predicate. Therefore, after all the facts filed in the DB file for
the predicate. The predicate concerned must be declared as facts; if it is not, then
data_facts:assertz_fact/1 is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

736 The Ciao System

PREDICATEcall/1:
Meta-predicate with arguments: call(fact).

Usage: call(Fact)

− Description: Same as current_fact/1 if the predicate concerned is declared as
facts. If it is not, an exception is raised.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEcurrent fact/1:
Meta-predicate with arguments: current_fact(fact).

Usage: current_fact(Fact)

− Description: Version of data_facts:current_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is unified with an actual fact in the
current definition of the corresponding predicate. Therefore, with a fact previously
asserted or filed in the DB file for the predicate, if it has not been retracted. The pred-
icate concerned must be declared as facts; if it is not, then data_facts:current_
fact/1 is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEretract fact/1:
Meta-predicate with arguments: retract_fact(fact).

Usage: retract_fact(Fact)

− Description: Version of data_facts:retract_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is unified with an actual fact in the
current definition of the corresponding predicate; such a fact is deleted from the predi-
cate definition. This is true even for the facts filed in the DB file for the predicate; but
these are NOT deleted from the file (unless the predicate is persistent). The predicate
concerned must be declared as facts; if it is not, then data_facts:retract_fact/1
is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

138.3 Documentation on multifiles (factsdb_rt)

PREDICATE$factsdb$cached goal/3:
$factsdb$cached_goal(Spec,Spec,Key)

Predicate Spec is filed within database Key. Programmers should not define this predicate
directly in the program.

The predicate is multifile.

Chapter 138: Filed predicates (runtime) 737

PREDICATEpersistent dir/2:
See persdb.

The predicate is multifile.

The predicate is of type data.

PREDICATEfile alias/2:
See symfnames. This predicate is used only if persistent_dir/2 fails.

The predicate is multifile.

The predicate is of type data.

138.4 Documentation on internals (factsdb_rt)

DECLARATIONfacts/2:
Usage: :- facts(PredDesc,Keyword).

− Description: Declares the predicate PredDesc as filed. Keyword is the identifier of a
location where the file DB for the predicate is kept. The location Keyword is described
in the file_alias predicate, which must contain a fact in which the first argument
unifies with Keyword.

− The following properties should hold upon exit:

PredDesc is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic props:predname/1)

Keyword is an atom corresponding to a directory identifier. (persdbcache:keyword/1)

PREDICATEkeyword/1:
See persdbrt. The same conventions for location of DB files apply in both packages.

738 The Ciao System

Chapter 139: sqltypes (library) 739

139 sqltypes (library)

139.1 Usage and interface (sqltypes)
� �

• Library usage:

:- use_module(library(sqltypes)).

• Exports:

− Predicates:

accepted_type/2, get_type/2,
type_compatible/2, type_union/3, sybase2sqltypes_list/2, sybase2sqltype/2,
postgres2sqltypes_list/2, postgres2sqltype/2.

− Regular Types:

sqltype/1, sybasetype/1, postgrestype/1.

 	

139.2 Documentation on exports (sqltypes)

REGTYPEsqltype/1:
sqltype(int).
sqltype(flt).
sqltype(num).
sqltype(string).
sqltype(date).
sqltype(time).
sqltype(datetime).

These types have the same meaning as the corresponding standard types in the
basictypes library.

Usage: sqltype(Type)

− Description: Type is an SQL data type supported by the translator.

PREDICATEaccepted type/2:
Usage: accepted_type(SystemType,NativeType)

− Description: For the moment, tests wether the SystemType received is a sybase or
a postgres type (in the future other systems should be supported) and obtains its
equivalent NativeType sqltype.

− Call and exit should be compatible with:

SystemType is an SQL data type supported by Sybase. (sqltypes:sybasetype/1)

NativeType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

PREDICATEget type/2:
Usage: get_type(Constant,Type)

− Description: Prolog implementation-specific definition of type retrievals. CIAO Pro-
log version given here (ISO).

740 The Ciao System

− Call and exit should be compatible with:

Constant is any term. (basic props:term/1)

Type is an SQL data type supported by the translator. (sqltypes:sqltype/1)

− The following properties should hold at call time:

Constant is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEtype compatible/2:
Usage: type_compatible(TypeA,TypeB)

− Description: Checks if TypeA and TypeB are compatible types, i.e., they are the same
or one is a subtype of the other.

− Call and exit should be compatible with:

TypeA is an SQL data type supported by the translator. (sqltypes:sqltype/1)

TypeB is an SQL data type supported by the translator. (sqltypes:sqltype/1)

PREDICATEtype union/3:
Usage: type_union(TypeA,TypeB,Union)

− Description: Union is the union type of TypeA and TypeB.

− Call and exit should be compatible with:

TypeA is an SQL data type supported by the translator. (sqltypes:sqltype/1)

TypeB is an SQL data type supported by the translator. (sqltypes:sqltype/1)

Union is an SQL data type supported by the translator. (sqltypes:sqltype/1)

REGTYPEsybasetype/1:
SQL datatypes supported by Sybase for which a translation is defined:

sybasetype(integer).
sybasetype(numeric).
sybasetype(float).
sybasetype(double).
sybasetype(date).
sybasetype(char).
sybasetype(varchar).
sybasetype(’long varchar’).
sybasetype(binary).
sybasetype(’long binary’).
sybasetype(timestamp).
sybasetype(time).
sybasetype(tinyint).

Usage: sybasetype(Type)

− Description: Type is an SQL data type supported by Sybase.

PREDICATEsybase2sqltypes list/2:
Usage: sybase2sqltypes_list(SybaseTypesList,SQLTypesList)

Chapter 139: sqltypes (library) 741

− Description: SybaseTypesList is a list of Sybase SQL types. PrologTypesList
contains their equivalent SQL-type names in CIAO.

− The following properties should hold upon exit:

SybaseTypesList is a list. (basic props:list/1)

SQLTypesList is a list. (basic props:list/1)

PREDICATEsybase2sqltype/2:
Usage: sybase2sqltype(SybaseType,SQLType)

− Description: SybaseType is a Sybase SQL type name, and SQLType is its equivalent
SQL-type name in CIAO.

− The following properties should hold upon exit:

SybaseType is an SQL data type supported by Sybase. (sqltypes:sybasetype/1)

SQLType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

REGTYPEpostgrestype/1:
SQL datatypes supported by postgreSQL for which a translation is defined:

postgrestype(int2).
postgrestype(int4).
postgrestype(int8).
postgrestype(float4).
postgrestype(float8).
postgrestype(date).
postgrestype(timestamp).
postgrestype(time).
postgrestype(char).
postgrestype(varchar).
postgrestype(text).
postgrestype(bool).

Usage: postgrestype(Type)

− Description: Type is an SQL data type supported by postgres.

PREDICATEpostgres2sqltypes list/2:
Usage: postgres2sqltypes_list(PostgresTypesList,SQLTypesList)

− Description: PostgresTypesList is a list of postgres SQL types. PrologTypesList
contains their equivalent SQL-type names in CIAO.

− The following properties should hold upon exit:

PostgresTypesList is a list. (basic props:list/1)

SQLTypesList is a list. (basic props:list/1)

PREDICATEpostgres2sqltype/2:
Usage: postgres2sqltype(PostgresType,SQLType)

− Description: PostgresType is a postgres SQL type name, and SQLType is its equiv-
alent SQL-type name in CIAO.

742 The Ciao System

− The following properties should hold upon exit:

PostgresType is an SQL data type supported by postgres. (sqltypes:postgrestype/1)

SQLType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

Chapter 140: persdbtr sql (library) 743

140 persdbtr sql (library)

140.1 Usage and interface (persdbtr_sql)
� �

• Library usage:

:- use_module(library(persdbtr_sql)).

• Exports:

− Predicates:

sql_persistent_tr/2, sql_goal_tr/2, dbId/2.

 	

140.2 Documentation on exports (persdbtr_sql)

PREDICATEsql persistent tr/2:
No further documentation available for this predicate.

PREDICATEsql goal tr/2:
No further documentation available for this predicate.

PREDICATEdbId/2:
No further documentation available for this predicate.

The predicate is of type data.

744 The Ciao System

Chapter 141: pl2sqlinsert (library) 745

141 pl2sqlinsert (library)

141.1 Usage and interface (pl2sqlinsert)
� �

• Library usage:

:- use_module(library(pl2sqlinsert)).

• Exports:

− Predicates:

pl2sqlInsert/2.

− Multifiles:

sql__relation/3, sql__attribute/4.

• Other modules used:

− System library modules:

operators, default_predicates, lists.

 	

141.2 Documentation on exports (pl2sqlinsert)

PREDICATEpl2sqlInsert/2:
No further documentation available for this predicate.

141.3 Documentation on multifiles (pl2sqlinsert)

PREDICATEsql relation/3:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

PREDICATEsql attribute/4:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

746 The Ciao System

Chapter 142: Prolog/Java Bidirectional Interface 747

142 Prolog/Java Bidirectional Interface

Author(s): Jesús Correas, The CLIP Group.

The increasing diversity of platforms used today and the diffusion of Internet and the World
Wide Web makes compatibility between platforms a key factor to run the software everywhere
with no change. Java seems to achieve this goal, using a bytecode intermediate language and a
large library of platform-dependent and independent classes which fully implements many. On
the other hand, Prolog provides a powerful implementation of logic programming paradigm. This
document includes the reference manual of the Prolog/Java bidirectional interface implemented
in Ciao. In addition, it has been developed an application of this interface that makes use of
an object oriented extension of Prolog to encapsulate the java classes, O’Ciao, both the ones
defined in the JDK as well as new classes developed in Java. These classes can be used in the
object oriented prolog extension of Ciao just like native O’Ciao classes.

The proposed interaction between both languages is realized as an interface between two
processes, a Java process and a Prolog process, running separately. This approach allows the
programmer to use of both Java and Prolog, without the compiler-dependent glue code used
in other linkage-oriented approaches, and preserves the philosophy of Java as an independent
language. The interface communication is based on a clean socket-based protocol, providing
hardware and software independence. This allows also both processes to be run in different
machines connected by a TCP/IP transport protocol, based on a client/server model that can
evolve to a more cooperative model.

The present manual includes reference information about the Prolog side of the bidirectional
Java/Prolog interface. The Java side of this interface is explained in the HTML pages generated
by Javadoc.

142.1 Distributed Programming Model

The differences between Prolog and Java impose the division of the interface in two main
parts: a prolog-to-java and a java-to-prolog interfaces. Most of the applications that will use this
interface will consider that will be a “client’ side that request actions and queries to a “server’
side, which accomplish the actions and answer the queries. In a first approach, any of the both
one-way interfaces implement a pure client/server model: the server waits for a query, performs
the received query and sleeps until the next query comes; the client starts the server, carries
out the initial part of the job initiating all the conversations with the server, and requests the
server to do some things sometimes.

This model cannot handle correctly the tasks regarding an event oriented programming en-
vironment like java. A usual application of the prolog-to-java interface could be a graphical
user interface server made in java, and a prolog client on the other side. A pure client/server
model based on requests and results is not powerful enough to leave the prolog side managing
all the application specific work of this example: some java specific stuff is needed to catch and
manipulate properly the events thrown by the graphical user interface. This problem can be
solved in a distributed context, on which both languages are clients and servers simultaneously,
and can perform requests and do actions at a time. Using this model, the prolog side can add
a prolog goal as listener of a specific event, and the java side launches that goal when the event
raises.

In any case, the client/server approach simplifies the design of the interface, so both interfaces
have been designed in such way, but keeping in mind that the goal is to reach a distributed
environment, so each side do the things it is best designed for.

748 The Ciao System

Chapter 143: Prolog to Java interface 749

143 Prolog to Java interface

Author(s): Jesús Correas.

This module defines the Ciao Prolog to Java interface. This interface allows a Prolog program
to start a Java process, create Java objects, invoke methods, set/get attributes (fields), and
handle Java events.

This interface only works with JDK version 1.2 or higher.

Although the Java side interface is explained in Javadoc format (it is available at
library/javall/javadoc/ in your Ciao installation), the general interface structure is detailed
here.

143.1 Prolog to Java Interface Structure

This interface is made up of two parts: a Prolog part and a Java part, running in separate
processes. The Prolog part receives requests from a Prolog program and sends them to the Java
part through a socket. The Java part receives requests from the socket and performs the actions
included in the requests.

If an event is thrown in the Java side, an asynchronous message must be sent away to
the Prolog side, in order to launch a Prolog goal to handle the event. This asynchronous
communication is performed using a separate socket. The nature of this communication needs
the use of threads both in Java and Prolog: to deal with the ’sequential program flow,’ and
other threads for event handling.

In both sides the threads are automatically created by the context of the objects we use.
The user must be aware that different requests to the other side of the interface could run
concurrently.

143.1.1 Prolog side of the Java interface

The Prolog side receives the actions to do in the Java side from the user program, and sends
them to the Java process through the socket connection. When the action is done in the Java
side, the result is returned to the user Prolog program, or the action fails if there is any problem
in the Java side.

Prolog data representation of Java elements is very simple in this interface. Java primitive
types such as integers and characters are translated into the Prolog corresponding terms, and
even some Java objects are translated in the same way (e. g. Java strings). Java objects are
represented in Prolog as compound terms with a reference id to identify the corresponding Java
object. Data conversion is made automatically when the interface is used, so the Prolog user
programs do not have to deal with the complexity of these tasks.

143.1.2 Java side

The Java side of this layer is more complex than the Prolog side. The tasks this part has to
deal with are the following:

• Wait for requests from the Prolog side.

• Translate the Prolog terms received in the Prolog ’serialized’ form to a more useful Java rep-
resentation (see the Java interface documentation available at library/javall/javadoc/
in your Ciao installation for details regarding Java representation of Prolog terms).

• Interpret the requests received from the Prolog side, and execute them.

• Handle the set of objects created by or derived from the requests received from the prolog
side.

750 The Ciao System

• Handle the events raised in the Java side, and launch the listeners added in the prolog side.

• Handle the exceptions raised in the Java side, and send them to the Prolog side.

In the implementation of the Java side, two items must be carefully designed: the handling
of Java objects, and the representation of prolog data structures. The last item is specially
important because all the interactions between Prolog and Java are made using Prolog structures,
an easy way to standardize the different data management in both sides. Even the requests
themselves are encapsulated using Prolog structures. The overload of this encapsulation is not
significant in terms of socket traffic, due to the optimal implementation of the prolog serialized
term.

The java side must handle the objects created from the Prolog side dinamically, and these
objects must be accessed as fast as possible from the set of objects. The Java API provides a
powerful implementation of Hash tables that achieves all the requirements of our implementation.

On the other hand, the java representation of prolog terms is made using the inheritance of
java classes. In the java side there exists a representation of a generic prolog term, implemented
as an abstract class in java. Variables, atoms, compound terms, lists, and numeric terms are
classes in the java side which inherit from the term class. Java objects can be seen also under
the prolog representation as compound terms, where the single argument corresponds to the
Hash key of the actual java object in the Hash table referred to before. This behaviour makes
the handling of mixed java and prolog elements easy. Prolog goals are represented in the java
side as objects which contain a prolog compound term with the term representing the goal. This
case will be seen more in depth in next chapter, where the java to prolog interface is explained.

143.2 Java event handling from Prolog

Java event handling is based on a delegation model since version 1.1.x. This approach to
event handling is very powerful and elegant, but a user program cannot handle all the events
that can arise on a given object: for each kind of event, a listener must be implemented and
added specifically. However, the Java 2 API includes a special listener (AWTEventListener)
that can manage the internal java event queue.

The prolog to java interface has been designed to emulate the java event handler, and is also
based on event objects and listeners. The prolog to java interface implements its own event
manager, to handle those events that have prolog listeners associated to the object that raises
the event. From the prolog side can be added listeners to objects for specific events. The java
side includes a list of goals to launch from the object and event type.

Due to the events nature, the event handler must work in a separate thread to manage
the events asynchronously. The java side has its own mechanisms to work this way. The
prolog side must be implemented specially for event handling using threads. The communication
between java and prolog is also asynchronous, and an additional socket stream is used to avoid
interferences with the main socket stream. The event stream will work in this implementation
only in one way: from java to prolog. If an event handler needs to send back requests to java,
it will use the main socket stream, just like the requests sent directly from a prolog program.

Chapter 143: Prolog to Java interface 751

The internal process of register a Prolog event handler to a Java event is shown in the next
figure:

addListener(object,
 eventClass,
 goal);

PLEventListener

2b 2a

Java side Prolog side

Socket

java_add_listener(Obj, Event, Goal),

Prolog registering of Java events

java_add_listener(Button1,

 ’java.awt.event.ActionListener’,
 actionHandler("1")),

When an event raises, the Prolog to Java interface has to send to the Prolog user program
the goal to evaluate. Graphically, the complete process takes the tasks involved in the following
figure:

AWT System event queue

Event raises

Java side Prolog side

Socket

Prolog handling of Java events

PLEventListener

eventDispatched(
 AWTEvent);

Events

Goals

Objects

prolog_listener/0

(in a separate thread)

actionHandler("1"),

3a

3b

4a

4b

752 The Ciao System

143.3 Java exception handling from Prolog

Java exception handling is very similar to the peer prolog handling: it includes some specific
statements to trap exceptions from user code. In the java side, the exceptions can be originated
from an incorrect request, or can be originated in the code called from the request. Both
exception types will be sent to prolog using the main socket stream, allowing the prolog program
manage the exception. However, the first kind of exceptions are prefixed, so the user program
can distinguish them from the second type of exceptions.

In order to handle exceptions properly using the prolog to java and java to prolog interfaces
simultaneously, in both sides of the interface those exceptions coming from their own side will
be filtered: this avoids an endless loop of exceptions bouncing from one side to another.

143.4 Usage and interface (javart)
� �

• Library usage:

:- use_module(library(javart)).

• Exports:

− Predicates:

java_start/0, java_start/1, java_start/2, java_stop/0, java_connect/2,
java_disconnect/0, java_use_module/1, java_create_object/2, java_delete_
object/1, java_invoke_method/2, java_get_value/2, java_set_value/2, java_
add_listener/3, java_remove_listener/3.

− Regular Types:

machine_name/1, java_constructor/1, java_object/1, java_event/1, prolog_
goal/1, java_field/1, java_method/1.

• Other modules used:

− System library modules:

concurrency/concurrency, iso_byte_char, lists, read, write, javall/javasock,
system.

 	

143.5 Documentation on exports (javart)

PREDICATEjava start/0:
Usage:

− Description: Starts the Java server on the local machine, connects to it, and starts
the event handling thread.

PREDICATEjava start/1:
Usage: java_start(Classpath)

− Description: Starts the Java server on the local machine, connects to it, and starts
the event handling thread. The Java server is started using the classpath received as
argument.

− Call and exit should be compatible with:

Classpath is a string (a list of character codes). (basic props:string/1)

Chapter 143: Prolog to Java interface 753

− The following properties should hold at call time:

Classpath is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEjava start/2:
Usage: java_start(Machine_name,Classpath)

− Description: Starts the Java server in machine_name (using rsh!), connects to it, and
starts the event handling thread. The Java server is started using the Classpath
received as argument.

− Call and exit should be compatible with:

Machine_name is the network name of a machine. (javart:machine name/1)

Classpath is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Machine_name is currently a term which is not a free variable. (term typing:nonvar/1)

Classpath is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEjava stop/0:
Usage:

− Description: Stops the interface terminating the threads that handle the socket con-
nection, and finishing the Java interface server if it was started using java start/n.

PREDICATEjava connect/2:
Usage: java_connect(Machine_name,Port_number)

− Description: Connects to an existing Java interface server running in Machine_name
and listening at port port_number. To connect to a Java server located in the local
machine, use ’localhost’ as machine name.

− Call and exit should be compatible with:

Machine_name is the network name of a machine. (javart:machine name/1)

Port_number is an integer. (basic props:int/1)

− The following properties should hold at call time:

Machine_name is currently a term which is not a free variable. (term typing:nonvar/1)

Port_number is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEjava disconnect/0:
Usage:

− Description: Closes the connection with the java process, terminating the threads that
handle the connection to Java. This predicate does not terminate the Java process
(this is the disconnection procedure for Java servers not started from Prolog). This
predicate should be used when the communication is established with java connect/2.

REGTYPEmachine name/1:
Usage: machine_name(X)

− Description: X is the network name of a machine.

754 The Ciao System

REGTYPEjava constructor/1:
Usage: java_constructor(X)

− Description: X is a java constructor (structure with functor as constructor full name,
and arguments as constructor arguments).

REGTYPEjava object/1:
Usage: java_object(X)

− Description: X is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side).

REGTYPEjava event/1:
Usage: java_event(X)

− Description: X is a java event represented as an atom with the full event constructor
name (e.g., ’java.awt.event.ActionListener’).

REGTYPEprolog goal/1:
Usage: prolog_goal(X)

− Description: X is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be
java objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The variables
will be kept uninstantiated when the event raises and the predicate is called.

REGTYPEjava field/1:
Usage: java_field(X)

− Description: X is a java field (structure on which the functor name is the field name,
and the single argument is the field value).

PREDICATEjava use module/1:
Usage: java_use_module(Module)

− Description: Loads a module and makes it available from Java.

− Call and exit should be compatible with:

Module is any term. (basic props:term/1)

− The following properties should hold at call time:

Module is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEjava create object/2:
Usage:

− Description: New java object creation. The constructor must be a compound term
as defined by its type, with the full class name as functor (e.g., ’java.lang.String’),
and the parameters passed to the constructor as arguments of the structure.

Chapter 143: Prolog to Java interface 755

− Call and exit should be compatible with:

Arg1 is a java constructor (structure with functor as constructor full name, and ar-
guments as constructor arguments). (javart:java constructor/1)

Arg2 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

− The following properties should hold at call time:

Arg1 is a java constructor (structure with functor as constructor full name, and ar-
guments as constructor arguments). (javart:java constructor/1)

Arg2 is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Arg2 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

PREDICATEjava delete object/1:
Usage:

− Description: Java object deletion. It removes the object given as argument from the
Java object table.

− Call and exit should be compatible with:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

− The following properties should hold at call time:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

PREDICATEjava invoke method/2:
Usage:

− Description: Invokes a java method on an object. Given a Java object reference,
invokes the method represented with the second argument.

− Call and exit should be compatible with:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java method (structure with functor as method name, and arguments as
method ones, plus a result argument. This result argument is unified with the atom
’Yes’ if the java method returns void). (javart:java method/1)

− The following properties should hold at call time:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java method (structure with functor as method name, and arguments as
method ones, plus a result argument. This result argument is unified with the atom
’Yes’ if the java method returns void). (javart:java method/1)

REGTYPEjava method/1:
Usage: java_method(X)

− Description: X is a java method (structure with functor as method name, and argu-
ments as method ones, plus a result argument. This result argument is unified with
the atom ’Yes’ if the java method returns void).

756 The Ciao System

PREDICATEjava get value/2:
Usage:

− Description: Gets the value of a field. Given a Java object as first argument, it
instantiates the variable given as second argument. This field must be uninstantiated
in the java field functor, or this predicate will fail.

− Call and exit should be compatible with:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java field (structure on which the functor name is the field name, and the
single argument is the field value). (javart:java field/1)

− The following properties should hold at call time:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java field (structure on which the functor name is the field name, and the
single argument is the field value). (javart:java field/1)

PREDICATEjava set value/2:
Usage:

− Description: Sets the value of a Java object field. Given a Java object reference, it
assigns the value included in the java field compound term. The field value in the
java field structure must be instantiated.

− Call and exit should be compatible with:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java field (structure on which the functor name is the field name, and the
single argument is the field value). (javart:java field/1)

− The following properties should hold at call time:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java field (structure on which the functor name is the field name, and the
single argument is the field value). (javart:java field/1)

PREDICATEjava add listener/3:
Meta-predicate with arguments: java_add_listener(?,?,goal).

Usage:

− Description: Adds a listener to an event on an object. Given a Java object reference,
it registers the goal received as third argument to be launched when the Java event
raises.

− Call and exit should be compatible with:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java event represented as an atom with the full event constructor name (e.g.,
’java.awt.event.ActionListener’). (javart:java event/1)

Arg3 is a prolog predicate. Prolog term that represents the goal that must be in-
voked when the event raises on the object. The predicate arguments can be java

Chapter 143: Prolog to Java interface 757

objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The vari-
ables will be kept uninstantiated when the event raises and the predicate is called.
(javart:prolog goal/1)

− The following properties should hold at call time:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java event represented as an atom with the full event constructor name (e.g.,
’java.awt.event.ActionListener’). (javart:java event/1)

Arg3 is a prolog predicate. Prolog term that represents the goal that must be in-
voked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The vari-
ables will be kept uninstantiated when the event raises and the predicate is called.
(javart:prolog goal/1)

PREDICATEjava remove listener/3:
Usage:

− Description: It removes a listener from an object event queue. Given a Java object
reference, goal registered for the given event is removed.

− Call and exit should be compatible with:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java event represented as an atom with the full event constructor name (e.g.,
’java.awt.event.ActionListener’). (javart:java event/1)

Arg3 is a prolog predicate. Prolog term that represents the goal that must be in-
voked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The vari-
ables will be kept uninstantiated when the event raises and the predicate is called.
(javart:prolog goal/1)

− The following properties should hold at call time:

Arg1 is a java object (a structure with functor ’$java object’, and argument an integer
given by the java side). (javart:java object/1)

Arg2 is a java event represented as an atom with the full event constructor name (e.g.,
’java.awt.event.ActionListener’). (javart:java event/1)

Arg3 is a prolog predicate. Prolog term that represents the goal that must be in-
voked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The vari-
ables will be kept uninstantiated when the event raises and the predicate is called.
(javart:prolog goal/1)

758 The Ciao System

Chapter 144: Java to Prolog interface 759

144 Java to Prolog interface

Author(s): Jesús Correas.

This module defines the Prolog side of the Java to Prolog interface. This side of the interface
only has one public predicate: a server that listens at the socket connection with Java, and
executes the commands received from the Java side.

In order to evaluate the goals received from the Java side, this module can work in two
ways: executing them in the same engine, or starting a thread for each goal. The easiest way
is to launch them in the same engine, but the goals must be evaluated sequentially: once a
goal provides the first solution, all the subsequent goals must be finished before this goal can
backtrack to provide another solution. The Prolog side of this interface works as a top-level,
and the goals partially evaluated are not independent.

The solution of this goal dependence is to evaluate the goals in a different prolog engine.
Although Ciao includes a mechanism to evaluate goals in different engines, the approach used
in this interface is to launch each goal in a different thread.

The decision of what kind of goal evaluation is selected is done by the Java side. Each
evaluation type has its own command terms, so the Java side can choose the type it needs.

A Prolog server starts by calling the prolog_server/0 predicate, or by calling prolog_
server/1 predicate and providing the port number as argument. The user predicates and
libraries to be called from Java must be included in the executable file, or be accesible using the
built-in predicates dealing with code loading.

144.1 Usage and interface (jtopl)
� �

• Library usage:

:- use_module(library(jtopl)).

• Exports:

− Predicates:

prolog_server/0, prolog_server/1, prolog_server/2, shell_s/0,
query_solutions/2, query_requests/2, running_queries/2.

• Other modules used:

− System library modules:

concurrency/concurrency, system, read, compiler/compiler, javall/javasock.

 	

144.2 Documentation on exports (jtopl)

PREDICATEprolog server/0:
Usage:

− Description: Prolog server entry point. Reads from the standard input the node name
and port number where the java client resides, and starts the prolog server listening
at the jp socket. This predicate acts as a server: it includes an endless read-process
loop until the prolog_halt command is received.

However, from the low-level communication point of view, this Prolog server actually
works as a client of the Java side. This means that Java side waits at the given port
to a Prolog server trying to create a socket; Prolog side connects to that port, and
then waits for Java requests (acting as a ’logical’ server). To use this Prolog server
as a real server waiting for connections at a given port, use prolog_server/1.

760 The Ciao System

PREDICATEprolog server/1:
Usage:

− Description: Waits for incoming Java connections to act as a Prolog goal server for
Java requests.This is the only prolog_server/* predicate that works as a true server:
given a port number, waits for a connection from Java and then serves Java requests.
When a termination request is received, finishes the connection to Java and waits
next Java connection request. This behaviour is different with respect to previous
versions of this library. To work as before, use prolog_server/2.

Although it currently does not support simultaneous Java connections, some work is
being done in that direction.

− Call and exit should be compatible with:

Arg1 is an atom. (basic props:atm/1)

PREDICATEprolog server/2:
Usage:

− Description: Prolog server entry point. Given a network node and a port number,
starts the prolog server trying to connect to Java side at that node:port address, and
then waits for Java requests. This predicate acts as a server: it includes an endless
read-process loop until the prolog_halt command is received.

However, from the low-level communication point of view, this Prolog server actually
works as a client of the Java side. This means that Java side waits at the given port
to a Prolog server trying to create a socket; Prolog side connects to that port, and
then waits for Java requests (acting as a ’logical’ server). To use this Prolog server
as a real server waiting for connections at a given port, use prolog_server/1.

− Call and exit should be compatible with:

Arg1 is an atom. (basic props:atm/1)

Arg2 is an atom. (basic props:atm/1)

PREDICATEshell s/0:
Usage:

− Description: Command execution loop. This predicate is called when the connec-
tion to Java is established, and performs an endless loop processing the commands
received. This predicate is only intended to be used by the Prolog to Java interface
and it should not be used by a user program.

PREDICATEquery solutions/2:
No further documentation available for this predicate.

The predicate is of type concurrent.

PREDICATEquery requests/2:
No further documentation available for this predicate.

The predicate is of type concurrent.

Chapter 144: Java to Prolog interface 761

PREDICATErunning queries/2:
No further documentation available for this predicate.

The predicate is of type concurrent.

762 The Ciao System

Chapter 145: Low-level Prolog to Java socket connection 763

145 Low-level Prolog to Java socket connection

Author(s): Jesús Correas.

This module defines a low-level socket interface, to be used by javart and jtopl. Includes all
the code related directly to the handling of sockets. This library should not be used by any user
program, because is a very low-level connection to Java. Use javart (Prolog to Java interface)
or jtopl (Java to Prolog interface) libraries instead.

145.1 Usage and interface (javasock)
� �

• Library usage:

:- use_module(library(javasock)).

• Exports:

− Predicates:

bind_socket_interface/1, start_socket_interface/2, stop_
socket_interface/0, join_socket_interface/0, java_query/2, java_response/2,
prolog_query/2, prolog_response/2, is_connected_to_java/0, java_debug/1,
java_debug_redo/1, start_threads/0.

• Other modules used:

− System library modules:

fastrw, sockets/sockets, format, concurrency/concurrency, javall/jtopl,
sockets/sockets_io.

 	

145.2 Documentation on exports (javasock)

PREDICATEbind socket interface/1:
Usage: bind_socket_interface(Port)

− Description: Given an port number, waits for a connection request from the Java
side, creates the sockets to connect to the java process, and starts the threads needed
to handle the connection.

− Call and exit should be compatible with:

Port is an integer. (basic props:int/1)

− The following properties should hold at call time:

Port is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEstart socket interface/2:
Usage: start_socket_interface(Address,Stream)

− Description: Given an address in format ’node:port’, creates the sockets to connect
to the java process, and starts the threads needed to handle the connection.

− Call and exit should be compatible with:

Address is any term. (basic props:term/1)

Stream is an open stream. (streams basic:stream/1)

764 The Ciao System

− The following properties should hold at call time:

Address is currently a term which is not a free variable. (term typing:nonvar/1)

Stream is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEstop socket interface/0:
Usage:

− Description: Closes the sockets to disconnect from the java process, and waits until
the threads that handle the connection terminate.

PREDICATEjoin socket interface/0:
Usage:

− Description: Waits until the threads that handle the connection terminate.

PREDICATEjava query/2:
The predicate is of type concurrent.

Usage: java_query(ThreadId,Query)

− Description: Data predicate containing the queries to be sent to Java. First argument
is the Prolog thread Id, and second argument is the query to send to Java.

− Call and exit should be compatible with:

ThreadId is an atom. (basic props:atm/1)

Query is any term. (basic props:term/1)

PREDICATEjava response/2:
The predicate is of type concurrent.

Usage: java_response(Id,Response)

− Description: Data predicate that stores the responses to requests received from Java.
First argument corresponds to the Prolog thread Id; second argument corresponds to
the response itself.

− Call and exit should be compatible with:

Id is an atom. (basic props:atm/1)

Response is any term. (basic props:term/1)

PREDICATEprolog query/2:
The predicate is of type concurrent.

Usage: prolog_query(Id,Query)

− Description: Data predicate that keeps a queue of the queries requested to Prolog
side from Java side.

− Call and exit should be compatible with:

Id is an integer. (basic props:int/1)

Query is any term. (basic props:term/1)

Chapter 145: Low-level Prolog to Java socket connection 765

PREDICATEprolog response/2:
The predicate is of type concurrent.

Usage: prolog_response(Id,Response)

− Description: Data predicate that keeps a queue of the responses to queries requested
to Prolog side from Java side.

− Call and exit should be compatible with:

Id is an integer. (basic props:int/1)

Response is any term. (basic props:term/1)

PREDICATEis connected to java/0:
Usage:

− Description: Checks if the connection to Java is established.

PREDICATEjava debug/1:
No further documentation available for this predicate.

PREDICATEjava debug redo/1:
No further documentation available for this predicate.

PREDICATEstart threads/0:
Usage:

− Description: Starts the threads that will handle the connection to Java. This pred-
icate is declared public for internal purposes, and it is not intended to be used by a
user program.

766 The Ciao System

Chapter 146: Calling emacs from Prolog 767

146 Calling emacs from Prolog

Author(s): The CLIP Group.

This library provides a prolog-emacs interface. This interface is complementary to (and
independent from) the emacs mode, which is used to develop programs from within the emacs
editor/environment. Instead, this library allows calling emacs from a running Prolog program.
This facilitates the use of emacs as a “user interface” for a Prolog program. Emacs can be made
to:

• Visit a file, which can then be edited.

• Execute arbitrary emacs lisp code, sent from Prolog.

In order for this library to work correctly, the following is needed:

• You should be running the emacs editor on the same machine where the executable calling
this library is executing.

• This emacs should be running the emacs server. This can be done by including the following
line in your .emacs file:

;; Start a server that emacsclient can connect to.
(server-start)

Or typing M-x server-start within emacs.

This suffices for using emacs to edit files. For running arbitrary code the following also needs to
be added to the .emacs file:

(setq enable-local-eval t)
Allows executing lisp code without asking.

(setq enable-local-eval nil)
Does not allow executing lisp code without asking.

(setq enable-local-eval ’maybe)
Allows executing lisp code only if user agrees after asking (asks interactively for
every invocation).

Examples:

Assuming that a .pl file loads this library, then:

..., emacs_edit(’foo’), ...
Opens file foo for editing in emacs.

..., emacs_eval_nowait("(run-ciao-toplevel)"), ...
Starts execution of a Ciao top-level within emacs.

768 The Ciao System

146.1 Usage and interface (emacs)
� �

• Library usage:

:- use_module(library(emacs)).

• Exports:

− Predicates:

emacs_edit/1, emacs_edit_nowait/1, emacs_eval/1, emacs_eval_nowait/1.

− Regular Types:

elisp_string/1.

• Other modules used:

− System library modules:

terms_check, lists, terms, system.

 	

146.2 Documentation on exports (emacs)

PREDICATEemacs edit/1:
Usage:

− Description: Opens the given file for editing in emacs. Waits for editing to finish
before continuing.

− The following properties should hold at call time:

Arg1 is an atom which is the name of a file. (emacs:filename/1)

PREDICATEemacs edit nowait/1:
Usage:

− Description: Opens the given file for editing in emacs and continues without waiting
for editing to finish.

− The following properties should hold at call time:

Arg1 is an atom which is the name of a file. (emacs:filename/1)

PREDICATEemacs eval/1:
Usage:

− Description: Executes in emacs the lisp code given as argument. Waits for the
command to finish before continuing.

− The following properties should hold at call time:

Arg1 is a string containing emacs lisp code. (emacs:elisp string/1)

PREDICATEemacs eval nowait/1:
Usage:

− Description: Executes in emacs the lisp code given as argument and continues without
waiting for it to finish.

Chapter 146: Calling emacs from Prolog 769

− The following properties should hold at call time:

Arg1 is a string containing emacs lisp code. (emacs:elisp string/1)

REGTYPEelisp string/1:
Usage: elisp_string(L)

− Description: L is a string containing emacs lisp code.

770 The Ciao System

Chapter 147: linda (library) 771

147 linda (library)

This is a SICStus-like linda package. Note that this is essentially quite obsolete, and provided
mostly in case it is needed for compatibility, since Ciao now supports all Linda functionality
(and more) through the concurrent fact database.

147.1 Usage and interface (linda)
� �

• Library usage:

:- use_module(library(linda)).

• Exports:

− Predicates:

linda_client/1, close_client/0, in/1, in/2, in_noblock/1, out/1, rd/1, rd/2,
rd_noblock/1, rd_findall/3, linda_timeout/2, halt_server/0, open_client/2,
in_stream/2, out_stream/2.

• Other modules used:

− System library modules:

read, fastrw, sockets/sockets.

 	

147.2 Documentation on exports (linda)

PREDICATElinda client/1:
No further documentation available for this predicate.

PREDICATEclose client/0:
No further documentation available for this predicate.

PREDICATEin/1:
No further documentation available for this predicate.

PREDICATEin/2:
No further documentation available for this predicate.

PREDICATEin noblock/1:
No further documentation available for this predicate.

PREDICATEout/1:
No further documentation available for this predicate.

772 The Ciao System

PREDICATErd/1:
No further documentation available for this predicate.

PREDICATErd/2:
No further documentation available for this predicate.

PREDICATErd noblock/1:
No further documentation available for this predicate.

PREDICATErd findall/3:
No further documentation available for this predicate.

PREDICATElinda timeout/2:
No further documentation available for this predicate.

PREDICATEhalt server/0:
No further documentation available for this predicate.

PREDICATEopen client/2:
No further documentation available for this predicate.

PREDICATEin stream/2:
No further documentation available for this predicate.

PREDICATEout stream/2:
No further documentation available for this predicate.

PART IX - Abstract data types 773

PART IX - Abstract data types

� �

Author(s): The CLIP Group.

This part includes libraries which implement some generic data structures (abstract data
types) that are used frequently in programs or in the Ciao system itself.

 	

774 The Ciao System

Chapter 148: Extendable arrays with logarithmic access time 775

148 Extendable arrays with logarithmic access time

Author(s): Lena Flood.

This module implements extendable arrays with logarithmic access time. It has been adapted
from shared code written by David Warren and Fernando Pereira.

148.1 Usage and interface (arrays)
� �

• Library usage:

:- use_module(library(arrays)).

• Exports:

− Predicates:

new_array/1, is_array/1, aref/3, arefa/3, arefl/3, aset/4, array_to_list/2.

 	

148.2 Documentation on exports (arrays)

PREDICATEnew array/1:
Usage: new_array(Array)

− Description: returns an empty new array Array.

− The following properties should hold at call time:

Array is a free variable. (term typing:var/1)

PREDICATEis array/1:
Usage: is_array(Array)

− Description: Array actually is an array.

− The following properties should hold at call time:

Array is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEaref/3:
Usage: aref(Index,Array,Element)

− Description: unifies Element to Array[Index], or fails if Array[Index] has not been
set.

− The following properties should hold at call time:

Index is currently a term which is not a free variable. (term typing:nonvar/1)

Array is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEarefa/3:
Usage: arefa(Index,Array,Element)

− Description: is as aref/3, except that it unifies Element with a new array if
Array[Index] is undefined. This is useful for multidimensional arrays implemented
as arrays of arrays.

776 The Ciao System

− The following properties should hold at call time:

Index is currently a term which is not a free variable. (term typing:nonvar/1)

Array is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEarefl/3:
Usage: arefl(Index,Array,Element)

− Description: is as aref/3, except that Element appears as [] for undefined cells.
Thus, arefl(_,_,[]) always succeeds no matter what you give in the first or second
args.

− The following properties should hold at call time:

Index is currently a term which is not a free variable. (term typing:nonvar/1)

Array is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEaset/4:
Usage: aset(Index,Array,Element,NewArray)

− Description: unifies NewArray with the result of setting Array[Index] to Element.

− The following properties should hold at call time:

Index is currently a term which is not a free variable. (term typing:nonvar/1)

Array is currently a term which is not a free variable. (term typing:nonvar/1)

NewArray is a free variable. (term typing:var/1)

PREDICATEarray to list/2:
Usage: array_to_list(Array,List)

− Description: returns a List of pairs Index-Element of all the elements of Array that
have been set.

− The following properties should hold at call time:

Array is currently a term which is not a free variable. (term typing:nonvar/1)

List is a free variable. (term typing:var/1)

Chapter 149: Association between key and value 777

149 Association between key and value

Author(s): Pablo Chico, Manuel Carro.

This library implements a table. It takes its name from the classical "association lists".
It allows storing a set of values and a key for each value, such that the values can later be
accessed through these keys. These keys could not be ground terms, but they could not be
instanciated later (so, this implementation unify with ’==’ instead of ’=’). The implementation
uses a dynamically changing data structure for efficiency. When there are few elements the data
structure used is a list of pairs. When the number of elements stored goes beyond some number,
an AVL tree is used. There is a certain level of hysteresis so that no repeated data structure
conversions occur when the number of elements is close to the threshold.

149.1 Usage and interface (assoc)
� �

• Library usage:

:- use_module(library(assoc)).

• Exports:

− Predicates:

empty_assoc/1, assoc_to_list/2, is_assoc/1, min_assoc/3, max_assoc/3, gen_
assoc/3, get_assoc/3, get_assoc/5, get_next_assoc/4, get_prev_assoc/4, list_
to_assoc/2, ord_list_to_assoc/2, map_assoc/2, map_assoc/3, map/3, foldl/4,
put_assoc/4, put_assoc/5, add_assoc/4, update_assoc/5, del_assoc/4, del_min_
assoc/4, del_max_assoc/4.

• Other modules used:

− System library modules:

hiordlib, lists.

 	

149.2 Documentation on exports (assoc)

PREDICATEempty assoc/1:
Usage 1: empty_assoc(Assoc)

− Description: True if Assoc is an empty assoc_table.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

Usage 2: empty_assoc(Assoc)

− Description: Assoc is an empty assoc_table.

− The following properties should hold at call time:

Assoc is a free variable. (term typing:var/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEassoc to list/2:
Usage: assoc_to_list(Assoc,L)

778 The Ciao System

− Description: Transforms Assoc into L where each pair of L was a association in Assoc.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

L is a free variable. (term typing:var/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

L is a ordered list of elements of the form key-value. (assoc:ord pairs/1)

PREDICATEis assoc/1:
Usage: is_assoc(Assoc)

− Description: True if Assoc is an assoc_table.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEmin assoc/3:
Usage: min_assoc(Assoc,Key,Value)

− Description: Key and Value are key and value of the element with the smallest key
in Assoc.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

Key is a free variable. (term typing:var/1)

Value is a free variable. (term typing:var/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

K is a valid key in a assoc_table. (assoc:key/1)

Value is a valid value in a assoc_table. (assoc:value/1)

PREDICATEmax assoc/3:
Usage: max_assoc(Assoc,Key,Value)

− Description: Key and Value are the key and value of the element with the largest
key in Assoc.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

Key is a free variable. (term typing:var/1)

Value is a free variable. (term typing:var/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

Key is a valid key in a assoc_table. (assoc:key/1)

Value is a valid value in a assoc_table. (assoc:value/1)

PREDICATEgen assoc/3:
Usage 1: gen_assoc(K,Assoc,V)

Chapter 149: Association between key and value 779

− Description: Enumerate matching elements of Assoc in ascending order of their keys
via backtracking.

− The following properties should hold at call time:

K is a free variable. (term typing:var/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

V is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

Usage 2: gen_assoc(K,Assoc,V)

− Description: Enumerate matching elements of Assoc in ascending order of their keys
via backtracking whose value is V.

− The following properties should hold at call time:

K is a free variable. (term typing:var/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

V is currently a term which is not a free variable. (term typing:nonvar/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

PREDICATEget assoc/3:
Usage 1: get_assoc(K,Assoc,V)

− Description: True if V is the value associated to the key K in the assoc table Assoc.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

V is currently a term which is not a free variable. (term typing:nonvar/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

Usage 2: get_assoc(K,Assoc,V)

− Description: V is the value associated to the key K in the assoc table Assoc.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

V is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

780 The Ciao System

PREDICATEget assoc/5:
Usage: get_assoc(K,Assoc,Old,NewAssoc,New)

− Description: NewAssoc is an assoc_table identical to Assoc except that the value
associated with Key is New instead of Old.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

Old is a free variable. (term typing:var/1)

NewAssoc is a free variable. (term typing:var/1)

New is currently a term which is not a free variable. (term typing:nonvar/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

Old is a valid value in a assoc_table. (assoc:value/1)

NewAssoc is a associations beetwen keys and values. (assoc:assoc table/1)

New is a valid value in a assoc_table. (assoc:value/1)

PREDICATEget next assoc/4:
Usage: get_next_assoc(K,Assoc,NextK,NextV)

− Description: NextK and NextV are the next key and associated value after K in Assoc.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

NextK is a free variable. (term typing:var/1)

NextV is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

NextK is a valid key in a assoc_table. (assoc:key/1)

NextV is a valid value in a assoc_table. (assoc:value/1)

PREDICATEget prev assoc/4:
Usage: get_prev_assoc(K,Assoc,PrevK,PrevV)

− Description: PrevK and PrevV are the previous key and associated value after K in
Assoc.

− The following properties should hold at call time:

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

PrevK is a valid key in a assoc_table. (assoc:key/1)

PrevV is a valid value in a assoc_table. (assoc:value/1)

PREDICATElist to assoc/2:
Usage: list_to_assoc(L,Assoc)

Chapter 149: Association between key and value 781

− Description: Transforms L into Assoc where each pair of L will be a association in
Assoc.

− The following properties should hold at call time:

L is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is a free variable. (term typing:var/1)

L is a list of elements of the form key-value. (assoc:pairs/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEord list to assoc/2:
Usage: ord_list_to_assoc(L,Assoc)

− Description: Transforms L, a list of pairs (using the functor -/2) sorted by its first
element, into the table Assoc where each pair of L will become a association in Assoc.

− The following properties should hold at call time:

L is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is a free variable. (term typing:var/1)

L is a ordered list of elements of the form key-value. (assoc:ord pairs/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEmap assoc/2:
Meta-predicate with arguments: map_assoc((pred 1),?).

Usage: map_assoc(Pred,Assoc)

− Description: Assoc is an association tree, and for each Key, if Key is associated with
Value in Assoc, Pred(Value) is true.

− The following properties should hold at call time:

Pred is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEmap assoc/3:
Meta-predicate with arguments: map_assoc((pred 2),?,?).

Usage: map_assoc(Pred,Assoc,NewAssoc)

− Description: Assoc and NewAssoc are association trees of the same shape, and for each
Key, if Key is associated with Old in Assoc and with new in NewAssoc, Pred(Old,New)
is true.

− The following properties should hold at call time:

Pred is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

NewAssoc is a free variable. (term typing:var/1)

PREDICATEmap/3:
Meta-predicate with arguments: map(?,(pred 3),?).

Usage: map(Assoc1,Pred,Assoc2)

782 The Ciao System

− Description: Applies Pred with arity 3 to each value of the assoc table Assoc1 ob-
taining the new assoc table Assoc2 in which only the values can have changed.

− The following properties should hold at call time:

Assoc1 is currently a term which is not a free variable. (term typing:nonvar/1)

Pred is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc2 is a free variable. (term typing:var/1)

PREDICATEfoldl/4:
Meta-predicate with arguments: foldl(?,?,(pred 4),?).

Usage: foldl(Assoc,DS,Pred,NDS)

− Description: Applies Pred with arity 4 to each value of the assoc table Assoc. If
Pred is satisfied, it updates the data-structure DS. Otherwise it fails.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

DS is currently a term which is not a free variable. (term typing:nonvar/1)

Pred is currently a term which is not a free variable. (term typing:nonvar/1)

NDS is a free variable. (term typing:var/1)

PREDICATEput assoc/4:
Usage: put_assoc(K,Assoc,V,NewAssoc)

− Description: The value V is inserted in Assoc associated to the key K and the result
is NewAssoc. This can be used to insert and change associations.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

V is currently a term which is not a free variable. (term typing:nonvar/1)

NewAssoc is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

NewAssoc is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEput assoc/5:
Usage: put_assoc(K,Assoc1,V,Assoc2,Member)

− Description: The value V is inserted in Assoc1 associated to the key K and the result
is Assoc2. If the key K doesn’t belong to the Assoc1 then Member is unified with no.
Otherwise, Assoc2 is the result of substituting the association K-OldValue by K-V and
Member is unified with yes(OldValue).

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc1 is currently a term which is not a free variable. (term typing:nonvar/1)

V is currently a term which is not a free variable. (term typing:nonvar/1)

Chapter 149: Association between key and value 783

Assoc2 is a free variable. (term typing:var/1)

Member is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc1 is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

Assoc2 is a associations beetwen keys and values. (assoc:assoc table/1)

Member is no or yes(value). (assoc:is member/1)

PREDICATEadd assoc/4:
Usage: add_assoc(K,Assoc1,V,Assoc2)

− Description: This is similar to put_value/5 but Key must not appear in Assoc1
(Member in put value/5 is known to be no). An error is thrown otherwise.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc1 is currently a term which is not a free variable. (term typing:nonvar/1)

V is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc2 is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc1 is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

Assoc2 is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEupdate assoc/5:
Usage: update_assoc(K,Assoc1,V,Assoc2,OldVar)

− Description: This is similar to put_assoc/5 but Key must not appear in Assoc1
(Member in put value/5 is known to be no). An error is thrown otherwise.

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc1 is currently a term which is not a free variable. (term typing:nonvar/1)

V is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc2 is a free variable. (term typing:var/1)

OldVar is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc1 is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

Assoc2 is a associations beetwen keys and values. (assoc:assoc table/1)

OldVar is a valid value in a assoc_table. (assoc:value/1)

PREDICATEdel assoc/4:
Usage: del_assoc(K,Assoc1,V,Assoc2)

784 The Ciao System

− Description: Delete in Assoc1 the key K to give Assoc2. If the key K does not belong
to the Assoc1 then Member is unified with no and Assoc1 and Assoc2 are unified.
Otherwise Assoc2 is the result of deleting the key K and its associated Value, and
Member is unified with yes(Value).

− The following properties should hold at call time:

K is currently a term which is not a free variable. (term typing:nonvar/1)

Assoc1 is currently a term which is not a free variable. (term typing:nonvar/1)

V is a free variable. (term typing:var/1)

Assoc2 is a free variable. (term typing:var/1)

K is a valid key in a assoc_table. (assoc:key/1)

Assoc1 is a associations beetwen keys and values. (assoc:assoc table/1)

V is a valid value in a assoc_table. (assoc:value/1)

Assoc2 is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEdel min assoc/4:
Usage: del_min_assoc(Assoc,K,V,NewAssoc)

− Description: Assoc and NewAssoc define the same finite function except that Assoc
associates K with V and NewAssoc doesn’t associate K with any value and K precedes
all other keys in Assoc.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

K is a free variable. (term typing:var/1)

V is a free variable. (term typing:var/1)

NewAssoc is a free variable. (term typing:var/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

K is a valid key in a assoc_table. (assoc:key/1)

V is a valid value in a assoc_table. (assoc:value/1)

NewAssoc is a associations beetwen keys and values. (assoc:assoc table/1)

PREDICATEdel max assoc/4:
Usage: del_max_assoc(Assoc,K,V,NewAssoc)

− Description: Assoc and NewAssoc define the same finite function except that Assoc
associates K with V and NewAssoc doesn’t associate K with any value and K is preceded
by all other keys in Assoc.

− The following properties should hold at call time:

Assoc is currently a term which is not a free variable. (term typing:nonvar/1)

K is a free variable. (term typing:var/1)

V is a free variable. (term typing:var/1)

NewAssoc is a free variable. (term typing:var/1)

Assoc is a associations beetwen keys and values. (assoc:assoc table/1)

K is a valid key in a assoc_table. (assoc:key/1)

V is a valid value in a assoc_table. (assoc:value/1)

NewAssoc is a associations beetwen keys and values. (assoc:assoc table/1)

Chapter 150: counters (library) 785

150 counters (library)

150.1 Usage and interface (counters)
� �

• Library usage:

:- use_module(library(counters)).

• Exports:

− Predicates:

setcounter/2, getcounter/2, inccounter/2.

 	

150.2 Documentation on exports (counters)

PREDICATEsetcounter/2:
No further documentation available for this predicate.

PREDICATEgetcounter/2:
No further documentation available for this predicate.

PREDICATEinccounter/2:
No further documentation available for this predicate.

786 The Ciao System

Chapter 151: Identity lists 787

151 Identity lists

Author(s): Francisco Bueno.

The operations in this module handle lists by performing equality checks via identity instead
of unification.

151.1 Usage and interface (idlists)
� �

• Library usage:

:- use_module(library(idlists)).

• Exports:

− Predicates:

member_0/2, memberchk/2, list_insert/2, add_after/4, add_before/4, delete/3,
subtract/3, union_idlists/3.

 	

151.2 Documentation on exports (idlists)

PREDICATEmember 0/2:
member_0(X,Xs)

True iff memberchk/2 is true.

PREDICATEmemberchk/2:
memberchk(X,Xs)

Checks that X is an element of (list) Xs.

PREDICATElist insert/2:
Usage: list_insert(List,Term)

− Description: Adds Term to the end of (tail-opened) List if there is not an element in
List identical to Term.

− The following properties should hold at call time:

List is a free variable. (term typing:var/1)

Term is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEadd after/4:
Usage: add_after(L0,E0,E,L)

− Description: Adds element E after the first element identical to E0 (or at end) of list
L0, returning in L the new list.

− The following properties should hold at call time:

L0 is currently a term which is not a free variable. (term typing:nonvar/1)

E0 is currently a term which is not a free variable. (term typing:nonvar/1)

E is currently a term which is not a free variable. (term typing:nonvar/1)

L is a free variable. (term typing:var/1)

788 The Ciao System

PREDICATEadd before/4:
Usage: add_before(L0,E0,E,L)

− Description: Adds element E before the first element identical to E0 (or at start) of
list L0, returning in L the new list.

− The following properties should hold at call time:

L0 is currently a term which is not a free variable. (term typing:nonvar/1)

E0 is currently a term which is not a free variable. (term typing:nonvar/1)

E is currently a term which is not a free variable. (term typing:nonvar/1)

L is a free variable. (term typing:var/1)

PREDICATEdelete/3:
Usage: delete(List,Element,Rest)

− Description: Rest has the same elements of List except for all the occurrences of
elements identical to Element.

− The following properties should hold at call time:

List is currently a term which is not a free variable. (term typing:nonvar/1)

Element is currently a term which is not a free variable. (term typing:nonvar/1)

Rest is a free variable. (term typing:var/1)

PREDICATEsubtract/3:
Usage: subtract(Set,Set0,Difference)

− Description: Difference has the same elements of Set except those which have an
identical occurrence in Set0.

− The following properties should hold at call time:

Set is currently a term which is not a free variable. (term typing:nonvar/1)

Set0 is currently a term which is not a free variable. (term typing:nonvar/1)

Difference is a free variable. (term typing:var/1)

PREDICATEunion idlists/3:
Usage: union_idlists(List1,List2,List)

− Description: List has the elements which are in List1 but are not identical to an
element in List2 followed by the elements in List2.

− The following properties should hold at call time:

List1 is currently a term which is not a free variable. (term typing:nonvar/1)

List2 is currently a term which is not a free variable. (term typing:nonvar/1)

List is a free variable. (term typing:var/1)

Chapter 152: Lists of numbers 789

152 Lists of numbers

Author(s): The CLIP Group.

This module implements some kinds of lists of numbers.

152.1 Usage and interface (numlists)
� �

• Library usage:

:- use_module(library(numlists)).

• Exports:

− Predicates:

get_primes/2, sum_list/2, sum_list/3, sum_list_of_lists/2, sum_list_of_
lists/3.

− Regular Types:

intlist/1, numlist/1.

• Other modules used:

− System library modules:

lists.

 	

152.2 Documentation on exports (numlists)

PREDICATEget primes/2:
Usage: get_primes(N,Primes)

− Description: Computes the Nth first prime numbers in ascending order.

− The following properties should hold at call time:

N is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Primes is a list of integers. (numlists:intlist/1)

REGTYPEintlist/1:
Usage: intlist(X)

− Description: X is a list of integers.

REGTYPEnumlist/1:
Usage: numlist(X)

− Description: X is a list of numbers.

PREDICATEsum list/2:
Usage: sum_list(List,N)

− Description: N is the total sum of the elements of List.

790 The Ciao System

− The following properties should hold at call time:

List is a list of numbers. (numlists:numlist/1)

− The following properties should hold upon exit:

N is a number. (basic props:num/1)

PREDICATEsum list/3:
Usage: sum_list(List,N0,N)

− Description: N is the total sum of the elements of List plus N0.

− The following properties should hold at call time:

List is a list of numbers. (numlists:numlist/1)

N0 is a number. (basic props:num/1)

− The following properties should hold upon exit:

N is a number. (basic props:num/1)

PREDICATEsum list of lists/2:
Usage: sum_list_of_lists(Lists,N)

− Description: N is the total sum of the elements of the lists of Lists.

− The following properties should hold at call time:

List is a list of numlists. (basic props:list/2)

− The following properties should hold upon exit:

N is a number. (basic props:num/1)

PREDICATEsum list of lists/3:
Usage: sum_list_of_lists(Lists,N0,N)

− Description: N is the total sum of the elements of the lists of Lists plus N0.

− The following properties should hold at call time:

List is a list of numlists. (basic props:list/2)

N0 is a number. (basic props:num/1)

− The following properties should hold upon exit:

N is a number. (basic props:num/1)

Chapter 153: Pattern (regular expression) matching -deprecated version 791

153 Pattern (regular expression) matching -
deprecated version

Author(s): The CLIP Group.

(Deprecated - please use the new "regexp" package instead.)

This library provides facilities for matching strings and terms against patterns (i.e., regular
expressions).

153.1 Usage and interface (patterns)
� �

• Library usage:

:- use_module(library(patterns)).

• Exports:

− Predicates:

match_pattern/2, match_pattern/3, case_insensitive_match/2, letter_match/2,
match_pattern_pred/2.

− Regular Types:

pattern/1.

• Other modules used:

− System library modules:

lists.

 	

153.2 Documentation on exports (patterns)

PREDICATEmatch pattern/2:
Usage: match_pattern(Pattern,String)

− Description: Matches String against Pattern. For example, match_
pattern("*.pl","foo.pl") succeeds.

− The following properties should hold at call time:

Pattern is a pattern to match against. (patterns:pattern/1)

String is a string (a list of character codes). (basic props:string/1)

PREDICATEmatch pattern/3:
Usage: match_pattern(Pattern,String,Tail)

− Description: Matches String against Pattern. Tail is the remainder of the string
after the match. For example, match_pattern("??*","foo.pl",Tail) succeeds,
instantiating Tail to "o.pl".

− The following properties should hold at call time:

Pattern is a pattern to match against. (patterns:pattern/1)

String is a string (a list of character codes). (basic props:string/1)

Tail is a string (a list of character codes). (basic props:string/1)

792 The Ciao System

PREDICATEcase insensitive match/2:
Usage: case_insensitive_match(Pred1,Pred2)

− Description: Tests if two predicates Pred1 and Pred2 match in a case-insensitive way.

PREDICATEletter match/2:
Usage: letter_match(X,Y)

− Description: True iff X and Y represents the same letter

REGTYPEpattern/1:
Special characters for Pattern are:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated
by a minus sign denotes a range; any character lexically between those two
characters, inclusive, is matched. If the first character following the [is a
^ then any character not enclosed is matched. No other character is special
inside this construct. To include a] in a character set, you must make it the
first character. To include a ‘-’, you must use it in a context where it cannot
possibly indicate a range: that is, as the first character, or immediately after
a range.

| Specifies an alternative. Two patterns A and B with | in between form an
expression that matches anything that either A or B will match.

{...} Groups alternatives inside larger patterns.

\ Quotes a special character (including itself).

Usage: pattern(P)

− Description: P is a pattern to match against.

PREDICATEmatch pattern pred/2:
Usage: match_pattern_pred(Pred1,Pred2)

− Description: Tests if two predicates Pred1 and Pred2match using regular expressions.

Chapter 154: Graphs 793

154 Graphs

Author(s): Francisco Bueno.

This module implements utilities for work with graphs

154.1 Usage and interface (graphs)
� �

• Library usage:

:- use_module(library(graphs)).

• Exports:

− Predicates:

dgraph_to_ugraph/2, dlgraph_to_lgraph/2, edges_to_ugraph/2, edges_to_
lgraph/2.

− Regular Types:

dgraph/1, dlgraph/1.

• Other modules used:

− System library modules:

sort, graphs/ugraphs, graphs/lgraphs.

 	

154.2 Documentation on exports (graphs)

REGTYPEdgraph/1:
dgraph(Graph)

A directed graph is a term graph(V,E) where V is a list of vertices and E is a list of
edges (none necessarily sorted). Edges are pairs of vertices which are directed, i.e., (a,b)
represents a->b. Two vertices a and b are equal only if a==b.

Usage: dgraph(Graph)

− Description: Graph is a directed graph.

REGTYPEdlgraph/1:
dlgraph(Graph)

A labeled directed graph is a directed graph where edges are triples of the form (a,l,b)
where l is the label of the edge (a,b).

Usage: dlgraph(Graph)

− Description: Graph is a directed labeled graph.

PREDICATEdgraph to ugraph/2:
Usage: dgraph_to_ugraph(Graph,UGraph)

− Description: Converts Graph to UGraph.

794 The Ciao System

− The following properties should hold at call time:

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

UGraph is a free variable. (term typing:var/1)

Graph is a directed graph. (graphs:dgraph/1)

UGraph is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Graph is a directed graph. (graphs:dgraph/1)

UGraph is an ugraph. (ugraphs:ugraph/1)

PREDICATEdlgraph to lgraph/2:
Usage: dlgraph_to_lgraph(Graph,LGraph)

− Description: Converts Edges to LGraph.

− The following properties should hold at call time:

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

LGraph is a free variable. (term typing:var/1)

Graph is a directed labeled graph. (graphs:dlgraph/1)

LGraph is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Graph is a directed labeled graph. (graphs:dlgraph/1)

LGraph is a labeled graph of term terms. (lgraphs:lgraph/2)

PREDICATEedges to ugraph/2:
Usage: edges_to_ugraph(Edges,UGraph)

− Description: Converts Graph to UGraph.

− The following properties should hold at call time:

Edges is currently a term which is not a free variable. (term typing:nonvar/1)

UGraph is a free variable. (term typing:var/1)

Edges is a list of pairs. (basic props:list/2)

UGraph is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Edges is a list of pairs. (basic props:list/2)

UGraph is an ugraph. (ugraphs:ugraph/1)

PREDICATEedges to lgraph/2:
Usage: edges_to_lgraph(Edges,LGraph)

− Description: Converts Edges to LGraph.

− The following properties should hold at call time:

Edges is currently a term which is not a free variable. (term typing:nonvar/1)

LGraph is a free variable. (term typing:var/1)

Edges is a list of triples. (basic props:list/2)

LGraph is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Edges is a list of triples. (basic props:list/2)

LGraph is a labeled graph of term terms. (lgraphs:lgraph/2)

Chapter 154: Graphs 795

154.3 Documentation on internals (graphs)

REGTYPEpair/1:
Usage: pair(P)

− Description: P is a pair (_,_).

REGTYPEtriple/1:
Usage: triple(P)

− Description: P is a triple (_,_,_).

796 The Ciao System

Chapter 155: Unweighted graph-processing utilities 797

155 Unweighted graph-processing utilities

Author(s): Richard A. O’Keefe (original shared code), Mats Carlsson (adapted from original
code), Francisco Bueno (modifications), Manuel Carro (modifications).

An unweighted directed graph (ugraph) is represented as a list of (vertex-neighbors) pairs,
where the pairs are in standard order (as produced by keysort with unique keys) and the neigh-
bors of each vertex are also in standard order (as produced by sort), and every neighbor appears
as a vertex even if it has no neighbors itself.

An undirected graph is represented as a directed graph where for each edge (U,V) there is a
symmetric edge (V,U).

An edge (U,V) is represented as the term U-V.

A vertex can be any term. Two vertices are distinct iff they are not identical (==/2).

A path is represented as a list of vertices. No vertex can appear twice in a path.

155.1 Usage and interface (ugraphs)
� �

• Library usage:

:- use_module(library(ugraphs)).

• Exports:

− Predicates:

vertices_edges_to_ugraph/3, neighbors/3, edges/2, del_edges/3, add_edges/3,
vertices/2, del_vertices/3, add_vertices/3, transpose/2, rooted_subgraph/3,
point_to/3.

− Regular Types:

ugraph/1.

• Other modules used:

− System library modules:

sets, sort.

 	

155.2 Documentation on exports (ugraphs)

PREDICATEvertices edges to ugraph/3:
No further documentation available for this predicate.

PREDICATEneighbors/3:
Usage: neighbors(Vertex,Graph,Neighbors)

− Description: Is true if Vertex is a vertex in Graph and Neighbors are its neighbors.

− The following properties should hold at call time:

Vertex is currently a term which is not a free variable. (term typing:nonvar/1)

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

Neighbors is a free variable. (term typing:var/1)

798 The Ciao System

PREDICATEedges/2:
Usage: edges(Graph,Edges)

− Description: Unifies Edges with the edges in Graph.

− The following properties should hold at call time:

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

Edges is a free variable. (term typing:var/1)

PREDICATEdel edges/3:
Usage: del_edges(Graph1,Edges,Graph2)

− Description: Is true if Graph2 is Graph1 with Edges removed from it.

− The following properties should hold at call time:

Graph1 is currently a term which is not a free variable. (term typing:nonvar/1)

Edges is currently a term which is not a free variable. (term typing:nonvar/1)

Graph2 is a free variable. (term typing:var/1)

PREDICATEadd edges/3:
Usage: add_edges(Graph1,Edges,Graph2)

− Description: Is true if Graph2 is Graph1 with Edges and their ’to’ and ’from’ vertices
added to it.

− The following properties should hold at call time:

Graph1 is currently a term which is not a free variable. (term typing:nonvar/1)

Edges is currently a term which is not a free variable. (term typing:nonvar/1)

Graph2 is a free variable. (term typing:var/1)

PREDICATEvertices/2:
Usage: vertices(Graph,Vertices)

− Description: Unifies Vertices with the vertices in Graph.

− The following properties should hold at call time:

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

Vertices is a free variable. (term typing:var/1)

PREDICATEdel vertices/3:
Usage: del_vertices(Graph1,Vertices,Graph2)

− Description: Is true if Graph2 is Graph1 with Vertices and all edges to and from
Vertices removed from it.

− The following properties should hold at call time:

Graph1 is currently a term which is not a free variable. (term typing:nonvar/1)

Vertices is currently a term which is not a free variable. (term typing:nonvar/1)

Graph2 is a free variable. (term typing:var/1)

Chapter 155: Unweighted graph-processing utilities 799

PREDICATEadd vertices/3:
Usage: add_vertices(Graph1,Vertices,Graph2)

− Description: Is true if Graph2 is Graph1 with Vertices added to it.

− The following properties should hold at call time:

Graph1 is currently a term which is not a free variable. (term typing:nonvar/1)

Vertices is currently a term which is not a free variable. (term typing:nonvar/1)

Graph2 is a free variable. (term typing:var/1)

PREDICATEtranspose/2:
Usage: transpose(Graph,Transpose)

− Description: Is true if Transpose is the graph computed by replacing each edge (u,v)
in Graph by its symmetric edge (v,u). It can only be used one way around. The cost
is O(N^2).

− The following properties should hold at call time:

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

Transpose is a free variable. (term typing:var/1)

PREDICATErooted subgraph/3:
Usage: rooted_subgraph(Graph,Sources,SubGraph)

− Description: SubGraph is the subgraph of Graph which is reachable from Sources.

− The following properties should hold at call time:

Graph is an ugraph. (ugraphs:ugraph/1)

Sources is a list. (basic props:list/1)

SubGraph is a free variable. (term typing:var/1)

− The following properties hold upon exit:

SubGraph is an ugraph. (ugraphs:ugraph/1)

PREDICATEpoint to/3:
Usage: point_to(Vertex,Graph,Point_to)

− Description: Is true if Point_to is the list of nodes which go directly to Vertex in
Graph.

− The following properties should hold at call time:

Vertex is currently a term which is not a free variable. (term typing:nonvar/1)

Graph is currently a term which is not a free variable. (term typing:nonvar/1)

Point_to is a free variable. (term typing:var/1)

REGTYPEugraph/1:
Usage: ugraph(Graph)

− Description: Graph is an ugraph.

800 The Ciao System

Chapter 156: wgraphs (library) 801

156 wgraphs (library)

156.1 Usage and interface (wgraphs)
� �

• Library usage:

:- use_module(library(wgraphs)).

• Exports:

− Predicates:

vertices_edges_to_wgraph/3.

• Other modules used:

− System library modules:

sets, sort.

 	

156.2 Documentation on exports (wgraphs)

PREDICATEvertices edges to wgraph/3:
No further documentation available for this predicate.

802 The Ciao System

Chapter 157: Labeled graph-processing utilities 803

157 Labeled graph-processing utilities

Author(s): Francisco Bueno.

See the comments for the ugraphs library.

157.1 Usage and interface (lgraphs)
� �

• Library usage:

:- use_module(library(lgraphs)).

• Exports:

− Predicates:

vertices_edges_to_lgraph/3.

− Regular Types:

lgraph/2.

• Other modules used:

− System library modules:

sort, sets.

 	

157.2 Documentation on exports (lgraphs)

REGTYPElgraph/2:
Usage: lgraph(Graph,Type)

− Description: Graph is a labeled graph of Type terms.

PREDICATEvertices edges to lgraph/3:
vertices_edges_to_lgraph(Vertices0,Edges,Graph)

This one is a copy of the same procedure in library(wgraphs) except for the definition of
min/3 (ah! - the polimorphism!).

It would only be needed if there are multi-edges, i.e., several edges between the same two
vertices.

804 The Ciao System

Chapter 158: queues (library) 805

158 queues (library)

158.1 Usage and interface (queues)
� �

• Library usage:

:- use_module(library(queues)).

• Exports:

− Predicates:

q_empty/1, q_insert/3, q_member/2, q_delete/3.

 	

158.2 Documentation on exports (queues)

PREDICATEq empty/1:
No further documentation available for this predicate.

PREDICATEq insert/3:
No further documentation available for this predicate.

PREDICATEq member/2:
No further documentation available for this predicate.

PREDICATEq delete/3:
No further documentation available for this predicate.

806 The Ciao System

Chapter 159: Random numbers 807

159 Random numbers

Author(s): Daniel Cabeza.

This module provides predicates for generating pseudo-random numbers

159.1 Usage and interface (random)
� �

• Library usage:

:- use_module(library(random)).

• Exports:

− Predicates:

random/1, random/3, srandom/1.

• Other modules used:

− System library modules:

foreign_interface/foreign_interface_properties.

 	

159.2 Documentation on exports (random)

PREDICATErandom/1:
random(Number)

Number is a (pseudo-) random number in the range [0.0,1.0]

Usage:

− The following properties should hold at call time:

Number is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Number is currently instantiated to a float. (term typing:float/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

PREDICATErandom/3:
random(Low,Up,Number)

Number is a (pseudo-) random number in the range [Low, Up]

Usage 1:

− Description: If Low and Up are integers, Number is an integer.

− The following properties should hold at call time:

Low is an integer. (basic props:int/1)

Up is an integer. (basic props:int/1)

Number is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Number is an integer. (basic props:int/1)

808 The Ciao System

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Usage 2:

− The following properties should hold at call time:

Low is a float. (basic props:flt/1)

Up is a number. (basic props:num/1)

Number is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Number is a float. (basic props:flt/1)

Usage 3:

− The following properties should hold at call time:

Low is an integer. (basic props:int/1)

Up is a float. (basic props:flt/1)

Number is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Number is a float. (basic props:flt/1)

PREDICATEsrandom/1:
srandom(Seed)

Changes the sequence of pseudo-random numbers according to Seed. The stating sequence
of numbers generated can be duplicated by calling the predicate with Seed unbound (the
sequence depends on the OS).

Usage:

− Calls should, and exit will be compatible with:

Seed is an integer. (basic props:int/1)

− The following properties hold upon exit:

Seed is an integer. (basic props:int/1)

− The following properties hold globally:

The Prolog predicate PrologName is implemented using the function ForeignName.
The same considerations as above example are to be applied. (for-
eign interface properties:foreign low/2)

Chapter 160: Set Operations 809

160 Set Operations

Author(s): Lena Flood.

This module implements set operations. Sets are just ordered lists.

160.1 Usage and interface (sets)
� �

• Library usage:

:- use_module(library(sets)).

• Exports:

− Predicates:

insert/3, ord_delete/3, ord_member/2, ord_test_member/3, ord_subtract/3,
ord_intersection/3, ord_intersection_diff/4, ord_intersect/2, ord_subset/2,
ord_subset_diff/3, ord_union/3, ord_union_diff/4, ord_union_symdiff/4, ord_
union_change/3, merge/3, ord_disjoint/2, setproduct/3.

• Other modules used:

− System library modules:

sort.

 	

160.2 Documentation on exports (sets)

PREDICATEinsert/3:
Usage: insert(Set1,Element,Set2)

− Description: It is true when Set2 is Set1 with Element inserted in it, preserving the
order.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Element is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is a free variable. (term typing:var/1)

PREDICATEord delete/3:
Usage: ord_delete(Set0,X,Set)

− Description: It succeeds if Set is Set0 without element X.

− The following properties should hold at call time:

Set0 is currently a term which is not a free variable. (term typing:nonvar/1)

X is currently a term which is not a free variable. (term typing:nonvar/1)

Set is a free variable. (term typing:var/1)

PREDICATEord member/2:
Usage: ord_member(X,Set)

− Description: It succeeds if X is member of Set.

810 The Ciao System

− The following properties should hold at call time:

X is currently a term which is not a free variable. (term typing:nonvar/1)

Set is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord test member/3:
Usage: ord_test_member(Set,X,Result)

− Description: If X is member of Set then Result=yes. Otherwise Result=no.

− The following properties should hold at call time:

Set is currently a term which is not a free variable. (term typing:nonvar/1)

X is currently a term which is not a free variable. (term typing:nonvar/1)

Result is a free variable. (term typing:var/1)

PREDICATEord subtract/3:
Usage: ord_subtract(Set1,Set2,Difference)

− Description: It is true when Difference contains all and only the elements of Set1
which are not also in Set2.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord intersection/3:
Usage: ord_intersection(Set1,Set2,Intersection)

− Description: It is true when Intersection is the ordered representation of Set1 and
Set2, provided that Set1 and Set2 are ordered lists.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord intersection diff/4:
Usage: ord_intersection_diff(Set1,Set2,Intersect,NotIntersect)

− Description: Intersect contains those elements which are both in Set1 and Set2,
and NotIntersect those which are in Set1 but not in Set2.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

Intersect is a free variable. (term typing:var/1)

NotIntersect is a free variable. (term typing:var/1)

Chapter 160: Set Operations 811

PREDICATEord intersect/2:
Usage: ord_intersect(Xs,Ys)

− Description: Succeeds when the two ordered lists have at least one element in com-
mon.

− The following properties should hold at call time:

Xs is currently a term which is not a free variable. (term typing:nonvar/1)

Ys is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord subset/2:
Usage: ord_subset(Xs,Ys)

− Description: Succeeds when every element of Xs appears in Ys.

− The following properties should hold at call time:

Xs is currently a term which is not a free variable. (term typing:nonvar/1)

Ys is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord subset diff/3:
Usage: ord_subset_diff(Set1,Set2,Difference)

− Description: It succeeds when every element of Set1 appears in Set2 and Difference
has the elements of Set2 which are not in Set1.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

Difference is a free variable. (term typing:var/1)

PREDICATEord union/3:
Usage: ord_union(Set1,Set2,Union)

− Description: It is true when Union is the union of Set1 and Set2. When some element
occurs in both sets, Union retains only one copy.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord union diff/4:
Usage: ord_union_diff(Set1,Set2,Union,Difference)

− Description: It succeeds when Union is the union of Set1 and Set2, and Difference
is Set2 set-minus Set1.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

Union is a free variable. (term typing:var/1)

Difference is a free variable. (term typing:var/1)

812 The Ciao System

PREDICATEord union symdiff/4:
Usage: ord_union_symdiff(Set1,Set2,Union,Diff)

− Description: It is true when Diff is the symmetric difference of Set1 and Set2, and
Union is the union of Set1 and Set2.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

Union is a free variable. (term typing:var/1)

Diff is a free variable. (term typing:var/1)

PREDICATEord union change/3:
Usage: ord_union_change(Set1,Set2,Union)

− Description: Union is the union of Set1 and Set2 and Union is different from Set2.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

Union is a free variable. (term typing:var/1)

PREDICATEmerge/3:
Usage: merge(Set1,Set2,Union)

− Description: See ord_union/3.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEord disjoint/2:
Usage: ord_disjoint(Set1,Set2)

− Description: Set1 and Set2 have no element in common.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEsetproduct/3:
Usage: setproduct(Set1,Set2,Product)

− Description: Product has all two element sets such that one element is in Set1
and the other in set2, except that if the same element belongs to both, then the
corresponding one element set is in Product.

− The following properties should hold at call time:

Set1 is currently a term which is not a free variable. (term typing:nonvar/1)

Set2 is currently a term which is not a free variable. (term typing:nonvar/1)

Product is a free variable. (term typing:var/1)

Chapter 161: Variable name dictionaries 813

161 Variable name dictionaries

Author(s): Francisco Bueno, Edison Mera.

161.1 Usage and interface (vndict)
� �

• Library usage:

:- use_module(library(vndict)).

• Exports:

− Predicates:

create_dict/2, create_pretty_dict/2, complete_dict/3, complete_vars_dict/3,
prune_dict/3, sort_dict/2, dict2varnamesl/2, varnamesl2dict/2, find_name/4,
prettyvars/2, rename/2, vars_names_dict/3.

− Regular Types:

null_dict/1, varnamedict/1.

• Other modules used:

− System library modules:

varnames/dict_types, idlists, terms_vars, sets, sort.

 	

161.2 Documentation on exports (vndict)

REGTYPEnull dict/1:
Usage: null_dict(D)

− Description: D is an empty dictionary.

PREDICATEcreate dict/2:
Usage: create_dict(Term,Dict)

− Description: Dict has names for all variables in Term.

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEcreate pretty dict/2:
Usage: create_pretty_dict(Term,Dict)

− Description: Dict has names for all variables in Term. The difference with create_
dict/2 is that prettier names are generated

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

814 The Ciao System

PREDICATEcomplete dict/3:
Usage: complete_dict(Dict,Term,NewDict)

− Description: NewDict is Dict augmented with the variables of Term not yet in Dict.

− The following properties should hold at call time:

Dict is currently a term which is not a free variable. (term typing:nonvar/1)

Term is currently a term which is not a free variable. (term typing:nonvar/1)

NewDict is a free variable. (term typing:var/1)

PREDICATEcomplete vars dict/3:
Usage: complete_vars_dict(Dict,Vars,NewDict)

− Description: NewDict is Dict augmented with the variables of the list Vars not yet
in Dict.

− The following properties should hold at call time:

Dict is currently a term which is not a free variable. (term typing:nonvar/1)

Vars is currently a term which is not a free variable. (term typing:nonvar/1)

NewDict is a free variable. (term typing:var/1)

PREDICATEprune dict/3:
Usage: prune_dict(Term,Dict,NewDict)

− Description: NewDict is Dict reduced to just the variables of Term.

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

Dict is currently a term which is not a free variable. (term typing:nonvar/1)

NewDict is a free variable. (term typing:var/1)

PREDICATEsort dict/2:
Usage: sort_dict(D,Dict)

− Description: D is sorted into Dict.

− The following properties should hold at call time:

D is a dictionary of variable names. (vndict:varnamedict/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEdict2varnamesl/2:
Usage: dict2varnamesl(Dict,VNs)

− Description: Translates Dict to VNs.

− The following properties should hold at call time:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

− The following properties should hold upon exit:

VNs is a list of Name=Var pairs, where Var is a variable and Name its name.
(dict types:varnamesl/1)

Chapter 161: Variable name dictionaries 815

PREDICATEvarnamesl2dict/2:
Usage: varnamesl2dict(VNs,Dict)

− Description: Translates VNs to Dict.

− The following properties should hold at call time:

VNs is a list of Name=Var pairs, where Var is a variable and Name its name.
(dict types:varnamesl/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEfind name/4:
find_name(Vars,Names,V,Name)

Given that vars_names_dict(Dict,Vars,Names) holds, it acts as rename(X,Dict), but
the name of X is given as Name instead of unified with it.

PREDICATEprettyvars/2:
Usage:

− Description: Give names to the variables in the term Term using the dictionary
Dict. Intended to replace prettyvars/1 in those places where is possible to get the
dictionary of variables.

− Call and exit should be compatible with:

Arg1 is any term. (basic props:term/1)

Arg2 is a list of Name=Var pairs, where Var is a variable and Name its name.
(dict types:varnamesl/1)

− The following properties should hold at call time:

Arg2 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATErename/2:
Usage: rename(Term,Dict)

− Description: Unifies each variable in Term with its name in Dict. If no name is found,
a new name is created.

− The following properties should hold at call time:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

REGTYPEvarnamedict/1:
Usage: varnamedict(D)

− Description: D is a dictionary of variable names.

PREDICATEvars names dict/3:
Usage: vars_names_dict(Dict,Vars,Names)

− Description: Varss is a sorted list of variables, and Names is a list of their names,
which correspond in the same order.

816 The Ciao System

− Call and exit should be compatible with:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

Vars is a list. (basic props:list/1)

Names is a list. (basic props:list/1)

PART X - Miscellaneous standalone utilities 817

PART X - Miscellaneous standalone utilities

� �

This is the documentation for a set of miscellaneous standalone utilities contained in the etc
directory of the Ciao distribution.

 	

818 The Ciao System

Chapter 162: A Program to Help Cleaning your Directories 819

162 A Program to Help Cleaning your Directories

Author(s): Manuel Carro.

A simple program for traversing a directory tree and deciding which files may be deleted in
order to save space and not to loose information.

162.1 Usage (cleandirs)

cleandirs [--silent] <initial_dir> <delete_options> <backup_options>
cleandirs explores <initial_dir> (which should be an absolute path)
and looks for backup files and files which can be generated from other
files, using a plausible heuristic aimed at retaining the same amount
of information while recovering some disk space. The heuristic is
based on the extension of the filename.

Delete options is one of:
--list: just list the files/directories which are amenable to be deleted,

but do not delete them. SAFE.
--ask: list the files/directories and ask for deletion. UNSAFE if you

make a mistake.
--delete: just delete the files/directories without asking. I envy your

brave soul if you choose this option.

Backup options is one of:
--includebackups: include backup files in the list of files to check.
--excludebackups: do not include backup files in the list of files

to check.
--onlybackups: include only backup files in the list of files to check.

Symbolic links are not traversed. Special files are not checked.

Invoking the program with no arguments will return an up-to-date information on the options.

162.2 Known bugs and planned improvements (cleandirs)

• Recursive removal of subdirectories relies on the existence of a recursive /bin/rm command
in your system.

820 The Ciao System

Chapter 163: Printing the declarations and code in a file 821

163 Printing the declarations and code in a file

Author(s): Manuel Hermenegildo.

A simple program for printing assertion information (predicate declarations, property dec-
larations, type declarations, etc.) and printing code-related information (imports, exports,
libraries used, etc.) on a file. The file should be a single Ciao or Prolog source file. It uses
the Ciao compiler’s pass one to do it. This program is specially useful for example for checking
what assertions the assertion normalizer is producing from the original assertions in the file or
to check what the compiler is actually seeing after some of the syntactic expansions (but before
goal translations).

163.1 Usage (fileinfo)

fileinfo -asr <filename.asr>
: pretty prints the contents of <filename.asr>

fileinfo [-v] [-m] <-a|-f|-c|-e> <filename> [libdir1] ... [libdirN]
-v : verbose output (e.g., lists all files read)
-m : restrict info to current module
-a : print assertions
-f : print code and interface (imports/exports, etc.)
-c : print code only
-e : print only errors - useful to check syntax of assertions in file

fileinfo -h
: print this information

Note that system lib paths *must* be given explicitly, e.g. :

fileinfo -m -c foo.pl \
/home/clip/System/ciao/lib \
/home/clip/System/ciao/library \

163.2 More detailed explanation of options (fileinfo)

• If the -a option is selected, fileinfo prints the assertions (only code-oriented assertions –
not comment-oriented assertions) in the file after normalization. If the -f option is selected
fileinfo prints the file interface, the declarations contained in the file, and the actual code.
The -c option prints only the code. If the -e option is selected fileinfo prints only any
sintactic and import-export errors found in the file, including the assertions.

• filename must be the name of a Prolog or Ciao source file.

• This filename can be followed by other arguments which will be taken to be library directory
paths in which to look for files used by the file being analyzed.

• If the -m option is selected, only the information related to the current module is printed.

• The -v option produces verbose output. This is very useful for debugging, since all the files
accessed during assertion normalization are listed.

• In the -asr usage, fileinfo can be used to print the contents of a .asr file in human-
readable form.

822 The Ciao System

Chapter 164: Printing the contents of a bytecode file 823

164 Printing the contents of a bytecode file

Author(s): Daniel Cabeza.

This simple program takes as an argument a bytecode (.po) file and prints out in symbolic
form the information contained in the file. It uses compiler and engine builtins to do so, so that
it keeps track with changes in bytecode format.

164.1 Usage (viewpo)

viewpo <file1>.po
: print .po contents in symbolic form

viewpo -h
: print this information

824 The Ciao System

Chapter 165: callgraph (library) 825

165 callgraph (library)

165.1 Usage and interface (callgraph)
� �

• Library usage:

:- use_module(library(callgraph)).

• Exports:

− Predicates:

call_graph/2, reachability/4.

• Other modules used:

− System library modules:

assertions/c_itf_props, sets, terms, graphs/ugraphs, xrefs/xrefsread.

 	

165.2 Documentation on exports (callgraph)

PREDICATEcall graph/2:
Usage: call_graph(File,Graph)

− Description: Graph is the call-graph of the code in File.

− The following properties should hold at call time:

File is an atom describing the name of a file. (c itf props:filename/1)

Graph is a free variable. (term typing:var/1)

− The following properties hold upon exit:

Graph is an ugraph. (ugraphs:ugraph/1)

PREDICATEreachability/4:
Usage: reachability(Graph,Sources,Reached,UnReached)

− Description: Reached are the vertices in Graph reachable from Sources, UnReached
are the rest.

− The following properties should hold at call time:

Graph is an ugraph. (ugraphs:ugraph/1)

Sources is a list. (basic props:list/1)

Reached is a free variable. (term typing:var/1)

UnReached is a free variable. (term typing:var/1)

826 The Ciao System

Chapter 166: Gathering the dependent files for a file 827

166 Gathering the dependent files for a file

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This simple program takes a single Ciao or Prolog source filename (which is typically the
main file of an application). It prints out the list of all the dependent files, i.e., all files needed
in order to build the application, including those which reside in libraries. This is particularly
useful in Makefiles, for building standalone distributions (e.g., .tar files) automatically.

The filename should be followed by other arguments which will be taken to be library directory
paths in which to look for files used by the file being analyzed.

166.1 Usage (get deps)

get_deps [-u <filename>] <filename> [lib_dir1] ... [lib_dirN]
: return dependent files for <filename>
found in [lib_dir1] ... [lib_dirN]

get_deps -h
: print this information

828 The Ciao System

Chapter 167: Finding differences between two Prolog files 829

167 Finding differences between two Prolog files

Author(s): Francisco Bueno.

This simple program works like the good old diff but for files that contain Prolog code. It
prints out the clauses that it finds are different in the files. Its use avoids textual differences
such as different variable names and different formatting of the code in the files.

167.1 Usage (pldiff)

pldiff <file1> <file2>
: find differences

pldiff -h
: print this information

but you can also use the program as a library and invoke the predicate:

pldiff(<filename> , <filename>)

167.2 Known bugs and planned improvements (pldiff)

• Currently uses variant/2 to compare clauses. This is useful, but there should be an option
to select the way clauses are compared, e.g., some form of equivalence defined by the user.

830 The Ciao System

Chapter 168: The Ciao lpmake scripting facility 831

168 The Ciao lpmake scripting facility

Author(s): Manuel Hermenegildo, The CLIP Group.

Note: lpmake and the make library are still under development, and they may change in
future releases.

lpmake is a Ciao application which uses the Ciao make library to implement a dependency-
driven scripts in a similar way to the Un*x make facility.

The original purpose of the Un*x make utility is to determine automatically which pieces of a
large program needed to be recompiled, and issue the commands to recompile them. In practice,
make is often used for many other purposes: it can be used to describe any task where some
files must be updated automatically from others whenever these change. lpmake can be used for
the same types of applications as make, and also for some new ones, and, while being simpler,
it offers a number of advantages over make. The first one is portability. When compiled to a
bytecode executable lpmake runs on any platform where a Ciao engine is available. Also, the
fact that typically many of the operations are programmed in Prolog within the makefile, not
needing external applications, improves portability further. The second advantage of lpmake
is improved programming capabilities. While lpmake is simpler than make, lpmake allows using
the Ciao Prolog language within the scripts. This allows establising more complex dependencies
and programming powerful operations within the make file, and without resorting to external
packages (e.g., operating system commands), which also helps portability. A final advantage of
lpmake is that it supports a form of autodocumentation: comments associated to targets can be
included in the configuration files. Calling lpmake in a directory which has such a configuration
file explains what commands the configuration file support and what these commands will do.

168.1 General operation

To prepare to use lpmake, and in a similar way to make, you must write a configuration
file: a module (typically called Makefile.pl) that describes the relationships among files in
your program or application, and states the commands for updating each file. In the case of
compiling a program, typically the executable file is obtained from object files, which are in turn
obtained by compiling source files. Another example is running latex and dvips on a set of
source .tex files to generate a document in dvi and postscript formats.

Once a suitable make file exists, each time you change some source files, simply typing
lpmake suffices to perform all necessary operations (recompilations, processing text files, etc.).
The lpmake program uses the dependency rules in the makefile and the last modification times
of the files to decide which of the files need to be updated. For each of those files, it issues the
commands recorded in the makefile. For example, in the latex/ dvips case one rule states that
the .dvi file whould be updated from the .tex files whenever one of them changes and another
rule states that the .ps file needs to be updated from a .dvi file every time it changes. The
rules also describe the commands to be issued to update the files.

So, the general process is as follows: lpmake executes commands in the configuration file to
update one or more target names, where name is often a program, but can also be a file to be
generated or even a “virtual” target. lpmake updates a target if it depends on prerequisite files
that have been modified since the target was last modified, or if the target does not exist. You
can provide command line arguments to lpmake to control which files should be regenerated, or
how.

168.2 Format of the Configuration File

lpmake uses as default configuration file the file Makefile.pl, if it is present in the current
directory. This can be overridden and another file used by means of the -m option. The configu-
ration file must be a module and this module must make use of the make package. This package

832 The Ciao System

provides syntax for defining the dependency rules and functionality for correctly interpreting
these rules.

The configuration file can contain such rules and also arbitrary Ciao Prolog predicates, and
can also import other Ciao modules, packages, or make file. This is useful to implement in-
herintance across diferent configuration files, i.e., the values declared in a configuration file can
be easily made to override those defined in another, using the standard Ciao rules for module
overriding, reexport, etc. The syntax of the rules is described in Chapter 92 [The Ciao Make
Package], page 481, together with some examples.

168.3 lpmake usage

Supported command line options:

lpmake [-v] [-d Name1=Value1] ... [-d Namen=Valuen] \
<command1> ... <commandn>

Process commands <command1> ... <commandn>, using file ’Makefile.pl’
or directory ’installer’ in the current directory as configuration
file. The configuration file must be a module.

The optional argument ’-v’ produces verbose output, reporting on the
processing of the dependency rules. Very useful for debugging
makefiles.

The argument ’-d’ indicates that a variable definition Name=Value
follows. The effect of this is adding the fact ’name_value(Name, Value).’
(i.e., ’name_value(Name) := Value.’), defined in the module
library(make(make_rt)).

lpmake [-v] [-d Name1=Value1] ... [-d Namen=Valuen] \
[[-m|-l] <.../Configfile1.pl>] [[-m|-l] <.../Configfilen.pl>] \

<command1> ... <commandn>

Same as above, but using files <.../Configfilex.pl> as configuration
file. One or more configuration files can be used. When using more
than one configuration file, the additional configuration files are
loaded dynamically into the first one with the predicate
register_config_file/1. Using -l instead of -m indicates that this
configuration file is a library module (i.e., it will be looked for
in the libraries).

lpmake -h [[-m|-l] <.../Configfile.pl>]
lpmake -help [[-m|-l] <.../Configfile.pl>]
lpmake --help [[-m|-l] <.../Configfile.pl>]

Print this help message. If a configuration file is available in the
current directory or is given as an option, and the commands in it
are commented, then information on these commands is also printed.

Chapter 168: The Ciao lpmake scripting facility 833

168.4 Acknowledgments (lpmake)

Some parts of the documentation are taken from the documentation of GNU’s gmake.

168.5 Known bugs and planned improvements (lpmake)

• Rename or add a default directory makedir/Makedir, instead of installer directory, as rec-
ommended by Manuel Herme. – EMM

834 The Ciao System

Chapter 169: Find out which architecture we are running on 835

169 Find out which architecture we are running on

Author(s): Manuel Carro, Robert Manchek.

The architecure and operating system the engine is compiled for determines whether we can
use or not certain libraries. This script, taken from a PVM distribution, uses a heuristic (which
may need to be tuned from time to time) to find out the platform. It returns a string which is
used throughout the engine (in #ifdefs) to enable/disable certain characteristics.

169.1 Usage (ciao get arch)

Usage: ciao_get_arch

169.2 More details (ciao get arch)

Look at the script itself...

836 The Ciao System

Chapter 170: Print out WAM code 837

170 Print out WAM code

Author(s): Manuel Carro.

This program prints to standard output a symbolic form of the Wam code the compiler
generates for a given source file.

170.1 Usage (compiler output)

Print WAM code for a .pl file

Usage: compiler_output <file.pl>

838 The Ciao System

Chapter 171: Compile Ciao in an arbitrary subdirectory 839

171 Compile Ciao in an arbitrary subdirectory

Author(s): Manuel Carro.

A simple bash script for compile the whole Ciao distribution, in order to test automatically
whether something is broken.

171.1 Usage (auto compile ciao)

Usage: auto_compile_ciao ciaodir_name destdir_name

171.2 More details (auto compile ciao)

The script copies the ciao distribution passed on as first argument to a subdirectory of the
directory name passed as second argument. The subdirectory is always the same, in order to
speed up tests made repeteadly in a distribution. It also deletes from the destination files which
do not appear any longer in the sources, and tries not to copy files which will eventually be
generated or deleted prior to compilation.

After that, the SETTINGS file is updated to reflect the new location, the sources are cleaned
up, and a regular compilation is started.

840 The Ciao System

Chapter 172: Gathering all modules in a directory 841

172 Gathering all modules in a directory

Author(s): Daniel Cabeza, Manuel Carro.

A simple bash script for collecting files which are modules, in order to compile automatically
the CIAO libraries.

172.1 Usage (collect modules)

Usage: collect_modules module_name

172.2 More details (collect modules)

Look at the Makefiles in lib and library

842 The Ciao System

PART XI - Contributed libraries 843

PART XI - Contributed libraries

� �

Author(s): The CLIP Group.

This part includes a number of libraries which have contributed by users of the Ciao system.
Over time, some of these libraries are moved to the main library directories of the system.

 	

844 The Ciao System

Chapter 173: Block Declarations 845

173 Block Declarations

Author(s): Rémy Haemmerlé.

Version: 0.1 (2008/25/5)

This package provides compatibility with SICStus’ block declarations

173.1 Usage and interface (block_doc)
� �

• Library usage:

:- use_package(block).

or

:- module(...,...,[block]).

• New operators defined:

block/1 [1150,fx].

• New declarations defined:

block/1.

 	

173.2 Documentation on new declarations (block_doc)

DECLARATIONblock/1:
Usage: :- block(BlockSpecs).

− Description: In this declaration BlockSpecs specifies a disjunction of conditions.
Each condition is of the form predname(C1, ..., CN) where each CI is either a ‘-’
if the call must suspend until the corresponding argument is bound, or anything else
otherwise.

− Convention: The recommended style is to write the block declarations in front of the
source code of the predicate they refer to. Indeed, they are part of the source code
of the predicate and must precede the first clause. Moreover it is suggested to use ‘?’
for specifying non conditioned arguments.

− Example : The following definition calls to merge/3 having uninstantiated arguments
in the first and third position or in the second and third position will suspend.

:- block merge(-,?,-), merge(?,-,-).

merge([], Y, Y).
merge(X, [], X).
merge([H|X], [E|Y], [H|Z]) :- H @< E, merge(X, [E|Y], Z).
merge([H|X], [E|Y], [E|Z]) :- H @>= E, merge([H|X], Y, Z).

− The following properties hold at call time:

BlockSpecs is a sequence or list of callables. (basic props:sequence or list/2)

846 The Ciao System

Chapter 174: A Chart Library 847

174 A Chart Library

Author(s): Isabel Mart́ın Garćıa.

This library is intended to eaose the task of displaying some graphical results. This library
allows the programmer to visualize different graphs and tables without knowing anything about
specific graphical packages.

You need to install the BLT package in your computer. BLT is an extension to the Tk
toolkit and it does not require any patching of the Tcl or Tk source files. You can find it in
http://www.tcltk.com/blt/index.html

Basically, when the user invokes a predicate, the library (internally) creates a bltwish in-
terpreter and passes the information through a socket to display the required widget. The
interpreter parses the received commands and executes them.

The predicates exported by this library can be classified in four main groups, according to
the types of representation they provide.

• bar charts

• line graphs

• scatter graphs

• tables

To represent graphs, the Cartesian coordinate system is used. I have tried to show simple
samples for every library exported predicate in order to indicate how to call them.

174.1 Bar charts

In this section we shall introduce the general issues about the set of barchart predicates.
By calling the predicates that pertain to this group a bar chart for plotting two-dimensional
data (X-Y coordinates) can be created. A bar chart is a graphic means of comparing numbers
by displaying bars of lengths proportional to the y-coordinates they represented. The barchart
widget has many configurable options such as title, header text, legend and so on. You can
configure the appearance of the bars as well. The bar chart widget has the following components:

Header text
The text displayed at the top of the window. If it is ’’ no text will be displayed.

Save button
The button placed below the header text. Pops up a dialog box for the user to select
a file to save the graphic in PostScript format.1

Bar chart title
The title of the graph. It is displayed at the top of the bar chart graph. If text is
’’ no title will be displayed.

X axis title
X axis title. If text is ’’ no x axis title will be displayed.

Y axis title
Y axis title. If text is ’’ no y axis title will be displayed.

X axis X coordinate axis. The x axis is drawn at the bottom margin of the bar chart graph.
The x axis consists of the axis line, ticks and tick labels. Tick labels can be numbers
or plain text. If the labels are numbers, they could be displayed at uniform intervals
(the numbers are treated as normal text) or depending on its x-coodinate value.
You can also set limits (maximum and minimum) for the x axis, but only if the tick
labels are numeric.

1 Limitation: Some printers can have problems if the PostScript file is too complex (i.e. too
many points/lines appear in the picture).

848 The Ciao System

Y axis Y coordinate axis. You can set limits (maximum and minimum) for the y axis. The
y axis is drawn at the right margin of the bar chart graph.The y axis consists of the
axis line, ticks and tick labels. The tick labels are numeric values determined from
the data and are drawn at uniform intervals.

Bar chart graph
This is the plotting area, placed in the center of the window and surrounded by the
axes, the axis titles and the legend (if any). The range of the axes controls what
region of the data is plotted. By default, the minimum and maximum limits are
determined from the data, but you can set them (as mentioned before). Data points
outside the minimum and maximum value of the axes are not plotted.

Legend The legend displays the name and symbol of each bar. The legend is placed in the
right margin of the Bar chart graph.

Footer text
Text displayed at the lower part of the window. If text is ’’ no header text will be
displayed.

Quit button
Button placed below the footer text. Click it to close the window.

All of them are arranged in a window. However you can, for example, show a bar chart
window without legend or header text. Other configuration options will be explained later.

In addition to the window appearance there is another important issue about the bar chart
window, namely its behaviour in response to user actions. The association user actions to
response is called bindings. The main bindings currently specified are the following:

Default bindings
Those are well known by most users. They are related to the frame displayed
around the window. As you know, you can interactively move, resize, close, iconify,
deiconify, send to another desktop etc. a window.

Bindings related to bar chart graph and its legend
Clicking the left mouse key over a legend element, the corresponding bar turns out
into red. After clicking again, the bar toggles to its original look. In addition, you
can do zoom-in by pressing the left mouse key over the bar chart graph and dragging
to select an area. To zoom out simply press the right mouse button.

When the pointer passes over the plotting area the cross hairs are drawn. The cross
hairs consists of two intersecting lines (one vertical and one horizontal). Besides, if
the pointer is over a legend element, its background changes.

Bindings related to buttons
There are two buttons in the main widget. Clicking the mouse on the Save button
a "Save as" dialog box is popped up. The user can select a file to save the graph.
If the user choose a file that already exists, the dialog box prompts the user for
confirmation on whether the existing file should be overwritten or not. Furthermore,
you can close the widget by clicking on the Quit button.

When the pointer passes over a button the button color changes.

The predicates that belong to this group are those whose names begin with barchart and
genmultibar. If you take a look at the predicate names that pertain to this group, you will notice
that they are not self-explanatory. It would have been better to name the predicates in a way
that allows the user to identify the predicate features by its name, but it would bring about very
long names (i.e barchart WithoutLegend BarsAtUniformIntervals RandomBarsColors). For this
reason I decided to simply add a number after barchart to name them.

Chapter 174: A Chart Library 849

174.2 Line graphs

It is frequently the case that several datasets need to be displayed on the same plot. If so, you
may wish to distinguish the points in different datasets by joining them by lines of different color,
or by plotting with symbols of different types. This set of predicates allows the programmer
to represent two-dimensional data (X-Y coordinates). Each dataset contains x and y vectors
containing the coordinates of the data. You can configure the appearance of the points and the
lines which the points are connected with. The configurable line graph components are:

line graph This is the plotting area, placed in the center of the window and surrounded by the
axes, the axes titles and the legend (if any). The range of the axes controls what
region of the data is plotted. By default, the minimum and maximum limits are
determined from the data, but you can set them. Data points outside the minimum
and maximum value of the axes are not plotted. You can specify how connecting line
segments joining successive datapoints are drawn by setting the Smooth argument.
Smooth can be either linear, step, natural and quadratic. Furthermore, you can
select the appearance of the points and lines.

Legend The legend displays the name and symbol of each line. The legend is placed in the
right margin of the graph.

The elements header, footer, quit and save buttons, the titles and the axes are quite similar
to those in barchart graphs, except in that the tick labels will be numbers. All of them are
arranged in a window by the geometry manager. However you can, as we mentioned in the above
paragraphs, show a line graph window without any titles or footer text. Other configuration
options will be explained later in this section or in the corresponding modules.

Related to the behaviour of the widgets in response to user actions (bindings) we will remark
the following features:

Bindings related to line graph and its legend
Clicking the left mouse key over a legend element, the corresponding line turns out
into blue. Repeating the action reverts the line to its original color. Moreover, you
can do zoom-in by clicking the left mouse key over the bar chart graph and dragging
a rectangle defining the area you want to zoom in. To zoom out simply press the
right mouse button.

When the pointer passes over the plotting area the cross hairs are drawn. The cross
hairs consists of two intersecting lines (one vertical and one horizontal). Besides, if
the pointer is over a legend element, its background changes.

Other bindings
The default bindings and the bindings related to the save and quit buttons are
similar to those in the bar chart graphs.

The predicates that belong to this group are those whose names begin with graph .

174.3 Scatter graphs

The challenge of this section is to introduce some general aspects about the scatter graph
predicates group. By invoking the scatter graph predicates the user can represent two-
dimensional point datasets. Often you need to display one or several point datasets on the
same plot. If so, you may wish to distinguish the points that pertain to different datasets by
using plotting symbols of different types, or by displaying them in different colors. This set of
predicates allows you to represent two-dimensional data (X-Y coordinates). Each dataset con-
tains x and y vectors containing the coordinates of the data. You can configure the appearance
of the points. The configurable scatter graph components are:

850 The Ciao System

scatter graph
This is the plotting area, placed in the center of the window and surrounded by the
axes, the axes titles and the legend (if any). The range of the axes controls what
region of the data is plotted. By default, the minimum and maximum limits are
determined from the data, but you can set them (as we mentioned before). Data
points outside the minimum and maximum value of the axes are not plotted. The
user can select the appearance of the points.

Legend The legend displays the name and symbol of each point dataset. The legend is
drawn in the right margin of the graph.

The elements header, footer, quit and save buttons, the titles and the axes are similar to those
in barchart graphs except for that, as in line graphs, the tick labels will be numbers. All of them
are arranged in a window by the geometry manager. However you can, for example, show a
scatter graph window without titles or footer text, as we mentioned before. Other configuration
options will be explained later, in the corresponding modules.

Related to the behaviour of the widgets in response to user actions (bindings) the following
features are:

Bindings related to scatter graph and its legend
Clicking the left mouse key over a legend element, the points which belong to the
corresponding dataset turn out into blue. Repeating the action toggles the point
dataset to its original color. Moreover, you can do zoom-in by clicking the left mouse
key over the bar chart graph and dragging a rectangle defining the area you want
to zoom-in on. To do zoom-out simply press the right mouse button.

When the pointer passes over the plotting area the cross hairs are drawn. The cross
hairs consists of two intersecting lines (one vertical and one horizontal). Besides, if
the pointer is over a legend element, its background changes.

Other bindings
The default bindings and the bindings related to the save and quit buttons are
similar to those in the bar chart graphs.

The predicates that belong to this group are those whose names began with scattergraph .

174.4 Tables

The purpose of this section is to allow the user to display results in a table. A table is a
regular structure in which:

• Every row has the same number of columns, or

• Every column has the same number of rows.

The widget configurable components are as follows:

Title

Title of the widget, it is displayed centered at the top of the canvas. If text is ’’ no
title will be displayed.

Header text
Left centered text displayed bellow the title. If text is ’’ no header text will be
displayed.

Table

Is placed in the center of the window. The table is composed by cells ordered in rows
and columns. The cell values can be either any kind of text or numbers and they
can be empty as well (see the type definition in the corresponding chapter module).
A table is a list of lists. Each sublist is a row, so every sublist in the table must
contain the same number of alements.

Chapter 174: A Chart Library 851

Footer text
Left centered text displayed at the lower part of the window. If text is ’’ no header
text will be displayed.

Quit button
Button placed below the footer text. You can click it to close the window.

If the arguments are not in a correct format an exception will be thrown. Moreover, these
widgets have the default bindings and the binding related to the quit button:

The set of predicates that belongs to this group are those which names begin with ta-
ble widget.

174.5 Overview of widgets

Although you don’t have to worry about how to arrange the widgets, here is an overview
of how Tcl-tk, the underlying graphical system currently used by chartlib, performs this task.
Quoting from the book Tcl and Tk toolkit, John K. Ousterhout.

The X Window System provides many facilities for manipulating windows in displays. The
root window may have any number of child windows, each of wich is called a top-level window.
Top-level windows may have children of their own, wich may have also children, and so on.
The descendants of top-level windows are called internal windows. Internal windows are usedfor
individual controls such as buttons, text entries, and for grouping controls together. An X-
application tipically manages several top-level windows. Tk uses X to implement a set of controls
with the Motif look and feel. These controls are called widgets. Each widget is implemented
using one X window, and the terms "window" and "widget" will be used interchangeably in
this document. As with windows, widgets are nested in hierarchical structures. In this library
top-level widgets (nonleaf or main) are just containers for organizing and arranging the leaf
widgets (components). Thereby, the barchart widget is a top-level window wich contains some
widget components.

Probably the most painstaking aspect of building a graphical application is getting the place-
ment and size of the widgets just right. It usually takes many iterations to align widgets and
adjust their spacing. That’s because managing the geometry of widgets is simply not a packing
problem, but also graphical design problem. Attributes such as alignment, symmetry, and bal-
ance are more important than minimizing the amount of space used for packing. Tk is similar to
other X toolkits in that it does not allow widgets to determine their own geometries. A widget
will not even appeared unless it is managed by a geometry manager. This separation of geom-
etry management from internal widget behaviour allows multiple geometry managers to exist
simultaneously and permits any widget to be used with any geometry manager. A geometry
manager’s job is to arrange one or more slave widgets relative to a master widgets. There are
some geometry managers in Tk such as pack, place and canvas widget. We will use another one
call table.

The table geometry manager arranges widgets in a table. It’s easy to align widgets (hor-
izontally and vertically) or to create empty space to balance the arrangement of the widgets.
Widgets (called slaves in the Tk parlance) are arranged inside a containing widget (called the
master). Widgets are positioned at row,column locations and may span any number of rows or
columns. More than one widget can occupy a single location. The placement of widget windows
determines both the size and arrangement of the table. The table queries the requested size of
each widget. The requested size of a widget is the natural size of the widget (before the widget
is shrunk or expanded). The height of each row and the width of each column is the largest
widget spanning that row or column. The size of the table is in turn the sum of the row and
column sizes. This is the table’s normal size. The total number of rows and columns in a table
is determined from the indices specified. The table grows dynamically as windows are added at
larger indices.

852 The Ciao System

174.6 Usage and interface (chartlib)
� �

• Library usage:

:- use_module(library(chartlib)).

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/genbar2, chartlib/genbar3, chartlib/genbar4,
chartlib/genmultibar, chartlib/table_widget1,
chartlib/table_widget2, chartlib/table_widget3, chartlib/table_widget4,
chartlib/gengraph1, chartlib/gengraph2, chartlib/chartlib_errhandle.

 	

174.7 Documentation on exports (chartlib)

(UNDOC REEXPORT)barchart1/7:
Imported from genbar1 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart1/9:
Imported from genbar1 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart1/7:
Imported from genbar1 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart2/7:
Imported from genbar2 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart2/11:
Imported from genbar2 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart2/7:
Imported from genbar2 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart3/7:
Imported from genbar3 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart3/9:
Imported from genbar3 (see the corresponding documentation for details).

Chapter 174: A Chart Library 853

(UNDOC REEXPORT)percentbarchart3/7:
Imported from genbar3 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart4/7:
Imported from genbar4 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart4/11:
Imported from genbar4 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart4/7:
Imported from genbar4 (see the corresponding documentation for details).

(UNDOC REEXPORT)multibarchart/8:
Imported from genmultibar (see the corresponding documentation for details).

(UNDOC REEXPORT)multibarchart/10:
Imported from genmultibar (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget1/4:
Imported from table_widget1 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget1/5:
Imported from table_widget1 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget2/4:
Imported from table_widget2 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget2/5:
Imported from table_widget2 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget3/4:
Imported from table_widget3 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget3/5:
Imported from table_widget3 (see the corresponding documentation for details).

854 The Ciao System

(UNDOC REEXPORT)tablewidget4/4:
Imported from table_widget4 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget4/5:
Imported from table_widget4 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b1/9:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b1/13:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w1/9:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w1/13:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b1/8:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b1/12:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w1/8:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w1/12:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b2/9:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b2/13:
Imported from gengraph2 (see the corresponding documentation for details).

Chapter 174: A Chart Library 855

(UNDOC REEXPORT)graph w2/9:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w2/13:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b2/8:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b2/12:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w2/8:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w2/12:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)chartlib text error protect/1:
Imported from chartlib_errhandle (see the corresponding documentation for details).

(UNDOC REEXPORT)chartlib visual error protect/1:
Imported from chartlib_errhandle (see the corresponding documentation for details).

174.8 Known bugs and planned improvements (chartlib)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

856 The Ciao System

Chapter 175: Low level Interface between Prolog and blt 857

175 Low level Interface between Prolog and blt

Author(s): Isabel Mart́ın Garćıa.

This module exports some predicates to interact with Tcl-tk, particularly with the bltwish
program. Bltwish is a windowing shell consisting of the Tcl command languaje, the Tk toolkit
plus the additional commands that comes with the BLT library and a main program that reads
commands. It creates a main window and then processes Tcl commands.

175.1 Usage and interface (bltclass)
� �

• Library usage:

:- use_module(library(bltclass)).

• Exports:

− Predicates:

new_interp/1, tcltk_raw_code/2, interp_file/2.

− Regular Types:

bltwish_interp/1.

• Other modules used:

− System library modules:

strings.

 	

175.2 Documentation on exports (bltclass)

PREDICATEnew interp/1:
new_interp(Interp)

Creates a bltwish interprter and returns a socket. The socket allows the comunication
between Prolog and Tcl-tk. Thus, bltwish receives the commands through the socket.

Usage:

− The following properties should hold at call time:

Interp is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

bltclass:bltwish interp(Interp) (bltclass:bltwish interp/1)

PREDICATEtcltk raw code/2:
tcltk_raw_code(Command_Line,Interp)

Sends a command line to the interpreter. Tcl-tk parses and executes it.

Usage:

− The following properties should hold at call time:

Command_Line is a string (a list of character codes). (basic props:string/1)

bltclass:bltwish interp(Interp) (bltclass:bltwish interp/1)

858 The Ciao System

REGTYPEbltwish interp/1:
bltwish_interp(Interp)

This type defines a bltwish interpreter. In fact, the bltwish interpreter receives the com-
mands through the socket created.

bltwish_interp(Interp) :-
stream(Interp).

PREDICATEinterp file/2:
interp_file(File,Interp)

Sends the script file (File) to the interpreter through the socket. A script file is a file that
contains commands that Tcl-tk can execute.

Usage:

− The following properties should hold at call time:

File is a source name. (streams basic:sourcename/1)

bltclass:bltwish interp(Interp) (bltclass:bltwish interp/1)

Chapter 176: Error Handler for Chartlib 859

176 Error Handler for Chartlib

Author(s): Isabel Mart́ın Garćıa.

This module is an error handler. If the format of the arguments is not correct in a call to a
chartlib predicate an exception will be thrown . You can wrap the chartlib predicates with the
predicates exported by this module to handle automatically the errors if any.

176.1 Usage and interface (chartlib_errhandle)
� �

• Library usage:

:- use_module(library(chartlib_errhandle)).

• Exports:

− Predicates:

chartlib_text_error_protect/1, chartlib_visual_error_protect/1.

• Other modules used:

− System library modules:

chartlib/bltclass, chartlib/install_utils.

 	

176.2 Documentation on exports (chartlib_errhandle)

PREDICATEchartlib text error protect/1:
chartlib_text_error_protect(G)

This predicate catches the thrown exception and sends it to the appropiate handler. The
handler will show the error message in the standard output.

Meta-predicate with arguments: chartlib_text_error_protect(goal).

Usage:

− The following properties should hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEchartlib visual error protect/1:
chartlib_visual_error_protect(G)

This predicate catches the thrown exception and sends it to the appropiate handler. The
handler will pop up a message box.

Meta-predicate with arguments: chartlib_visual_error_protect(goal).

Usage:

− The following properties should hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

860 The Ciao System

176.3 Documentation on internals (chartlib_errhandle)

REGTYPEhandler type/1:
handler_type(X)

The library chartlib includes two error handlers already programmed.

handler_type(text).
handler_type(visual).

PREDICATEerror message/2:
error_message(ErrorCode,ErrorMessage)

Binds the error code with its corresponding text message.

Usage:

− The following properties should hold at call time:

ErrorCode is an atom. (basic props:atm/1)

ErrorMessage is an atom. (basic props:atm/1)

PREDICATEerror file/2:
error_file(ErrorCode,ErrorFile)

Binds the error code with its corresponding script error file.

Usage:

− The following properties should hold at call time:

ErrorCode is an atom. (basic props:atm/1)

ErrorFile is an atom. (basic props:atm/1)

Chapter 177: Color and Pattern Library 861

177 Color and Pattern Library

Author(s): Isabel Mart́ın Garćıa.

This module contains predicates to access and check conformance to the available colors and
patterns.

177.1 Usage and interface (color_pattern)
� �

• Library usage:

:- use_module(library(color_pattern)).

• Exports:

− Predicates:

color/2, pattern/2, random_color/1, random_lightcolor/1, random_darkcolor/1,
random_pattern/1.

− Regular Types:

color/1, pattern/1.

• Other modules used:

− System library modules:

random/random.

 	

177.2 Documentation on exports (color_pattern)

REGTYPEcolor/1:
color(Color)

color(’GreenYellow’).
color(’Yellow’).
color(’White’).
color(’Wheat’).
color(’BlueViolet’).
color(’Violet’).
color(’MediumTurquoise’).
color(’DarkTurquoise’).
color(’Turquoise’).
color(’Thistle’).
color(’Tan’).
color(’Sienna’).
color(’Salmon’).
color(’VioletRed’).
color(’OrangeRed’).
color(’MediumVioletRed’).
color(’IndianRed’).
color(’Red’).
color(’Plum’).
color(’Pink’).
color(’MediumOrchid’).
color(’DarkOrchid’).

862 The Ciao System

color(’Orchid’).
color(’Orange’).
color(’Maroon’).
color(’Magenta’).
color(’Khaki’).
color(’Grey’).
color(’LightGray’).
color(’DimGray’).
color(’DarkSlateGray’).
color(’YellowGreen’).
color(’SpringGreen’).
color(’SeaGreen’).
color(’PaleGreen’).
color(’MediumSpringGreen’).
color(’MediumSeaGreen’).
color(’LimeGreen’).
color(’ForestGreen’).
color(’DarkOliveGreen’).
color(’DarkGreen’).
color(’Green’).
color(’Goldenrod’).
color(’Gold’).
color(’Brown’).
color(’Firebrick’).
color(’Cyan’).
color(’Coral’).
color(’SteelBlue’).
color(’SlateBlue’).
color(’SkyBlue’).
color(’Navy’).
color(’MidnightBlue’).
color(’MediumSlateBlue’).
color(’MediumBlue’).
color(’LightSteelBlue’).
color(’LightBlue’).
color(’DarkSlateBlue’).
color(’CornflowerBlue’).
color(’CadetBlue’).
color(’Blue’).
color(’Black’).
color(’MediumAquamarine’).
color(’Aquamarine’).

Defines available colors for elements such as points, lines or bars.

PREDICATEcolor/2:
Usage: color(C1,C2)

− Description: Test whether the color C1 is a valid color or not. If C1 is a variable the
predicate will choose a valid color randomly. If C1 is a ground term that is not a valid
color an exception (error9) will be thrown

Chapter 177: Color and Pattern Library 863

− The following properties should hold at call time:

color pattern:color(C1) (color pattern:color/1)

− The following properties should hold upon exit:

color pattern:color(C2) (color pattern:color/1)

REGTYPEpattern/1:
pattern(Pattern)

pattern(pattern1).
pattern(pattern2).
pattern(pattern3).
pattern(pattern4).
pattern(pattern5).
pattern(pattern6).
pattern(pattern7).
pattern(pattern8).
pattern(pattern9).

Defines valid patterns used in the stipple style bar attribute.

PREDICATEpattern/2:
Usage: pattern(P1,P2)

− Description: Test whether the pattern P1 is a valid pattern or not. If P1 is a variable
the predicate will choose a valid pattern randomly. If P1 is a ground term that is not
a valid pattern an exception (error10) will be thrown.

− The following properties should hold at call time:

color pattern:pattern(P1) (color pattern:pattern/1)

− The following properties should hold upon exit:

color pattern:pattern(P2) (color pattern:pattern/1)

PREDICATErandom color/1:
random_color(Color)

This predicate choose a valid color among the availables randomly.

Usage:

− The following properties should hold at call time:

color pattern:color(Color) (color pattern:color/1)

PREDICATErandom lightcolor/1:
random_lightcolor(Color)

This predicate choose a valid light color among the availables randomly.

Usage:

− The following properties should hold at call time:

Color is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

color pattern:color(Color) (color pattern:color/1)

864 The Ciao System

PREDICATErandom darkcolor/1:
random_darkcolor(Color)

This predicate choose a valid dark color among the availables randomly.

Usage:

− The following properties should hold at call time:

Color is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

color pattern:color(Color) (color pattern:color/1)

PREDICATErandom pattern/1:
random_pattern(Pattern)

This predicate choose a valid pattern among the availables randomly.

Usage:

− The following properties should hold at call time:

Pattern is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

color pattern:pattern(Pattern) (color pattern:pattern/1)

Chapter 178: Barchart widgets - 1 865

178 Barchart widgets - 1

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates to show barchart widgets. The three predicates exported by
this module plot two-variable data as regular bars in a window. They all share the following
features:

• No numeric values for the x axis are needed because they will be interpreted as labels. See
xbarelement1/1 definition type.

• The bars will be displayed at uniform intervals.

• The user can either select the appearance of the bars (background color, foreground color
and stipple style) or not. See the xbarelement1 type definition. Thus, the user can call
each predicate in two ways.

• The bar chart has a legend. One entry (symbol and label) per bar.

• If you don’t want to display text in the elements header, barchart title, x axis title, y axis
title or footer, simply type ’’ as the value of the argument.

• The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contains elements but are
not correct, the exception error1 or error3 will be thrown, depending on the error type.
error1 means that XVector and YVector do not contain the same number of elements and
error3 indicates that not all the XVector elements contain a correct number of attributes
.

Particular features will be pointed out in the corresponding predicate.

178.1 Usage and interface (genbar1)
� �

• Library usage:

:- use_module(library(genbar1)).

• Exports:

− Predicates:

barchart1/7, barchart1/9, percentbarchart1/7.

− Regular Types:

yelement/1, axis_limit/1, header/1, title/1, footer/1.

• Other modules used:

− System library modules:

chartlib/bltclass, chartlib/test_format, chartlib/color_pattern,
chartlib/install_utils, lists, random/random.

 	

178.2 Documentation on exports (genbar1)

PREDICATEbarchart1/7:
barchart1(Header,BarchartTitle,XTitle,XVector,YTitle,YVector,Footer)

The y axis range is determined from the limits of the data. Two examples are given to
demonstrate clearly how to call the predicates. In the first example the user sets the bar
appearance, in the second one the appearance features will be chosen by the system and

866 The Ciao System

the colors that have been assigned to the variables Color1, Color2 and Pattern will be
shown also.

Example 1:

barchart1(’This is the header text’,
’Barchart title’,
’xaxistitle’,
[[’bar1’,’legend_element1’,’Blue’,’Yellow’,’pattern1’],

[’bar2’,’legend_element2’,’Plum’,’SeaGreen’,’pattern2’],
[’bar3’,’legend_element3’,’Turquoise’,’Yellow’,

’pattern5’]],
’yaxixtitle’,
[20,10,59],
’footer’).

Example 2:

barchart1(’This is the header text’,
’Barchart title’,
’xaxistitle’,
[[’element1’,’legend_element1’,Color1,Color2,Pattern],

[’element2’,’legend_element2’],
[’element3’,’legend_element3’]],

’yaxixtitle’,
[20,10,59],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BarchartTitle is a text (an atom) to be used as label, usually not very long. (gen-
bar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement1s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEbarchart1/9:
barchart1(Header,BTitle,XTitle,XVector,YTitle,YVector,YMax,YMin,Footer)

You can set the minimum and maximum limits of the y axis. Data outside the limits will
not be plotted. Each limit, as you can check by looking at the axis_limit/1 definition,
is a number. If the argument is a variable the limit will be calculated from the data (i.e.,
if YMax value is YValueMax the maximum y axis limit will calculated using the largest
data value).

Example:

barchart1(’This is the header text’,
’Barchart title’,
’xaxistitle’,
[[’element1’,’e1’,’Blue’,’Yellow’,’pattern1’],

[’element2’,’e2’,’Turquoise’,’Plum’,’pattern5’],

Chapter 178: Barchart widgets - 1 867

[’element3’,’e3’,’Turquoise’,’Green’,’pattern5’]],
’yaxixtitle’,
[20,10,59],
70,
_,
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement1s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEpercentbarchart1/7:
percentbarchart1(Header,BTitle,XTitle,XVector,YTitle,YVector,Footer)

The y axis maximum coordinate value is 100. The x axis limits are automatically worked
out.

Example:

percentbarchart1(’This is a special barchart to represent percentages’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,’Blue’,’Yellow’,’pattern1’],

[8,’bar2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[80,10],
’This is the footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement1s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

REGTYPEyelement/1:

868 The Ciao System

yelement(Y) :-
number(Y).

Y is the bar lenght, so it must be a numeric value.

Both Prolog and Tcl-Tk support integers and floats. Integers are usually specified in
decimal, but if the first character is 0 the number is read in octal (base 8), and if the first
two characters are 0x, the number is read in hexadecimal (base16). Float numbers may
be specified using most of the forms defined for ANSI C, including the following examples:

• 9.56

• 5.88e-2

• 5.1E2

Note: Be careful when using floats. While 8. or 7.e4 is interpreted by Tcl-tk as 8.0 and
7.0e4, Prolog will not read them as float numbers. Example:

?- number(8.e+5).
{SYNTAX ERROR: (lns 130-130) , or) expected in arguments
number (8
** here **
. e + 5) .
}

no
?- number(8.).
{SYNTAX ERROR: (lns 138-138) , or) expected in arguments
number (8
** here **
.) .
}

no

?- number(8.0e+5).

yes
?- number(8.0).

yes

Precision: Tcl-tk internally represents integers with the C type int, which provides at
least 32 bits of precision on most machines. Since Prolog integers can (in some implemen-
tations) exceed 32 bits but the precision in Tcl-tk depends on the machine, it is up to the
progammer to ensure that the values fit into the maximum precision of the machine for
integers. Real numbers are represented with the C type double, which is usually repre-
sented with 64-bit values (about 15 decimal digits of precision) using the IEEE Floating
Point Standard.

Conversion: If the list is composed by integers and floats, Tcl-tk will convert integers to
floats.

REGTYPEaxis limit/1:
axis_limit(X) :-

number(X).

Chapter 178: Barchart widgets - 1 869

axis_limit(_1).

This type is defined in order to set the minimum and maximum limits of the axes. Data
outside the limits will not be plotted. Each limit, is a number or a variable. If the
argument is not a number the limit will be calculated from the data (i.e., if YMax value
is Var the maximum y axis limit will be calculated using the largest data value).

REGTYPEheader/1:
Usage: header(X)

− Description: X is a text (an atom) describing the header of the graph.

REGTYPEtitle/1:
Usage: title(X)

− Description: X is a text (an atom) to be used as label, usually not very long.

REGTYPEfooter/1:
Usage: footer(X)

− Description: X is a text (an atom) describing the footer of the graph.

178.3 Documentation on internals (genbar1)

REGTYPExbarelement1/1:
xbarelement1([XValue,LegendElement]) :-

atomic(XValue),
atomic(LegendElement).

xbarelement1([XValue,LegendElement,ForegColor,BackgColor,SPattern]) :-
atomic(XValue),
atomic(LegendElement),
color(ForegColor),
color(BackgColor),
pattern(SPattern).

Defines the attributes of the bar.

XValue bar label. Although XValue values may be numbers, the will be treated as
labels. Different elements with the same label will produce different bars.

LegendElement
Legend element name. It may be a number or an atom and equal or different
to the XValue. Every LegendElement value of the list must be unique.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

870 The Ciao System

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

178.4 Known bugs and planned improvements (genbar1)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 179: Barchart widgets - 2 871

179 Barchart widgets - 2

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates which show barchart widgets. The three predicates exported
by this module plot two-variable data as regular bars in a window. They all share the following
features:

• Numeric values for the x axis are needed, otherwise it does not work properly. See
xbarelement2/1 definition type.

• The bar position is proportional to the x-coordinate value.

• The user can either select the appearance of the bars (background color, foreground color
and stipple style) or not. See the xbarelement2/1 type definition. Thus, the user can call
each predicate in two ways.

• The bar chart has a legend and one entry (symbol and label) per bar.

• If you do not want to display text in the elements header, barchart title, x axis title, y axis
title or footer, simply type ’’ as the value of the argument.

• The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contain elements but are
not correct, the exception error1 or error3 will be thrown, depending on the error type.
error1means that XVector and YVector does not contain the same number of elements and
error3 indicates that not all the XVector elements contain a correct number of attributes
.

Particular features will be pointed out in the corresponding predicate.

179.1 Usage and interface (genbar2)
� �

• Library usage:

:- use_module(library(genbar2)).

• Exports:

− Predicates:

barchart2/7, barchart2/11, percentbarchart2/7.

− Regular Types:

xbarelement2/1.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 	

179.2 Documentation on exports (genbar2)

PREDICATEbarchart2/7:
barchart2(Header,BarchartTitle,XTitle,XVector,YTitle,YVector,Footer)

The maximum and minimum limits for axes are determined from the data.

Example:

872 The Ciao System

barchart2(’This is the header text’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,’Blue’,’Yellow’,’pattern1’],

[2,’bar2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[20,10],
’This is the footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BarchartTitle is a text (an atom) to be used as label, usually not very long. (gen-
bar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement2s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEbarchart2/11:
barchart2(Header,BT,XT,XVector,XMax,XMin,YT,YVector,YMax,YMin,Footer)

You can set the minimum and maximum limits of the axes. Data outside the limits will
not be plotted. Each limit, as you can check looking at the axis_limit/1 definition, is a
number. If the argument is a variable the limit will be calculated from the data (i.e., if
YMax value is YValueMax the maximum y axis limit will calculated using the largest data
value).

Example:

barchart2(’This is the header text’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,Color1,Color2,Pattern1],

[2,’bar2’,Color3,Color4,Pattern2]],
10,
-10,
’My yaxixtitle’,
[20,10],
100,
-10,
’The limits for the axes are set by the user’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement2s. (basic props:list/2)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

Chapter 179: Barchart widgets - 2 873

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEpercentbarchart2/7:
percentbarchart2(Header,BTitle,XTitle,XVector,YTitle,YVector,Footer)

The y axis maximum coordinate value is 100. The x axis limits are autoarrange.

Example:

percentbarchart2(’This is a special barchart to represent percentages’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,’Blue’,’Yellow’,’pattern1’],

[2,’bar2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[80,10],
’This is the footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement2s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

REGTYPExbarelement2/1:
xbarelement2([XValue,LegendElement]) :-

number(XValue),
atomic(LegendElement).

xbarelement2([XValue,LegendElement,ForegColor,BackgColor,SPattern]) :-
number(XValue),
atomic(LegendElement),
color(ForegColor),
color(BackgColor),
pattern(SPattern).

Defines the attributes of the bar.

XValue x-coordinate position of the bar. Different elements with the same abscissas
will produce overlapped bars.

LegendElement
Element legend name. It may be a number or an atom and equal or different
to the XValue. Every LegendElement value of the list must be unique.

874 The Ciao System

ForegColor
Is the Foreground color of the bar. Its value must be a valid color, otherwise
the system will throw an exception. If the argument value is a variable, it
gets instantiated to a color chosen by the library.

BackgColor
Is the Background color of the bar. Its value must be a valid color, otherwise
the system will throw an exception. If the argument value is a variable, it
gets instantiated to a color chosen by the library.

SPattern Is the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

Chapter 180: Depict barchart widgets - 3 875

180 Depict barchart widgets - 3

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates which depict barchart widgets. The three predicates exported
by this module plot two-variable data as regular bars in a window and are similar to those
exported in the genbar1 module except in that these defined in this module do not display a
legend. Thus, not all the argument types are equal.

The predicates test whether the format of the arguments is correct. If one or both vectors are
empty, the exception error2 will be thrown. If the vectors contain elements but are not correct,
the exception error1 or error3 will be thrown, depending on the error type. error1 means
that XVector and YVector do not contain the same number of elements and error3 indicates
that not all the XVector elements contain a correct number of attributes .

180.1 Usage and interface (genbar3)
� �

• Library usage:

:- use_module(library(genbar3)).

• Exports:

− Predicates:

barchart3/7, barchart3/9, percentbarchart3/7.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 	

180.2 Documentation on exports (genbar3)

PREDICATEbarchart3/7:
barchart3(Header,BarchartTitle,XTitle,XVector,YTitle,YVector,Footer)

As we mentioned in the above paragraph, this predicate is comparable to barchart1/8
except in the XVector argument type.

Example:

barchart3(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[’bar1’],[’bar2’]],
’My yaxixtitle’,
[20,10],
’This is the footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BarchartTitle is a text (an atom) to be used as label, usually not very long. (gen-
bar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

876 The Ciao System

XVector is a list of xbarelement3s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEbarchart3/9:
barchart3(Header,BTitle,XTitle,XVector,YTitle,YVector,YMax,YMin,Footer)

As we mentioned, this predicate is quite similar to the barchart1/10 except in the
XVector argument type, because the yielded bar chart lacks of legend.

Example:

barchart3(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[’bar1’],[’bar2’]],
’My yaxixtitle’,
30,
5,
[20,10],
’This is the footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement3s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEpercentbarchart3/7:
percentbarchart3(Header,BTitle,XTitle,XVector,YTitle,YVector,Footer)

The y axis maximum coordinate value is 100. The x axis limits are autoarrange.

Example:

percentbarchart3(’This is a special barchart to represent percentages’,
’Barchart without legend’,
’My xaxistitle’,
[[’pr1’,’Blue’,’Yellow’,’pattern1’],

[’pr2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[80,10],
’This is the footer text’).

Usage:

Chapter 180: Depict barchart widgets - 3 877

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement3s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

180.3 Documentation on internals (genbar3)

REGTYPExbarelement3/1:
xbarelement3([XValue]) :-

atomic(XValue).
xbarelement3([XValue,ForegColor,BackgColor,StipplePattern]) :-

atomic(XValue),
color(ForegColor),
color(BackgColor),
pattern(StipplePattern).

Defines the attributes of the bar.

XValue bar label. Although XValue values may be numbers, the will be treated as
labels. Different elements with the same label will produce different bars.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

878 The Ciao System

Chapter 181: Depict barchart widgets - 4 879

181 Depict barchart widgets - 4

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates which depict barchart widgets. The three predicates exported
by this module plot two-variable data as regular bars in a window and are similar to those
exported in genbar2 module except in that those defined in this module doesn’t display a legend.
Thus, the user does not have to define legend element names.

The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contains elements but are not
correct, the exception error1 or error3 will be thrown, depending on the error type. error1
means that XVector and YVector do not contain the same number of elements and error3
indicates that not all the XVector elements contain a correct number of attributes .

181.1 Usage and interface (genbar4)
� �

• Library usage:

:- use_module(library(genbar4)).

• Exports:

− Predicates:

barchart4/7, barchart4/11, percentbarchart4/7.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 	

181.2 Documentation on exports (genbar4)

PREDICATEbarchart4/7:
barchart4(Header,BarchartTitle,XTitle,XVector,YTitle,YVector,Footer)

As we mentioned in the above paragraph, this predicate is comparable to barchart2/8
except in the XVector argument type.

Example:

barchart4(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[2],[5],[6]],
’My yaxixtitle’,
[20,10,59],
’Numeric values in the xaxis’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BarchartTitle is a text (an atom) to be used as label, usually not very long. (gen-
bar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

880 The Ciao System

XVector is a list of xbarelement4s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEbarchart4/11:
barchart4(Hder,BT,XT,XVector,XMax,XMin,YT,YVector,YMax,YMin,Fter)

As we stated before, this predicate is quite similar to barchart2/10 except in the following
aspects:

• The XVector argument type, because the yielded bar chart lacks the legend.

• The user can set limits for both x axis and y axis.

Example:

barchart4(’This is the header text, you can write a graph description’,
’Barchart without legend’,
’My xaxistitle’,
[[2,’Blue’,’Yellow’,’pattern1’],

[20,’MediumTurquoise’,’Plum’,’pattern5’],
[30,’MediumTurquoise’,’Green’,’pattern5’]],

50,
-10,
’My yaxixtitle’,
[20,10,59],
100,
-10,
’Numeric values in the xaxis’).

Usage:

− The following properties should hold at call time:

Hder is a text (an atom) describing the header of the graph. (genbar1:header/1)

BT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement4s. (basic props:list/2)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

Fter is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEpercentbarchart4/7:
percentbarchart4(Header,BTitle,XTitle,XVector,YTitle,YVector,Footer)

The y axis maximum coordinate value is 100. The x axis limits are automatically worked
out. This predicate is useful when the bar height represents percentages.

Example:

Chapter 181: Depict barchart widgets - 4 881

percentbarchart4(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[2,’Blue’,’Yellow’,’pattern1’],[5,’Yellow’,’Plum’,’pattern5’],

[6,’MediumTurquoise’,’Green’,’pattern5’]],
’My yaxixtitle’,
[20,10,59],
’Numeric values in the xaxis’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xbarelement4s. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

181.3 Documentation on internals (genbar4)

REGTYPExbarelement4/1:
Defines the attributes of the bar.

XValue x-coordinate position of the bar. Different elements with the same abscissas
will produce overlapped bars.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

882 The Ciao System

Chapter 182: Depic line graph 883

182 Depic line graph

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates which depict line graph and scatter graph widgets. All eigth
predicates exported by this module plot two-variable data. Each point is defined by its X-Y
coordinate values. A dataset is defined by two lists xvector and yvector, which contain the
points coordinates. As you might guess, the values placed in the the same position in both lists
are the coordinates of a point. They both share the following features:

• Numeric values for vector elements are needed. We’ll use two vectors to represent the X-Y
coordinates of each set of plotted data, but in this case every dataset shares the X-vector,
i.e., x-coordinate of points with the same index1 in different datasets is the same. Thus, the
numbers of points in each yvector must be equal to the number of points in the xvector.

• The active element color is navyblue, which means that when you select a legend element,
the corresponding line or point dataset turns into navyblue.

• The user can either select the appearance of the lines and/or points of each dataset or not.
If not, the system will choose the colors for the lines and the points among the available
ones in accordance with the plot background color and it will also set the points size and
symbol to the default. If the plot background color is black, the system will choose a lighter
color, and the system will select a darker color when the plot background color is white.
Thus, the user can define the appearanse attributes of each dataset in four different ways.
Take a look at the attributes/1 type definition and see the examples to understand it
clearly.

• The graph has a legend and one entry (symbol and label) per dataset.

• If you do not want to display text in the element header, barchart title, xaxis title, yaxis
title or footer, simply give ’’ as the value of the argument.

• The predicates check whether the format of the arguments is correct as well. The testing
process involves some verifications. If one or both vectors are empty, the exception error2
will be thrown. If the vectors contains elements but are not correct, the exception error4
will be thrown.

The names of the line graph predicates begin with graph and those corresponding to the
scatter graph group begin with scattergraph .

1 It should be pointed out that I am refering to an index as the position of an element in a list.

884 The Ciao System

182.1 Usage and interface (gengraph1)
� �

• Library usage:

:- use_module(library(gengraph1)).

• Exports:

− Predicates:

graph_b1/9, graph_b1/13, graph_w1/9, graph_w1/13, scattergraph_b1/8,
scattergraph_b1/12, scattergraph_w1/8, scattergraph_w1/12.

− Regular Types:

vector/1, smooth/1, attributes/1, symbol/1, size/1.

• Other modules used:

− System library modules:

chartlib/bltclass, chartlib/genbar1, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 	

182.2 Documentation on exports (gengraph1)

PREDICATEgraph b1/9:
graph_b1(Header,GTitle,XTitle,XVector,YTitle,YVectors,LAtts,Footer,Smooth)

Besides the features mentioned at the begining of the chapter, the displayed graph gener-
ated when calling this predicate has the following distinguishing characteristics:

• The plotting area background color is black.

• The cross hairs color is white.

• The axes limits are determined from the data.

Example:

graph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
’yaxixtitle’,
[[10,35,40],[25,50,60]],
[[’element1’,’Blue’,’Yellow’,’plus’,6],[’element2’,Outline,Color]],
’footer’,
’linear’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XVector) (gengraph1:vector/1)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVectors is a list of vectors. (basic props:list/2)

LAtts is a list of attributess. (basic props:list/2)

Chapter 182: Depic line graph 885

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEgraph b1/13:
graph_b1(Header,GT,XT,XV,XMax,XMin,YT,YVs,YMax,YMin,LAtts,Footer,Smooth)

The particular features related to this predicate are described below:

• The plotting area background color is black.

• The cross hairs color is white.

• You can set the minimum and maximum limits of the axes. Data outside the limits
will not be plotted.

Example:

graph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’line1’,’circle’,4],[’line2’,OutlineColor,Color]],
’footer’,
’step’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XV) (gengraph1:vector/1)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEgraph w1/9:
graph_w1(Header,GTitle,XTitle,XVector,YTitle,YVectors,LAtts,Footer,Smooth)

This predicate is quite similar to graph_b1/9. The differences lies in the plot background
color and in the cross hairs color, which are white and black respectively.

Example:

886 The Ciao System

graph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,40,50],
’yaxixtitle’,
[[10,35,40,50],[25,20,60,40]],
[[’line1’,’Blue’,’DarkOrchid’],[’line2’,’circle’,3]],
’footer’,
’quadratic’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XVector) (gengraph1:vector/1)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVectors is a list of vectors. (basic props:list/2)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEgraph w1/13:
graph_w1(Header,GT,XT,XV,XMax,XMin,YT,YVs,YMax,YMin,LAtts,Footer,Smooth)

This predicate is quite similar to graph_b1/13, the differences between them are listed
below:

• The plotting area background color is white.

• The cross hairs color is black.

Example:

graph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
100,
10,
’yaxixtitle’,
[[10,35,40],[25,20,60]],
_,
_,
[[’element1’,’Blue’,’Yellow’],[’element2’,’Turquoise’,’Plum’]],
’footer’,
’quadratic’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Chapter 182: Depic line graph 887

gengraph1:vector(XV) (gengraph1:vector/1)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEscattergraph b1/8:
scattergraph_b1(Header,GTitle,XTitle,XVector,YTitle,YVectors,PAtts,Footer)

Apart from the features brought up at the beginning of the chapter, the scatter graph
displayed invoking this predicate has the following characteristics:

• The plotting area background color is black.

• The cross hairs color is white.

• The axes limits are determined from the data.

Example:

scattergraph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[10,15,20],
’yaxixtitle’,
[[10,35,20],[15,11,21]],
[[’element1’,’Blue’,’Yellow’],[’element2’,’Turquoise’,’Plum’]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XVector) (gengraph1:vector/1)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVectors is a list of vectors. (basic props:list/2)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEscattergraph b1/12:
scattergraph_b1(Header,GT,XT,XV,XMax,XMin,YT,YVs,YMax,YMin,PAtts,Footer)

The particular features related to this predicate are described below:

• The plotting area background color is black.

• The cross hairs color is white.

888 The Ciao System

• You can set the minimum and maximum limits of the axes. Data outside the limits
will not be plotted.

Example:

scattergraph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’point dataset1’,’Blue’,’Yellow’],[’point dataset2’]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XV) (gengraph1:vector/1)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEscattergraph w1/8:
scattergraph_w1(Header,GT,XT,XVector,YT,YVectors,PAtts,Footer)

This predicate is quite similar to scattergraph_b1/8 except in the following:

• The plotting area background color is black.

• The cross hairs color is white.

• If the user does not fix the points colors, they will be chosen among the lighter ones.

Example:

scattergraph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
’yaxixtitle’,
[[10,35,40],[25,20,60]],
[[’e1’,’Blue’,’Green’],[’e2’,’MediumVioletRed’,’Plum’]],
’footer’).

Usage:

Chapter 182: Depic line graph 889

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XVector) (gengraph1:vector/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVectors is a list of vectors. (basic props:list/2)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEscattergraph w1/12:
scattergraph_w1(Header,GT,XT,XV,XMax,XMin,YT,YVs,YMax,YMin,PAtts,Footer)

This predicate is quite similar to scattergraph1_b1/13, the differences between them are
listed below:

• The plotting area background color is white.

• The cross hairs color is black.

Example:

scattergraph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
150,
5,
’yaxixtitle’,
[[10,35,40],[25,20,60]],
_,
-10,
[[’e1’,’Blue’,’Yellow’],[’e2’,’MediumTurquoise’,’Plum’]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XV) (gengraph1:vector/1)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

890 The Ciao System

REGTYPEvector/1:
vector(X) :-

list(X,number).

The type vector defines a list of numbers (integers or floats).

REGTYPEsmooth/1:
smooth(Smooth)

smooth(linear).
smooth(cubic).
smooth(quadratic).
smooth(step).

Specifies how connecting segments are drawn between data points. If Smooth is linear,
a single line segment is drawn, connecting both data points. When Smooth is step, two
line segments will be drawn, the first line is a horizontal line segment that steps the next
X-coordinate and the second one is a vertical line, moving to the next Y-coordinate. Both
cubic and quadratic generate multiple segments between data points. If cubicis used,
the segments are generated using a cubic spline. If quadratic, a quadratic spline is used.
The default is linear.

REGTYPEattributes/1:
attributes([ElementName]) :-

atomic(ElementName).
attributes([ElementName,OutLine,Color]) :-

atomic(ElementName),
color(OutLine),
color(Color).

attributes([ElementName,Symbol,Size]) :-
atomic(ElementName),
symbol(Symbol),
size(Size).

attributes([ElementName,OutLine,Color,Symbol,Size]) :-
atomic(ElementName),
color(OutLine),
color(Color),
symbol(Symbol),
size(Size).

Each line or point dataset in the graph has its own attributes, which are defined by this
type. The name of the dataset, specified in the ElementName argument, may be either a
number or an atom. The second argument is the color of a thin line around each point
in the dataset and the Color argument is the points and lines color. Both OutLine and
Color must be a valid color (see available values in color/1), otherwise a random color
according to the plot background color will be selected. The Symbol must be a valid
symbol and the Size must be a number. Be careful if you want to especify the Symbol
and the Size, otherwise the predicate will not work as you expect. If you don’t select a
symbol and a size for a dataset the default values will be square and 1 pixel.

REGTYPEsymbol/1:
symbol(Symbol)

Chapter 182: Depic line graph 891

symbol(square).
symbol(circle).
symbol(diamond).
symbol(plus).
symbol(cross).
symbol(splus).
symbol(scross).
symbol(triangle).

Symbol stands for the shape of the points whether in scatter graphs or in line graphs.

REGTYPEsize/1:
size(Size)

size(Size) :-
number(Size).

Size stands for the size in pixels of the points whether in scatter graphs or in line graphs.

892 The Ciao System

Chapter 183: Line graph widgets 893

183 Line graph widgets

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates which show line graph widgets. All eight predicates exported
by this module plot two-variable data. Each point is defined by its X-Y coordinate values. Every
predicate share the following features:

• A dataset is defined by three lists xvector, yvector and attributes. The arguments named
XVectors (or XVs), YVectors (or YVs) and LAtts1 contain this information. Those argu-
ments must be lists whose elements are also lists. The first dataset is defined by the firts
element of the three lists, the second dataset is defined by the second element of the three
lists and so on.

• Numeric values for the vector elements are needed. We will use two vectors to represent
the X-Y coordinates of each set of data plotted. In these predicates the vectors can have
different number of points. However, the number of elements in xvector and yvector that
pertain to a certain dataset must be, obviously, equal.

• The active line color is blue, which means that when you select a legend element, the
corresponding line turns into navyblue.

• The user can either select the appearance for the lines and the points or not. See the
attributes/1 type definition. Thus, the user can call each predicate in different ways
ways.

• The graph has a legend and one entry (symbol and label) per dataset.

• If you do not want to display text in the elements header, barchart title, xaxis title, yaxis
title or footer, simply give ’’ as the value of the argument.

• The predicates check whether the format of the arguments is correct as well. The testing
process involves some verifications. If one or both vectors are empty, the exception error2
will be thrown. If the vectors contains elements but are not correct, the exception error4
will be thrown.

183.1 Usage and interface (gengraph2)
� �

• Library usage:

:- use_module(library(gengraph2)).

• Exports:

− Predicates:

graph_b2/9, graph_b2/13, graph_w2/9, graph_w2/13, scattergraph_b2/8,
scattergraph_b2/12, scattergraph_w2/8, scattergraph_w2/12.

• Other modules used:

− System library modules:

chartlib/gengraph1, chartlib/genbar1, chartlib/bltclass, chartlib/color_
pattern, chartlib/test_format, chartlib/install_utils, lists, random/random.

 	

183.2 Documentation on exports (gengraph2)

1 In scatter graphs the attibute that contains the features of a point dataset is PAtts.

894 The Ciao System

PREDICATEgraph b2/9:
graph_b2(Header,GTitle,XTitle,XVectors,YTitle,YVectors,LAtts,Footer,Sm)

Besides the features mentioned at the begining of the module chapter, the displayed graph
generated calling this predicate has the following distinguish characteristics:

• The plotting area background color is black.

• The cross hairs color is white.

• The axis limits are determined from the data.

Example:

graph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,30,59],[25,50]],
’yaxixtitle’,
[[10,35,40],[25,50]],
[[’line1’,’Blue’,’Yellow’],[’line2’]],
’footer’,
’natural’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVectors is a list of vectors. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVectors is a list of vectors. (basic props:list/2)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Sm) (gengraph1:smooth/1)

PREDICATEgraph b2/13:
graph_b2(Header,GT,XT,XVs,XMax,XMin,YT,YVs,YMax,YMin,LAtts,Footer,Smooth)

In addition to the features brought up at the begining of the module chapter, this graph
has the following:

• The plotting area background color is black.

• The cross hairs color is white.

• You can set the maximum and minimum values for the graph axes.

Example:

graph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,10,59],[15,30,35]],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],

Chapter 183: Line graph widgets 895

50.5,
_,
[[’line1’,’Blue’,’Yellow’],[’line’,’MediumTurquoise’,’Plum’]],
’footer’,
’step’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEgraph w2/9:
graph_w2(Header,GT,XT,XVectors,YTitle,YVectors,LAtts,Footer,Smooth)

This predicate is quite similar to graph_b2/9. The difference lies in the graph appearance,
as you can see below.

• The plotting area background color is white.

• The cross hairs color is black.

Example:

graph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[10,30,59],[25,50]],
’yaxixtitle’,
[[10,35,40],[25,40]],
[[’element1’,’Blue’,’DarkOrchid’],[’element2’,’DarkOliveGreen’,

’Firebrick’]],
’footer’,
’natural’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVectors is a list of vectors. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

896 The Ciao System

YVectors is a list of vectors. (basic props:list/2)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEgraph w2/13:
graph_w2(Header,GT,XT,XV,XMax,XMin,YT,YVs,YMax,YMin,LAtts,Footer,Smooth)

This predicate is comparable to graph_b2/13. The differences lie in the plot background
color and in the cross hairs color, wich are white and black respectively.

Example:

graph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[10,30,59],[10,35,40]],
80,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’element1’,’Blue’,’Green’],[’element2’,’Turquoise’,’Black’]],
’footer’,
’linear’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XV is a list of vectors. (basic props:list/2)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

LAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

gengraph1:smooth(Smooth) (gengraph1:smooth/1)

PREDICATEscattergraph b2/8:
scattergraph_b2(Header,GT,XT,XVectors,YT,YVectors,PAtts,Footer)

Apart from the features brought up at the beginning of the chapter, the scatter graph
displayed when invoking this predicate has the following features:

• The plotting area background color is black.

Chapter 183: Line graph widgets 897

• The cross hairs color is white.

• The axis limits are determined from the data.

Example:

scattergraph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[10,15,20],[8,30,40]],
’yaxixtitle’,
[[10,35,20],[15,11,21]],
[[’element1’,’Blue’,’Yellow’],[’element2’,’MediumTurquoise’,’Plum’]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVectors is a list of vectors. (basic props:list/2)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVectors is a list of vectors. (basic props:list/2)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEscattergraph b2/12:
scattergraph_b2(Header,GT,XT,XVs,XMax,XMin,YT,YVs,YMax,YMin,PAtts,Footer)

The particular features related to this predicate are described below:

• The plotting area background color is black.

• The cross hairs color is white.

• You can set the minimum and maximum limits of the axes. Data outside the limits
will not be plotted.

Example:

scattergraph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,30,50],[18,40,59]],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’point dataset1’],[’point dataset2’]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

898 The Ciao System

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEscattergraph w2/8:
scattergraph_w2(Header,GTitle,XTitle,XVs,YTitle,YVs,PAtts,Footer)

This predicate is quite similar to scattergraph_w1/8 except in the following:

• The plotting area background color is black.

• The cross hairs color is white.

• If the user do not provide the colors of the points, they will be chosen among the
lighter ones.

Example:

scattergraph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,30,40,15,30,35,20,30]],
’yaxixtitle’,
[[10,30,40,25,20,25,20,25]],
[[’set1’,’cross’,4]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

gengraph1:vector(XVs) (gengraph1:vector/1)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEscattergraph w2/12:
scattergraph_w2(Header,GT,XT,XVs,XMax,XMin,YT,YVs,YMax,YMin,PAtts,Footer)

This predicate is comparable to scattergraph_w2/13, the differences between them are
listed below:

Chapter 183: Line graph widgets 899

• The plotting area background color is white.

• The cross hairs color is black.

Example:

scattergraph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,10,59],[15,30,50]],
150,
5,
’yaxixtitle’,
[[10,35,40],[25,20,60]],
_,
-10,
[[’e1’,’Blue’,’Yellow’],[’e2’,’MediumTurquoise’,’Plum’]],
’footer’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

GT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(XMax) (genbar1:axis limit/1)

genbar1:axis limit(XMin) (genbar1:axis limit/1)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

YVs is a list of vectors. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

PAtts is a list of attributess. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

900 The Ciao System

Chapter 184: Multi barchart widgets 901

184 Multi barchart widgets

Author(s): Isabel Mart́ın Garćıa.

This module defines predicates which show barchart widgets. These bar charts are somewhat
different from the bar charts generated by the predicates in modules genbar1, genbar2, genbar3
and genbar4. Predicates in the present module show different features of each dataset element in
one chart at the same time. Each bar chart element is a group of bars, and the element features
involve three vectors defined as follows:

• xvector is a list containing the names (atoms) of the bars (n elements). Each bar group will
be displayed at uniform intervals.

• yvector is a list that contains m sublists, each one is composed of n elements. The i-sublist
contains the y-values of the i-BarAttribute element for all of the XVector elements.

• bar attributtes is a list containing the appearance features of the bars (m elements). Each
element of the list can be partial or complete, which means that you can define as bar
attributes only the element name or by setting the element name, its background and
foreground color and its stipple pattern.

Other relevant aspects about this widgets are:

• If you don’t want to display text in the elements header, barchart title, xaxis title, yaxis
title or footer, simply type ’’ as the value of the argument.

• The bar chart has a legend, and one entry (symbol and label) per feature group bar.

• The user can either select the appearance of the bars (background color, foreground color
and stipple style) or not. See the multibar attribute type definition.

• Data points can have their bar segments displayed in one of the following modes: stacked,
aligned, overlapped or overlayed. They user can change the mode clicking in the checkboxes
associated to each mode.

• The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contains elements but are
not correct, the exception error5 or error6 will be thrown, depending on what is incorrect.
error5 means that XVector and each element of YVector do not contain the same number
of elements or that YVector and BarsAtt do not contain the same number of elements, while
error6 indicates that not all the BarsAtt elements contain a correct number of attributes.

The examples will help you to understand how these predicates should be called.

184.1 Usage and interface (genmultibar)
� �

• Library usage:

:- use_module(library(genmultibar)).

• Exports:

− Predicates:

multibarchart/8, multibarchart/10.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 	

902 The Ciao System

184.2 Documentation on exports (genmultibar)

PREDICATEmultibarchart/8:
multibarchart(Header,BTitle,XTitle,XVector,YTitle,BarsAtts,YVector,Footer)

The x axis limits are autoarrange. The user can call the predicate in two ways. In the
first example the user sets the appearance of the bars, in the second one the appearance
features will be chosen by the library.

Example1:

multibarchart(’This is the Header text’,
’My BarchartTitle’,
’Processors’,
[’processor1’,’processor2’,’processor3’,’processor4’],
’Time (seconds)’,
[[’setup time’,’MediumTurquoise’,’Plum’,’pattern2’],

[’sleep time’,’Blue’,’Green’,’pattern5’],
[’running time’,’Yellow’,’Plum’,’pattern1’]],

[[20,30,40,50],[10,8,5,35],[60,100,20,50]],
’This is the Footer text’).

Example2:

multibarchart(’This is the Header text’,
’My BarchartTitle’,
’Processors’,
[’processor1’,’processor2’,’processor3’,’processor4’],
’Time (seconds)’,
[[’setup time’],[’sleep time’],[’running time’]],
[[20,30,40,50],[10,8,5,35],[60,100,20,50]],
’This is the Footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xelements. (basic props:list/2)

YTitle is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

BarsAtts is a list of multibar_attributes. (basic props:list/2)

YVector is a list of yelements. (basic props:list/2)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEmultibarchart/10:
multibarchart(Header,BT,XT,XVector,YT,BAtts,YVector,YMax,YMin,Footer)

This predicate is quite similar to multibarchart/8, except in that you can choose limits
in the y axis. The part of the bars placed outside the limits will not be plotted.

Example2:

multibarchart(’This is the Header text’,
’My BarchartTitle’,
’Processors’,

Chapter 184: Multi barchart widgets 903

[’processor1’,’processor2’,’processor3’,’processor4’],
’Time (seconds)’,
[[’setup time’],[’sleep time’],[’running time’]],
[[20,30,40,50],[10,8,5,35],[60,100,20,50]],
[80],
[0],
’This is the Footer text’).

Usage:

− The following properties should hold at call time:

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

BT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

XVector is a list of xelements. (basic props:list/2)

YT is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

BAtts is a list of multibar_attributes. (basic props:list/2)

YVector is a list of yelements. (basic props:list/2)

genbar1:axis limit(YMax) (genbar1:axis limit/1)

genbar1:axis limit(YMin) (genbar1:axis limit/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

184.3 Documentation on internals (genmultibar)

REGTYPEmultibar attribute/1:
multibar_attribute([LegendElement]) :-

atomic(LegendElement).
multibar_attribute([LegendElement,ForegroundColor,BackgroundColor,StipplePattern]

atom(LegendElement),
color(ForegroundColor),
color(BackgroundColor),
pattern(StipplePattern).

Defines the attributes of each feature bar along the different datasets.

LegendElement
Legend element name. It may be a number or an atom. Every LegendElement
value of the list must be unique.

ForegroundColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

BackgroundColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

StipplePattern
It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

904 The Ciao System

REGTYPExelement/1:
xelement(Label) :-

atomic(Label).

This type defines a dataset label. Although Label values may be numbers, the will be
treated as atoms, So it will be displayed at uniform intervals along the x axis.

Chapter 185: table widget1 (library) 905

185 table widget1 (library)

Author(s): Isabel Mart́ın Garćıa.

In addition to the features explained in the introduction, the predicates exported by this
module depict tables in which the font weight for the table elements is bold.

If the arguments are not in a correct format the exception error8 will be thrown.

185.1 Usage and interface (table_widget1)
� �

• Library usage:

:- use_module(library(table_widget1)).

• Exports:

− Predicates:

tablewidget1/4, tablewidget1/5.

− Regular Types:

table/1, image/1.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/test_format,
chartlib/install_utils, lists.

 	

185.2 Documentation on exports (table_widget1)

PREDICATEtablewidget1/4:
tablewidget1(Title,Header,ElementTable,Footer)

Shows a regular table in a window. The user does not choose a background image.

Example:

tablewidget1(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Average Tasks per fork’,’7.5’]],
’Footer text’).

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEtablewidget1/5:
tablewidget1(Title,Header,ElementTable,Footer,BackgroundImage)

906 The Ciao System

Shows a regular table in a window. The user must set a background image. See the
image/1 type definition.

Example:

tablewidget1(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Average Tasks per fork’,’7.5’]],
’Footer text’,
’./images/rain.gif’)

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

table widget1:image(BackgroundImage) (table widget1:image/1)

REGTYPEtable/1:
A table is a list of rows, each row must contain the same number of elements, otherwise
the table wouldn’t be regular and an exception will be thrown by the library. The rows
list may not be empty.

table([X]) :-
row(X).

table([X|Xs]) :-
row(X),
table(Xs).

REGTYPEimage/1:
Some predicates allow the user to set the widget background image, whose is what this
type is intended for. The user has to take into account the following restrictions:

• The image must be in gif format.

• The file path must be absolute.

185.3 Documentation on internals (table_widget1)

REGTYPErow/1:
row([X]) :-

cell_value(X).
row([X|Xs]) :-

cell_value(X),
row(Xs).

Each row is a list of elements whose type is cell_value/1. A row cannot be an empty
list, as you can see in the definition type.

Chapter 185: table widget1 (library) 907

REGTYPErow/1:
row([X]) :-

cell_value(X).
row([X|Xs]) :-

cell_value(X),
row(Xs).

Each row is a list of elements whose type is cell_value/1. A row cannot be an empty
list, as you can see in the definition type.

REGTYPEcell value/1:
This type defines the possible values that a table element have. If any cell value is ’’, the
cell will be displayed empty.

cell_value(X) :-
atomic(X).

908 The Ciao System

Chapter 186: table widget2 (library) 909

186 table widget2 (library)

Author(s): Isabel Mart́ın Garćıa.

In addition to the features explained in the introduction, predicates exported by this module
display tables in which the font weight for the elements placed in the first row is bold. The
remaining elements are in medium weight font.

If the arguments are not in a correct format the exception error8 will be thrown.

186.1 Usage and interface (table_widget2)
� �

• Library usage:

:- use_module(library(table_widget2)).

• Exports:

− Predicates:

tablewidget2/4, tablewidget2/5.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/table_widget1,
chartlib/test_format, chartlib/install_utils, lists.

 	

186.2 Documentation on exports (table_widget2)

PREDICATEtablewidget2/4:
tablewidget2(Title,Header,ElementTable,Footer)

Shows a regular table in a window. The system sets a default background image for the
widget.

Example:

tablewidget2(’COM Features’,
’Extracted from "Inside COM" book ’,
[[’Feature’,’Rich people’,’Bean Plants’,’C++’,’COM’],
[’Edible’,’Yes’,’Yes’,’No’,’No’],
[’Supports inheritance’,’Yes’,’Yes’,’Yes’,’Yes and No’],
[’Can run for President’,’Yes’,’No’,’No’,’No’]],

’What do you think about COM?’).

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

910 The Ciao System

PREDICATEtablewidget2/5:
tablewidget2(Title,Header,ElementTable,Footer,BackgroundImage)

This predicate and tablewidget2/4 are quite similar, except that in the already one
defined you must set the background image.

Example:

tablewidget2(’COM Features’,
’Extracted from "Inside COM" book ’,
[[’Feature’,’Rich people’,’Bean Plants’,’C++’,’COM’],
[’Edible’,’Yes’,’Yes’,’No’,’No’],
[’Supports inheritance’,’Yes’,’Yes’,’Yes’,’Yes and No’],
[’Can run for President’,’Yes’,’No’,’No’,’No’]],

’What do you think about COM?’,
’./images/rain.gif’).

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

table widget1:image(BackgroundImage) (table widget1:image/1)

Chapter 187: table widget3 (library) 911

187 table widget3 (library)

Author(s): Isabel Mart́ın Garćıa.

The predicates exported by this module display data in a regular table, as we brought up in
the introduction. Both predicates have in common that the font weight for the elements placed
in the first column is bold and the remaining elements are in medium font weight.

If the arguments are not in a correct format the exception error8 will be thrown.

187.1 Usage and interface (table_widget3)
� �

• Library usage:

:- use_module(library(table_widget3)).

• Exports:

− Predicates:

tablewidget3/4, tablewidget3/5.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/table_widget1,
chartlib/test_format, chartlib/install_utils, lists.

 	

187.2 Documentation on exports (table_widget3)

PREDICATEtablewidget3/4:
tablewidget3(Title,Header,ElementTable,Footer)

Shows a regular table in a window. The user does not choose a background image.

Example:

tablewidget3(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],
[’Tasks per fork’,’7.5’]],

’Footer text’).

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

PREDICATEtablewidget3/5:
tablewidget3(Title,Header,ElementTable,Footer,BackgroundImage)

Shows a regular table in a window. The user must set a background image.

Example:

912 The Ciao System

tablewidget3(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Average Tasks per fork’,’7.5’]],
’Footer text’,
’./images/rain.gif’)

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

table widget1:image(BackgroundImage) (table widget1:image/1)

Chapter 188: table widget4 (library) 913

188 table widget4 (library)

Author(s): Isabel Mart́ın Garćıa.

In addition to the features explained in the introduction, predicates exported by this module
display tables in which the font weight for the elements placed in the first row and column is
bold. The remaining elements are in medium weight font.

If the arguments are not in a correct format the exception error8 will be thrown.

188.1 Usage and interface (table_widget4)
� �

• Library usage:

:- use_module(library(table_widget4)).

• Exports:

− Predicates:

tablewidget4/4, tablewidget4/5.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/table_widget1,
chartlib/test_format, chartlib/install_utils, lists.

 	

188.2 Documentation on exports (table_widget4)

PREDICATEtablewidget4/4:
tablewidget4(Title,Header,ElementTable,Footer)

Shows a regular table in a window. The system sets a default background image for the
widget.

Example:

tablewidget4(’Some sterEUtypes’,
’Source: Eurostat yearbook, 1999’,
[[’Country’,’Adult alcohol intake per year (litres)’,

’Cigarettes smoked per day per adult’,
’Suicides per 100000 people’],

[’Finland’,’8.4’,’2.2’,’26.3’],[’Spain’,’11.4’,’5.3’,’7.5’],
[’Austria’,’11.9’,’4.6’,’20.7’],[’Britain’,’9.4’,’4.2’,’7.1’],
[’USA’,’4.7’,’4.9’,’13’],[’European Union’,’11.1’,’4.5’,’11.9’]],

’This is part of the published table’).

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

914 The Ciao System

PREDICATEtablewidget4/5:
tablewidget4(Title,Header,ElementTable,Footer,BackgroundImage)

This predicate and tablewidget4/4 are comparable, except that in the already defined
you must set the background image.

Example:

tablewidget4(’Some sterEUtypes’,
’Source: Eurostat yearbook, 1999’,
[[’Country’,’Adult alcohol intake per year (litres)’,

’Cigarettes smoked per day per adult’,
’Suicides per 100000 people’],

[’Finland’,’8.4’,’2.2’,’26.3’],[’Spain’,’11.4’,’5.3’,’7.5’],
[’Austria’,’11.9’,’4.6’,’20.7’],[’Britain’,’9.4’,’4.2’,’7.1’],
[’USA’,’4.7’,’4.9’,’13’],[’European Union’,’11.1’,’4.5’,’11.9’]],

’This is part of the published table’,
’./images/rain.gif’).

Usage:

− The following properties should hold at call time:

Title is a text (an atom) to be used as label, usually not very long. (genbar1:title/1)

Header is a text (an atom) describing the header of the graph. (genbar1:header/1)

table widget1:table(ElementTable) (table widget1:table/1)

Footer is a text (an atom) describing the footer of the graph. (genbar1:footer/1)

table widget1:image(BackgroundImage) (table widget1:image/1)

Chapter 189: test format (library) 915

189 test format (library)

Author(s): Isabel Mart́ın Garćıa.

Most of the predicates exported by this module perform some checks to determine whether
the arguments attain some conditions or not. In the second case an exception will be thrown. To
catch the exceptions you can use the following metapredicates when invoking chartlib exported
predicates:

• chartlib_text_error_protect/1

• chartlib_text_error_protect/1

Both metapredicates are defined in the chartlib errhandle module that comes with this li-
brary. Some of the predicates have a Predicate argument which will be used in case of error
to show which chartlib predicate causes the error.

189.1 Usage and interface (test_format)
� �

• Library usage:

:- use_module(library(test_format)).

• Exports:

− Predicates:

equalnumber/3, not_empty/4, not_empty/3, check_sublist/4, valid_format/4,
vectors_format/4, valid_vectors/4, valid_attributes/2, valid_table/2.

• Other modules used:

− System library modules:

lists.

 	

189.2 Documentation on exports (test_format)

PREDICATEequalnumber/3:
equalnumber(X,Y,Predicate)

Test whether the list X and the list Y contain the same number of elements.

Usage:

− The following properties should hold at call time:

X is a list. (basic props:list/1)

Y is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEnot empty/4:
not_empty(X,Y,Z,Predicate)

Tests whether at least one the lists X, Y or Z are empty.

Usage:

916 The Ciao System

− The following properties should hold at call time:

X is a list. (basic props:list/1)

Y is a list. (basic props:list/1)

Z is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEnot empty/3:
not_empty(X,Y,Predicate)

Tests whether the lists X or Y are empty.

Usage:

− The following properties should hold at call time:

X is a list. (basic props:list/1)

Y is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEcheck sublist/4:
check_sublist(List,Number,Number,Predicate)

Tests if the number of elements in each sublist of List is Number1 or Number2.

Usage:

− The following properties should hold at call time:

List is a list. (basic props:list/1)

Number is currently instantiated to an integer. (term typing:integer/1)

Number is currently instantiated to an integer. (term typing:integer/1)

Predicate is an atom. (basic props:atm/1)

PREDICATEvalid format/4:
valid_format(XVector,YVector,BarsAttributes,Predicate)

Tests the following restrictions:

• The XVector number of elements is the same as each YVector sublist number of
elements.

• The YVector length is equal to BarsAttributes length.

Usage:

− The following properties should hold at call time:

XVector is a list. (basic props:list/1)

YVector is a list. (basic props:list/1)

BarsAttributes is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Chapter 189: test format (library) 917

PREDICATEvectors format/4:
vectors_format(XVector,YVectors,LinesAttributes,Predicate)

Tests the following conditions:

• YVectors list and LinesAttributes list have the same number of elements.

• XVector list and each YVectors element have the same number of elements.

• Each sublist of LinesAttributes is composed of 5, 3 or 1 elements.

Usage:

− The following properties should hold at call time:

XVector is a list. (basic props:list/1)

YVectors is a list. (basic props:list/1)

LinesAttributes is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEvalid vectors/4:
valid_vectors(XVector,YVectors,LinesAttributes,Predicate)

Tests the following conditions:

• XVector list, YVectors list and LinesAttributes list have the same number of ele-
ments.

• Each sublist of LinesAttributes is composed of 5, 3 or 1 element.

Usage:

− The following properties should hold at call time:

XVector is a list. (basic props:list/1)

YVectors is a list. (basic props:list/1)

LinesAttributes is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEvalid attributes/2:
valid_attributes(BarsAttibuttes,Predicate)

Check if each BarsAttibuttes element is a list composed of one or four elements.

Usage:

− The following properties should hold at call time:

BarsAttibuttes is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEvalid table/2:
valid_table(ElementTable,Predicate)

All of the ElementTable sublists have the same number of elements and are not empty.

Usage:

918 The Ciao System

− The following properties should hold at call time:

ElementTable is a list. (basic props:list/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Chapter 190: Doubly linked lists 919

190 Doubly linked lists

Author(s): David Trallero Mena.

This library implements "doubly linked" lists, in the sense that they can be traversed in both
directions with good complexity. An index is used for referencing the current element in the list.
This index can be modified by the next and prev predicates. The value of the current index can
be obtained via the top predicate

190.1 Usage and interface (ddlist)
� �

• Library usage:

:- use_module(library(ddlist)).

• Exports:

− Predicates:

null_ddlist/1, create_from_list/2, to_list/2, next/2, prev/2, insert/3,
insert_top/3, insert_after/3, insert_begin/3, insert_end/3, delete/2,
delete_top/2, delete_after/2, remove_all_elements/3, top/2, rewind/2,
forward/2, length/2, length_next/2, length_prev/2, ddlist_member/2.

− Regular Types:

ddlist/1.

• Other modules used:

− System library modules:

lists.

 	

190.2 Documentation on exports (ddlist)

PREDICATEnull ddlist/1:
Usage: null_ddlist(A)

− Description: NullList is an empty ddlist.

− The following properties should hold at call time:

A is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

A is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEcreate from list/2:
Usage: create_from_list(List,DDList)

− Description: Creates a doubly linked list from normal list List.

− The following properties should hold at call time:

List is a list. (basic props:list/1)

DDList is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

DDList is a "doubly linked" list. (ddlist:ddlist/1)

920 The Ciao System

PREDICATEto list/2:
Usage: to_list(DDList,List)

− Description: Converts from doubly linked list to list.

− The following properties should hold at call time:

DDList is a "doubly linked" list. (ddlist:ddlist/1)

List is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

List is a list. (basic props:list/1)

PREDICATEnext/2:
Usage: next(OldList,NewList)

− Description: NewList is OldList but index is set to the element following the current
element of OldList. It satisfies next(A,B), prev(B,A).

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEprev/2:
Usage: prev(OldList,NewList)

− Description: NewList is OldList but index is set to the element before the current
element of OldList.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEinsert/3:
Usage: insert(List,Element,NewList)

− Description: NewList is like List but with Element inserted before the current index.
It satisfies insert(X , A , Xp) , delete(Xp , X).

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Element is any term. (basic props:term/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEinsert top/3:
Usage: insert_top(List,Element,NewList)

− Description: Put Element as new top of NewList and push the rest of elements after
it. It satisfies top(NewList , element)

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Element is any term. (basic props:term/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

Chapter 190: Doubly linked lists 921

PREDICATEinsert after/3:
Usage: insert_after(List,Element,NewList)

− Description: NewList is like List but with Element inserted after the current index.
It satisfies insert_after(X, A, Xp), delete_after(Xp, X).

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Element is any term. (basic props:term/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEinsert begin/3:
Usage: insert_begin(List,Element,NewList)

− Description: NewList is like List with Element as first element.

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Element is any term. (basic props:term/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEinsert end/3:
Usage: insert_end(List,Element,NewList)

− Description: NewList is like List with Element as last element.

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Element is any term. (basic props:term/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEdelete/2:
Usage: delete(OldList,NewList)

− Description: NewList does not have the previous element (top(prev)) of OldList.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEdelete top/2:
Usage: delete_top(OldList,NewList)

− Description: NewList does not have the current element (top) of OldList.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

922 The Ciao System

PREDICATEdelete after/2:
Usage: delete_after(OldList,NewList)

− Description: NewList does not have next element to current element (top) of OldList.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEremove all elements/3:
Usage: remove_all_elements(OldList,E,NewList)

− Description: Remove all elements that unify with E from OldList. NewList is the
result of this operation. The pointer is not modified unless there it is pointing at
element that unifies with E.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

E is currently a term which is not a free variable. (term typing:nonvar/1)

− The following properties should hold upon exit:

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEtop/2:
Usage: top(List,Element)

− Description: Element is the element pointed by index.

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Element is any term. (basic props:term/1)

PREDICATErewind/2:
Usage: rewind(OldList,NewList)

− Description: NewList is the OldList but index is set to 0.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

PREDICATEforward/2:
Usage: forward(OldList,NewList)

− Description: NewList is the OldList but index is set to lentgh of NewList.

− The following properties should hold at call time:

OldList is a "doubly linked" list. (ddlist:ddlist/1)

NewList is a "doubly linked" list. (ddlist:ddlist/1)

Chapter 190: Doubly linked lists 923

PREDICATElength/2:
Usage: length(List,Len)

− Description: Len is the length of the List

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Len is an integer. (basic props:int/1)

PREDICATElength next/2:
Usage: length_next(List,Len)

− Description: Len is the length from the current index till the end.

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Len is an integer. (basic props:int/1)

PREDICATElength prev/2:
Usage: length_prev(List,Len)

− Description: Len is the length from the beginning till the current index.

− The following properties should hold at call time:

List is a "doubly linked" list. (ddlist:ddlist/1)

Len is an integer. (basic props:int/1)

REGTYPEddlist/1:
Usage: ddlist(X)

− Description: X is a "doubly linked" list.

PREDICATEddlist member/2:
Usage: ddlist_member(X,DDList)

− Description: Success if X is member of DDList. X first unifies with elements of the
forward list, i.e. from the top till the end, and later with elements from the top to
the beginning.

− The following properties should hold at call time:

X is any term. (basic props:term/1)

DDList is a "doubly linked" list. (ddlist:ddlist/1)

190.3 Other information (ddlist)

Two simple examples of the use of the ddlist library package follow.

924 The Ciao System

190.3.1 Using insert after

:- module(ddl1 , _ , []).

:- use_module(library(ddlist)).

main(A,B):-
% L = []
null_ddlist(L),
% L = [1]
insert_after(L , 1 , L1),
% L = [1,2]
insert_after(L1 , 2 , L2),
% L = [1,3,2]
insert_after(L2 , 3 , L3),
% L = [1,3,2] => A = [1]
top(L3 , A),
% L = [3,2]
next(L3 , PL3),
% L = [3,2] => A = [3]
top(PL3 , B).

190.3.2 More Complex example

:- module(ddl2 , _ , []).

:- use_module(library(ddlist)).

main(A,B):-
% L = []
null_ddlist(L),
% L = [1]
insert_after(L , 1 , L1),
% L = [1,2]
insert_after(L1 , 2 , L2),
% L = [1,2]
insert(L2 , 3 , L3),
% L = [3,1,2]
prev(L3 , PL3),
% L = [],
forward(PL3 , FOR),
% L = [2]
prev(FOR , FOR1),
% L = [2] => A = 2
top(FOR1 , A),
% L = [1,2]
prev(FOR1 , FOR2),
% L = [2]
delete_after(FOR2 , FOR3),
% L = [3,2]
prev(FOR3, FOR4),

Chapter 190: Doubly linked lists 925

% L = [3,2] => B = 3
top(FOR4 , B).

926 The Ciao System

Ciao DHT Implementation 927

Ciao DHT Implementation

� �

Author(s): Arsen Kostenko.
� �

General documentation pending

 	

 	

928 The Ciao System

Chapter 191: Top-level user interface to DHT 929

191 Top-level user interface to DHT

Author(s): Arsen Kostenko.

This module contains just a top-level interface to the utilities provided by the DHT system
in Ciao. The ’philosophy’ of the current approach is that most details are hidden behind simple
read/write primitives and that the handler is exposed to the client for a concrete DHT. By doing
things this way we expect to preserve the simplicity of DHT usage while providing the freedom
of being able to switch between various instances of the Ciao DHT system

191.1 Usage and interface (dht_client)
� �

• Library usage:

:- use_module(library(dht_client)).

• Exports:

− Predicates:

dht_connect/2, dht_connect/3, dht_disconnect/1, dht_consult_b/4, dht_
consult_nb/4, dht_extract_b/4, dht_extract_nb/4, dht_store/4, dht_hash/3.

• Other modules used:

− System library modules:

sockets/sockets, dht/dht_misc.

 	

191.2 Documentation on exports (dht_client)

PREDICATEdht connect/2:
Connect to the DHT specified by Server (IP address).

Usage: dht_connect(Server,Connection)

− Description: Perform a straightforward connection from the client-side of a DHT
node. The information about DHT node to connect to is supplied as Server. It
could equally be a DNS name or an IP address.

− The following properties should hold at call time:

Server is an atom. (basic props:atm/1)

Connection is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Server is ground. (basic props:gnd/1)

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

PREDICATEdht connect/3:
Connect to the DHT specified by Server (IP address).

Usage: dht_connect(Server,Port,Connection)

930 The Ciao System

− Description: Perform a straightforward connection from the client-side of a DHT
node. The information about DHT node to connect to is supplied as combination of
Server and Port, if a non standart port is used for server-to-client communication.
It could equally be a DNS name or an IP address.

− The following properties should hold at call time:

Server is an atom. (basic props:atm/1)

Port is an integer. (basic props:int/1)

Connection is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Server is an atom. (basic props:atm/1)

Port is an integer. (basic props:int/1)

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

PREDICATEdht disconnect/1:
Disconnect from DHT, identified by special supplied connection.

Usage: dht_disconnect(Connection)

− Description: Issues ’end of file’ token to the stream supplied as Connection and
closes it without delay.

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

PREDICATEdht consult b/4:
Look either for exact predicate or predicate matching the pattern in DHT.

Usage: dht_consult_b(Conn,Key,Value,Resp)

− Description: dht_consult/4 performs a lookup in the DHT represented by Conn (see
dht_connect/2) and searches for Value previously associated with the Key. Value
may be partially instantiated in which case matching against the tuples stored in
DHT is performed.

− The following properties should hold at call time:

Conn is a predicate of type dht_connection/2, where first argument is of type atm/1
and second of type streams_basic:stream/1 (dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Resp is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Conn is a predicate of type dht_connection/2, where first argument is of type atm/1
and second of type streams_basic:stream/1 (dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Resp is ground. (basic props:gnd/1)

Chapter 191: Top-level user interface to DHT 931

PREDICATEdht consult nb/4:
Usage: dht_consult_nb(Connection,Key,Value,Response)

− Description: dht_consult/4 performs a lookup in the DHT represented by Conn (see
dht_connect/2) and searches for Value previously associated with the Key. Value
may be partially instantiated in which case matching against the tuples stored in
DHT is performed.

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is ground. (basic props:gnd/1)

PREDICATEdht extract b/4:
Extract from DHT an exact predicate of type Key(Value) or one that matches given
pattern.

Usage: dht_extract_b(Connection,Key,Value,Response)

− Description: This predicate extracts information from the DHT connected to by
Connection, that is stored under key Key if it matches the pattern supplied as Value

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is ground. (basic props:gnd/1)

PREDICATEdht extract nb/4:
Extract from DHT an exact predicate of type Key(Value) or one that matches given
pattern.

Usage: dht_extract_nb(Connection,Key,Value,Response)

932 The Ciao System

− Description: This predicate extracts information from the DHT connected to by
Connection, that is stored under key Key if it matches the pattern supplied as Value

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is ground. (basic props:gnd/1)

PREDICATEdht store/4:
Store data to DHT in form of Key(Value) predicate. No free variables are allowed in
predicate.

Usage: dht_store(Connection,Key,Value,Response)

− Description: The value provided in Value is stored under a key given as Key inside
the DHT mentioned as Connection

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Key is an atom. (basic props:atm/1)

Value is any term. (basic props:term/1)

Response is ground. (basic props:gnd/1)

PREDICATEdht hash/3:
Get value of hash function for a given term.

Usage 1: dht_hash(Connection,Value,Hash)

− Description: Get (in Hash) the hash of Value as determined by the DHT pointed to
by Connection. Implemented mostly for testing purposes.

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Value is any term. (basic props:term/1)

Hash is a free variable. (term typing:var/1)

Chapter 191: Top-level user interface to DHT 933

− The following properties should hold upon exit:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Value is any term. (basic props:term/1)

Hash is an integer. (basic props:int/1)

Usage 2: dht_hash(Connection,Value,Hash)

− Description: Check whether Hash is equal to the hash of Value as determined by the
DHT pointed to by Connection. Implemented mostly for testing purposes.

− The following properties should hold at call time:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Value is any term. (basic props:term/1)

Hash is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Connection is a predicate of type dht_connection/2, where first ar-
gument is of type atm/1 and second of type streams_basic:stream/1
(dht client:dht connection type/1)

Value is any term. (basic props:term/1)

Hash is an integer. (basic props:int/1)

934 The Ciao System

Chapter 192: Top-level interface to a DHT server 935

192 Top-level interface to a DHT server

Author(s): Arsen Kostenko.

192.1 Usage and interface (dht_server)
� �

• Library usage:

:- use_module(library(dht_server)).

• Exports:

− Predicates:

dht_server/1, dht_prolog/1.

• Other modules used:

− System library modules:

sockets/sockets, system, format, dht/dht_config, dht/dht_logic_misc,
dht/dht_s2s, dht/dht_s2c.

 	

192.2 Documentation on exports (dht_server)

PREDICATEdht server/1:
main/1: start the DHT server. Here is a step-by-step bahavior:

1. set all values of dht_config.pl module to default.

2. modify those, for which command-line arguments were supplied.

3. modify server number separately, since it depends on two command-line arguments :
--server-id and --hash-power.

4. output resulting values to terminal.

5. start client side communication by executing dht_s2c:dht_s2c_mian/0.

6. start server side communication by executing dht_s2s:dht_s2s_mian/0.

Usage: dht_server(Arguments)

− The following properties should hold at call time:

Arguments is associated with simple list, that represents pairs of command line argu-
ments (argument and its value). Possible values are: --join-host, --hash-power,
--server-id, --s2c-port, --s2c-threads, --s2s-port, --s2s-threads. All of
the arguments (except --join-host) accept integer values. In case of --join-host
value of argument should be equal to IP/DNS address of host running a copy of DHT.
(dht server:dht arguments list/1)

PREDICATEdht prolog/1:
Another style to launch the DHT server. All the parameters are passed in the list. Mem-
bers of the list are of type prameter_name(parameter_value), where parameter_name
corresponds to name of the command line argument without two leading dashes (--) and
with internal dash replaced by the underscore (_). All the values are of integer type,
except the value of join_host, which should be an atom.

936 The Ciao System

Chapter 193: Server to client communication module 937

193 Server to client communication module

Author(s): Arsen Kostenko.

This module describes the server-2-client side behavior of any node. Since the behavior is
not very different this module shares a number of fearures with dht_s2c.pl:

• extensive usage of the Ciao threading mechanism;

• interface made as simple as possible;

• dht_server.pl module is the only usage point;

• parameters are passed through the dht_config.pl module.

193.1 Usage and interface (dht_s2c)
� �

• Library usage:

:- use_module(library(dht_s2c)).

• Exports:

− Predicates:

dht_s2c_main/0.

• Other modules used:

− System library modules:

sockets/sockets, concurrency/concurrency, dht/dht_config, dht/dht_misc,
dht/dht_logic, dht/dht_logic_misc.

 	

193.2 Documentation on exports (dht_s2c)

PREDICATEdht s2c main/0:
Generally speaking, this predicate must perform some common tasks like:

• listen to a port for incoming connections from clients,

• and process requests from clients.

All the parameters needed are received from initial configuration, which is stored in
dht_config.pl module.

938 The Ciao System

Chapter 194: Server to server communication module 939

194 Server to server communication module

Author(s): Arsen Kostenko.

This module describes server-2-server side behavior of any node. Since this includes various
communication and inspection tasks that should be performed in parallel, this module makes
extensive usage of Ciao threading mechanism. On the other hand, module must be as simple
as possible in terms of usage. Therefore, only a single predicate dht_s2s_main/0 is exposed to
outer world and rest of complexity is hidden inside. This predicate is used from dht_server.pl
module. All the parameters are passed through dht_config.pl module.

194.1 Usage and interface (dht_s2s)
� �

• Library usage:

:- use_module(library(dht_s2s)).

• Exports:

− Predicates:

dht_s2s_main/0.

• Other modules used:

− System library modules:

sockets/sockets, system, concurrency/concurrency, dht/dht_config, dht/dht_
misc, dht/dht_logic.

 	

194.2 Documentation on exports (dht_s2s)

PREDICATEdht s2s main/0:
Generally speaking, this predicate must perform some conventional tasks like:

• set local part of DHT to initial state,

• contact a successor node if there is any,

• and finally launch several threads that listen to streams, process incoming requests
and inspect state of local finger-table.

All parameters (like listen port, number of threads, host to join, etc) are received from
dht_config.pl module

940 The Ciao System

Chapter 195: DHT-related logics 941

195 DHT-related logics

Author(s): Arsen Kostenko.

This module implements a core DHT functionality, like finger-table manipulation and lookup
search. Keep in mind that remote calls (known as remote predicate calls in Prolog) are extracted
to a separate module as well as low-lever database handling. In turn, the logic module is utilized
by higher-lever modules, like the server-2-server and server-2-client communication modules.

Id is treated as the value of the hash function used all over the DHT.

195.1 Usage and interface (dht_logic)
� �

• Library usage:

:- use_module(library(dht_logic)).

• Exports:

− Predicates:

dht_init/1, dht_finger/2, dht_successor/1, dht_check_predecessor/1, dht_
closest_preceding_finger/2, dht_find_predecessor/2, dht_find_successor/2,
dht_join/1, dht_notify/1, dht_stabilize/0, dht_fix_fingers/0,
dht_id_by_node/2, dht_find_and_consult_b/2, dht_consult_server_b/3, dht_
find_and_consult_nb/2, dht_consult_server_nb/3, dht_find_and_extract_b/2,
dht_extract_from_server_b/3, dht_find_and_extract_nb/2, dht_extract_from_
server_nb/3, dht_find_and_store/2, dht_store_to_server/4.

• Other modules used:

− System library modules:

dht/dht_rpr, dht/dht_config, dht/dht_logic_misc, dht/dht_storage, dht/dht_
routing.

 	

195.2 Documentation on exports (dht_logic)

PREDICATEdht init/1:
Predicated performs the initialization of a single-node DHT.

Usage: dht_init(OwnId)

− Description: The predicate is intended to perform various initialization functions like
finger table creation, hostname and IP address retrieval. The value supplied in OwnId
is treated as value of the hash function used all over the DHT.

− The following properties should hold at call time:

OwnId is an integer. (basic props:int/1)

PREDICATEdht finger/2:
Get the node identifier (composition of identifier and IP-address) by using index in the
finger table. Prolog synonym for finger[k].node.

Usage: dht_finger(Idx,Finger)

− Description: dht_finger/2 implements the array looking up necessary to retrive
information from the finger table, where first argument Idx if acting as array index
and Finger as corresponding array value.

942 The Ciao System

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

Finger is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

Finger is ground. (basic props:gnd/1)

PREDICATEdht successor/1:
Wrapper around dht_finger/1, where first argument is defaulted to ’1’

Usage: dht_successor(Successor)

− Description: dht_successor/1 a simple wrapper around dht_finger/2, that looks
up the first row of so-called finger-table

− The following properties should hold at call time:

Successor is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Successor is ground. (basic props:gnd/1)

PREDICATEdht check predecessor/1:
dht_check_predecessor/1 predicate is called by external nodes when they run dht_
stabilize/0. Since there is no other way to learn about a predecessor’s failure, but
checking explicitly once predecessor is required. that is why behavior of dht_check_
predecessor is following:

1. give ’nil’ as predecessor if it is stored in database that way, which happens if node is
unaware of any other nodes on the ring,

2. otherwise, get current value of predecessor,

3. try calling predecessor with any arbitrary predicate in our case dht_successor/1,

4. if an exception is issued by remote call - reset predecessor to ’nil’,

5. get value of predecessor once again and bind this value to the answer. We also check
that in case of finger-nodes failure, but this would work out only in poorly populated
Chord-ring

Usage 1: dht_check_predecessor(PredecessorId)

− Description: Get value of predecessor for current node.

− The following properties should hold at call time:

PredecessorId is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

PredecessorId is ground. (basic props:gnd/1)

Usage 2: dht_check_predecessor(PredecessorId)

− Description: Check whether value supplied is equal to id of predecessor.

− The following properties should hold at call time:

PredecessorId is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

PredecessorId is ground. (basic props:gnd/1)

Chapter 195: DHT-related logics 943

PREDICATEdht closest preceding finger/2:
Perform search over current finger table, in order to find entry pointing to node that is
more closely located to value supplied via Id. Here is original part of code from Chord
paper.

n.closest_preceding_finger(id){
for i = m downto 1 {

if (finger[i].node in (n, id)){
return finger[i].node;

}
}
return n;

}

.

Usage: dht_closest_preceding_finger(Id,Finger)

− Description: dht_closest_preceding_finger/2 is searching local finger-table for
the entry which points to a node, that is ’closer’ (in terms of DHT distance) to the
identifier specified at Id. It should hold that identifier of the node found is greater
than identifier of current node and lesser than the identifier supplied in Id. No
estimations concerning other nodes in between them are made. Furthermore, a cyclic
structure of identifiers is preserved: identifier ’0’ is lesser then identifier ’1’ but greater
then the highest identifier in DHT.

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Finger is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Id is an integer. (basic props:int/1)

Finger is ground. (basic props:gnd/1)

PREDICATEdht find predecessor/2:
Perform search over existing DHT structure. The resulting node is expected to precede
the one identified by Id. Again, a small quote from Chord-paper source code.

n.find_predecessor(id){
n’ is n,
while(id not_in (n’, n’.successor]){

n’ = n’.closest_preceding_finger(id);
}
return n’;

}

Usage: dht_find_predecessor(Id,Predecessor)

− Description: dht_find_predecessor/2 searches all over DHT for a node, which is
’the closest’ (in terms of DHT distance) to the index specified as Id. In other words,
the searched node must have the index lesser than the identifier specified in Id and
there must not be any other nodes between identifier specified in Id and the node
found.

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Predecessor is a free variable. (term typing:var/1)

944 The Ciao System

− The following properties should hold upon exit:

Id is an integer. (basic props:int/1)

Predecessor is ground. (basic props:gnd/1)

PREDICATEdht find successor/2:
Usage: dht_find_successor(Id,Successor)

− Description: dht_find_successor/2 has behav-
ior similar to dht_find_predecessor/2 except that it gives a node that directly
succeeds the identifier specifies. In other words, the identifier of the node found is
greater than the identifier specified in Id and there are no other nodes between the
node found and the node specified in Id

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Successor is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Id is an integer. (basic props:int/1)

Successor is ground. (basic props:gnd/1)

PREDICATEdht join/1:
It performs the join procedure on the node pointed by the argument. Here is the corre-
sponding quote:

n.join(Next){
predecessor = nil;
successor = Next.find_successor(n);

}

Usage: dht_join(NodeIP)

− Description: dht_join/2 is executed every time some node decides to join some DHT.
The only information needed for execution of join is a valid ID / IP combination of
any existing node, which must be supplied with NodeId

− The following properties should hold at call time:

NodeIP is an atom. (basic props:atm/1)

PREDICATEdht notify/1:
This predicate performs ’notification’. Notification is part of adaptation process launched
by dht_stabilize/0. A quote from Chord paper that refers to this section is given below:

n.notify(NewNodeId){
if (predecessor is nil ||

NewNodeId in (predecessor, n)){
predecessor = NewNodeId;

}
}

Usage: dht_notify(NewNode)

Chapter 195: DHT-related logics 945

− Description: dht_notify/1 is called on current node, once any other DHT node
specified by NewNode regards current node at it’s successor.

− The following properties should hold at call time:

NewNode is ground. (basic props:gnd/1)

PREDICATEdht stabilize/0:
dht_stabilize

Perform stabilization on the successor node by asking successor’s predecessor value. If the
value returned is equal to current node, just stay calm, otherwise try to adopt the newly
returned result as new successor. Most of the ’dirty’ work is performed by stabilize_
successor/2 predicate. The corresponding Chord-paper quote is given below:

n.stabilize(){
x = successor.predecessor;
if (x in (n, successor)){

successor = x;
}
successor.notify(n);

}

There is also a small simplification scheme, since before calling dht_join/1 each node
assumes itself as the only member of the circle, the very first case of dht_stabilize/0
does nothing if successor is actually equal to current node.

Usage:

− Description: dht_stabilize/0 is a eternally repeated predicate, which aims at sta-
bilizing first-level references of the finger-table, while multiple concurrent joins and
failures can happen. Its main goal is to ask its own successor to report its predecessor.
If the reported node is different from the one that is calling dht_stabilize/0, there
should be someone in between current node and its the successor. So a newly reported
node should be registered as the successor instead of an old one. Technically, once an
inconsistency between actual state of DHT and finger-table is found a newly found
node is asked to perform dht_notify/1, with current node as an argument.

PREDICATEdht fix fingers/0:
dht_fix_fingers

This predicate takes care of maintaining the finger table entries (except the first one) up
to date. The first entry is taken care of by a specialized predicate dht_stabilize/0, since
there is much more responsibility on first entry (a direct successor). Rest of the same task
is performed here, by dht_fix_fingers/0. In the Chord paper notation this part look
like:

n.fix_fingers(){
i = random index > 1 into finger[];
finger[i].node = find_successor(finger[i].start);

}

.

Usage:

946 The Ciao System

− Description: dht_fix_fingers/0 is yet another randomly repeated predicate, which
aims at stabilizing high-level references of finger-table, while multiple concurrent joins
and failures happen. Once started, dht_fix_fingers/0 picks a random (but not first)
entry of finger table, and searches for a node responsible for the identifiers specified in
the entry. In case, node that was found is different from the one currently specified,
current node is replaced by a new one.

PREDICATEdht id by node/2:
This predicate is entirely used by remote calls. Since there is dht_rpr_id_by_node/2 for
current module. This is an effort to avoid module-re-exportation (dht_routing.pl and
dht_rpr.pl).

Usage: dht_id_by_node(Node,NodeID)

− Description: Get node identity by node number.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeID is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Node is an integer. (basic props:int/1)

NodeID is ground. (basic props:gnd/1)

PREDICATEdht find and consult b/2:
dht_find_and_consult_b/2 is meant to perform two actions:

• search for the node responsible for value supplied as a Key;

• perform dht_consult_server_b/3 on a node found.

This is the first predicate of the whole dht_find_and_*/2 family of predicates. Name of
each member of the family gives a hint on implementation. And as it is presented by the
name of the family, they share some part of implementation - all the members of the family
perform search for particular DHT-node, which is achieved by find_server/3 predicate.

Usage 1: dht_find_and_consult_b(Key,Value)

− Description: An invocation of this type would bind all free variables in Value to the
values present in the local database of the node responsible for Key.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_find_and_consult_b(Key,Value)

− Description: Invocation with two ground arguments is equal to checking the presence
of the term specified by Value inside the DHT.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

Chapter 195: DHT-related logics 947

PREDICATEdht consult server b/3:
Basically forms the second half of dht_find_and_consult/2 predicate. This predicate
takes no care about search of corresponding server. The only thing it does - given a server
try to locate a predicate under given Key there. Of course there two possible variants of
application:

Usage 1: dht_consult_server_b(NodeId,Key,Value)

− Description: First variant deals with real consulting, when the value is unknown.
Therefore, after predicate is successfully executed, a real value, that is stored under
Key is associated with third argument (Value)

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_consult_server_b(NodeId,Key,Value)

− Description: Second variant is more similar to check for existence, All arguments are
ground by the time predicate is called, so the only use is success/failure of predicate
itself.

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht find and consult nb/2:
dht_find_and_consult_nb/2 is meant to perform two actions:

• search for the node responsible for value supplied as a Key;

• perform dht_consult_server_nb/3 on a node found.

This is the first predicate of the whole dht_find_and_*/2 family of predicates. Name of
each member of the family gives a hint on implementation. And as it is presented by the
name of the family, they share some part of implementation - all the members of the family
perform search for particular DHT-node, which is achieved by find_server/3 predicate.

Usage 1: dht_find_and_consult_nb(Key,Value)

− Description: An invocation of this type would bind all free variables in Value to the
values present in the local database of the node responsible for Key.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is a free variable. (term typing:var/1)

948 The Ciao System

− The following properties should hold upon exit:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_find_and_consult_nb(Key,Value)

− Description: Invocation with two ground arguments is equal to checking the presence
of the term specified by Value inside the DHT.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht consult server nb/3:
Basically forms the second half of dht_find_and_consult/2 predicate. This predicate
takes no care about search of corresponding server. The only thing it does - given a server
try to locate a predicate under given Key there. Of course there two possible variants of
application:

Usage 1: dht_consult_server_nb(NodeId,Key,Value)

− Description: First variant deals with real consulting, when the value is unknown.
Therefore, after predicate is successfully executed, a real value, that is stored under
Key is associated with third argument (Value)

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_consult_server_nb(NodeId,Key,Value)

− Description: Second variant is more similar to check for existence, All arguments are
ground by the time predicate is called, so the only use is success/failure of predicate
itself.

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht find and extract b/2:
dht_find_and_extract_b/2 is meant to perform two actions:

• search for node responsible for value supplied as a Key;

Chapter 195: DHT-related logics 949

• perform dht_extract_from_server_b/3 on a node found.

Unlike dht_find_and_consult/2, this predicate removes matching records form the local
databases of the corresponding nodes.

Usage 1: dht_find_and_extract_b(Key,Value)

− Description: An invocation of this type would bind all free variables in Value to
values present in the local database of the corresponding node, and the values against
which the matching was performed are erased.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_find_and_extract_b(Key,Value)

− Description: Invocation with two ground arguments is equal to checking presence of
term specified by Value inside the DHT, and removing it in case of successful search.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht extract from server b/3:
This predicate is also used entirely as a second part of dht_find_and_extract/2 predi-
cate. It’s behavior differs from similar dht_consult_server_b/3 predicate, only in action
that is performed over DHT. In this case ’extraction’ of predicates, instead of simple ’con-
sultation’

Usage 1: dht_extract_from_server_b(NodeId,Key,Value)

− Description: First variant deals with blind ’extraction’, when the value is unknown.
Therefore, after predicate is successfully executed, a real value, that is stored under
Key is associated with third argument (Value)

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_extract_from_server_b(NodeId,Key,Value)

− Description: Second variant is more similar to pointed elimination. All arguments
are ground by the time predicate is called, so the only use is success and elimination
of predicate itself or general failure on contrary.

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

950 The Ciao System

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht find and extract nb/2:
dht_find_and_extract_nb/2 is meant to perform two actions:

• search for node responsible for value supplied as a Key;

• perform dht_extract_from_server_nb/3 on a node found.

Unlike dht_find_and_consult/2, this predicate removes matching records form the local
databases of the corresponding nodes.

Usage 1: dht_find_and_extract_nb(Key,Value)

− Description: An invocation of this type would bind all free variables in Value to
values present in the local database of the corresponding node, and the values against
which the matching was performed are erased.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_find_and_extract_nb(Key,Value)

− Description: Invocation with two ground arguments is equal to checking presence of
term specified by Value inside the DHT, and removing it in case of successful search.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht extract from server nb/3:
This predicate is also used entirely as a second part of dht_find_and_extract/2 predi-
cate. It’s behavior differs from similar dht_consult_server_b/3 predicate, only in action
that is performed over DHT. In this case ’extraction’ of predicates, instead of simple ’con-
sultation’

Usage 1: dht_extract_from_server_nb(NodeId,Key,Value)

− Description: First variant deals with blind ’extraction’, when the value is unknown.
Therefore, after predicate is successfully executed, a real value, that is stored under
Key is associated with third argument (Value)

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

Chapter 195: DHT-related logics 951

Usage 2: dht_extract_from_server_nb(NodeId,Key,Value)

− Description: Second variant is more similar to pointed elimination. All arguments
are ground by the time predicate is called, so the only use is success and elimination
of predicate itself or general failure on contrary.

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht find and store/2:
First part of this predicate is similar to rest of dht_find_and_*/2 family - perform search
over existing DHT structure. After search - storage operation is performed.

Usage: dht_find_and_store(Key,Value)

− Description: dht_find_and_store/2 is meant to perform two actions:

• search for a node responsible for the value supplied as Key;

• perform dht_store_to_server/4 on node found.

Since the arguments of dht_store_to_server/4 must be ground both arguments of
dht_find_and_store are ground too.

− The following properties should hold at call time:

Key is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht store to server/4:
Second part of dht_find_and_store/2 predicate.

Usage: dht_store_to_server(NodeId,Key,KeyHash,Value)

− Description: Store Value under given Key and also record relation between Key and
KeyHash.

− The following properties should hold at call time:

NodeId is ground. (basic props:gnd/1)

Key is ground. (basic props:gnd/1)

KeyHash is ground. (basic props:gnd/1)

Value is ground. (basic props:gnd/1)

952 The Ciao System

Chapter 196: Finger table and routing information 953

196 Finger table and routing information

Author(s): Arsen Kostenko.

This module holds the basic operations over the finger table and other routing information.
Developed for the sake of simplicity, it should be used only within the dht_logic.pl file.
Probably the most important and abstract part of the routing is the finger table. Here is a
finger table copy of the node representing identifier 0 (from the Chord paper):

finger_table(1, 1, finger_interval(1,2), 1).
finger_table(2, 2, finger_interval(2,4), 3).
finger_table(3, 4, finger_interval(4,0), 0).

.

This table reflects the case where there are 8 identifiers in total in the identifier circle and
three running nodes with identifiers 0, 1, and 3. In general each entry can be represented as
finger_table(idx, start, interval, succ). Here is a brief description of each argument:

• idx - Since arrays are not native for Prolog, I put the index as the first argument to the
finger table predicate to achieve indexing.

• start - ID that starts the corresponding section of the table.

• interval - IDs that fit into the corresponding section of table, represented in the form:
finger_interval(interval_start, interval_end)., where:

• interval start - ID that starts this interval.

• interval end - first ID of the next interval.

• succ - ID of node responsible for the corresponding section of table, represented in node_
id(id, ip). form, where:

• id - ID of a node.

• ip - IP address of a node.

196.1 Usage and interface (dht_routing)
� �

• Library usage:

:- use_module(library(dht_routing)).

• Exports:

− Predicates:

dht_
finger_table/2, dht_finger_start/2, dht_update_finger/2, dht_set_finger/4,
dht_predecessor/1, dht_set_predecessor/1, dht_reset_predecessor/0.

 	

196.2 Documentation on exports (dht_routing)

PREDICATEdht finger table/2:
It serves as a read-only interface to the finger table information as follows: Idx stands for
an index in an array, and Node is the number of the node which is recorded in the entry
with that index.

Usage 1: dht_finger_table(Idx,Node)

− Description: This case is equal to getting any (possibly random) entry from the finger
table.

954 The Ciao System

− The following properties should hold at call time:

Idx is a free variable. (term typing:var/1)

Node is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

Node is an integer. (basic props:int/1)

Usage 2: dht_finger_table(Idx,Node)

− Description: Get some (one or several if backtracking is exploited) indexes that men-
tion particular node numer, supplied as Node.

− The following properties should hold at call time:

Idx is a free variable. (term typing:var/1)

Node is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

Node is an integer. (basic props:int/1)

Usage 3: dht_finger_table(Idx,Node)

− Description: Get the identifier of the node, indexed by Idx. Theoretically, there
should be no more than on entry for each value of index.

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

Node is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

Node is an integer. (basic props:int/1)

Usage 4: dht_finger_table(Idx,Node)

− Description: Check whether a particular combination (index and node number) is
present in finger table.

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

Node is an integer. (basic props:int/1)

PREDICATEdht finger start/2:
This predicate may be regarded as a read-only interface to map between the index is a
finger table and the beginning of the section of the DHT circle.

Usage 1: dht_finger_start(Idx,NextId)

− Description: Get any entry, in other words and entry that has any index and points
to any segment in the circle. Common constraints on finger tables, do hold anyway:

• result unifies with the content of finger table;

• predicate enumerates possible results on backtracking.

− The following properties should hold at call time:

Idx is a free variable. (term typing:var/1)

NextId is a free variable. (term typing:var/1)

Chapter 196: Finger table and routing information 955

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

NextId is an integer. (basic props:int/1)

Usage 2: dht_finger_start(Idx,NextId)

− Description: Ask for the index of entry that mentions a particular node as the starting
one.

− The following properties should hold at call time:

Idx is a free variable. (term typing:var/1)

NextId is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

NextId is an integer. (basic props:int/1)

Usage 3: dht_finger_start(Idx,NextId)

− Description: Get the starting node for a certain entry of finger table.

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

NextId is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Idx is an integer. (basic props:int/1)

NextId is an integer. (basic props:int/1)

Usage 4: dht_finger_start(Idx,NextId)

− Description: Check for the presence of a correspondence between a certain entry and
its starting node.

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

NextId is an integer. (basic props:int/1)

PREDICATEdht update finger/2:
dht_update_finger/2 takes care of changing node value to NodeId for entry with index
number equal to Idx. This predicate has entirely imperative behavior. Both arguments
are to be ground at the moment of call.

Usage: dht_update_finger(Idx,NodeId)

− Description: Stores supplied information, previously erasing all old information.

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

NodeId is an integer. (basic props:int/1)

PREDICATEdht set finger/4:
This predicate sets the value of finger table entries. If any entry with the same index
(Idx) exists, it is erased before new value is asserted.

Usage: dht_set_finger(Idx,Start,End,Node)

− Description: All the arguments are to be ground and of type integer.

956 The Ciao System

− The following properties should hold at call time:

Idx is an integer. (basic props:int/1)

Start is an integer. (basic props:int/1)

End is an integer. (basic props:int/1)

Node is an integer. (basic props:int/1)

PREDICATEdht predecessor/1:
A common read-only interface to get or check the ID of the predecessor node.

Usage 1: dht_predecessor(PredId)

− Description: Get number of predecessor node.

− The following properties should hold at call time:

PredId is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

PredId is an integer. (basic props:int/1)

Usage 2: dht_predecessor(PredId)

− Description: Check whether particular number is associated with current predecessor.

− The following properties should hold at call time:

PredId is an integer. (basic props:int/1)

PREDICATEdht set predecessor/1:
Write interface for predecessor ID. It checks the type of its argument and saves argument
locally.

Usage: dht_set_predecessor(PredId)

− Description: Save PredId as the ID of predecessor for current node.

− The following properties should hold at call time:

PredId is an integer. (basic props:int/1)

PREDICATEdht reset predecessor/0:
Set value of preceding node index to ’nil’ whatever it’s prior value is.

Chapter 197: Various wrappers for DHT logics module 957

197 Various wrappers for DHT logics module

Author(s): Arsen Kostenko.

This module contains miscellaneous predicates related to the dht_logic.pl module. Mostly
various calculation-wrappers.

197.1 Usage and interface (dht_logic_misc)
� �

• Library usage:

:- use_module(library(dht_logic_misc)).

• Exports:

− Predicates:

hash_size/1, highest_hash_number/1, consistent_hash/2, next_on_circle/2,
not_in_circle_oc/3, in_circle_oo/3, in_circle_oc/3.

• Other modules used:

− System library modules:

indexer/hash, dht/dht_config.

 	

197.2 Documentation on exports (dht_logic_misc)

PREDICATEhash size/1:
This predicate calculates (2**m), where ’m’ is equal to hash_power/1 received from system
wide configurations stored in dht_config.pl.

Usage: hash_size(Size)

− Description: The only purpose of hash_size/1 predicate is to get corresponding
value from system wide configurations stored in dht_config.pl file and convert it
into the number of nodes virtually available in the current DHT installation.

− The following properties should hold at call time:

Size is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Size is ground. (basic props:gnd/1)

Size is an integer. (basic props:int/1)

PREDICATEhighest hash number/1:
This predicate calculates (2**m)-1, where ’m’ is equal to hash_power/1 received from
system wide configurations stored in dht_config.pl.

Usage 1: highest_hash_number(N)

− Description: If used with a ground argument highest_hash_number/1 simply checks
whether the value supplied corresponds to the biggest hash number possible in the
DHT.

− The following properties should hold at call time:

N is an integer. (basic props:int/1)

958 The Ciao System

Usage 2: highest_hash_number(N)

− Description: Otherwise (if argument happens to be a free variable) the value of N is
bound to the highest hash number possible in the DHT.

− The following properties should hold at call time:

N is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

N is an integer. (basic props:int/1)

PREDICATEconsistent hash/2:
This kind of computation is usually performed every time, when one needs to get value of
hash-function.

Usage: consistent_hash(Term,DHTHash)

− Description: Straightforward computation of hash (DHTHash) on the basis of Term
supplied.

− The following properties should hold at call time:

Term is any term. (basic props:term/1)

DHTHash is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Term is any term. (basic props:term/1)

DHTHash is an integer. (basic props:int/1)

PREDICATEnext on circle/2:
Performs the calculation of (id+1) mod ((2**m)-1), where id is the first argument sup-
plied, and m is equal to hash_power/1.

Usage: next_on_circle(Id,Num)

− Description: next_on_circle/2 is a calculation wrapping. One can only use it
with first argument ground and equal to integer value. What is more, that value
MUST be kept within certain bounds: value of Id MUST meet the constraints
0<=Id<=HighNum, where HighNum is retrieved via highest_hash_number/1 predi-
cate.

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Num is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Id is an integer. (basic props:int/1)

Num is an integer. (basic props:int/1)

PREDICATEnot in circle oc/3:
not_in_circle_oc/3: the ’oc’ suffix stands for "open-closed" interval. The predicate
implements the behavior of the expression: Id not_in (a,b]. where both ’a’ and ’b’ are
numbers/identifiers on the DHT-ring.

Usage: not_in_circle_oc(Id,Start,End)

Chapter 197: Various wrappers for DHT logics module 959

− Description: Yet another wrapper around simple calculations. All arguments are
expected to be ground, by the time the predicate is called. The predicate checks
whether the value supplied as Id fits into circle sector defined by values of Start and
End. If the condition is not true - the whole predicate fails.

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Start is an integer. (basic props:int/1)

End is an integer. (basic props:int/1)

PREDICATEin circle oo/3:
in_circle_oo/3: the ’oo’ suffix stands for "open-open" circle interval. The predicate
implements the behavior of following expression: Id in (a,b).

Usage: in_circle_oo(Id,Start,End)

− Description: Check whether value of Id fits into sector defined by Start and End
excluding both, fail otherwise.

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Start is an integer. (basic props:int/1)

End is an integer. (basic props:int/1)

PREDICATEin circle oc/3:
in_circle_oc/3: the ’oc’ suffix stands for "open-closed" interval. The predicate is based
on in_circle_oo/3 and considers the interval to be closed on the right. This predicate
implements the behavior of the expression: Id in (a,b]

Usage: in_circle_oc(Id,Start,End)

− Description: Check whether value of Id fits into sector defined by Start and End
excluding first and including second. Fail if the condition does not hold.

− The following properties should hold at call time:

Id is an integer. (basic props:int/1)

Start is an integer. (basic props:int/1)

End is an integer. (basic props:int/1)

960 The Ciao System

Chapter 198: Remote predicate calling utilities 961

198 Remote predicate calling utilities

Author(s): Arsen Kostenko.

RPR stands for Remote PRedicate calling. The basic functionality of a remote procedure
(or predicate, in Prolog terms of Prolog) call is gathered here. Thus module contains predicates
for the execution of remote calls and manipulation routines of the module-specific database.

198.1 Usage and interface (dht_rpr)
� �

• Library usage:

:- use_module(library(dht_rpr)).

• Exports:

− Predicates:

dht_rpr_register_node/1, dht_rpr_register_node/2, dht_rpr_node_by_id/2,
dht_rpr_id_by_node/2, dht_rpr_compose_id/3, dht_rpr_clear_by_node/1, dht_
rpr_node/1, dht_rpr_call/2, dht_rpr_call/3, node_id/2.

− Regular Types:

dht_rpr_node_id/1.

• Other modules used:

− System library modules:

format, sockets/sockets, dht/dht_config, dht/dht_misc.

 	

198.2 Documentation on exports (dht_rpr)

PREDICATEdht rpr register node/1:
Sometimes information from remote nodes is received in the form of a node_id/2. In
these cases a single argument predicate might be useful.

Usage: dht_rpr_register_node(NodeID)

− Description: Save node identity to module-specific DB.

− The following properties should hold at call time:

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

PREDICATEdht rpr register node/2:
General write interface to DB of physical nodes (those that have IP addresses). Informa-
tion is re-written every time, so no old entries are expected to remain.

Usage: dht_rpr_register_node(Node,NodeIP)

− Description: dht_rpr_register_node/2 is responsible for the management of a
module-specific database that stores information on node identifiers and IP addresses
corresponding to them. Despite there is only one usage mode the behavior may differ
depending on the state of module-specific database. For instance, if the database al-
ready contains information about a node, whose identifier is equal to the one supplied
in Node, a newly supplied entry would be written over the old one. A new entry is
added to the module-specific database otherwise.

962 The Ciao System

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeIP is ground. (basic props:gnd/1)

PREDICATEdht rpr node by id/2:
Just a convenient wrapper around module-specific data structures, which is used in com-
bination with Ciao functional syntax.

Usage 1: dht_rpr_node_by_id(NodeID,Node)

− Description: Extract value of node from the node identifier NodeID.

− The following properties should hold at call time:

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Node is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Node is ground. (basic props:gnd/1)

Usage 2: dht_rpr_node_by_id(NodeID,Node)

− Description: Check whether the value of the NodeID node identifier corresponds to
the Node value.

− The following properties should hold at call time:

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Node is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Node is ground. (basic props:gnd/1)

Usage 3: dht_rpr_node_by_id(NodeID,Node)

− Description: Return the node identifier associated to the exact node number.

− The following properties should hold at call time:

NodeID is a free variable. (term typing:var/1)

Node is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

NodeID is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

Node is ground. (basic props:gnd/1)

Usage 4: dht_rpr_node_by_id(NodeID,Node)

− Description: This case is merely useless, however perfectly possible.

− The following properties should hold at call time:

NodeID is a free variable. (term typing:var/1)

Node is a free variable. (term typing:var/1)

Chapter 198: Remote predicate calling utilities 963

PREDICATEdht rpr id by node/2:
Convenient wrapper around internal data structures, as well as dht_rpr_node_by_id/2,
this predicate is usually used in combination with Ciao functional syntax.

Usage 1: dht_rpr_id_by_node(Node,NodeID)

− Description: Get node identity by it’s number.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeID is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Node is an integer. (basic props:int/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Usage 2: dht_rpr_id_by_node(Node,NodeID)

− Description: Lookup and fill ramaining id field.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeID is a term of type node_id/2 with first argument as free variable or integer
and second an IP/DNS address (dht rpr:dht rpr comp node id/1)

− The following properties should hold upon exit:

Node is an integer. (basic props:int/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Usage 3: dht_rpr_id_by_node(Node,NodeID)

− Description: Lookup and fill remainting address field.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeID is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

− The following properties should hold upon exit:

Node is an integer. (basic props:int/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Usage 4: dht_rpr_id_by_node(Node,NodeID)

− Description: Check whether local database really has record about NodeID with Node
as its node number.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

REGTYPEdht rpr node id/1:
Usage: dht_rpr_node_id(NodeID)

− Description: NodeID is a term of type node_id/2 with first argument as integer value
and second as IP/DNS address.

964 The Ciao System

PREDICATEdht rpr compose id/3:
Compose identity structure out of arguments provided

Usage 1: dht_rpr_compose_id(Node,NodeIP,NodeID)

− Description: Compose an internal structure.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeIP is ground. (basic props:gnd/1)

NodeID is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Node is an integer. (basic props:int/1)

NodeIP is ground. (basic props:gnd/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Usage 2: dht_rpr_compose_id(Node,NodeIP,NodeID)

− Description: Check whether arguments correspond to structure supplied.

− The following properties should hold at call time:

Node is an integer. (basic props:int/1)

NodeIP is ground. (basic props:gnd/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

− The following properties should hold upon exit:

Node is an integer. (basic props:int/1)

NodeIP is ground. (basic props:gnd/1)

NodeID is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

PREDICATEdht rpr clear by node/1:
Write-interface (or more precisely, erase-interface) to DB of physical nodes (those that have
IP-address). dht_rpr_clear_node is a dumb-wrapper around retraction operation over
module-specific database. As usually, retraction may be performed when the argument is
a free variable.

Usage 1: dht_rpr_clear_by_node(Node)

− Description: Erase any (possibly random) node information.

− The following properties should hold at call time:

Node is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

− The following properties should hold upon exit:

Node is ground. (basic props:gnd/1)

Usage 2: dht_rpr_clear_by_node(Node)

− Description: Erase exact node.

− The following properties should hold at call time:

Node is a term of type node_id/2 with first argument as integer value and second as
IP/DNS address. (dht rpr:dht rpr node id/1)

− The following properties should hold upon exit:

Node is ground. (basic props:gnd/1)

Chapter 198: Remote predicate calling utilities 965

PREDICATEdht rpr node/1:
Generic read interface to DB of physical nodes.

Usage 1: dht_rpr_node(Node)

− Description: Checks for presence of any information on a node supplied as Node.

− The following properties should hold at call time:

Node is a term of type node_id/2 with first argument as integer value and second as
IP/DNS address. (dht rpr:dht rpr node id/1)

Usage 2: dht_rpr_node(Node)

− Description: Get node that matches given template.

− The following properties should hold at call time:

Node is a term of type node_id/2 with first argument is either a free vari-
able or an integer and second is either a free variable or a IP/DNS address
(dht rpr:dht rpr comp node/1)

PREDICATEdht rpr call/2:
dht_rpr_call/2 execute a goal remotely. The platform for remote execution is specified
by HostId. Goal might be a fully instantiated term as well as partially instantiated one
(as used in any other goal).

Usage 1: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of partially instantiated goal: e.g., a pattern search.
Remote host for execution is specified via IP/DNS address of node identity, rest of
identity is ignored

− The following properties should hold at call time:

HostId is a term of type node_id/2 with first argument as free variable or integer
and second an IP/DNS address (dht rpr:dht rpr comp node id/1)

Goal is a free variable. (term typing:var/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is a term of type node_id/2 with first argument as free variable or integer
and second an IP/DNS address (dht rpr:dht rpr comp node id/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 2: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of partially instantiated goal: e.g., a pattern search.
Remote host for execution is specified via integer of node identity, IP/DNS address
is searched through local database.

− The following properties should hold at call time:

HostId is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

Goal is a free variable. (term typing:var/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

966 The Ciao System

− The following properties should hold upon exit:

HostId is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 3: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of partially instantiated goal: e.g., a pattern search.
Remote host for execution is specified via IP/DNS address of node identity, rest of
identity is ignored

− The following properties should hold at call time:

HostId is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Goal is a free variable. (term typing:var/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 4: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of partially instantiated goal: e.g., a pattern
search.Remote host for execution is specified via integer, IP/DNS address is searched
through local database using that integer as part of node identity.

− The following properties should hold at call time:

HostId is an integer. (basic props:int/1)

Goal is a free variable. (term typing:var/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is an integer. (basic props:int/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 5: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of partially instantiated goal: e.g., a pattern search.
Finally make a try to use first argument as directly-specified IP/DNS address.

− The following properties should hold at call time:

HostId is an atom. (basic props:atm/1)

Goal is a free variable. (term typing:var/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Chapter 198: Remote predicate calling utilities 967

− The following properties should hold upon exit:

HostId is an atom. (basic props:atm/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 6: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of fully instantiated goal: e.g., a pattern search.
Remote host for execution is specified via IP/DNS address of node identity, rest of
identity is ignored

− The following properties should hold at call time:

HostId is a term of type node_id/2 with first argument as free variable or integer
and second an IP/DNS address (dht rpr:dht rpr comp node id/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is a term of type node_id/2 with first argument as free variable or integer
and second an IP/DNS address (dht rpr:dht rpr comp node id/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 7: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of fully instantiated goal: e.g., a pattern search.
Remote host for execution is specified via integer of node identity, IP/DNS address
is searched through local database.

− The following properties should hold at call time:

HostId is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is a term of type node_id/2 with first argument as integer and second as free
variable or IP/DNS address (dht rpr:dht rpr comp node addr/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 8: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of fully instantiated goal: e.g., a pattern search.
Remote host for execution is specified via IP/DNS address of node identity, rest of
identity is ignored

− The following properties should hold at call time:

HostId is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

968 The Ciao System

− The following properties should hold upon exit:

HostId is a term of type node_id/2 with first argument as integer value and second
as IP/DNS address. (dht rpr:dht rpr node id/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 9: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of fully instantiated goal: e.g., a pattern
search.Remote host for execution is specified via integer, IP/DNS address is searched
through local database using that integer as part of node identity.

− The following properties should hold at call time:

HostId is an integer. (basic props:int/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is an integer. (basic props:int/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Usage 10: dht_rpr_call(HostId,Goal)

− Description: Perform remote call of fully instantiated goal: e.g., a pattern search.
Finally make a try to use first argument as directly-specified IP/DNS address.

− The following properties should hold at call time:

HostId is an atom. (basic props:atm/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

− The following properties should hold upon exit:

HostId is an atom. (basic props:atm/1)

Goal is ground. (basic props:gnd/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

PREDICATEdht rpr call/3:
The only difference this predicate has with dht_rpr_call/2 is debug-enabling switch.
Third parameter is expected to be responsible for that. It takes one of two possible values
’debug’ or ’nodebug’. The first one is default. If default value is used, the standard output
stream is populated with various debugging information.

Usage 1: dht_rpr_call(HostId,Goal,Debug)

− Description: dht_rpr_call/3 executes a Goal remotely and prints some debug-
ging information locally. The platform for the remote execution is specified by
HostId.Debug variable must be bound to value ’debug’ in order for this case to fire.

Chapter 198: Remote predicate calling utilities 969

− The following properties should hold at call time:

HostId is an integer. (basic props:int/1)

Goal is any term. (basic props:term/1)

Debug is ground. (basic props:gnd/1)

Usage 2: dht_rpr_call(HostId,Term,Anything)

− Description: dht_rpr_call/3 executes a Goal remotely without writing any infor-
mation on the local output stream. The platform for the remote execution is specified
by HostId.

− The following properties should hold at call time:

HostId is an integer. (basic props:int/1)

Term is any term. (basic props:term/1)

Anything is a free variable. (term typing:var/1)

PREDICATEnode id/2:
node_id/2is an auxilary prediate for internal data structures hanling.

The predicate is of type concurrent.

970 The Ciao System

Chapter 199: Underlying data-storage module 971

199 Underlying data-storage module

Author(s): Arsen Kostenko.

This module contains very low-level utilities of data storage specific to a single node. Neither
data sharing nor remote invocation is performed at this level. Note that no dedicated data
manipulation is performed neither on this level. Also keep in mind that concept of Key should
always meet the same constraints as the second argument of functor/3 predicate. Important
decision taken at this point is representation of all information stored in the DHT as usual
Prolog facts. This behavior is implemented by representing relations of form Key -> Value in
form of Key(Value) facts.

199.1 Usage and interface (dht_storage)
� �

• Library usage:

:- use_module(library(dht_storage)).

• Exports:

− Predicates:

dht_store/3, dht_extract_b/2, dht_extract_nb/2, dht_consult_b/2, dht_
consult_nb/2, dht_key_hash/2.

• Other modules used:

− System library modules:

concurrency/concurrency.

 	

199.2 Documentation on exports (dht_storage)

PREDICATEdht store/3:
This predicate stores information into the local (module-local) database. The three ar-
guments stand for key, value, and value of hash-function, when applied to the key. The
third argument is needed for auxiliary database, which is used by reverse lookup.

Usage: dht_store(Key,KeyHash,Value)

− Description: The value provided in Value is stored under a key given as Key.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

KeyHash is an integer. (basic props:int/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht extract b/2:
Looks up local database for fact of following type Key/1, that takes Value as argument.
The pair is extracted from the database if there is at lease one match. Otherwise call is
blocking once the fact is not found instantly.

Usage 1: dht_extract_b(Key,Value)

− Description: Search for exact fact.

972 The Ciao System

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_extract_b(Key,Value)

− Description: Search for fact matching pattern. Pattern is supplied as Value.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht extract nb/2:
Looks up the local database for a fact of type Key/1 that takes Value as argument. If a
corresponding fact is found in database, it is extracted from it. With respect to behavior
of dht_extract_b/2, this predicated has a useful difference - it does not block while
searching.

Usage 1: dht_extract_nb(Key,Value)

− Description: Check that combination of Key/Value appears in database.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_extract_nb(Key,Value)

− Description: Search for combination of Key/Value matching pattern. Pattern is
supplied as Value.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht consult b/2:
Looks up local database for combination of Key/Value of following type Key/1 that takes
Value as argument. The combination of Key/Value is only looked up. If there is no
corresponding combination of Key/Value in local database, dht_consult_b/2 blocks until
such fact is inserted. Nothing is done neither to combination of Key/Value nor to local
database.

Usage 1: dht_consult_b(Key,Value)

Chapter 199: Underlying data-storage module 973

− Description: Search for exact combination of Key/Value.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_consult_b(Key,Value)

− Description: Search for combination of Key/Value matching pattern. Pattern is
supplied as Value.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht consult nb/2:
Looks up local database for combination of Key/Value of following type Key/1 that takes
Value as argument. The combination of Key/Value is only looked up - no modifications
are done in any case (whether a match was found or not). As in case with dht_extract_
nb/2, this predicate does not block while searching for matching values.

Usage 1: dht_consult_nb(Key,Value)

− Description: Search for exact combination of Key/Value.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

Usage 2: dht_consult_nb(Key,Value)

− Description: Search for combination of Key/Value matching pattern. Pattern is
supplied as Value.

− The following properties should hold at call time:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Key is an atom. (basic props:atm/1)

Value is ground. (basic props:gnd/1)

PREDICATEdht key hash/2:
A general read-interface to auxiliary database, in order to perform reverse search: ’get set
of keys by corresponding value of hash function’.

Usage 1: dht_key_hash(Key,KeyHash)

974 The Ciao System

− Description: The most general case (when both arguments are free) is searching for
any key-hash pair stored in auxiliary database.

− The following properties should hold at call time:

Key is a free variable. (term typing:var/1)

KeyHash is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is ground. (basic props:gnd/1)

KeyHash is an integer. (basic props:int/1)

Usage 2: dht_key_hash(Key,KeyHash)

− Description: Here Key is ground, which in turn leads to search for information on
concrete predicate.

− The following properties should hold at call time:

Key is ground. (basic props:gnd/1)

KeyHash is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Key is ground. (basic props:gnd/1)

KeyHash is an integer. (basic props:int/1)

Usage 3: dht_key_hash(Key,KeyHash)

− Description: On the contrary to previous example, this one has only second argument
KeyHash ground. Therefore, this type of call would search for keys, that where mapped
into given value of hash-function.

− The following properties should hold at call time:

Key is a free variable. (term typing:var/1)

KeyHash is an integer. (basic props:int/1)

− The following properties should hold upon exit:

Key is ground. (basic props:gnd/1)

KeyHash is an integer. (basic props:int/1)

Usage 4: dht_key_hash(Key,KeyHash)

− Description: Finally, calling dht_key_hash with both arguments ground is similar to
straight-forward check on auxiliary database, or to asking a question: “Does auxiliary
database has any information on this key, which is mapped into that hash value?”

− The following properties should hold at call time:

Key is ground. (basic props:gnd/1)

KeyHash is an integer. (basic props:int/1)

Chapter 200: Configuration module 975

200 Configuration module

Author(s): Arsen Kostenko.

This is the initial system-wide configuration storage module. All the configurations stored
here are represented by command-line arguments or corresponding terms, depending on the
server launching style.

200.1 Usage and interface (dht_config)
� �

• Library usage:

:- use_module(library(dht_config)).

• Exports:

− Predicates:

hash_power/1, dht_set_hash_power/1, dht_s2c_port/1, dht_set_s2c_port/1,
dht_s2c_threads/1, dht_set_s2c_threads/1, dht_s2s_port/1, dht_set_s2s_
port/1, dht_s2s_threads/1, dht_set_s2s_threads/1, dht_join_host/1, dht_set_
join_host/1, dht_server_id/1, dht_set_server_id/1, dht_server_host/1, dht_
set_server_host/1.

 	

200.2 Documentation on exports (dht_config)

PREDICATEhash power/1:
Get/check power of currently running DHT. Hash function has (2**m) values, therefore
hash_power/1 returns/checks m.

Usage 1: hash_power(Power)

− Description: Bound Power to value of currently running DHT power.

− The following properties should hold at call time:

Power is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Power is an integer. (basic props:int/1)

Usage 2: hash_power(Power)

− Description: Check whether Power is equal to power of the currently running DHT.

− The following properties should hold at call time:

Power is an integer. (basic props:int/1)

PREDICATEdht set hash power/1:
Set initial power of hash function.

Usage: dht_set_hash_power(Power)

− Description: Set m for (2**m) formula.

− The following properties should hold at call time:

Power is an integer. (basic props:int/1)

976 The Ciao System

PREDICATEdht s2c port/1:
Get/check server to client communication port.

Usage 1: dht_s2c_port(Port)

− Description: Set value of Port to currently used port number for server-to-client
communication.

− The following properties should hold at call time:

Port is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

Port is an integer. (basic props:int/1)

Usage 2: dht_s2c_port(Port)

− Description: Check whether value of Port is equal to currently used port number for
server-to-client communication.

− The following properties should hold at call time:

Port is an integer. (basic props:int/1)

PREDICATEdht set s2c port/1:
Set port for server-to-client communication.

PREDICATEdht s2c threads/1:
Get/check number of threads for server-to-client communication.

PREDICATEdht set s2c threads/1:
Set number of threads for server-to-client communication.

PREDICATEdht s2s port/1:
Get/check server-to-server communication port.

PREDICATEdht set s2s port/1:
Set server-to-server communication port.

PREDICATEdht s2s threads/1:
Get/check number of threads for server-to-server communication.

PREDICATEdht set s2s threads/1:
Set number of threads for server-to-server communication.

PREDICATEdht join host/1:
Get/check address of the host to join.

Chapter 200: Configuration module 977

PREDICATEdht set join host/1:
Set address of the host to join.

PREDICATEdht server id/1:
Get/check node number of current server.

PREDICATEdht set server id/1:
Set node number of current server.

PREDICATEdht server host/1:
Get/check address of the current server

PREDICATEdht set server host/1:
Set address of the current server

978 The Ciao System

Chapter 201: Tiny module with miscellaneous functions 979

201 Tiny module with miscellaneous functions

Author(s): Arsen Kostenko.

This module holds just two predicates at the moment: write_pr/2 and read_pr. In both
of them the ’ pr’ suffix is standing for ’predicate’, which in turn means that both of them are
intended for transportation of predicates from one environment to another.

201.1 Usage and interface (dht_misc)
� �

• Library usage:

:- use_module(library(dht_misc)).

• Exports:

− Predicates:

write_pr/2, read_pr/2.

• Other modules used:

− System library modules:

fastrw.

 	

201.2 Documentation on exports (dht_misc)

PREDICATEwrite pr/2:
write_pr/2 is a straight-forward wrapping around the fast_write/2 predicate, without
any checks on arguments The sole purpose is to allow usage of various ways of writing to
streams without changing entire code of DHT.

Usage: write_pr(Stream,Term)

− Description: Write the value of the Term into stream provided by Stream.

− The following properties should hold at call time:

Stream is ground. (basic props:gnd/1)

Term is any term. (basic props:term/1)

PREDICATEread pr/2:
Similarly to the previous predicate, this one serves currently as a wrap around the fast_
read/2 predicate, and was implemented with the same purpose - to allow transparent
switching to different stream reading systems.

Usage 1: read_pr(Stream,Term)

− Description: Read stream represented by Stream looking for presence of pattern given
by Term. If none found, the predicate does not block. Result found may be non-fully
ground.

− The following properties should hold at call time:

Stream is ground. (basic props:gnd/1)

Term is any term. (basic props:term/1)

Usage 2: read_pr(Stream,Term)

980 The Ciao System

− Description: Same as previous, with only modification - result found may be ground
as well.

− The following properties should hold at call time:

Stream is ground. (basic props:gnd/1)

Term is any term. (basic props:term/1)

− The following properties should hold upon exit:

Stream is ground. (basic props:gnd/1)

Term is ground. (basic props:gnd/1)

Usage 3: read_pr(Stream,Term)

− Description: Scan stream Stream for presence of concrete (exact) predicate given by
value of Term. Term is fully bound.

− The following properties should hold at call time:

Stream is ground. (basic props:gnd/1)

Term is ground. (basic props:gnd/1)

− The following properties should hold upon exit:

Stream is ground. (basic props:gnd/1)

Term is ground. (basic props:gnd/1)

Chapter 202: Constraint programming over finite domains 981

202 Constraint programming over finite domains

Author(s): José Manuel Gómez Pérez, Manuel Carro.

This package is a very preliminary implementation of a finite domain solver. Examples can
be found in the source and library directories.

• SEND + MORE = MONEY:

:- use_package(fd).
:- use_module(library(prolog_sys), [statistics/2]).
:- use_module(library(format)).

smm(SMM) :-
statistics(runtime,_),
do_smm(SMM),
statistics(runtime,[_, Time]),
format("Used ~d milliseconds~n", Time).

do_smm(X) :-
X = [S,E,N,D,M,O,R,Y],
X in 0 .. 9,
all_different(X),
M .>. 0,
S .>. 0,
1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E
.=. 10000*M + 1000*O + 100*N + 10*E + Y,
labeling(X).

• Queens:

:- use_package(fd).
:- use_module(library(prolog_sys), [statistics/2]).
:- use_module(library(format)).
:- use_module(library(aggregates)).
:- use_module(library(lists), [length/2]).

queens(N, Qs) :-
statistics(runtime,_),
do_queens(N, Qs),
statistics(runtime,[_, Time]),
format("Used ~d milliseconds~n", Time).

do_queens(N, Qs):-
constrain_values(N, N, Qs),
all_different(Qs),!,
labeling(Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]):-

N > 0,
X in 1 .. Range,

982 The Ciao System

N1 is N - 1,
constrain_values(N1, Range, Xs),
no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb):-

Nb1 is Nb + 1,
no_attack(Ys, Queen, Nb1),
Queen .<>. Y + Nb,
Queen .<>. Y - Nb.

202.1 Usage and interface (fd_doc)
� �

• Library usage:

:- use_package(fd).

or

:- module(...,...,[fd]).

• Exports:

− Predicates:

labeling/1, pitm/2, choose_var/3, choose_free_var/2, choose_var_nd/2,
choose_value/2, retrieve_range/2, retrieve_store/2, glb/2, lub/2, bounds/3,
retrieve_list_of_values/2.

− Regular Types:

fd_item/1, fd_range/1, fd_subrange/1, fd_store/1, fd_store_entity/1.

• New operators defined:

.=./2 [700,xfx], .<>./2 [700,xfx], .<./2 [700,xfx], .=<./2 [700,xfx], .>./2 [700,xfx], .>=./2
[700,xfx], ../2 [500,yfx], .&./2 [600,xfy], in/2 [700,xfy].

 	

202.2 Documentation on exports (fd_doc)

REGTYPEfd item/1:
Usage: fd_item(FD_item)

− Description: FD_item is a finite domain entity, i.e. either a finite domains variable
or an integer.

REGTYPEfd range/1:
Usage: fd_range(FD_range)

− Description: FD_range is the range of a finite domain entity.

REGTYPEfd subrange/1:
Usage:

− Description: A subrange is a pair representing a single interval.

Chapter 202: Constraint programming over finite domains 983

REGTYPEfd store/1:
Usage: fd_store(FD_store)

− Description: FD_store is a representation of the constraint store of a finite domain
entity.

REGTYPEfd store entity/1:
Usage:

− Description: Representation of primitive constraints.

PREDICATElabeling/1:
Usage: labeling(Vars)

− Description: Implements the labeling process. Assigns values to the input variables
Vars. On exit all variables are instantiated to a consistent value. On backtracking,
the predicate returns all possible assignments. No labeling heuristics implemented so
far, i.e. variables are instantiated in their order of appearance.

− The following properties should hold at call time:

Vars is a list of fd_items. (basic props:list/2)

PREDICATEpitm/2:
Usage: pitm(V,MiddlePoint)

− Description: Returns in MiddlePoint the intermediate value of the range of V. In
case V is a ground integer value the returned value is V itself.

− The following properties should hold at call time:

V is currently a term which is not a free variable. (term typing:nonvar/1)

MiddlePoint is a free variable. (term typing:var/1)

V is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

MiddlePoint is an integer. (basic props:int/1)

PREDICATEchoose var/3:
Usage: choose_var(ListOfVars,Var,RestOfVars)

− Description: Returns a finite domain item Var from a list of fd items ListOfVars
and the rest of the list RestOfVarsin a deterministic way. Currently it always returns
the first item of the list.

− The following properties should hold at call time:

ListOfVars is currently a term which is not a free variable. (term typing:nonvar/1)

Var is a free variable. (term typing:var/1)

RestOfVars is a free variable. (term typing:var/1)

ListOfVars is a list of fd_items. (basic props:list/2)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

RestOfVars is a list of fd_items. (basic props:list/2)

984 The Ciao System

PREDICATEchoose free var/2:
Usage: choose_free_var(ListOfVars,Var)

− Description: Returns a free variable Var from a list of fd items ListOfVars. Currently
it always returns the first free variable of the list.

− The following properties should hold at call time:

ListOfVars is currently a term which is not a free variable. (term typing:nonvar/1)

Var is a free variable. (term typing:var/1)

ListOfVars is a list of fd_items. (basic props:list/2)

Var is a free variable. (term typing:var/1)

PREDICATEchoose var nd/2:
Usage: choose_var_nd(ListOfVars,Var)

− Description: Returns non deterministically an fd item Var from a list of fd items
ListOfVars .

− The following properties should hold at call time:

ListOfVars is currently a term which is not a free variable. (term typing:nonvar/1)

Var is a free variable. (term typing:var/1)

ListOfVars is a list of fd_items. (basic props:list/2)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

PREDICATEchoose value/2:
Usage: choose_value(Var,Value)

− Description: Produces an integer value Value from the domain of Var. On back-
tracking returns all possible values for Var.

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

Value is a free variable. (term typing:var/1)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

Value is an integer. (basic props:int/1)

PREDICATEretrieve range/2:
Usage: retrieve_range(Var,Range)

− Description: Returns in Range the range of an fd item Var.

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

Range is a free variable. (term typing:var/1)

Var is a free variable. (term typing:var/1)

Range is the range of a finite domain entity.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd range/1)

Chapter 202: Constraint programming over finite domains 985

PREDICATEretrieve store/2:
Usage: retrieve_store(Var,Store)

− Description: Returns in Store a representation of the constraint store of an fd item
Var.

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

Store is a free variable. (term typing:var/1)

Var is a free variable. (term typing:var/1)

Store is a representation of the constraint store of a finite domain entity.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd store/1)

PREDICATEglb/2:
Usage: glb(Var,LowerBound)

− Description: Returns in LowerBound the lower bound of the range of Var.

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

LowerBound is a free variable. (term typing:var/1)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

LowerBound is an integer. (basic props:int/1)

PREDICATElub/2:
Usage: lub(Var,UpperBound)

− Description: Returns in UpperBound the upper bound of the range of Var.

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

UpperBound is a free variable. (term typing:var/1)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

UpperBound is an integer. (basic props:int/1)

PREDICATEbounds/3:
Usage: bounds(Var,LowerBound,UpperBound)

− Description: Returns in LowerBound and UpperBound the lower and upper bounds of
the range of Var.

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

LowerBound is a free variable. (term typing:var/1)

UpperBound is a free variable. (term typing:var/1)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

LowerBound is an integer. (basic props:int/1)

UpperBound is an integer. (basic props:int/1)

986 The Ciao System

PREDICATEretrieve list of values/2:
Usage: retrieve_list_of_values(Var,ListOfValues)

− Description: Returns in ListOfValues an enumeration of al the values in the range
of Var

− The following properties should hold at call time:

Var is currently a term which is not a free variable. (term typing:nonvar/1)

ListOfValues is a free variable. (term typing:var/1)

Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(/home/ciaotester/tests/auto/CiaoDE/ciao/contrib/fd/fd doc):fd item/1)

ListOfValues is a list of ints. (basic props:list/2)

Chapter 203: Dot generator 987

203 Dot generator

Author(s): Claudio Ochoa.

This module generates a dot file representing a graph. Nodes and edges can contain labels

203.1 Usage and interface (gendot)
� �

• Library usage:

:- use_module(library(gendot)).

• Exports:

− Predicates:

gendot/3.

• Other modules used:

− System library modules:

terms, format.

 	

203.2 Documentation on exports (gendot)

PREDICATEgendot/3:
Usage: gendot(L,Filename,Type)

− Description: Generates a dot file from a list L representing a graph. It receives the
basename Filename (without extension) of the output .dot file. Each element of L is
a node in the graph, represented by a tuple (Identifier, Label, Edges), where Edges is
a list of the outgoing edges of the current node, and each element of Edges is either an
Identifier ot a tuple (Identifier,Label). In all cases, Labels are atoms. Type indicates
the type of graph. If the graph is a Tree, then final nodes are represented by boxes.
In all other cases, nodes are represented by circles

− The following properties should hold at call time:

L is currently a term which is not a free variable. (term typing:nonvar/1)

Filename is currently a term which is not a free variable. (term typing:nonvar/1)

Type is currently a term which is not a free variable. (term typing:nonvar/1)

988 The Ciao System

Chapter 204: Printing graphs using gnuplot as auxiliary tool 989

204 Printing graphs using gnuplot as auxiliary tool

Author(s): David Trallero Mena.

This library uses gnuplot for printing graphs.

User-friendly predicates to generate data plots are provided, as well as predicates to set the
general options which govern the generation of such plots. If no options is specified, global ones
are used for data plots generation.

Several files can be generated as temporary files. A BaseName is required for generating
the temporaries files. Data files name will be created from BaseName + number + .dat. The
BaseName + ".plot" will be the name used for gnuplot tool.

A list of pairs of list of pairs of the from (X,Y) and Local Option value is provided to the
main predicate as data. In other words DataList = [(CurveDataList,LocalOptions), (Curve-
DataList1,LocalOptions1) ...]. Additionaly (function(String) , LocalOptions) can be used for
adding a curve to the plot (imagine you want to compare your result with ’x=y’).

LocalOptions of the DataList are options that are applied to the curve, as for example, if we
print the curve with lines, or the title in the legend, etc. GlobalOptions are referred to the plot
options, like title in x or y axis, etc.

204.1 Usage and interface (gnuplot)
� �

• Library usage:

:- use_module(library(gnuplot)).

• Exports:

− Predicates:

get_general_options/1, set_general_options/1, generate_plot/2, generate_
plot/3.

• Other modules used:

− System library modules:

lists, write, system.

 	

204.2 Documentation on exports (gnuplot)

PREDICATEget general options/1:
Usage: get_general_options(X)

− Description: Get the general options of the graphic that will be plotted

− The following properties should hold at call time:

X is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

X is a list. (basic props:list/1)

PREDICATEset general options/1:
Usage: set_general_options(X)

990 The Ciao System

− Description: Get the general options of the graphic that will be plotted. Possible
options are:

• format(A) Specify the format of points

• nokey Legend is no represented

• nogrid No grid

• grid An smooth grid is shown

• label(L , (X,Y)) Put Label L at point (X,Y)

• xlabel(A) Label of X-Axis

• ylabel(A) Label of Y-Axis

• xrange(A,B) Define the X range representation

• yrange(A,B) Define the Y range representation

• title(A) Title of the plot

• key(A) define the key (for example [left,box], left is the position, box indicates
that a box should be around)

• term post(A) define the postscript terminal. A is a list of atoms.

• size(A,B) specify the size of the plot (A,B float numbers)

• autoscale autoscale the size of the plot

• autoscale(A) autoscale the argument (for example: autoscale(x))

− The following properties should hold at call time:

X is a list. (basic props:list/1)

PREDICATEgenerate plot/2:
Usage: generate_plot(BaseName,DataList)

− Description: This predicates generate a ’BaseName + .ps’ postscript file using each
element of DataList as pair of list of pairs and local options, i.e., (list((X,Y)),
LocalOptions), in which X is the position in X-Axis and Y is the position in Y-Axis.
Nevertheless, each element of DataList can be a list of pairs instead of a pair for
commodity. gnuplot is used as auxiliary tool. Temporary files ’BaseName + N.dat’
are generated for for every list of pairs, and ’BaseName + .plot’ is de file used by
gnuplot. The local options can be:

• with(Option) Tells how the curve will be represented. Option can b line, dots,
boxes, impulses, linespoints. This option HAVE TO BE the last one

• title(T) Put the name of the curve in the legend to T

− The following properties should hold at call time:

BaseName is currently instantiated to an atom. (term typing:atom/1)

DataList is a list of pairs. (basic props:list/2)

− The following properties should hold upon exit:

BaseName is currently instantiated to an atom. (term typing:atom/1)

DataList is a list of pairs. (basic props:list/2)

PREDICATEgenerate plot/3:
Usage: generate_plot(BaseName,DataList,GeneralOptions)

− Description: It is the same as generate plot/2 but GeneralOptions are used as the
general options of the plot. Look at predicate set general options for detailed descrip-
tion of possible options

Chapter 204: Printing graphs using gnuplot as auxiliary tool 991

− The following properties should hold at call time:

BaseName is currently instantiated to an atom. (term typing:atom/1)

DataList is a list of pairs. (basic props:list/2)

GeneralOptions is a list. (basic props:list/1)

− The following properties should hold upon exit:

BaseName is currently instantiated to an atom. (term typing:atom/1)

DataList is a list of pairs. (basic props:list/2)

GeneralOptions is a list. (basic props:list/1)

992 The Ciao System

Chapter 205: Lazy evaluation 993

205 Lazy evaluation

Author(s): Amadeo Casas (http://www.cs.unm.edu/~amadeo, University of New Mexico).

This library package allows the use of lazy evaluation in a Ciao module/program.

Lazy Evaluation is a program evaluation technique used particularly in functional languages.
When using lazy evaluation, an expression is not evaluated as soon as it is assigned, but rather
when the evaluator is forced to produce the value of the expression. Although the when or
freeze control primitives present in many modern logic programming systems are more powerful
than lazy evaluation, they lack the simplicity of use and cleaner semantics of functional lazy
evaluation.

The objective of this package is to allow evaluating the functions lazily. Functions are the
subset of relations (predicates) which have a designated argument through which a single output
is obtained for any set of inputs (the other arguments). In logic programming systems which have
syntactic support for functions (including Ciao), functions are typically translated to predicates
whose last argument is designated as a (single value) output and the rest as inputs.

In our proposal, a function can be declared as lazy via the following declaration:

:- lazy fun_eval f/N.

This function could be represented as:

:- lazy fun_eval f(~_,_,_,_).

where ~ indicates the argument through which the single output will be obtained. Another
possible representation may be:

:- lazy fun_return f(~_,_,_,_).

In order to achieve the intended behavior, the execution of each function declared as lazy is
suspended until the return value of the function is needed.

A simple example of the use of lazy evaluation would be the definition of a function which
returns the (potentially) infinite list of integers starting with a given one:

:- lazy fun_eval nums_from/1.
nums_from(X) := [X | nums_from(X+1)].

While lazy functions certainly increase the overhead in the execution, they also allow the user
to develop in an easy way predicates which can handle infinite terms, and this is the main
advantage of the proposed functionality.

Lazy evaluation can be also a better option than eager evaluation when a function in a
different module is used and it returns a big amount of data. As an example, we have the
following module module1:

:- module(module1, [test/1], [fsyntax, lazy, hiord]).

:- use_module(library(lazy(lazy_lib)), [nums_from/2, takeWhile/3]).
:- use_module(module2, [squares/2]).
:- use_module(library(arithpreds)).

:- fun_eval test/0.
test := ~takeWhile((’’(X) :- X < 10000), ~squares(~nums_from(1))).

and another module module2:

:- module(module1, [test/1], [fsyntax, lazy, hiord]).

:- use_module(library(lazy(lazy_lib)), [nums_from/2, takeWhile/3]).
:- use_module(module2, [squares/2]).

994 The Ciao System

:- use_module(library(arithpreds)).

:- fun_eval test/0.
test := ~takeWhile((’’(X) :- X < 10000), ~squares(~nums_from(1))).

Function test/0 in module m1 needs to execute function squares/1, in module m2, which will
return a very long list (in the case of this example this list will be infinite, but the conclusions also
apply with finite but long lists). If squares/1 were executed eagerly then the entire list would
be returned, to immediately execute the take/2 function with the entire list, but creating this
intermediate result is wasteful in terms of memory requirements. In order to solve this problem,
the squares/1 function could be moved to module m1 and merged with take/2 (or, also, they
could exchange a size parameter). But rearranging the program is not always possible and may
perhaps complicate other aspects of the overall program design.

If instead the squares/1 function is evaluated lazily, it is possible to keep the definitions
unchanged and in different modules and there will be a smaller memory penalty for storing the
intermediate result. As more values are needed by the take/2 function, more values in the list
returned by squares/1 are built (in this example, only 10 values). These values that have been
consumed and passed over will be recovered by the garbage collector and the corresponding
memory freed. The query:

?- test(X).

will compute X = [1,4,9,16,25,36,49,64,81,100].

A library of useful functions has been added to this package to allow the programmer to
develop lazy functions easily and with a well-defined syntax. This library is called lazy lib.pl
and it provides the following functions:

• nums from(+X,-List): List is unified with an infinite list of successive numbers starting in
X.

• nums from inc(+X,+Y,-List): List is unified with an infinite list of successive numbers
starting in X with an increment of Y.

• repeat(+X,-List): List is unified with an infinite list of the term Y.

• cycle(+X,-List): List is unified with an infinite list of the term Y repeated infinite times.

• take(+X,+ListA,-ListR): ListR is unified with the first X elements of the infinite list ListA.

• takeWhile(+P,+ListA,-ListR): ListR is unified with the first elements of the infinite list
ListA while the condition P is true.

• drop(+X,+ListA,-ListR): ListR is unified with the infinite list ListA dropping the first X
elements.

• dropWhile(+P,+ListA,-ListR): ListR is unified with the infinite list ListA dropping the first
elements while the condition P is true.

• splitAt(+X,+ListA,-Res): Res is unified with a tuple of lists where the first list is composed
by the first X elements of the list ListA and the second list is composed by the rest of the
elements of ListA.

• span(+P,+ListA,-Res): Res is unified with a tuple of lists where the first list is composed by
the elements of ListA which verify the condition P and the second list is composed by the
rest of the elements of the initial list.

• tail(+ListA,-ListR): ListR is unified with the tail of the infinite list ListA.

• lazy map(+ListA,+P,-ListR): Version of the map/3 predicate to be executed lazily.

• lazy foldl(+ListA,+X,+P,-ListR): Version of the foldl/3 predicate to be executed lazily.

• zipWith(+P,+ListA,+ListB,-ListR): ListR is a list whose elements are calculated from the
function P and the elements of input lists ListA and ListB occuring at the same position
in both lists.

Chapter 205: Lazy evaluation 995

205.1 Usage and interface (lazy_doc)
� �

• Library usage:

:- use_package(lazy).

or

:- module(...,...,[lazy]).

• New operators defined:

lazy/1 [1170,fx].

• Other modules used:

− System library modules:

freeze/freeze.

 	

205.2 Other information (lazy_doc)

The translation of the code in order to execute it lazily is explained below.

A sentence translation is provided to handle the lazy directives. The translation of a lazy
function into a predicate is done in two steps. First, the function is converted into a predicate
(using the fsyntax package). Then, the resulting predicate is transformed to suspend its exe-
cution until the value of the last variable (i.e., the output variable) is needed. This suspension
is achieved by the use of the freeze/1 control primitive that many modern logic programming
systems implement quite efficiently (block or when declarations can obviously also be used, but
we explain the transformation in terms of freeze because it is more widespread). The transla-
tion will rename the original predicate to an internal name and add a bridge predicate with the
original name which invokes the internal predicate through a call to freeze/1. This will delay
the execution of the internal predicate until its result is required, which will be detected as a
binding (i.e., demand) of its output variable.

We show now an example of the use of lazy evaluation, and how a lazy function is translated
by this package. The following code returns an (infinite) list of fibonacci numbers:

:- lazy fun_eval fiblist/0.
fiblist := [0, 1 | ~zipWith(add, FibL, ~tail(FibL))]

:- FibL = fiblist.

which is translated into:

fiblist(X) :-
freeze(X, ’fiblist_$$lazy$$’(X)).

’fiblist_$$lazy$$’([0, 1 | Rest]) :-
fiblist(FibL),
tail(FibL, T),
zipWith(add, FibL, T, Rest).

In the fiblist function defined, any element in the resulting infinite list of fibonacci numbers
can be referenced, as for example, nth(X, ~fiblist, Value).. The other functions used in
the definition are tail/2 and zipWith/3. These two functions can be found in the lazy lib.pl
runtime file.

996 The Ciao System

Chapter 206: Programming MYCIN rules 997

206 Programming MYCIN rules

Author(s): Angel Fernandez Pineda.

MYCIN databases are declared as Prolog modules containing mycin rules. Those rules are
given a certainty factor (CF) which denotates an expert’s credibility on that rule:

• A value of -1 stands for surely not.

• A value of 1 stands for certainly.

• A value of 0 stands for I don’t know.

Intermediate values are allowed.

Mycin rules work on a different way as Prolog clauses: a rule will never fail (in the Prolog
sense), it will return a certainty value instead. As a consequence all mycin rules will be explored
during inference, so the order in which rules are written is not significant. For this reason, the
usage of the Prolog cut (!) is discouraged.

206.1 Usage and interface (mycin_doc)
� �

• Library usage:

In order to declare a mycin database you must include the following declaration as the first
one in your file:

:- mycin(MycinDataBaseName).

• New declarations defined:

export/1.

 	

206.2 Documentation on new declarations (mycin_doc)

DECLARATIONexport/1:
This directive allows a given mycin predicate to be called from Prolog programs. The way
in which mycin rules are called departs from Prolog ones. For instance, the followin mycin
predicate:

:- export p/1.

must be called from Prolog Programs as: mycin(p(X),CF), where CF will be binded
to the resulting certainty factor. Obviously, the variables on P/1 may be instanti-
ated as you wish. Since the Prolog predicate mycin/2 may be imported from several
mycin databases, it is recommended to fully qualify those predicate goals. For example :
mydatabase:mycin(p(X),CF).

Usage: :- export(Spec).

− Description: Spec will be a callable mycin predicate.

206.3 Known bugs and planned improvements (mycin_doc)

• Not fully implemented.

• Dynamic mycin predicates not implemented: open question.

• Importation of user-defined mycin predicates requires further design. This includes impor-
tation of mycin databases from another mycin database.

998 The Ciao System

Chapter 207: The Ciao Profiler 999

207 The Ciao Profiler

Author(s): Edison Mera.

The Ciao profiler provides a high-level, flexible way to mark a predicate (or a literal) for pro-
filing. This is done by using declarations to indicate if a program element must be instrumented
or not.

By default, if the user does not specify anything, no predicate inside the module will be
instrumented as cost center for profiling. The use of at least one declaration saying that a
specific predicate must be instrumented overrides this behavior.

The declaration is as follows:

:- cost_center pred1/Arity1, ... predN/ArityN.

where pred1/Arity1, ..., predN/ArityN are the predicates to be instrumented as cost centers.
They can be separated by commas or the can be in a list.

By default the engine hooks of all defined cost center are active. The declaration:

(predN/ArityN,nohooks)

will deactivate them.

Another useful declaration makes possible to indicate that a given predicate is not going to
be instrumented as cost center:

:- no_cost_center pred1/Arity1, ... predN/ArityN.

where pred1/Arity1, ..., predN/ArityN are the predicates that will not be instrumented
as cost centers. There are two options (as in the previous case): write one assertion for each
predicate or declare more than one predicate (separated by commas or in a list) in only one
assertion.

The following assertions define the behavior of all the predicates of the module:

:- all_cost_center.

:- all_no_cost_center.

They specify respectively that all the predicates in the module will be instrumented as cost
centers and that no predicate in the module will be instrumented as cost center. In the first
assertion the engine hooks of all defined cost centers are active. The declaration :- all_cost_
center(nohooks). will deactivate them.

Cost centers can be also defined at literal level replacing the literal by the declaration:

:- cost_center(name_cc, literal)

where literal is the program literal and name_cc is the name of its associated cost center.
At predicate level the name of both cost center and predicate are equal.

207.1 Usage and interface (profiler_doc)
� �

• Library usage:

The Ciao profiler is used by including profiler in the package inclusion list of a module,
or by means of an explicit :- use_package(profiler). directive.

 	

1000 The Ciao System

Chapter 208: ProVRML - a Prolog interface for VRML 1001

208 ProVRML - a Prolog interface for VRML

Author(s): Göran Smedbäck, Manuel Carro (some changes), The CLIP Group.

ProVRML is Prolog library to handle VRML code. The library consists of modules to handle
the tokenising, that is breaking the VRML code into smaller parts that can be analysed further.
The further analysis will be the parsing. This is a complex part of the library and consists of
several modules to handle errors and value check. When the parsing is done we have the Prolog
terms of the VRML code. The terms are quite similar to the origin VRML code and can easily
be read if you recognise that syntax.

This Prolog terms of the VRML code is then possible to use for analysis, reconstruction,
reverse enginering, building blocks for automatic generation of VRML code. There are several
possibilities and these are only some of them.

When you are done with the Prolog terms for the code, you would probably want to reverse
the action and return to VRML code. This is done with the code generation modules. These
are built up in more or less the same manner as the parser modules.

208.1 Usage and interface (provrml)
� �

• Library usage:

:- use_module(library(provrml)).

• Exports:

− Predicates:

vrml_web_to_terms/2, vrml_file_to_terms/2, vrml_web_to_terms_file/2, vrml_
file_to_terms_file/2, terms_file_to_vrml/2, terms_file_to_vrml_file/2,
terms_to_vrml_file/2, terms_to_vrml/2, vrml_to_terms/2, vrml_in_out/2,
vrml_http_access/2.

• Other modules used:

− System library modules:

pillow/http, pillow/html, provrml/provrml_io, provrml/provrml_parser,
provrml/generator.

 	

208.2 Documentation on exports (provrml)

PREDICATEvrml web to terms/2:
Usage: vrml_web_to_terms(WEBAddress,Terms)

− Description: Given a address to a VRML-document on the Internet, the predicate
will return the prolog-terms.

− Call and exit should be compatible with:

WEBAddress is an atom. (basic props:atm/1)

Terms is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

WEBAddress is currently a term which is not a free variable. (term typing:nonvar/1)

Terms is a free variable. (term typing:var/1)

1002 The Ciao System

PREDICATEvrml file to terms/2:
Usage 1: vrml_file_to_terms(FileName,Term)

− Description: Given a filename containing a VRML-file the predicate returns the pro-
log terms corresponding.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

Term is an atom. (basic props:atm/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

Term is a free variable. (term typing:var/1)

Usage 2: vrml_file_to_terms(FileName,Terms)

− Description: Given a filename containing a VRML-file and a filename, the predicate
write the prolog terms corresponding to the filename.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

Terms is an atom. (basic props:atm/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

Terms is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEvrml web to terms file/2:
Usage: vrml_web_to_terms_file(WEBAddress,FileName)

− Description: Given a address to a VRML-document on the Internet and a filename,
the predicate will write the prolog terms to the file.

− Call and exit should be compatible with:

WEBAddress is an atom. (basic props:atm/1)

FileName is an atom. (basic props:atm/1)

− The following properties should hold at call time:

WEBAddress is currently a term which is not a free variable. (term typing:nonvar/1)

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEvrml file to terms file/2:
No further documentation available for this predicate.

PREDICATEterms file to vrml/2:
Usage: terms_file_to_vrml(FileName,List)

− Description: From a given filename with prologterms on the special format, the
predicate returns the corresponding VRML-code.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

List is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

List is a free variable. (term typing:var/1)

Chapter 208: ProVRML - a Prolog interface for VRML 1003

PREDICATEterms file to vrml file/2:
Usage: terms_file_to_vrml_file(Atom,Atom)

− Description: From a given filename with prologterms on the special format, the
predicate writes the corresponding VRML-code to second filename.

− Call and exit should be compatible with:

Atom is an atom. (basic props:atm/1)

Atom is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

Atom is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEterms to vrml file/2:
Usage: terms_to_vrml_file(Term,FileName)

− Description: Given prolog-terms the predicate writes the corresponding VRML-code
to the given file.

− Call and exit should be compatible with:

Term is an atom. (basic props:atm/1)

FileName is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEterms to vrml/2:
Usage: terms_to_vrml(Term,VRMLCode)

− Description: Given prolog-terms the predicate returns a list with the corresponding
VRML-code.

− Call and exit should be compatible with:

Term is an atom. (basic props:atm/1)

VRMLCode is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

VRMLCode is a free variable. (term typing:var/1)

PREDICATEvrml to terms/2:
Usage: vrml_to_terms(VRMLCode,Terms)

− Description: Given a list with VRML-code the predicate will return the corresponding
prolog-terms.

− Call and exit should be compatible with:

VRMLCode is a string (a list of character codes). (basic props:string/1)

Terms is an atom. (basic props:atm/1)

− The following properties should hold at call time:

VRMLCode is currently a term which is not a free variable. (term typing:nonvar/1)

Terms is a free variable. (term typing:var/1)

1004 The Ciao System

PREDICATEvrml in out/2:
Usage: vrml_in_out(FileName,FileName)

− Description: This is a controll-predicate that given a filename to a VRML-file and a
filename, the predicate will read the VRML-code. Transform it to prolog-terms and
then transform it back to VRRML-code and write it to the latter file.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

FileName is an atom. (basic props:atm/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEvrml http access/2:
Usage: vrml_http_access(ReadFilename,BaseFilename)

− Description: Given a web-address to a VRML-file the predicate will load the code,
write it first to the second argument with extension ’ first.wrl’. Then it transform
the code to prolog terms and write it with the extension ’.term’. Transform it back
to VRML-code and write it to the filename with ’.wrl. A good test-predicate.

− Call and exit should be compatible with:

ReadFilename is an atom. (basic props:atm/1)

BaseFilename is an atom. (basic props:atm/1)

− The following properties should hold at call time:

ReadFilename is currently a term which is not a free variable. (term typing:nonvar/1)

BaseFilename is currently a term which is not a free variable. (term typing:nonvar/1)

208.3 Documentation on internals (provrml)

PREDICATEread page/2:
Usage: read_page(WEBAddress,Data)

− Description: This routine reads a page on the web using pillow routines.

− Call and exit should be compatible with:

WEBAddress is an atom. (basic props:atm/1)

Data is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

WEBAddress is currently a term which is not a free variable. (term typing:nonvar/1)

Data is a free variable. (term typing:var/1)

Chapter 209: boundary (library) 1005

209 boundary (library)

Author(s): Göran Smedbäck.

This module offers predicate to check values according to their boundaries and offers lists of
possible node ascendents.

209.1 Usage and interface (boundary)
� �

• Library usage:

:- use_module(library(boundary)).

• Exports:

− Predicates:

boundary_check/3, boundary_rotation_first/2, boundary_rotation_last/2,
reserved_words/1, children_nodes/1.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, provrml/internal_types, provrml/provrmlerror.

 	

209.2 Documentation on exports (boundary)

PREDICATEboundary check/3:
Usage: boundary_check(Value_to_check,Init_value,Bound)

− Description: This predicate check the boundaries of the given value according to the
boudary values. If the value is wrong according to the boundaries, the value is checked
according to the initial value given. If the value continues to be wrong, an error will
be raised accordingly.

− Call and exit should be compatible with:

Value_to_check is an atom. (basic props:atm/1)

Init_value is a list of atms. (basic props:list/2)

Bound is a variable interval. (internal types:bound/1)

− The following properties should hold at call time:

Value_to_check is currently a term which is not a free variable.
(term typing:nonvar/1)

Init_value is currently a term which is not a free variable. (term typing:nonvar/1)

Bound is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEboundary rotation first/2:
Usage: boundary_rotation_first(Bound_double,Bound)

− Description: The predicate will extract the first bounds from a double bound.

− Call and exit should be compatible with:

Bound_double is a variable interval. (internal types:bound double/1)

Bound is a variable interval. (internal types:bound/1)

1006 The Ciao System

− The following properties should hold at call time:

Bound_double is currently a term which is not a free variable. (term typing:nonvar/1)

Bound is a free variable. (term typing:var/1)

PREDICATEboundary rotation last/2:
Usage: boundary_rotation_last(Bound_double,Bound)

− Description: The predicate will extract the last bounds from a double bound.

− Call and exit should be compatible with:

Bound_double is a variable interval. (internal types:bound double/1)

Bound is a variable interval. (internal types:bound/1)

− The following properties should hold at call time:

Bound_double is currently a term which is not a free variable. (term typing:nonvar/1)

Bound is a free variable. (term typing:var/1)

PREDICATEreserved words/1:
Usage: reserved_words(List)

− Description: Returns a list with the reserved words, words prohibited to use in cases
not appropiated.

− Call and exit should be compatible with:

List is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

List is a free variable. (term typing:var/1)

PREDICATEchildren nodes/1:
Usage: children_nodes(List)

− Description: Returns a list of all nodes possible as children nodes.

− Call and exit should be compatible with:

List is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

List is a free variable. (term typing:var/1)

Chapter 210: dictionary (library) 1007

210 dictionary (library)

Author(s): Göran Smedbäck.

This module contains the fixed dictionary. All the nodes in VRML with their associated
fields.

210.1 Usage and interface (dictionary)
� �

• Library usage:

:- use_module(library(dictionary)).

• Exports:

− Predicates:

dictionary/6.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, provrml/internal_types.

 	

210.2 Documentation on exports (dictionary)

PREDICATEdictionary/6:
Usage 1:
dictionary(NodeTypeId,AccessType,FieldTypeId,FieldId,Init_value,Boundary)

− Description: To lookup information about the nodes, getting their properties. Note
that the type returned for the bound can be of two different types bound or
bound double. The rotation type have one bound for the directions and one for
the degree of rotation.

− Call and exit should be compatible with:

NodeTypeId is an atom. (basic props:atm/1)

AccessType is an atom. (basic props:atm/1)

FieldTypeId is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

Init_value is a list of atms. (basic props:list/2)

Boundary is a variable interval. (internal types:bound/1)

− The following properties should hold at call time:

Init_value is a free variable. (term typing:var/1)

Boundary is a free variable. (term typing:var/1)

Usage 2:
dictionary(NodeTypeId,AccessType,FieldTypeId,FieldId,Init_value,Boundary)

− Description: To lookup information about the nodes, getting their properties. Note
that the type returned for the bound can be of two different types bound or
bound double. The rotation type have one bound for the directions and one for
the degree of rotation.

1008 The Ciao System

− Call and exit should be compatible with:

NodeTypeId is an atom. (basic props:atm/1)

AccessType is an atom. (basic props:atm/1)

FieldTypeId is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

Init_value is a list of atms. (basic props:list/2)

Boundary is a variable interval. (internal types:bound double/1)

− The following properties should hold at call time:

Init_value is a free variable. (term typing:var/1)

Boundary is a free variable. (term typing:var/1)

Chapter 211: dictionary tree (library) 1009

211 dictionary tree (library)

Author(s): Göran Smedbäck.

This module offers a dynamic tree structured dictionary a bit combined with predicates that
gives it the useability to be the dictionary for the parser.

211.1 Usage and interface (dictionary_tree)
� �

• Library usage:

:- use_module(library(dictionary_tree)).

• Exports:

− Predicates:

create_dictionaries/1, is_dictionaries/1, get_definition_dictionary/2,
get_prototype_dictionary/2, dictionary_insert/5, dictionary_lookup/5,
merge_tree/2.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists, provrml/internal_types.

 	

211.2 Documentation on exports (dictionary_tree)

PREDICATEcreate dictionaries/1:
Usage: create_dictionaries(Dictionary)

− Description: Returns a dictionary. A general name was used if the user would like to
change the code to include more dictionaries.

− Call and exit should be compatible with:

Dictionary is a dictionary. (internal types:dictionary/1)

− The following properties should hold at call time:

Dictionary is a free variable. (term typing:var/1)

PREDICATEis dictionaries/1:
Usage: is_dictionaries(Dictionary)

− Description: Is the argument a dictionary is solved by this predicate.

− Call and exit should be compatible with:

Dictionary is a dictionary. (internal types:dictionary/1)

PREDICATEget definition dictionary/2:
Usage: get_definition_dictionary(Dictionary,Tree)

− Description: Returns the definition dictionary (for the moment there is only one
dictionary), which is a tree representation.

1010 The Ciao System

− Call and exit should be compatible with:

Dictionary is a dictionary. (internal types:dictionary/1)

Tree is a tree structure. (internal types:tree/1)

− The following properties should hold at call time:

Dictionary is currently a term which is not a free variable. (term typing:nonvar/1)

Tree is a free variable. (term typing:var/1)

PREDICATEget prototype dictionary/2:
Usage: get_prototype_dictionary(Dictionary,Tree)

− Description: Returns the prototype dictionary (for the moment there is only one
dictionary), which is a tree representation.

− Call and exit should be compatible with:

Dictionary is a dictionary. (internal types:dictionary/1)

Tree is a tree structure. (internal types:tree/1)

− The following properties should hold at call time:

Dictionary is currently a term which is not a free variable. (term typing:nonvar/1)

Tree is a free variable. (term typing:var/1)

PREDICATEdictionary insert/5:
Usage: dictionary_insert(Key,Type,Field,Dictionary,Info)

− Description: The predicate will search for the place for the Key and return Info,
if the element inserted had a post before (same key value) multiple else new. The
dictionary is dynamic and do not need output because of using unbinded variables.

− Call and exit should be compatible with:

Key is an atom. (basic props:atm/1)

Type is an atom. (basic props:atm/1)

Field is any term. (basic props:term/1)

Dictionary is a tree structure. (internal types:tree/1)

Info is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Key is currently a term which is not a free variable. (term typing:nonvar/1)

Type is currently a term which is not a free variable. (term typing:nonvar/1)

Field is currently a term which is not a free variable. (term typing:nonvar/1)

Dictionary is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEdictionary lookup/5:
Usage: dictionary_lookup(Key,Type,Field,Dictionary,Info)

− Description: The predicate will search for the Key and return Info;defined or unde-
fined accordingly. If defined the fields will be filled as well. The predicate do not
insert the element.

Chapter 211: dictionary tree (library) 1011

− Call and exit should be compatible with:

Key is an atom. (basic props:atm/1)

Type is an atom. (basic props:atm/1)

Field is any term. (basic props:term/1)

Dictionary is a dictionary. (internal types:dictionary/1)

Info is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Key is currently a term which is not a free variable. (term typing:nonvar/1)

Dictionary is currently a term which is not a free variable. (term typing:nonvar/1)

Info is a free variable. (term typing:var/1)

PREDICATEmerge tree/2:
Usage: merge_tree(Tree,Tree)

− Description: The predicate can be used for adding a tree dictionary to another one
(the second). It will remove equal posts but posts with a slight difference will be
inserted. The resulting tree will be the second tree.

− Call and exit should be compatible with:

Tree is a tree structure. (internal types:tree/1)

Tree is a tree structure. (internal types:tree/1)

− The following properties should hold at call time:

Tree is currently a term which is not a free variable. (term typing:nonvar/1)

Tree is currently a term which is not a free variable. (term typing:nonvar/1)

1012 The Ciao System

Chapter 212: provrmlerror (library) 1013

212 provrmlerror (library)

Author(s): Göran Smedbäck.

This file implements error predicates of different types.

212.1 Usage and interface (provrmlerror)
� �

• Library usage:

:- use_module(library(provrmlerror)).

• Exports:

− Predicates:

error_vrml/1, output_error/1.

• Other modules used:

− System library modules:

write.

 	

212.2 Documentation on exports (provrmlerror)

PREDICATEerror vrml/1:
Usage: error_vrml(Structure)

− Description: Given a structure with the error type as its head with possible argu-
ments, it will write the associated error-text.

− Call and exit should be compatible with:

Structure is any term. (basic props:term/1)

− The following properties should hold at call time:

Structure is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEoutput error/1:
Usage: output_error(Message)

− Description: This predicate will print the error message given as the argument. This
predicate is used for warnings that only needs to be given as information and not
necessarily give an error by the VRML browser.

− Call and exit should be compatible with:

Message is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Message is currently a term which is not a free variable. (term typing:nonvar/1)

1014 The Ciao System

Chapter 213: field type (library) 1015

213 field type (library)

Author(s): Göran Smedbäck.

213.1 Usage and interface (field_type)
� �

• Library usage:

:- use_module(library(field_type)).

• Exports:

− Predicates:

fieldType/1.

 	

213.2 Documentation on exports (field_type)

PREDICATEfieldType/1:
Usage: fieldType(FieldTypeId)

− Description: Boolean predicate used to check the fieldTypeId with the defiened.

− Call and exit should be compatible with:

FieldTypeId is an atom. (basic props:atm/1)

− The following properties should hold at call time:

FieldTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

1016 The Ciao System

Chapter 214: field value (library) 1017

214 field value (library)

Author(s): Göran Smedbäck.

214.1 Usage and interface (field_value)
� �

• Library usage:

:- use_module(library(field_value)).

• Exports:

− Predicates:

fieldValue/6, mfstringValue/5.

− Properties:

parse/1.

• Other modules used:

− System library modules:

lists, provrml/provrml_parser, provrml/parser_util, provrml/provrmlerror.

 	

214.2 Documentation on exports (field_value)

PREDICATEfieldValue/6:
Usage: fieldValue(ParseIn,ParseOut,FieldTypeId,FieldValue,L,T)

− Description: The predicate read the fieldValue from the input token stream and
return the value of the parsing. The resulting list might be of numbers, strings or
VRML code dependnig on the FieldTypeId.

− Call and exit should be compatible with:

field value:parse(ParseIn) (field value:parse/1)

field value:parse(ParseOut) (field value:parse/1)

FieldTypeId is an atom. (basic props:atm/1)

FieldValue is a list of terms. (basic props:list/2)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

FieldTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

FieldValue is a free variable. (term typing:var/1)

PREDICATEmfstringValue/5:
Usage: mfstringValue(ParseIn,ParseOut,Value,L,T)

− Description: The predicate is exported for ’EXTERNPROTO’ use, where names for
locations are given. Reads one string value or multiple stringvalues from a list.

1018 The Ciao System

− Call and exit should be compatible with:

field value:parse(ParseIn) (field value:parse/1)

field value:parse(ParseOut) (field value:parse/1)

Value is a list of strings. (basic props:list/2)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Value is a free variable. (term typing:var/1)

PROPERTYparse/1:
A property, defined as follows:

parse(_1).
parse(parse(In,Out,Env,Dic)) :-

list(In),
list(Out),
environment(Env),
dictionary(Dic).

Chapter 215: field value check (library) 1019

215 field value check (library)

Author(s): Göran Smedbäck.

215.1 Usage and interface (field_value_check)
� �

• Library usage:

:- use_module(library(field_value_check)).

• Exports:

− Predicates:

fieldValue_check/8, mfstringValue/7.

• Other modules used:

− System library modules:

provrml/provrml_io, provrml/generator_util, provrml/boundary,
provrml/tokeniser, provrml/generator, provrml/parser_util.

 	

215.2 Documentation on exports (field_value_check)

PREDICATEfieldValue check/8:
Usage: fieldValue_
check(FieldTypeId,Value,ParseIn,ParseOut,InitValue,Boundary,L,T)

− Description: The predicate read the fieldValue from the input token stream from the
ParseIn. Checks of the values will be done in other module but initiated here. The
values will be, if correct, collected via the DCG with the out/3 predicate for later
output.

All the predicates have the same meaning as the corresponding predicates in the
input module field value.pl. For more information about the different please see that
module.

− Call and exit should be compatible with:

FieldTypeId is an atom. (basic props:atm/1)

Value is a list. (basic props:list/1)

field value check:parse(ParseIn) (field value check:parse/1)

field value check:parse(ParseOut) (field value check:parse/1)

InitValue is an atom. (basic props:atm/1)

Boundary is an atom. (basic props:atm/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

FieldTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

Value is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

InitValue is currently a term which is not a free variable. (term typing:nonvar/1)

Boundary is currently a term which is not a free variable. (term typing:nonvar/1)

1020 The Ciao System

PREDICATEmfstringValue/7:
No further documentation available for this predicate.

Chapter 216: generator (library) 1021

216 generator (library)

Author(s): Göran Smedbäck.

216.1 Usage and interface (generator)
� �

• Library usage:

:- use_module(library(generator)).

• Exports:

− Predicates:

generator/2, nodeDeclaration/4.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, provrml/provrml_io, provrml/generator_util, provrml/parser_util,
provrml/provrmlerror, provrml/internal_types.

 	

216.2 Documentation on exports (generator)

PREDICATEgenerator/2:
Usage: generator(Terms,VRML)

− Description: This predicate is the generator of VRML code. It accepts a list of terms
that is correct VRML code, other kind of terms will be rejected will errormessage
accordingly. The output is a string of correct VRML code, acceptable for VRML
browsers.

− Call and exit should be compatible with:

Terms is a list of terms. (basic props:list/2)

VRML is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

Terms is currently a term which is not a free variable. (term typing:nonvar/1)

VRML is a free variable. (term typing:var/1)

PREDICATEnodeDeclaration/4:
Usage: nodeDeclaration(ParseIn,ParseOut,L,T)

− Description: The node declaration canbe constructed by a DEFinition, we then make
a call to generator util to make proper settings before continue. There can be a USE
of a prior defined node or we can have a normal node declaration, one of the built
ins.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

1022 The Ciao System

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Chapter 217: generator util (library) 1023

217 generator util (library)

Author(s): Göran Smedbäck.

217.1 Usage and interface (generator_util)
� �

• Library usage:

:- use_module(library(generator_util)).

• Exports:

− Predicates:

reading/4, reading/5, reading/6, open_node/6, close_node/5, close_nodeGut/4,
open_PROTO/4, close_PROTO/6, open_EXTERNPROTO/5, close_EXTERNPROTO/6, open_
DEF/5, close_DEF/5, open_Script/5, close_Script/5, decompose_field/3,
indentation_list/2, start_vrmlScene/4, remove_comments/4.

• Other modules used:

− System library modules:

provrml/provrmlerror, provrml/provrml_io, provrml/field_value,
provrml/field_value_check, provrml/lookup, provrml/parser_util.

 	

217.2 Documentation on exports (generator_util)

PREDICATEreading/4:
Usage 1: reading(DEF,Parse,L,T)

− Description: This predicate will check if we have the special key word.

− Call and exit should be compatible with:

DEF is an atom. (basic props:atm/1)

Parse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

DEF is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Usage 2: reading(IS,NodeTypeId,ParseIn,ParseOut)

− Description: This predicate will refer to a formerly introduced interface. We do a
checkup of the access type and output the values.

− Call and exit should be compatible with:

IS is an atom. (basic props:atm/1)

NodeTypeId is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

IS is currently a term which is not a free variable. (term typing:nonvar/1)

1024 The Ciao System

NodeTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 3: reading(Node,Parse,L,T)

− Description: This predicate will read a node so we will check the properties of that
one and then continue the progress in the generation.

− Call and exit should be compatible with:

Node is an atom. (basic props:atm/1)

Parse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Node is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Usage 4: reading(Script,Parse,L,T)

− Description: This predicate read a script and will then continue the generation.

− Call and exit should be compatible with:

Script is an atom. (basic props:atm/1)

Parse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Script is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Usage 5: reading(NodeGut,NodeName,ParseIn,ParseOut)

− Description: This predicate will read a node gut and will check the field according to
the name.

− Call and exit should be compatible with:

NodeGut is an atom. (basic props:atm/1)

NodeName is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

NodeGut is currently a term which is not a free variable. (term typing:nonvar/1)

NodeName is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 6: reading(PROTO,Parse,L,T)

− Description: This predicate will read a prototype, check that the term name is the
one, ’PROTO’.

− Call and exit should be compatible with:

PROTO is an atom. (basic props:atm/1)

Parse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Chapter 217: generator util (library) 1025

− The following properties should hold at call time:

PROTO is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Usage 7: reading(EXTERNPROTO,Parse,L,T)

− Description: This predicate read a term with the name given as the first argument.

− Call and exit should be compatible with:

EXTERNPROTO is an atom. (basic props:atm/1)

Parse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

EXTERNPROTO is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEreading/5:
Usage 1: reading(Entrance,ParseIn,ParseOut,L,T)

− Description: This predicate is a general predicate in this help module. The first
argument is a key word to direct the input to the right entrance. When I say output
in the following predicates I am refering to the out predicate which actually will use
the features of DCG and we will add the output terms in a list for later output. The
list is hidden to the user but is in this case the fourth argument will be the list and
the fifth will be the resulting list, hopefully empty after the generation. Then we
should have read all the terms.

− Call and exit should be compatible with:

Entrance is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Entrance is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 2: reading(Empty,ParseIn,ParseOut,L,T)

− Description: This predicate check if we have ran out of input and is ready to terminate
the reading.

− Call and exit should be compatible with:

Empty is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

1026 The Ciao System

− The following properties should hold at call time:

Empty is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 3: reading(Header,ParseIn,ParseOut,L,T)

− Description: This predicate read the header and after the header we can have more
information, that is comments.

− Call and exit should be compatible with:

Header is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Header is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 4: reading(NULL,ParseIn,ParseOut,L,T)

− Description: This predicate accepts the special key word ’NULL’ and will output
that.

− Call and exit should be compatible with:

NULL is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

NULL is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 5: reading(Comment,ParseIn,ParseOut,L,T)

− Description: This predicate will read a comment.

− Call and exit should be compatible with:

Comment is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Comment is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 6: reading(USE,ParseIn,ParseOut,L,T)

Chapter 217: generator util (library) 1027

− Description: This predicate will read the ’USE’ key word.

− Call and exit should be compatible with:

USE is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

USE is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 7: reading(MfstringValue,ParseIn,ParseOut,L,T)

− Description: This predicate will read the term multi field string value. Then it will
continue the generation in the field value check module. There it will read the string
values and generate the code.

− Call and exit should be compatible with:

MfstringValue is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

MfstringValue is currently a term which is not a free variable.
(term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 8: reading(ExposedField,ParseIn,ParseOut,L,T)

− Description: This predicate will read an exposedField and do the checkup for the
interface with all its components.

− Call and exit should be compatible with:

ExposedField is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ExposedField is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 9: reading(RestrictedInterfaceDeclaration,ParseIn,ParseOut,L,T)

− Description: This predicate will read the declaration for a restricted field and do the
checkup accordingly if necessary.

1028 The Ciao System

− Call and exit should be compatible with:

RestrictedInterfaceDeclaration is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

RestrictedInterfaceDeclaration is currently a term which is not a free variable.
(term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 10: reading(ExternInterfaceDeclaration,ParseIn,ParseOut,L,T)

− Description: For reading an external interface declaration we see that we have three
arguments in the term and that we have special access key word. We then outputs
the declaration.

− Call and exit should be compatible with:

ExternInterfaceDeclaration is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ExternInterfaceDeclaration is currently a term which is not a free variable.
(term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 11: reading(ROUTE,ParseIn,ParseOut,L,T)

− Description: Reading a ROUTE and we split the term into its parts. There might be
comments in the different fields and therefore we have to strip clean the fields to get
them without a possible list containing comments, this for the checkup of the routing
parameters. We then do an output of the values, then with the comments.

− Call and exit should be compatible with:

ROUTE is an atom. (basic props:atm/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ROUTE is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 12: reading(Error_X,ParseIn,ParseOut,L,T)

− Description: The predicate will call a proper error message after fetching some values
like name.

Chapter 217: generator util (library) 1029

− Call and exit should be compatible with:

Error_X is a compound term. (basic props:struct/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Error_X is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEreading/6:
No further documentation available for this predicate.

PREDICATEopen node/6:
Usage: open_node(ParseIn,ParseOut,NodeGutsParseStruct,NodeNameId,L,T)

− Description: The predicate will open a node to extract its name and its guts. The
guts will then be added to a new parse structure to be emptied in the above module,
generator.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

NodeGutsParseStruct is a parse structure. (internal types:parse/1)

NodeNameId is an atom. (basic props:atm/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

NodeGutsParseStruct is a free variable. (term typing:var/1)

NodeNameId is a free variable. (term typing:var/1)

PREDICATEclose node/5:
Usage: close_node(ParseNodeStruct,ParseIn,ParseOut,L,T)

− Description: The predicate will end the generation from the node and will do that
by adding all the new posts in the dictionary, like new declarations and nodes, to the
already used dictionary.

− Call and exit should be compatible with:

ParseNodeStruct is a parse structure. (internal types:parse/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

1030 The Ciao System

− The following properties should hold at call time:

ParseNodeStruct is currently a term which is not a free variable.
(term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEclose nodeGut/4:
Usage: close_nodeGut(ParseIn,ParseOut,L,T)

− Description: The predicate will perform all the actions needed terminate the reading
of the node guts.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEopen PROTO/4:
Usage: open_PROTO(Parse,ProtoParse,L,T)

− Description: This predicate will construct a parse structure with the prototype infor-
mation, the interface only. It can thereafter be used in further code generation. The
scene will be opened afterwards.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

ProtoParse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

ProtoParse is a free variable. (term typing:var/1)

PREDICATEclose PROTO/6:
Usage: close_PROTO(DeclParse,SceneParse,ParseIn,ParseOut,L,T)

− Description: The predicate will push the dictionaries with its new information when
gone through the scenery. The output parse structure will contain all the new infor-
mation.

− Call and exit should be compatible with:

DeclParse is a parse structure. (internal types:parse/1)

SceneParse is a parse structure. (internal types:parse/1)

ParseIn is a parse structure. (internal types:parse/1)

Chapter 217: generator util (library) 1031

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

SceneParse is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEopen EXTERNPROTO/5:
Usage: open_EXTERNPROTO(Parse,DeclParse,StringParse,L,T)

− Description: This predicate will construct parse structures with the prototype in-
formation, the interface and the strings. It can thereafter be used in further code
generation.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

DeclParse is a parse structure. (internal types:parse/1)

StringParse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

DeclParse is a free variable. (term typing:var/1)

StringParse is a free variable. (term typing:var/1)

PREDICATEclose EXTERNPROTO/6:
Usage: close_EXTERNPROTO(ParseDeclIn,ParseStringIn,ParseIn,ParseOut,L,T)

− Description: The predicate will end the generating of the external prototype and do
checkup if there was correct.

− Call and exit should be compatible with:

ParseDeclIn is a parse structure. (internal types:parse/1)

ParseStringIn is a parse structure. (internal types:parse/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEopen DEF/5:
Usage: open_DEF(ParseIn,ParseOut,ParseNode,L,T)

1032 The Ciao System

− Description: The predicate will open and do the settings to generate the code for a
definition of a node.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

ParseNode is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

ParseNode is a free variable. (term typing:var/1)

PREDICATEclose DEF/5:
Usage: close_DEF(ParseNode,ParseIn,ParseOut,L,T)

− Description: The predicate will push the new dictionary information from the node
definition to the output parse structure combining the information in the old parse
structure with the newly received.

− Call and exit should be compatible with:

ParseNode is a parse structure. (internal types:parse/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseNode is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEopen Script/5:
Usage: open_Script(ParseIn,ParseOut,ScriptParse,L,T)

− Description: The predicate will create a parse structure with the script guts.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

ScriptParse is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

ScriptParse is a free variable. (term typing:var/1)

Chapter 217: generator util (library) 1033

PREDICATEclose Script/5:
Usage: close_Script(ScriptParse,ParseIn,ParseOut,L,T)

− Description: This predicate will update the dictionaries after generating code for the
script.

− Call and exit should be compatible with:

ScriptParse is a parse structure. (internal types:parse/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ScriptParse is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEdecompose field/3:
No further documentation available for this predicate.

PREDICATEindentation list/2:
Usage: indentation_list(Parse,IndList)

− Description: This predcate will construct a list with indentations to be output before
text. The information of the indentations is inside the parse structure.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

IndList is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

IndList is a free variable. (term typing:var/1)

PREDICATEstart vrmlScene/4:
Usage: start_vrmlScene(Parse,ParseScene,L,T)

− Description: The predicate will construct a parse structure with the prototype scene
and do the setups.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

ParseScene is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

ParseScene is a free variable. (term typing:var/1)

1034 The Ciao System

PREDICATEremove comments/4:
Usage: remove_comments(Value,CommentsBefore,ValueClean,CommentsAfter)

− Description: The predicate will remove comments and return the comments before
and after the pure value.

− Call and exit should be compatible with:

Value is a list of atms. (basic props:list/2)

CommentsBefore is a list of atms. (basic props:list/2)

ValueClean is an atom. (basic props:atm/1)

CommentsAfter is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

Value is currently a term which is not a free variable. (term typing:nonvar/1)

CommentsBefore is a free variable. (term typing:var/1)

ValueClean is a free variable. (term typing:var/1)

CommentsAfter is a free variable. (term typing:var/1)

217.3 Known bugs and planned improvements (generator_util)

• Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 218: internal types (library) 1035

218 internal types (library)

Author(s): Göran Smedbäck.

These are the internal data types used in the predicates. They are only used to simplify this
documentation and make it more understandable.

Implemented by Göran Smedbäck

218.1 Usage and interface (internal_types)
� �

• Library usage:

:- use_module(library(internal_types)).

• Exports:

− Regular Types:

bound/1, bound_double/1, dictionary/1, environment/1, parse/1, tree/1,
whitespace/1.

 	

218.2 Documentation on exports (internal_types)

REGTYPEbound/1:
Min is a number or an atom that indicates the minimal value, Max indicates the maximal.

bound(bound(Min,Max)) :-
atm(Min),
atm(Max).

Usage: bound(Bound)

− Description: Bound is a variable interval.

REGTYPEbound double/1:
Min is a number or an atom that indicates the minimal value, Max indicates the maximal.
The first two for some value and the second pair for some other. Typically used for types
that are compound, e.g., rotationvalue.

bound_double(bound(Min0,Max0,Min1,Max1)) :-
atm(Min0),
atm(Max0),
atm(Min1),
atm(Max1).

Usage: bound_double(Bound)

− Description: Bound is a variable interval.

REGTYPEdictionary/1:
Dic is a tree structure and is used as the internal representation of the dictionary.

1036 The Ciao System

dictionary(dic(Dic)) :-
tree(Dic).

dictionary(X) :-
term(X).

Usage: dictionary(Dictionary)

− Description: Dictionary is a dictionary.

REGTYPEenvironment/1:
EnvironmentType one of ’DEF’,’PROTO’,’EXTERNPROTO’ with the name Name.
Whitespace is a structure with whitespace information.

environment(env(Env,Name,WhiteSpace)) :-
atm(Env),
atm(Name),
whitespace(WhiteSpace).

Usage: environment(Environment)

− Description: Environment is an environment structure.

REGTYPEparse/1:
In is the list of tokens to parse and Out is the resulting list after the parsing. Env is of type
env and is the environment-structure.The dictinonary Dic contains created information
and structures.

parse(parse(In,Out,Env,Dic)) :-
list(In),
list(Out),
environment(Env),
dictionary(Dic).

Usage: parse(Parse)

− Description: Parse is a parse structure.

REGTYPEtree/1:
Key is the search-key, Leaf is the information, Left and Right are more dictionary posts,
where Left have less Key-value.

tree(tree(Key,Leaf,Left,Right)) :-
atm(Key),
leaf(Leaf),
tree(Left),
tree(Right).

Usage: tree(Tree)

− Description: Tree is a tree structure.

REGTYPEwhitespace/1:
The Row and Indentation information. The row information used when parsing the VRML
code to give accurate error position and the indentation is used when generating VRML
code from terms.

Chapter 218: internal types (library) 1037

whitespace(w(Row,Indentation)) :-
number(Row),
number(Indentation).

Usage: whitespace(Whitespace)

− Description: Whitespace is a whitespace structure.

1038 The Ciao System

Chapter 219: provrml io (library) 1039

219 provrml io (library)

Author(s): Göran Smedbäck.

This file implements I/O predicates of different types.

Implemented by Göran Smedbäck

219.1 Usage and interface (provrml_io)
� �

• Library usage:

:- use_module(library(provrml_io)).

• Exports:

− Predicates:

out/1, out/3, convert_atoms_to_string/2, read_terms_file/2, write_terms_
file/2, read_vrml_file/2, write_vrml_file/2.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists.

 	

219.2 Documentation on exports (provrml_io)

PREDICATEout/1:
Usage: out(ListOfOutput)

− Description: The predicate used is out/3 (DCG) where we will ’save’ the output in
the second argument. The tird argument is the rest, nil.

− Call and exit should be compatible with:

ListOfOutput is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

ListOfOutput is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEout/3:
No further documentation available for this predicate.

PREDICATEconvert atoms to string/2:
Usage: convert_atoms_to_string(Atoms,String)

− Description: The predicate transforms a list of atoms to a string.

− Call and exit should be compatible with:

Atoms is a list of atms. (basic props:list/2)

String is a list of nums. (basic props:list/2)

− The following properties should hold at call time:

Atoms is currently a term which is not a free variable. (term typing:nonvar/1)

String is a free variable. (term typing:var/1)

1040 The Ciao System

PREDICATEread terms file/2:
Usage: read_terms_file(Filename,Term)

− Description: Given a filename to a file with terms, the predicate reads the terms
and are returned in the second argument. Filename is an atom and Term is the read
prolog terms.

− Call and exit should be compatible with:

Filename is an atom. (basic props:atm/1)

Term is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Filename is currently a term which is not a free variable. (term typing:nonvar/1)

Term is a free variable. (term typing:var/1)

PREDICATEwrite terms file/2:
Usage: write_terms_file(FileName,List)

− Description: Given a filename and a list of terms the predicate will write them down
to the file.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

List is a list of atms. (basic props:list/2)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

List is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEread vrml file/2:
Usage: read_vrml_file(FileName,Data)

− Description: Given a filename, the predicate returns the substance.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

Data is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

Data is a free variable. (term typing:var/1)

PREDICATEwrite vrml file/2:
Usage: write_vrml_file(FileName,Data)

− Description: Given a filename and data in form of a string, the predicate will write
the data to the named file.

− Call and exit should be compatible with:

FileName is an atom. (basic props:atm/1)

Data is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

FileName is currently a term which is not a free variable. (term typing:nonvar/1)

Data is currently a term which is not a free variable. (term typing:nonvar/1)

Chapter 220: lookup (library) 1041

220 lookup (library)

Author(s): Göran Smedbäck.

220.1 Usage and interface (lookup)
� �

• Library usage:

:- use_module(library(lookup)).

• Exports:

− Predicates:

create_proto_element/3, get_prototype_interface/2, get_
prototype_definition/2, lookup_check_node/4, lookup_check_field/6, lookup_
check_interface_fieldValue/8, lookup_field/4, lookup_route/5, lookup_
fieldTypeId/1, lookup_get_fieldType/4, lookup_field_access/4, lookup_set_
def/3, lookup_set_prototype/4, lookup_set_extern_prototype/4.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators,
read, write, provrml/provrmlerror, provrml/internal_types, provrml/provrml_
io, provrml/parser_util, provrml/dictionary, provrml/dictionary_tree,
provrml/field_value_check, provrml/boundary, provrml/generator_util,
provrml/field_type, provrml/field_value.

 	

220.2 Documentation on exports (lookup)

PREDICATEcreate proto element/3:
Usage: create_proto_element(Interface,Definition,Proto)

− Description: The predicate will construct a proto structure containing the interface
and the definition.

− Call and exit should be compatible with:

Interface is any term. (basic props:term/1)

Definition is any term. (basic props:term/1)

Proto is any term. (basic props:term/1)

− The following properties should hold at call time:

Interface is currently a term which is not a free variable. (term typing:nonvar/1)

Definition is currently a term which is not a free variable. (term typing:nonvar/1)

Proto is a free variable. (term typing:var/1)

PREDICATEget prototype interface/2:
Usage: get_prototype_interface(Proto,Interface)

− Description: The predicate will return the interface from a proto structure.

− Call and exit should be compatible with:

Proto is any term. (basic props:term/1)

Interface is any term. (basic props:term/1)

1042 The Ciao System

− The following properties should hold at call time:

Proto is currently a term which is not a free variable. (term typing:nonvar/1)

Interface is a free variable. (term typing:var/1)

PREDICATEget prototype definition/2:
Usage: get_prototype_definition(Proto,Definition)

− Description: The predicate will return the definition from a proto structure.

− Call and exit should be compatible with:

Proto is any term. (basic props:term/1)

Definition is any term. (basic props:term/1)

− The following properties should hold at call time:

Proto is currently a term which is not a free variable. (term typing:nonvar/1)

Definition is a free variable. (term typing:var/1)

PREDICATElookup check node/4:
Usage: lookup_check_node(ParseIn,NodeTypeId,L,T)

− Description: The predicate will check so that the node is of an acceptable type. If
the node name is not found in the ordinary dictionary then the secondary dictionary
is consulted, the personal one. Then the node have to be a Prototype, Externproto
or a Defined one.

− Call and exit should be compatible with:

field value:parse(ParseIn) (field value:parse/1)

NodeTypeId is an atom. (basic props:atm/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

NodeTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup check field/6:
Usage: lookup_check_field(ParseIn,ParseOut,NodeTypeId,Field,L,T)

− Description: The predicate will create some output through the DCG and the output
command out/3. There will be formatting and the most important part there will be
a check of the field type and of its values so that they correspond to the type.

− Call and exit should be compatible with:

field value:parse(ParseIn) (field value:parse/1)

field value:parse(ParseOut) (field value:parse/1)

NodeTypeId is an atom. (basic props:atm/1)

Field is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Chapter 220: lookup (library) 1043

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

NodeTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

Field is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup check interface fieldValue/8:
Usage: lookup_check_interface_
fieldValue(ParseIn,ParseOut,AccessType,FieldType,Id,FieldValue,DCGIn,DCGOut)

− Description: The predicate formats the output for the interface part of the prototype.
It also checks the values for the fields.

− Call and exit should be compatible with:

field value:parse(ParseIn) (field value:parse/1)

field value:parse(ParseOut) (field value:parse/1)

AccessType is an atom. (basic props:atm/1)

FieldType is any term. (basic props:term/1)

Id is an atom. (basic props:atm/1)

FieldValue is any term. (basic props:term/1)

DCGIn is a string (a list of character codes). (basic props:string/1)

DCGOut is a string (a list of character codes). (basic props:string/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

AccessType is currently a term which is not a free variable. (term typing:nonvar/1)

FieldType is currently a term which is not a free variable. (term typing:nonvar/1)

Id is currently a term which is not a free variable. (term typing:nonvar/1)

FieldValue is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup field/4:
Usage: lookup_field(Parse,FieldTypeId,FieldId0,FieldId1)

− Description: The predicate will control that the two connected Fields are of the same
type, e.g., SFColor - SFColor, MFVec3f - MFVec3f.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

FieldTypeId is an atom. (basic props:atm/1)

FieldId0 is an atom. (basic props:atm/1)

FieldId1 is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

FieldTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId0 is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId1 is currently a term which is not a free variable. (term typing:nonvar/1)

1044 The Ciao System

PREDICATElookup route/5:
Usage: lookup_route(Parse,NodeTypeId0,FieldId0,NodeTypeId1,FieldId1)

− Description: The predicate will check the routing behaviour for two given fields. They
will be checked according to the binding rules, like name changes access proporties.
The node types for the field must of course be given for the identification.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

NodeTypeId0 is an atom. (basic props:atm/1)

FieldId0 is an atom. (basic props:atm/1)

NodeTypeId1 is an atom. (basic props:atm/1)

FieldId1 is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

NodeTypeId0 is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId0 is currently a term which is not a free variable. (term typing:nonvar/1)

NodeTypeId1 is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId1 is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup fieldTypeId/1:
Usage: lookup_fieldTypeId(FieldTypeId)

− Description: The predicate just make a check to see if the given FieldType id is among
the allowed. You can not construct own ones and the check is mearly a spellcheck.

− Call and exit should be compatible with:

FieldTypeId is an atom. (basic props:atm/1)

− The following properties should hold at call time:

FieldTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup get fieldType/4:
Usage: lookup_get_fieldType(Parse,NodeTypeId,FieldId,FieldType)

− Description: The predicate will return the given field’s type. It will start the search in
the ordinar dictionary and then to the personal dictionary sarting off with ’PROTO’.
After it will go for ’DEF’ and ’EXTERNPROTO’.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

NodeTypeId is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

FieldType is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

NodeTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId is currently a term which is not a free variable. (term typing:nonvar/1)

FieldType is a free variable. (term typing:var/1)

Chapter 220: lookup (library) 1045

PREDICATElookup field access/4:
Usage: lookup_field_access(Parse,NodenameId,FieldId,FieldId)

− Description: The predicate will control that the access proporties are correct accord-
ing to the certain rules that we have. It makes a check to see if the fields are of the
same access type or if one of them is an exposedField. It is not doing a route check
up to control that behaviour entirely.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

NodenameId is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

NodenameId is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup set def/3:
Usage: lookup_set_def(Parse,Name,Node)

− Description: The predicate will enter a new post in the personal dictionary for the
node definition.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

Name is an atom. (basic props:atm/1)

Node is any term. (basic props:term/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Name is currently a term which is not a free variable. (term typing:nonvar/1)

Node is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATElookup set prototype/4:
Usage: lookup_set_prototype(Parse,Name,Interface,Definition)

− Description: The predicate will insert the prototype definition in the personal dictio-
nary and will give a warning if there is a multiple name given.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

Name is an atom. (basic props:atm/1)

Interface is any term. (basic props:term/1)

Definition is any term. (basic props:term/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Name is currently a term which is not a free variable. (term typing:nonvar/1)

Interface is currently a term which is not a free variable. (term typing:nonvar/1)

Definition is currently a term which is not a free variable. (term typing:nonvar/1)

1046 The Ciao System

PREDICATElookup set extern prototype/4:
Usage: lookup_set_extern_prototype(Parse,Name,Interface,Strings)

− Description: The predicate will insert the external prototype definition in the personal
dictionary and will give a warning if there is a multiple name given.

− Call and exit should be compatible with:

field value:parse(Parse) (field value:parse/1)

Name is an atom. (basic props:atm/1)

Interface is any term. (basic props:term/1)

Strings is any term. (basic props:term/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Name is currently a term which is not a free variable. (term typing:nonvar/1)

Interface is currently a term which is not a free variable. (term typing:nonvar/1)

Strings is currently a term which is not a free variable. (term typing:nonvar/1)

Chapter 221: provrml parser (library) 1047

221 provrml parser (library)

Author(s): Göran Smedbäck.

221.1 Usage and interface (provrml_parser)
� �

• Library usage:

:- use_module(library(provrml_parser)).

• Exports:

− Predicates:

parser/2, nodeDeclaration/4.

− Properties:

field_Id/1.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators,
read, write, lists, provrml/lookup, provrml/field_value, provrml/tokeniser,
provrml/parser_util, provrml/possible, provrml/provrmlerror.

 	

221.2 Documentation on exports (provrml_parser)

PREDICATEparser/2:
Usage: parser(VRML,Terms)

− Description: The parser uses a tokeniser to read the input text string of VRML
code and returns a list with the corresponding terms. The tokens will be read in this
parser as the grammar says. The parser is according to the specification of the VRML
grammar, accept that it is performed over tokens in sted of the actual code.

− Call and exit should be compatible with:

VRML is a string (a list of character codes). (basic props:string/1)

Terms is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

VRML is currently a term which is not a free variable. (term typing:nonvar/1)

Terms is a free variable. (term typing:var/1)

PREDICATEnodeDeclaration/4:
Usage: nodeDeclaration(Parse_in,Parse_out,L,T)

− Description: The predicate is also accepted as a node field as has to be accessed from
the module that reads field values, i.e., field value.pl

− Call and exit should be compatible with:

Parse_in is a parse structure. (internal types:parse/1)

Parse_out is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

1048 The Ciao System

− The following properties should hold at call time:

Parse_in is currently a term which is not a free variable. (term typing:nonvar/1)

Parse_out is a free variable. (term typing:var/1)

PROPERTYfield Id/1:
A property, defined as follows:

field_Id(_1).

Chapter 222: parser util (library) 1049

222 parser util (library)

Author(s): Göran Smedbäck.

222.1 Usage and interface (parser_util)
� �

• Library usage:

:- use_module(library(parser_util)).

• Exports:

− Predicates:

at_least_one/4, at_least_one/5, fillout/4, fillout/5, create_node/3, create_
field/3, create_field/4, create_field/5, create_directed_field/5, correct_
commenting/4, create_parse_structure/1, create_parse_structure/2, create_
parse_structure/3, create_environment/4, insert_comments_in_beginning/3,
get_environment_name/2, get_environment_type/2, get_row_number/2,
add_environment_whitespace/3, get_indentation/2, inc_indentation/2, dec_
indentation/2, add_indentation/3, reduce_indentation/3, push_whitespace/3,
push_dictionaries/3, get_parsed/2, get_environment/2, inside_proto/1,
get_dictionaries/2, strip_from_list/2, strip_from_term/2, strip_clean/2,
strip_exposed/2, strip_restricted/2, strip_interface/2, set_parsed/3, set_
environment/3, insert_parsed/3, reverse_parsed/2, stop_parse/2, look_first_
parsed/2, get_first_parsed/3, remove_code/3, look_ahead/3.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists, provrml/dictionary_tree, provrml/internal_types.

 	

222.2 Documentation on exports (parser_util)

PREDICATEat least one/4:
Usage: at_least_one(ParseIn,ParseOut,L,T)

− Description: One or more whitespace or comment have to be read, for the moment
there are no whitespaces to be read so we only stick with the comments.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

1050 The Ciao System

PREDICATEat least one/5:
Usage: at_least_one(ParseIn,ParseOut,ListOfRead,L,T)

− Description: One or more whitespace or comment have to be read, the result will be
given in the list.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

ListOfRead is a list of terms. (basic props:list/2)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

ListOfRead is a free variable. (term typing:var/1)

PREDICATEfillout/4:
Usage: fillout(ParseIn,ParseOut,L,T)

− Description: If there are whitespaces and comments, zero or more of each. This read
all comments and all whitespace. The comments and whitespace will not be returned.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEfillout/5:
Usage: fillout(ParseIn,ParseOut,ResultingList,L,T)

− Description: If there are whitespaces and comments, zero or more of each, we add
them to the resulting list. This read all comments and all whitespace.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

ResultingList is a list of terms. (basic props:list/2)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

ResultingList is a free variable. (term typing:var/1)

Chapter 222: parser util (library) 1051

PREDICATEcreate node/3:
Usage: create_node(NodeTypeId,Parse,Node)

− Description: The predicate will construct a node term with the read guts which is
inside the parse structure. A node consists of its name and one argument, a list of its
fields.

− Call and exit should be compatible with:

NodeTypeId is an atom. (basic props:atm/1)

Parse is a parse structure. (internal types:parse/1)

Node is any term. (basic props:term/1)

− The following properties should hold at call time:

NodeTypeId is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Node is a free variable. (term typing:var/1)

PREDICATEcreate field/3:
Usage: create_field(FieldNameId,Arguments,Field)

− Description: The predicate will construct a field with the Id as the fieldname and the
arguments as they are, in a double list, which results in a single list or a single list
which will result in free arguments.

− Call and exit should be compatible with:

FieldNameId is an atom. (basic props:atm/1)

Arguments is any term. (basic props:term/1)

Field is any term. (basic props:term/1)

− The following properties should hold at call time:

FieldNameId is currently a term which is not a free variable. (term typing:nonvar/1)

Arguments is currently a term which is not a free variable. (term typing:nonvar/1)

Field is a free variable. (term typing:var/1)

PREDICATEcreate field/4:
Usage: create_field(FieldAccess,FieldType,FieldId,Field)

− Description: The predicate will construct a field with its access type as the name
with type and id as arguments.

− Call and exit should be compatible with:

FieldAccess is an atom. (basic props:atm/1)

FieldType is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

Field is any term. (basic props:term/1)

− The following properties should hold at call time:

FieldAccess is currently a term which is not a free variable. (term typing:nonvar/1)

FieldType is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId is currently a term which is not a free variable. (term typing:nonvar/1)

Field is a free variable. (term typing:var/1)

1052 The Ciao System

PREDICATEcreate field/5:
Usage: create_field(FieldAccess,FieldType,FieldId,Fieldvalue,Field)

− Description: The predicate will construct a field with its access type as the name
with type, id and value as arguments.

− Call and exit should be compatible with:

FieldAccess is an atom. (basic props:atm/1)

FieldType is an atom. (basic props:atm/1)

FieldId is an atom. (basic props:atm/1)

Fieldvalue is any term. (basic props:term/1)

Field is any term. (basic props:term/1)

− The following properties should hold at call time:

FieldAccess is currently a term which is not a free variable. (term typing:nonvar/1)

FieldType is currently a term which is not a free variable. (term typing:nonvar/1)

FieldId is currently a term which is not a free variable. (term typing:nonvar/1)

Fieldvalue is currently a term which is not a free variable. (term typing:nonvar/1)

Field is a free variable. (term typing:var/1)

PREDICATEcreate directed field/5:
Usage: create_directed_field(Access,Type,Id0,Id1,Field)

− Description: The predicate will construct a directed field with the key word IS in the
middle. Its access type as the name with type, from id0 and to id1 as arguments.

− Call and exit should be compatible with:

Access is an atom. (basic props:atm/1)

Type is an atom. (basic props:atm/1)

Id0 is an atom. (basic props:atm/1)

Id1 is an atom. (basic props:atm/1)

Field is any term. (basic props:term/1)

− The following properties should hold at call time:

Access is currently a term which is not a free variable. (term typing:nonvar/1)

Type is currently a term which is not a free variable. (term typing:nonvar/1)

Id0 is currently a term which is not a free variable. (term typing:nonvar/1)

Id1 is currently a term which is not a free variable. (term typing:nonvar/1)

Field is a free variable. (term typing:var/1)

PREDICATEcorrect commenting/4:
Usage: correct_commenting(Place,Comment,ParsedIn,ParsedOut)

− Description: The predicate places the comment ’before’ or ’after’ the parsed term.
This results in a list with the term and the comment or in just returning the term.

− Call and exit should be compatible with:

Place is an atom. (basic props:atm/1)

Comment is a compound term. (basic props:struct/1)

ParsedIn is any term. (basic props:term/1)

ParsedOut is any term. (basic props:term/1)

Chapter 222: parser util (library) 1053

− The following properties should hold at call time:

Place is currently a term which is not a free variable. (term typing:nonvar/1)

Comment is currently a term which is not a free variable. (term typing:nonvar/1)

ParsedIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParsedOut is a free variable. (term typing:var/1)

PREDICATEcreate parse structure/1:
Usage: create_parse_structure(Parse)

− Description: The predicate will construct the parse structure with its three fields:
the parsing list, the environment structure, and the dictionaries.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

Parse is a free variable. (term typing:var/1)

PREDICATEcreate parse structure/2:
Usage 1: create_parse_structure(ParseIn,ParseOut)

− Description: The predicate will construct a parse structure with its three fields:
the parsing list, the environment structure, and the dictionaries. It will reuse the
environment and the dictionaries from the input.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Usage 2: create_parse_structure(ParsedList,ParseOut)

− Description: The predicate will construct a parse structure with its three fields: the
parsing list, the environment structure, and the dictionaries. It will use the list of
parsed items in its structure.

− Call and exit should be compatible with:

ParsedList is a list of terms. (basic props:list/2)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParsedList is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEcreate parse structure/3:
Usage: create_parse_structure(ParsedList,ParseIn,ParseOut)

− Description: The predicate will construct a parse structure with its three fields: the
parsing list, the environment structure, and the dictionaries. It will use the list of
parsed items in its structure and the environment and the dictionary from the parse
structure given.

1054 The Ciao System

− Call and exit should be compatible with:

ParsedList is a list of terms. (basic props:list/2)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParsedList is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEcreate environment/4:
Usage: create_environment(Parse,EnvType,Name,EnvStruct)

− Description: The predicate will construct an environment structure based on the
information in the parse structure. Well only the white- space information will be
reused. The are three types of environments ’PROTO’, ’EXTERNPROTO’, and
’DEF’.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

EnvType is an atom. (basic props:atm/1)

Name is an atom. (basic props:atm/1)

EnvStruct is an environment structure. (internal types:environment/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

EnvType is currently a term which is not a free variable. (term typing:nonvar/1)

Name is currently a term which is not a free variable. (term typing:nonvar/1)

EnvStruct is a free variable. (term typing:var/1)

PREDICATEinsert comments in beginning/3:
Usage: insert_comments_in_beginning(Comment,ParseIn,ParseOut)

− Description: We add the comment in the beginneing of the parsed, to get the proper
look.

− Call and exit should be compatible with:

Comment is a compound term. (basic props:struct/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

Comment is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEget environment name/2:
Usage: get_environment_name(Environment,Name)

− Description: The predicate will return the enviroment name.

Chapter 222: parser util (library) 1055

− Call and exit should be compatible with:

Environment is an environment structure. (internal types:environment/1)

Name is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Environment is currently a term which is not a free variable. (term typing:nonvar/1)

Name is a free variable. (term typing:var/1)

PREDICATEget environment type/2:
Usage: get_environment_type(Environment,Type)

− Description: The predicate will return the enviroment type, one of the three:
’PROTO’, ’EXTERNPROTO’, and ’DEF’.

− Call and exit should be compatible with:

Environment is an environment structure. (internal types:environment/1)

Type is an atom. (basic props:atm/1)

− The following properties should hold at call time:

Environment is currently a term which is not a free variable. (term typing:nonvar/1)

Type is a free variable. (term typing:var/1)

PREDICATEget row number/2:
Usage: get_row_number(Parse,Row)

− Description: The predicate will return the row number from the parse structure. The
row number is not fully implemented.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

Row is a number. (basic props:num/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Row is a free variable. (term typing:var/1)

PREDICATEadd environment whitespace/3:
Usage: add_environment_whitespace(EnvIn,WhiteSpaceList,EnvOut)

− Description: The predicate will add the new whitespace that is collected in a list of
whitespaces to the environment.

− Call and exit should be compatible with:

EnvIn is an environment structure. (internal types:environment/1)

WhiteSpaceList is a list of atms. (basic props:list/2)

EnvOut is an environment structure. (internal types:environment/1)

− The following properties should hold at call time:

EnvIn is currently a term which is not a free variable. (term typing:nonvar/1)

WhiteSpaceList is currently a term which is not a free variable.
(term typing:nonvar/1)

EnvOut is a free variable. (term typing:var/1)

1056 The Ciao System

PREDICATEget indentation/2:
Usage 1: get_indentation(Whitespace,Indentation)

− Description: The predicate will return the indentation depth from a whitespace struc-
ture.

− Call and exit should be compatible with:

Whitespace is a whitespace structure. (internal types:whitespace/1)

Indentation is a number. (basic props:num/1)

− The following properties should hold at call time:

Whitespace is currently a term which is not a free variable. (term typing:nonvar/1)

Indentation is a free variable. (term typing:var/1)

Usage 2: get_indentation(Parse,Indentation)

− Description: The predicate will return the indentation depth from a parse structure.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

Indentation is a number. (basic props:num/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Indentation is a free variable. (term typing:var/1)

PREDICATEinc indentation/2:
Usage: inc_indentation(ParseIn,ParseOut)

− Description: Will increase the indentation with one step to a parse structure.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEdec indentation/2:
Usage: dec_indentation(ParseIn,ParseOut)

− Description: Will decrease the indentation with one step to a parse structure.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEadd indentation/3:
No further documentation available for this predicate.

Chapter 222: parser util (library) 1057

PREDICATEreduce indentation/3:
No further documentation available for this predicate.

PREDICATEpush whitespace/3:
Usage: push_whitespace(ParseWithWhitespace,ParseIn,ParseOut)

− Description: The predicate will add the whitespace values from one parse structure
to another one, resultin in the output, with the values from the second parse structure
with the whitespace from the first added.

− Call and exit should be compatible with:

ParseWithWhitespace is a parse structure. (internal types:parse/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParseWithWhitespace is currently a term which is not a free variable.
(term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEpush dictionaries/3:
Usage: push_dictionaries(Parse,Parse,Parse)

− Description: The predicate will set the first parse structure’s directory to the second
parsing structure argument. The resulting parsing structure will be returned.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

Parse is a parse structure. (internal types:parse/1)

Parse is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

Parse is a free variable. (term typing:var/1)

PREDICATEget parsed/2:
Usage 1: get_parsed(ParseStructure,ListOfParsed)

− Description: The predicate will return a list of the parsed terms that is inside the
parse structure.

− Call and exit should be compatible with:

ParseStructure is a parse structure. (internal types:parse/1)

ListOfParsed is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

ParseStructure is currently a term which is not a free variable.
(term typing:nonvar/1)

ListOfParsed is a free variable. (term typing:var/1)

1058 The Ciao System

Usage 2: get_parsed(ParseStructure,EnvironmentStructure)

− Description: The predicate will return the environment of the parse structure.

− Call and exit should be compatible with:

ParseStructure is a parse structure. (internal types:parse/1)

EnvironmentStructure is an environment structure. (internal types:environment/1)

− The following properties should hold at call time:

ParseStructure is currently a term which is not a free variable.
(term typing:nonvar/1)

EnvironmentStructure is a free variable. (term typing:var/1)

Usage 3: get_parsed(ParseStructure,Dictionaries)

− Description: The predicate will return dictionary used within the parse structure.

− Call and exit should be compatible with:

ParseStructure is a parse structure. (internal types:parse/1)

Dictionaries is a dictionary. (internal types:dictionary/1)

− The following properties should hold at call time:

ParseStructure is currently a term which is not a free variable.
(term typing:nonvar/1)

Dictionaries is a free variable. (term typing:var/1)

PREDICATEget environment/2:
No further documentation available for this predicate.

PREDICATEinside proto/1:
Usage: inside_proto(Parse)

− Description: The predicate will answer to the question: are we parsing inside a
PROTO/EXTERNPROTO.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

PREDICATEget dictionaries/2:
No further documentation available for this predicate.

PREDICATEstrip from list/2:
Usage: strip_from_list(ListWithComments,CleanList)

− Description: The predicate will strip the list from comments and return a list without
any comments.

− Call and exit should be compatible with:

ListWithComments is a list of terms. (basic props:list/2)

CleanList is a list of terms. (basic props:list/2)

Chapter 222: parser util (library) 1059

− The following properties should hold at call time:

ListWithComments is currently a term which is not a free variable.
(term typing:nonvar/1)

CleanList is a free variable. (term typing:var/1)

PREDICATEstrip from term/2:
Usage: strip_from_term(Term,Stripped)

− Description: The predicate will remove comments from a term, it will reduce its
arguments if there are comments as arguments.

− Call and exit should be compatible with:

Term is any term. (basic props:term/1)

Stripped is any term. (basic props:term/1)

− The following properties should hold at call time:

Term is currently a term which is not a free variable. (term typing:nonvar/1)

Stripped is a free variable. (term typing:var/1)

PREDICATEstrip clean/2:
Usage: strip_clean(ParsedIn,ParsedOut)

− Description: The predicate will return a striped list or a single atom if there was
no comments and no more items in the list. It will also return a atom if there is
comments and only one other element.

− Call and exit should be compatible with:

ParsedIn is any term. (basic props:term/1)

ParsedOut is any term. (basic props:term/1)

− The following properties should hold at call time:

ParsedIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParsedOut is a free variable. (term typing:var/1)

PREDICATEstrip exposed/2:
No further documentation available for this predicate.

PREDICATEstrip restricted/2:
No further documentation available for this predicate.

PREDICATEstrip interface/2:
Usage: strip_interface(Interface,StrippedInterface)

− Description: The predicate will remove comments from the interface that we read for
the PROTOtype. This will help us when setting the properties.

− Call and exit should be compatible with:

Interface is a list of terms. (basic props:list/2)

StrippedInterface is a list of terms. (basic props:list/2)

1060 The Ciao System

− The following properties should hold at call time:

Interface is currently a term which is not a free variable. (term typing:nonvar/1)

StrippedInterface is a free variable. (term typing:var/1)

PREDICATEset parsed/3:
Usage: set_parsed(ParseIn,NewParseList,ParseOut)

− Description: The predicate will create a new parse structure from the first parse
structure with the parse list from the second argument.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

NewParseList is a list of terms. (basic props:list/2)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

NewParseList is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEset environment/3:
Usage: set_environment(Environment,ParseIn,ParseOut)

− Description: The modificator will return a parse structure with the environment given
with the other properties from the first parse structure.

− Call and exit should be compatible with:

Environment is an environment structure. (internal types:environment/1)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

Environment is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEinsert parsed/3:
Usage: insert_parsed(ListOfParsed,ParseIn,ParseOut)

− Description: The predicate will append the newly parsed terms to the old that we
have in the parse structure.

− Call and exit should be compatible with:

ListOfParsed is a list of terms. (basic props:list/2)

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ListOfParsed is currently a term which is not a free variable. (term typing:nonvar/1)

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

Chapter 222: parser util (library) 1061

PREDICATEreverse parsed/2:
Usage: reverse_parsed(ParseIn,ParseOut)

− Description: The returned parse structure is the same as the input with the difference
that the parsed terms are in reverse order.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

PREDICATEstop parse/2:
Usage: stop_parse(TermIn,TermOut)

− Description: The predicate will bind the invalue to the outvalue, used to terminate
a parsing.

− Call and exit should be compatible with:

TermIn is any term. (basic props:term/1)

TermOut is any term. (basic props:term/1)

− The following properties should hold at call time:

TermIn is currently a term which is not a free variable. (term typing:nonvar/1)

TermOut is a free variable. (term typing:var/1)

PREDICATElook first parsed/2:
Usage: look_first_parsed(Parse,First)

− Description: Look at the first item in the parse structure.

− Call and exit should be compatible with:

Parse is a parse structure. (internal types:parse/1)

First is any term. (basic props:term/1)

− The following properties should hold at call time:

Parse is currently a term which is not a free variable. (term typing:nonvar/1)

First is a free variable. (term typing:var/1)

PREDICATEget first parsed/3:
Usage: get_first_parsed(ParseIn,ParseOut,First)

− Description: Get the first item in the parse structure and return the parse structure
with the item removed.

− Call and exit should be compatible with:

ParseIn is a parse structure. (internal types:parse/1)

ParseOut is a parse structure. (internal types:parse/1)

First is any term. (basic props:term/1)

− The following properties should hold at call time:

ParseIn is currently a term which is not a free variable. (term typing:nonvar/1)

ParseOut is a free variable. (term typing:var/1)

First is a free variable. (term typing:var/1)

1062 The Ciao System

PREDICATEremove code/3:
No further documentation available for this predicate.

PREDICATElook ahead/3:
Usage: look_ahead(Name,Parsed,Parsed)

− Description: This predicate is used normally by the CDG and the two last arguments
will therefore be the same because we don’t remove the parsed. The name is the name
inside a term, the first argument.

− Call and exit should be compatible with:

Name is an atom. (basic props:atm/1)

Parsed is a list of terms. (basic props:list/2)

Parsed is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

Name is currently a term which is not a free variable. (term typing:nonvar/1)

Parsed is currently a term which is not a free variable. (term typing:nonvar/1)

Parsed is a free variable. (term typing:var/1)

Chapter 223: possible (library) 1063

223 possible (library)

Author(s): Göran Smedbäck.

223.1 Usage and interface (possible)
� �

• Library usage:

:- use_module(library(possible)).

• Exports:

− Predicates:

continue/3.

 	

223.2 Documentation on exports (possible)

PREDICATEcontinue/3:
Usage: continue(RuleName,L,T)

− Description: The predicate will check the rule name’s possible followers, that is the
entrance in the grammar, to see if we have the possibility to contiue the generation
in the asked direction. We will by using the DCG look one item ahead to see if we
have the proper key name ahead. Then we check the possible alternatives for the rule
name from the list and type we receive from the call to possible. As we can see there
are different look ahead predicates depending if we have a token or a word, looking
on the structure name(token name) or if we should read the first word beyond the
structure name.

− Call and exit should be compatible with:

RuleName is an atom. (basic props:atm/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

RuleName is currently a term which is not a free variable. (term typing:nonvar/1)

1064 The Ciao System

Chapter 224: tokeniser (library) 1065

224 tokeniser (library)

Author(s): Göran Smedbäck.

224.1 Usage and interface (tokeniser)
� �

• Library usage:

:- use_module(library(tokeniser)).

• Exports:

− Predicates:

tokeniser/2, token_read/3.

• Other modules used:

− System library modules:

lists, provrml/provrmlerror.

 	

224.2 Documentation on exports (tokeniser)

PREDICATEtokeniser/2:
Usage: tokeniser(VRML,Tokens)

− Description: This predicate will perform the parsing of the VRML code. The result
will be tokens that will be the source for producing the Prolog terms of the VRML
code. This is done in the parser module. From these terms analysis, changing, and
any thing that you want to do with VRML code from Prolog programming language.
We perform the predicate with a catch call to be able to output error messages if
encountered.

− Call and exit should be compatible with:

VRML is a list of atms. (basic props:list/2)

Tokens is a list of terms. (basic props:list/2)

− The following properties should hold at call time:

VRML is currently a term which is not a free variable. (term typing:nonvar/1)

Tokens is a free variable. (term typing:var/1)

PREDICATEtoken read/3:
Usage 1: token_read(String,L,T)

− Description: The predicate will return the token string with one argument the string.
The string has some special properties according to the specification, but always
starting with the string symbol.

− Call and exit should be compatible with:

String is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

String is a free variable. (term typing:var/1)

1066 The Ciao System

Usage 2: token_read(Comment,L,T)

− Description: The predicate will return a token for a comment. The comment symbol,
the bracket will start the comment and go for a complete line.

− Call and exit should be compatible with:

Comment is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Comment is a free variable. (term typing:var/1)

Usage 3: token_read(Id,L,T)

− Description: The predicate will return a token for a word, an identifier. there is a
check whether the id starts with a capital or a low cap letter. There are tough no
distinction made in the token, but made a bit more easy to change if needed.

− Call and exit should be compatible with:

Id is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Usage 4: token_read(Exp,L,T)

− Description: The predicate will return the token for an exponentional number. The
number are according to the definitions of VRML and due to the normal Prolog
standard. We allow integer and float exponents but not exponential exponents.

− Call and exit should be compatible with:

Exp is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Usage 5: token_read(Float,L,T)

− Description: The predicate will return a token for a floating point value.

− Call and exit should be compatible with:

Float is currently instantiated to a float. (term typing:float/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Usage 6: token_read(Hex,L,T)

− Description: The returned token is of type hexadecimal number according to the
specifications.E.g., 0xabcd3ef where the 0x is essential.

− Call and exit should be compatible with:

Hex is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Usage 7: token_read(Int,L,T)

− Description: The token returned is the integer token and will contain the integer
value read.

− Call and exit should be compatible with:

Int is an integer. (basic props:int/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Chapter 224: tokeniser (library) 1067

− The following properties should hold at call time:

Int is a free variable. (term typing:var/1)

Usage 8: token_read(Symbol,L,T)

− Description: The symbol returned with this token is one of the symbols allowed
according to the specification. The only symbol is dot for the moment.

− Call and exit should be compatible with:

Symbol is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Usage 9: token_read(ListOfType,L,T)

− Description: The token for whitespace returns a list with the encountered whites-
paces. This is a better way because a whitespace are selldom found alone. The
whitespaces considered are: space, tab, new-line, return, and comma.

− Call and exit should be compatible with:

ListOfType is any term. (basic props:term/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

Usage 10: token_read(Paren,L,T)

− Description: There are four tokens returned with this prefix: node open, node close,
list open, list close.

− Call and exit should be compatible with:

Paren is an atom. (basic props:atm/1)

L is a list. (basic props:list/1)

T is a list. (basic props:list/1)

− The following properties should hold at call time:

Paren is a free variable. (term typing:var/1)

1068 The Ciao System

Chapter 225: Pattern (regular expression) matching 1069

225 Pattern (regular expression) matching

Author(s): The CLIP Group.

This library provides facilities for matching strings and terms against patterns. There are
some prolog flags

• There is a prolog flag to case insensitive match. Its name is case insensitive. If its value is
on, matching is case insenseitive, but if its value is off matching isn’t case insensitive. By
default, its value is off.

• There is a syntax facility to use matching more or less like a unification. You can type,
" =~ "regexp" " as an argument of a predicate. Thus, that argument must match with
regexp. For example:

pred (=~ "ab*c", B) :- ...

is equivalent to

pred (X,B) :- match_posix("ab*c",X,R), ...

So, there are two prolog flags about this. One of this prolog flags is "format". Its values
are shell, posix, list and pred, and sustitute in the example match posix by match shell,
match posix, match struct and macth pred respectivly. By default its value is posix. The
other prolog flag is exact. Its values are on and off. If its value is off sustitute in the example
R by []. If its value is on, R is a variable. By default, its value is on.

225.1 Usage and interface (regexp_doc)
� �

• Library usage:

:- use_package(regexp).

or

:- module(...,...,[regexp]).

• New operators defined:

=~/1 [200,fy].

• Other modules used:

− System library modules:

regexp/regexp_code.

 	

225.2 Documentation on internals (regexp_doc)

PREDICATEmatch shell/3:
Usage: match_shell(Exp,IN,Rest)

− Description: Matches IN against Exp. Rest is the longest remainder of the string
after the match. For example, match_shell("??*","foo.pl",Tail) succeeds, in-
stantiating Tail to "o.pl".

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string (a list of character codes). (basic props:string/1)

Rest is a string (a list of character codes). (basic props:string/1)

1070 The Ciao System

PREDICATEmatch shell/2:
Usage: match_shell(Exp,IN)

− Description: Matches completely IN (no tail can remain unmatched) against Exp
similarly to match_shell/3.

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string (a list of character codes). (basic props:string/1)

PREDICATEmatch posix/2:
Usage: match_posix(Exp,IN)

− Description: Matches completely IN (no tail can remain unmatched) against Exp
similarly to match_posix/3.

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string (a list of character codes). (basic props:string/1)

PREDICATEmatch posix/4:
Usage: match_posix(Exp,In,Match,Rest)

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

In is a string (a list of character codes). (basic props:string/1)

Match is a list of strings. (basic props:list/2)

Rest is a string (a list of character codes). (basic props:string/1)

PREDICATEmatch posix rest/3:
Usage: match_posix_rest(Exp,IN,Rest)

− Description: Matches IN against Exp. Tail is the remainder of the string after the
match. For example, match_posix("ab*c","abbbbcdf",Tail) succeeds, instantiat-
ing Tail to "df".

− The following properties should hold at call time:

Exp is a posix regular expression to match against. (regexp code:posix regexp/1)

IN is a string (a list of character codes). (basic props:string/1)

Rest is a string (a list of character codes). (basic props:string/1)

PREDICATEmatch posix matches/3:
Usage: match_posix_matches(Exp,IN,Matches)

− Description: Matches completely IN against Exp. Exp can contain anchored expres-
sions of the form \(regexp\). Matches will contain a list of the anchored expression
which were matched on success. Note that since POSIX expressions are being read
inside a string, backslashes will have to be doubled. For example,

Chapter 225: Pattern (regular expression) matching 1071

?- match_posix_matches("\\(aa|bb\\)\\(bb|aa\\)", "bbaa", M).
M = ["bb","aa"] ? ;
no

?- match_posix_matches("\\(aa|bb\\)\\(bb|aa\\)", "aabb", M).
M = ["aa","bb"] ? ;
no

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string (a list of character codes). (basic props:string/1)

Matches is a list of strings. (basic props:list/2)

PREDICATEmatch struct/4:
Usage: match_struct(Exp,IN,Rest,Tail)

− Description: Matches IN against Exp. Tail is the remainder of the list of atoms IN
after the match. For example, match_struct([a,*(b),c],[a,b,b,b,c,d,e],Tail)
succeeds, instantiating Tail to [d,e].

− Call and exit should be compatible with:

Exp is a struct regular expression to match against. (regexp code:struct regexp/1)

IN is a string (a list of character codes). (basic props:string/1)

Rest is a string (a list of character codes). (basic props:string/1)

PREDICATEmatch pred/2:
Usage: match_pred(Pred1,Pred2)

− Description: Tests if two predicates Pred1 and Pred2 match using posix regular
expressions.

PREDICATEreplace first/4:
Usage: replace_first(IN,Old,New,Resul)

− Description: Replace the first ocurrence of the Old by New in IN and copy the result
in Resul.

− The following properties should hold at call time:

IN is a string (a list of character codes). (basic props:string/1)

Old is a posix regular expression to match against. (regexp code:posix regexp/1)

New is a string (a list of character codes). (basic props:string/1)

Resul is a string (a list of character codes). (basic props:string/1)

PREDICATEreplace all/4:
Usage: replace_all(IN,Old,New,Resul)

− Description: Replace all ocurrences of the Old by New in IN and copy the result in
Resul.

1072 The Ciao System

− The following properties should hold at call time:

IN is a string (a list of character codes). (basic props:string/1)

Old is a posix regular expression to match against. (regexp code:posix regexp/1)

New is a string (a list of character codes). (basic props:string/1)

Resul is a string (a list of character codes). (basic props:string/1)

Chapter 226: regexp code (library) 1073

226 regexp code (library)

226.1 Usage and interface (regexp_code)
� �

• Library usage:

:- use_module(library(regexp_code)).

• Exports:

− Predicates:

match_shell/3, match_shell/2, match_posix/2, match_posix/4, match_posix_
rest/3, match_posix_matches/3, match_struct/4, match_pred/2, replace_
first/4, replace_all/4.

− Regular Types:

shell_regexp/1, posix_regexp/1, struct_regexp/1.

− Multifiles:

define_flag/3.

• Other modules used:

− System library modules:

lists.

 	

226.2 Documentation on exports (regexp_code)

PREDICATEmatch shell/3:
Usage: match_shell(Exp,IN,Rest)

− Description: Matches IN against Exp. Rest is the longest remainder of the string
after the match. For example, match_shell("??*","foo.pl",Tail) succeeds, in-
stantiating Tail to "o.pl".

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string. (regexp code:string/1)

Rest is a string. (regexp code:string/1)

PREDICATEmatch shell/2:
Usage: match_shell(Exp,IN)

− Description: Matches completely IN (no tail can remain unmatched) against Exp
similarly to match_shell/3.

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string. (regexp code:string/1)

1074 The Ciao System

PREDICATEmatch posix/2:
Usage: match_posix(Exp,IN)

− Description: Matches completely IN (no tail can remain unmatched) against Exp
similarly to match_posix/3.

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string. (regexp code:string/1)

PREDICATEmatch posix/4:
Usage: match_posix(Exp,In,Match,Rest)

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

In is a string. (regexp code:string/1)

Match is a list of strings. (basic props:list/2)

Rest is a string. (regexp code:string/1)

PREDICATEmatch posix rest/3:
Usage: match_posix_rest(Exp,IN,Rest)

− Description: Matches IN against Exp. Tail is the remainder of the string after the
match. For example, match_posix("ab*c","abbbbcdf",Tail) succeeds, instantiat-
ing Tail to "df".

− The following properties should hold at call time:

Exp is a posix regular expression to match against. (regexp code:posix regexp/1)

IN is a string. (regexp code:string/1)

Rest is a string. (regexp code:string/1)

PREDICATEmatch posix matches/3:
Usage: match_posix_matches(Exp,IN,Matches)

− Description: Matches completely IN against Exp. Exp can contain anchored expres-
sions of the form \(regexp\). Matches will contain a list of the anchored expression
which were matched on success. Note that since POSIX expressions are being read
inside a string, backslashes will have to be doubled. For example,

?- match_posix_matches("\\(aa|bb\\)\\(bb|aa\\)", "bbaa", M).
M = ["bb","aa"] ? ;
no

?- match_posix_matches("\\(aa|bb\\)\\(bb|aa\\)", "aabb", M).
M = ["aa","bb"] ? ;
no

− The following properties should hold at call time:

Exp is a shell regular expression to match against. (regexp code:shell regexp/1)

IN is a string. (regexp code:string/1)

Matches is a list of strings. (basic props:list/2)

Chapter 226: regexp code (library) 1075

PREDICATEmatch struct/4:
Usage: match_struct(Exp,IN,Rest,Tail)

− Description: Matches IN against Exp. Tail is the remainder of the list of atoms IN
after the match. For example, match_struct([a,*(b),c],[a,b,b,b,c,d,e],Tail)
succeeds, instantiating Tail to [d,e].

− Call and exit should be compatible with:

Exp is a struct regular expression to match against. (regexp code:struct regexp/1)

IN is a string. (regexp code:string/1)

Rest is a string. (regexp code:string/1)

PREDICATEmatch pred/2:
Usage: match_pred(Pred1,Pred2)

− Description: Tests if two predicates Pred1 and Pred2 match using posix regular
expressions.

PREDICATEreplace first/4:
Usage: replace_first(IN,Old,New,Resul)

− Description: Replace the first ocurrence of the Old by New in IN and copy the result
in Resul.

− The following properties should hold at call time:

IN is a string. (regexp code:string/1)

Old is a posix regular expression to match against. (regexp code:posix regexp/1)

New is a string. (regexp code:string/1)

Resul is a string. (regexp code:string/1)

PREDICATEreplace all/4:
Usage: replace_all(IN,Old,New,Resul)

− Description: Replace all ocurrences of the Old by New in IN and copy the result in
Resul.

− The following properties should hold at call time:

IN is a string. (regexp code:string/1)

Old is a posix regular expression to match against. (regexp code:posix regexp/1)

New is a string. (regexp code:string/1)

Resul is a string. (regexp code:string/1)

REGTYPEshell regexp/1:
Usage: shell_regexp(P)

− Description: P is a shell regular expression to match against.

REGTYPEposix regexp/1:
Usage: posix_regexp(P)

− Description: P is a posix regular expression to match against.

1076 The Ciao System

REGTYPEstruct regexp/1:
Usage: struct_regexp(P)

− Description: P is a struct regular expression to match against.

226.3 Documentation on multifiles (regexp_code)

PREDICATEdefine flag/3:
The predicate is multifile.

Usage: define_flag(Flag,FlagValues,Default)

− The following properties hold upon exit:

Flag is an atom. (basic props:atm/1)

Define the valid flag values (basic props:flag values/1)

Chapter 227: Automatic tester 1077

227 Automatic tester

Author(s): David Trallero Mena.

This module have been created to automate the test that a predicate should pass hopefully.
With that intention we have to provide a set of test and its correct answers. The predicate
run_tester/10 will execute every test and compare it with its answer, generating two traces,
one with detailed information, and another with the summary of executions of the tests.

227.1 Usage and interface (tester)
� �

• Library usage:

:- use_module(library(tester)).

• Exports:

− Predicates:

run_tester/10.

• Other modules used:

− System library modules:

lists, write, io_alias_redirection.

 	

227.2 Documentation on exports (tester)

PREDICATErun tester/10:
Meta-predicate with arguments: run_tester(?,?,(pred 0),(pred 1),?,(pred
1),?,(pred 0),?,?).

Usage: run_
tester(LogFile,ResultFile,Begin,Test,TestList,Check,CheckList,End,GoodExamples,Slider)

− Description: run tester is a predicate for automatizate testers. It get 2 file names as
entry (LogFile and ResultFile) for saving the trace and the short result scheme
respectevely. Being and End are called at the beginning and at the end of the
test. Test is called which each element of TestList and after, Check is called with
the corresponding element in CheckList for checking the results of Test predicate.
GoodExample is ground(int) at the exit and tells the number of examples that passed
the test correctly. Slider can take the values slider(no) or slider(Title) and slider
will be shown everytime a new test is called

− The following properties should hold at call time:

LogFile is a string (a list of character codes). (basic props:string/1)

ResultFile is a string (a list of character codes). (basic props:string/1)

Begin is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

Test is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

TestList is a list. (basic props:list/1)

Check is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

CheckList is a list. (basic props:list/1)

1078 The Ciao System

End is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

GoodExamples is a free variable. (term typing:var/1)

Slider is any term. (basic props:term/1)

227.3 Other information (tester)

Two simple examples of the use of the run tester are provided.

227.3.1 Understanding run test predicate

:- module(tester_test2 , _ , _).

:- use_module(’..’(tester)).
%:- use_module(library(tester)).
:- use_module(library(lists)).
:- use_module(library(write)).

init_func :-
write(’Starting the test\n’).

tester_func((X,X,_)) :-
write(’The argument is correct ’),
write(X) , nl.

checker_func((_,X,X)) :-
write(’check is fine\n\n’).

end_func :-
write(’Test ended\n’).

main :-
L = [(1,1,1), % CORRECT

(2,2,1), % Test CORRECT , CHECK FALSE
(1,2,2) % Test FALSE

],

run_tester(
’test.log’,
’result.log’,
init_func ,
tester_func ,
L,
checker_func,
L,
end_func,
Res,
slider(’Tester2: ’)

Chapter 227: Automatic tester 1079

),

length(L , LL),
Op is (Res / LL) * 100,
message(note , [’Analysis result: ’ , Op , ’%’]).

227.3.2 More complex example

In this example we just want to test if the output of Ciaopp is readable by CIAO.

Tester function succeds if it is able to write the output file.

Checker function succeds if it is able to load the written file.

:- module(tester_test1 , _ , []).

%:- use_module(library(tester) , [run_tester/10]).
:- use_module(’..’(tester), [run_tester/10]).

:- use_module(library(ciaopp)).
:- use_module(library(compiler)).

:- use_module(library(filenames)).

:- use_module(library(write)).

:- use_module(library(lists)).

init_func.

test_files(’/home/dtm/Ciaopp/Benchmarks/ciaopp/modes/’).

tester_func(FileArg) :-
test_files(Path),
atom_concat(Path , FileArg , File0),

message(note ,
[’+++\n’]),
(unload(File0)->true;true),
module(File0),

atom_concat(TFile , ’.pl’, File0),
atom_concat(TFile , ’_test.pl’ , TestFile),

output(TestFile).

get_module(Path , Module) :-
no_path_file_name(Path , File),
(atom_concat(Module , ’.pl’ , File)
-> true ; Module = File).

1080 The Ciao System

checker_func(FileArg) :-
get_module(FileArg , Module),
(unload(Module)->true;true),

atom_concat(RawFile, ’.pl’ , FileArg),
atom_concat(RawFile, ’_test.pl’ , OptFile),

test_files(Path),
atom_concat(Path , OptFile, OptFilePath),

message(note , [’Cargando ’ , OptFilePath]),
use_module(OptFilePath).

end_func.

main :-
L = [

’aiakl.pl’,
’query.pl’,
’mmatrix.pl’,
’ann.pl’,
’bid.pl’,
’rdtok.pl’,
’myread.pl’,
’boyer.pl’,
’read.pl’,
’occur.pl’,
’serialize.pl’,
’browse.pl’,
’peephole.pl’,
’tak.pl’,
’deriv.pl’,
’progeom.pl’,
’warplan.pl’,
’fib.pl’,
’qplan.pl’,
’witt.pl’,
’grammar.pl’,
’zebra.pl’,
’qsortapp.pl’,
’hanoiapp.pl’

],

run_tester(
’test.log’,
’result.log’,

Chapter 227: Automatic tester 1081

init_func ,
tester_func ,
L,
checker_func,
L,
end_func,
Res,
slider(’Tester1: ’)

),
length(L , LL),
Op is (Res / LL) * 100,
message(note , [’Analysis result: ’ , Op , ’%’]).

1082 The Ciao System

Chapter 228: Measuring features from predicates (time cost or memory used) 1083

228 Measuring features from predicates (time cost
or memory used)

Author(s): David Trallero Mena.

This library has been done for measuring or compare execution features (currently only time)
of predicates. This module relys on gnuplot, an auxiliary module which use the tool gnuplot,
for representing results graphically

228.1 Usage and interface (time_analyzer)
� �

• Library usage:

:- use_module(library(time_analyzer)).

• Exports:

− Predicates:

performance/3, benchmark/6, compare_benchmark/7, generate_benchmark_list/7,
benchmark2/6, compare_benchmark2/7, generate_benchmark_list2/7,
sub_times/3, div_times/2, cost/3.

• Other modules used:

− System library modules:

gnuplot/gnuplot, prolog_sys, lists, write, hiordlib.

 	

228.2 Documentation on exports (time_analyzer)

PREDICATEperformance/3:
Meta-predicate with arguments: performance(goal,?,?).

Usage: performance(P,M,Times)

− Description: performance accepts a goal, P, as a first argument. The aim of this
predicate is to call P several times and meassure some feature (in this version, only
time, that is reason because no extra parameter has been added). M defines how
many times P should be called. Usually, calling the predicate in some succesion
(10,100,1000) and dividing by the number of times it is executed we can obtain the
"execution time" of the predicate (if we are measuring time).

The result of executions are returned in the list Times

The diferent modes are:

• graph(Start , End , Increment). It defines arithmetic succesion starting in Start
and ending in End, by increment of Increment. So P is called Start times on the
first time, Start+Increment on the second, etc.

• graph The same as graph/3 but with default options

• graph exp(Start , End , Exp). It defines geometric succesion. Start is multiplied
by Exp till it gets End. So P is called Start times on the first time, Start*Exp
on the second, etc.

• graph exp The same as graph exp/3 but with default options

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

1084 The Ciao System

M is any term. (basic props:term/1)

Times is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

M is any term. (basic props:term/1)

Times is a list of nums. (basic props:list/2)

PREDICATEbenchmark/6:
Usage: benchmark(P,BenchList,NumTimes,Method,Reserved,OutList)

− Description: The predicate P, which accepts ONE argument, is called with the first
member of each pair of the BenchList list NumTimes. The entry list have pairs because
the second member of the pair express the meaning of the first one in the X-Axis. For
example, if we are doing a benchmark of qsort function, the first member will be a
list for being ordered and the second one will be the length of the unordered list. The
output is a list of (X,Y) points where Y means the time needed for its entry of "cost"
X. OutList can be used as TimeList in predicate generate plot. Reserved is reserved
for future implementations (it will take the value of runtime, memory used...)

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

BenchList is a list of pairs. (basic props:list/2)

NumTimes is an integer. (basic props:int/1)

time analyzer:average mode(Method) (time analyzer:average mode/1)

Reserved is any term. (basic props:term/1)

OutList is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

BenchList is a list of pairs. (basic props:list/2)

NumTimes is an integer. (basic props:int/1)

time analyzer:average mode(Method) (time analyzer:average mode/1)

Reserved is any term. (basic props:term/1)

OutList is a list of pairs. (basic props:list/2)

PREDICATEcompare benchmark/7:
Usage: compare_
benchmark(ListPred,BenchList,Method,NumTimes,BaseName,Reserved,GeneralOptions)

− Description: It is the generalization of execute predicate benchmark/6 with several
predicates. benchmark/6 predicate is called with each predicate in ListPred, and
BaseName is used for the temporaries basename file. GeneralOptions are aplied to
the plot

− The following properties should hold at call time:

ListPred is a list of callables. (basic props:list/2)

BenchList is a list. (basic props:list/1)

Chapter 228: Measuring features from predicates (time cost or memory used) 1085

time analyzer:average mode(Method) (time analyzer:average mode/1)

NumTimes is an integer. (basic props:int/1)

BaseName is currently instantiated to an atom. (term typing:atom/1)

Reserved is any term. (basic props:term/1)

GeneralOptions is a list. (basic props:list/1)

PREDICATEgenerate benchmark list/7:
No further documentation available for this predicate.

PREDICATEbenchmark2/6:
Usage: benchmark2(P,BenchList,Method,NumTimes,What,OutList)

− Description: The predicate P, which accepts TWO arguments, is called NumTimes
with the first member of each pair of the BenchList list and a free variable as the
second. The time of execution (in the future, the desired featured for be measured)
is expected to be the second argument, that is because it is a variable. The entry
list, BenchList have pairs because the second member of the pair express the cost
of the first (in X-Axis). For example, if we are doing a benchmark of qsort function,
the first member will be a list for being ordered and the second one will represent the
lenght of the unordered list. The output is a list of (X,Y) points where Y express the
time needed for they entry of "cost" X. OutList can be used as TimeList in predicate
generate plot. What is reserved for future use

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

BenchList is a list of pairs. (basic props:list/2)

time analyzer:average mode(Method) (time analyzer:average mode/1)

NumTimes is an integer. (basic props:int/1)

What is currently instantiated to an atom. (term typing:atom/1)

OutList is a free variable. (term typing:var/1)

− The following properties should hold upon exit:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

BenchList is a list of pairs. (basic props:list/2)

time analyzer:average mode(Method) (time analyzer:average mode/1)

NumTimes is an integer. (basic props:int/1)

What is currently instantiated to an atom. (term typing:atom/1)

OutList is a list of pairs. (basic props:list/2)

PREDICATEcompare benchmark2/7:
Usage: compare_
benchmark2(ListPred,BenchList,Method,NumTimes,BaseName,Reserved,GeneralOptions)

− Description: It is the generalization of execute predicate benchmark2/6 with several
predicates. benchmark2/6 is called with each predicate in ListPred and BaseName
is used for the temporaries basename file. GeneralOptions are applied to the plot
(’default’ can be used for default General options)

1086 The Ciao System

− The following properties should hold at call time:

ListPred is a list of callables. (basic props:list/2)

BenchList is a list. (basic props:list/1)

time analyzer:average mode(Method) (time analyzer:average mode/1)

NumTimes is an integer. (basic props:int/1)

BaseName is currently instantiated to an atom. (term typing:atom/1)

Reserved is currently instantiated to an atom. (term typing:atom/1)

GeneralOptions is a list. (basic props:list/1)

− The following properties should hold upon exit:

ListPred is a list of callables. (basic props:list/2)

BenchList is a list. (basic props:list/1)

time analyzer:average mode(Method) (time analyzer:average mode/1)

NumTimes is an integer. (basic props:int/1)

BaseName is currently instantiated to an atom. (term typing:atom/1)

Reserved is currently instantiated to an atom. (term typing:atom/1)

GeneralOptions is a list. (basic props:list/1)

PREDICATEgenerate benchmark list2/7:
No further documentation available for this predicate.

PREDICATEsub times/3:
Usage: sub_times(A,B,C)

− Description: C is the result of doing A - B, where A, B, C are a list of pairs as
(Time,)

− Call and exit should be compatible with:

A is a list of pairs. (basic props:list/2)

B is a list of pairs. (basic props:list/2)

C is a list of pairs. (basic props:list/2)

PREDICATEdiv times/2:
Usage: div_times(A,B)

− Description: A is a list of pairs (P1,P2). B is a list of pairs with the form (P1,P2/P1)
for each (P1,P2) that belongs to A

− Call and exit should be compatible with:

A is a list of pairs. (basic props:list/2)

B is a list of pairs. (basic props:list/2)

PREDICATEcost/3:
Meta-predicate with arguments: cost(goal,?,?).

Usage: cost(A,T,What)

Chapter 228: Measuring features from predicates (time cost or memory used) 1087

− Description: This pred is thought for measuring constant complexity predicates. T is
the expected measured feature. What is reserved for future implementations, just put
’runtime’

− Call and exit should be compatible with:

A is a term which represents a goal, i.e., an atom or a structure. (ba-
sic props:callable/1)

T is an integer. (basic props:int/1)

What is any term. (basic props:term/1)

(UNDOC REEXPORT)generate plot/3:
Imported from gnuplot (see the corresponding documentation for details).

(UNDOC REEXPORT)generate plot/2:
Imported from gnuplot (see the corresponding documentation for details).

(UNDOC REEXPORT)set general options/1:
Imported from gnuplot (see the corresponding documentation for details).

(UNDOC REEXPORT)get general options/1:
Imported from gnuplot (see the corresponding documentation for details).

1088 The Ciao System

Chapter 229: XDR handle library 1089

229 XDR handle library

Author(s): José Manuel Gómez Pérez.

This library offers facilities to enable users to setup preferences on the values an eventual
XML document may take. XML documents are specified by XDR documents (eXternal Data
Representation standard), in a way conceptually similar to that of objects and classes in object
oriented programming. These facilities allow to take as input an XDR Schema defining the
class of documents of interest, and establish a dialogue with the user via an HTML form that
allows the user to setup preferences to select sub-classes of documents (those which satisfy the
preferences). The preferences are the output of the process and may be in the form of XPath
expressions, for example, as can be seen in the example attached in the "examples" directory.

229.1 Usage and interface (xdr_handle)
� �

• Library usage:

:- use_module(library(xdr_handle)).

• Exports:

− Predicates:

xdr_tree/3, xdr_tree/1, xdr2html/4, xdr2html/2, unfold_tree/2, unfold_tree_
dic/3, xdr_xpath/2.

− Regular Types:

xdr_node/1.

• Other modules used:

− System library modules:

pillow/http, pillow/html, pillow/pillow_types, xdr_handle/xdr_types,
aggregates, lists, terms.

 	

229.2 Documentation on exports (xdr_handle)

PREDICATExdr tree/3:
Usage: xdr_tree(XDR_url,XDR_tree,XDR_id)

− Description: Parses an XDR (External Data Representation Standard) located at an
url XDR_url into a tree structured Prolog term XDR_tree. It also returns an identifier
of the XDR tree XDR_id corresponding to the sequence of nodes in the tree (this is
intended to be a hook to use in CGI applications).

− The following properties should hold at call time:

XDR_url is currently a term which is not a free variable. (term typing:nonvar/1)

XDR_tree is a free variable. (term typing:var/1)

XDR_id is a free variable. (term typing:var/1)

XDR_url specifies a URL. (pillow types:url term/1)

XDR_tree specifies an XDR document. (xdr types:xdr/1)

XDR_id is an integer. (basic props:int/1)

1090 The Ciao System

PREDICATExdr tree/1:
Usage: xdr_tree(XDR_tree)

− Description: Checks the correctness of an XDR tree XDR_tree.

− The following properties should hold at call time:

XDR_tree specifies an XDR document. (xdr types:xdr/1)

REGTYPExdr node/1:
Usage: xdr_node(XDR_node)

− Description: XDR_node is a XDR tree node.

PREDICATExdr2html/4:
Usage: xdr2html(XDRTree,HTMLOutput,UnfoldedTree,Dic)

− Description: Receives an XDR tree XDRTree and produces the corresponding HTML
code HTMLOutput, an equivalente unfolded plain tree UnfoldedTree and a control
dictionary Dic to hold a reference the evenutal fom objects.

− The following properties should hold at call time:

XDRTree is currently a term which is not a free variable. (term typing:nonvar/1)

HTMLOutput is a free variable. (term typing:var/1)

UnfoldedTree is a free variable. (term typing:var/1)

Dic is a free variable. (term typing:var/1)

XDRTree specifies an XDR document. (xdr types:xdr/1)

HTMLOutput is a term representing HTML code. (pillow types:html term/1)

UnfoldedTree specifies an XDR document. (xdr types:xdr/1)

Dic is a dictionary of values of the attributes of a form. It is a list of form_assignment
(pillow types:form dict/1)

PREDICATExdr2html/2:
Usage: xdr2html(XDRTree,HTMLOutput)

− Description: Receives an XDR tree XDRTree and produces the corresponding HTML
code HTMLOutput. This html code is intended to be part of a form used as a means
by which an eventual user can give value to an instance of the XDR, i.e. an XML
element.

− The following properties should hold at call time:

XDRTree is currently a term which is not a free variable. (term typing:nonvar/1)

HTMLOutput is a free variable. (term typing:var/1)

XDRTree specifies an XDR document. (xdr types:xdr/1)

HTMLOutput is a term representing HTML code. (pillow types:html term/1)

PREDICATEunfold tree/2:
Usage: unfold_tree(XDRTree,UFT)

Chapter 229: XDR handle library 1091

− Description: Obtains an unfolded XDR tree UFT from a standard XDR tree XDRTree,
i.e. an XDR tree where all references to XDR elements have been substituted with the
elements themselves. Especially useful for eventual generation of equivalent XPATH
expressions, (see example).

− The following properties should hold at call time:

XDRTree is currently a term which is not a free variable. (term typing:nonvar/1)

UFT is a free variable. (term typing:var/1)

XDRTree specifies an XDR document. (xdr types:xdr/1)

UFT specifies an XDR document. (xdr types:xdr/1)

PREDICATEunfold tree dic/3:
Usage: unfold_tree_dic(XDRTree,UFT,Dic)

− Description: Obtains an unfolded XDR tree UFT and a form dictionary Dic from a
standard XDR tree XDRTree. Especially useful for HTML form data exchange (see
example).

− The following properties should hold at call time:

XDRTree is currently a term which is not a free variable. (term typing:nonvar/1)

UFT is a free variable. (term typing:var/1)

Dic is a free variable. (term typing:var/1)

XDRTree specifies an XDR document. (xdr types:xdr/1)

UFT specifies an XDR document. (xdr types:xdr/1)

Dic is a dictionary of values of the attributes of a form. It is a list of form_assignment
(pillow types:form dict/1)

PREDICATExdr xpath/2:
Usage: xdr_xpath(XDRTree,XPath)

− Description: Produces an XPATH expression XPath from an XDR tree XDRTree. If
the given XDR tree has no definite value the xpath expression produced will be empty

− The following properties should hold at call time:

XDRTree is currently a term which is not a free variable. (term typing:nonvar/1)

XPath is a free variable. (term typing:var/1)

XDRTree specifies an XDR document. (xdr types:xdr/1)

XPath is an atom. (basic props:atm/1)

1092 The Ciao System

Chapter 230: XML query library 1093

230 XML query library

Author(s): José Manuel Gómez Pérez.

This package provides a language suitable for querying XML documents from a Prolog pro-
gram. Constraint programming expresions can be included in order to prune search as soon as
possible, i.e. upon constraint unsatisfability, improving efficiency. Also, facilities are offered to
improve search speed by transforming XML documents into Prolog programs, hence reducing
search to just running the program and taking advantage of Prolog’s indexing capabilities.

Queries in an XML document have a recursive tree structructure that permits to detail the
search on the XML element sought, its attributes, and its children. As a suffix, a constraint
programming expression can be added. Queries return value for the free variables included (in
case of success), and checks whether the XML document structure matches that depicted by the
query itself.

The operators introduced are described below:

• @ Delimits a subquery on an elment’s attribute, such as product@val(product_name,
"car"), the first argument being the attribute name and the second its value. Any of
them can be free variables, being possible to write queries like product@val(Name, "car"),
intended to find the ’Name’ of attributes of element product whose value is the string "car".

• :: The right-hand side of the subexpression delimited by this operator is a query on the
children elements of the element described on its left-hand side.

• with Declares the constraints the items sought must satisfy.

Some examples of this query language (more can be found in the examples directory):

• Example A:

product@val(product_name,"car")::(quantity(X),
’time-left’(Y),
negotiation::preference::price(Z))

with X * Z .>. Y

• Example B:

nitf::head::docdata::’doc-id’@val(’id-string’,"020918050")::(Y),
body::’body.head’::abstract::p(X)

230.1 Usage and interface (xml_path_doc)
� �

• Library usage:

:- use_package(xml_path).

or

:- module(...,...,[xml_path]).

• Exports:

− Predicates:

xml_search/3, xml_parse/3, xml_parse_match/3, xml_search_match/3, xml_
index_query/3, xml_index_to_file/2, xml_index/1, xml_query/3.

• Other modules used:

− System library modules:

xml_path/xml_path_types.

 	

1094 The Ciao System

230.2 Documentation on exports (xml_path_doc)

PREDICATExml search/3:
Usage: xml_search(Query,Source,Doc)

− Description: Checks a high level query Query against an XML document Source. If
the query is successful it retuns in Doc the whole xml element(s) of the document
that matched it.

− The following properties should hold at call time:

Query is currently a term which is not a free variable. (term typing:nonvar/1)

Source is currently a term which is not a free variable. (term typing:nonvar/1)

Doc is a free variable. (term typing:var/1)

Query is a primitive XML query. (xml path types:canonic xml query/1)

Source is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

Doc is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

PREDICATExml parse/3:
Usage: xml_parse(Query,Source,Doc)

− Description: Checks a high level query Query against an XML document Source. If
the query is successful it retuns in Doc the whole xml element(s) of the document
that matched it. On the contrary as xml_search/3, the query can start at any level
of the XML document, not necessarily at the root node.

− The following properties should hold at call time:

Query is currently a term which is not a free variable. (term typing:nonvar/1)

Source is currently a term which is not a free variable. (term typing:nonvar/1)

Doc is a free variable. (term typing:var/1)

Query is a primitive XML query. (xml path types:canonic xml query/1)

Source is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

Doc is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

PREDICATExml parse match/3:
Usage: xml_parse_match(Query,Source,Match)

− Description: Checks a high level query Query against an XML document Source. If
the query is successful it retuns in Doc the exact subtree of the xml document that
matched it. On the contrary as ’$xml_search_match/3, the query can start at any
level of the XML document, not necessarily at the root node.

− The following properties should hold at call time:

Query is currently a term which is not a free variable. (term typing:nonvar/1)

Source is currently a term which is not a free variable. (term typing:nonvar/1)

Match is a free variable. (term typing:var/1)

Query is a primitive XML query. (xml path types:canonic xml query/1)

Chapter 230: XML query library 1095

Source is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

Match is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

PREDICATExml search match/3:
Usage: xml_search_match(BasicQuery,SourceDoc,Match)

− Description: Checks query Query against an XML document Source. If the query is
successful it retuns in Doc the exact subtree of the xml document that matched it.

− The following properties should hold at call time:

BasicQuery is currently a term which is not a free variable. (term typing:nonvar/1)

SourceDoc is currently a term which is not a free variable. (term typing:nonvar/1)

Match is a free variable. (term typing:var/1)

BasicQuery is a primitive XML query. (xml path types:canonic xml query/1)

SourceDoc is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

Match is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

PREDICATExml index query/3:
Usage: xml_index_query(Query,Id,Match)

− Description: Matches a high level query Query against an XML document previously
transformed into a Prolog program. Id identifies the resulting document Match, which
is the exact match of the query against the XML document.

− The following properties should hold at call time:

Query is currently a term which is not a free variable. (term typing:nonvar/1)

Id is a free variable. (term typing:var/1)

Match is a free variable. (term typing:var/1)

Query is a primitive XML query. (xml path types:canonic xml query/1)

Id is an atom. (basic props:atm/1)

Match is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

PREDICATExml index to file/2:
Usage: xml_index_to_file(SourceDoc,File)

− Description: Transforms the XML document SourceDoc in a Prolog program which
is output to file File.

− The following properties should hold at call time:

SourceDoc is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

File is an atom. (basic props:atm/1)

1096 The Ciao System

PREDICATExml index/1:
Usage: xml_index(SourceDoc)

− Description: Transforms the XML document SourceDoc in a Prolog program, gen-
erating the associated clauses, which are stored dynamically into the current process
memory space.

− The following properties should hold at call time:

SourceDoc is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

PREDICATExml query/3:
Usage: xml_query(Query,Doc,Match)

− Description: Checks that XML document Doc is compliant with respect to the query
Query expressed in the low level query language. The exact mapping of the query
over the document is returned in Match

− The following properties should hold at call time:

Query is currently a term which is not a free variable. (term typing:nonvar/1)

Doc is currently a term which is not a free variable. (term typing:nonvar/1)

Match is a free variable. (term typing:var/1)

Query is a primitive XML query. (xml path types:canonic xml query/1)

Doc is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

Match is either a XML attribute, a XML element or a line break.
(xml path types:canonic xml item/1)

230.3 Documentation on internals (xml_path_doc)

REGTYPEcanonic xml term/1:
Usage: canonic_xml_term(XMLTerm)

− Description: XMLTerm is a term representing XML code in canonical form.

REGTYPEcanonic xml item/1:
Usage: canonic_xml_item(XMLItem)

− Description: XMLItem is either a XML attribute, a XML element or a line break.

REGTYPEtag attrib/1:
Usage: tag_attrib(Att)

− Description: Att is a XML attribute.

REGTYPEcanonic xml query/1:
Usage: canonic_xml_query(Query)

− Description: Query is a primitive XML query.

Chapter 230: XML query library 1097

REGTYPEcanonic xml subquery/1:
Usage: canonic_xml_subquery(SQuery)

− Description: SQuery defines a XML subquery.

1098 The Ciao System

PART XII - Appendices 1099

PART XII - Appendices

� �

Author(s): The CLIP Group.

These appendices describe the installation of the Ciao environment on different systems and
some other issues such as reporting bugs, signing up on the Ciao user’s mailing list, downloading
new versions, limitations, etc.

 	

1100 The Ciao System

Chapter 231: Installing Ciao from the source distribution 1101

231 Installing Ciao from the source distribution

Author(s): Manuel Carro, Daniel Cabeza, Manuel Hermenegildo.

This describes the installation procedure for the Ciao system, including libraries and manuals,
from a source distribution. This applies primarily to Unix-type systems (Linux, Mac OS X,
Solaris, SunOS, etc.). However, the sources can also be compiled if so desired on Windows
systems – see Section 231.6 [Installation and compilation under Windows], page 1107 for details.

If you find any problems during installation, please refer to Section 231.8 [Troubleshooting
(nasty messages and nifty workarounds)], page 1108. See also Section 233.3 [Downloading new
versions], page 1115 and Section 233.4 [Reporting bugs], page 1116.

231.1 Un*x installation summary

Note: It is recommended that you read the full installation instructions (specially if the instal-
lation will be shared by different architectures). However, in many cases it suffices to follow this
summary:

1. Uncompress and unpackage (using gunzip and tar -xpf) the distribution. This will put
everything in a new directory whose name reflects the Ciao version.

2. Type ./ciaosetup configure. This will autodetect and configure the system for your
specific platform. If you need more control about what configure does, just add the option
--help to see more arguments.

The option --menu show a menu with configurable options. You must follow the instructions
that appears on it.

Note that the GNU implementation of the make Un*x command is used internally in some
specific parts. It is available in many systems (including all Linux systems and Mac OS X)
simply as make. If this or next steps stop right away with make error messages it is probably
an older version and you need to install gmake.

3. Type ./ciaosetup build. This will build executables and compile libraries.

4. Type ./ciaosetup install. This will install everything in the specified directories.

5. The system will do the right modifications in your startup scripts. This will make the
documentation accessible, set the correct mode when opening Ciao source files in emacs,
etc. The modified files are tagged with the names \’DOTBASHRC\’, \’DOTCSHRC\’ and
\’DOTEMACS\’, which are the startup files for bash, csh and emacs respectively.

The following modifications are done automatically in your startup scripts, and you don’t
need to do it manually. This will make the documentation accessible, set the correct mode
when opening Ciao source files in emacs, etc. Note that <v>libroot</v> must be replaced
with the appropriate value:

• For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

if (-e <v>libroot</v>/ciao/DOTcshrc) then
source <v>libroot</v>/ciao/DOTcshrc

endif

Note: while this is recognized by the terminal shell, and therefore by the text-mode
Emacs which comes with Mac OS X, the Aqua native Emacs 21 does not recognize
that initialization. It is thus necessary, at this moment, to set manually the Ciao shell
(ciaosh) and Ciao library location by hand. This can be done from the Ciao menu
within Emacs after a Ciao file has been loaded. We believe that the reason is that Mac
OS X does not actually consult the per-user initialization files on startup. It should also
be possible to put the right initializations in the .emacs file using the setenv function
of Emacs-lisp, as in

1102 The Ciao System

(setenv "CIAOLIB" "<v>libroot</v>/ciao")

The same can be done for the rest of the variables initialized in
<v>libroot</v>/ciao/DOTcshrc

• For users of an sh-compatible shell (sh, bash, ...), the installer will add to ~/.bashrc
the next lines:

if [-f <v>libroot</v>/ciao/DOTprofile]; then
. <v>libroot</v>/ciao/DOTprofile

fi

This will set up things so that the Ciao executables are found and you can access the
Ciao system manuals using the info command. Note that, depending on your shell,
you may have to log out and back in for the changes to take effect.

• Also, if you use emacs (highly recommended) the install will add the next line to your
~/.emacs file:

(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")
(if (file-exists-p "<v>libroot</v>/ciao/ciao-mode-init.el")
(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")

)

If you are installing Ciao globally in a multi-user machine, make sure that you instruct
all users to do the same. If you are the system administrator, the previous steps can
be done once and for all, and globally for all users by including the lines above in the
central startup scripts (e.g., in Linux /etc/bashrc, /etc/csh.login, /etc/csh.cshrc,
/etc/skel, /usr/share/emacs/.../lisp/site-init.pl, etc.).

6. Finally, if the (freely available) emacs editor/environment is not installed in your system,
we highly recommend that you also install it at this point (see Section 231.2 [Un*x full
installation instructions], page 1102 for instructions). While it is easy to use Ciao with any
editor of your choice, the Ciao distribution includes a very powerful application development
environment which is based on emacs and which enables, e.g., source-level debugging, syntax
coloring, context-sensitive on-line help, etc.

7. You may want now want to check your installation (see Section 231.3 [Checking for correct
installation on Un*x], page 1105) and read the documentation, which is stored in DOCDIR
(copied from CIAOSRC/doc/reference) and can be easily accessed as explained in that
same section. There are special “getting started” sections at the beginning of the manual.

8. If you have any problems you may want to check the rest of the instructions. The system
can be uninstalled by typing ./ciaosetup uninstall.

231.2 Un*x full installation instructions

1. Uncompress and unpackage: (using gunzip and tar -xpf) the distribution in a suitable
directory. This will create a new directory called ciao-X.Y, where X.Y is the version
number of the distribution. The -p option in the tar command ensures that the relative
dates of the files in the package are preserved, which is needed for correct operation of the
Makefiles.

2. Select installation options: Run the ./ciaosetup configure command and answer the
questions that appears in the menu. The meaning of some important options in the menu
is as follows:

%

• CIAOSRC: directory where the sources are % stored.

• BINROOT: directory where the Ciao executables will go. For example, if
BINROOT=/usr/local/bin, then the Ciao compiler (ciaoc) will be stored at

Chapter 231: Installing Ciao from the source distribution 1103

/usr/local/bin/ciaoc. Actually, it will be a link to ciaoc-VersionNumber. This
applies also to other executables below and is done so that several versions of Ciao can
coexist on the same machine. Note that the version installed latest will be the one
started by default when typing ciao, ciaoc, etc.

• LIBROOT: directory where the run-time libraries will be installed. The Ciao in-
stallation procedure will create a new subdirectory ciao below LIBROOT and a
subdirectory below this one for each Ciao version installed. For example, if
LIBROOT=/usr/local/lib and you have Ciao version x.y, then the libraries will be in-
stalled under /usr/local/lib/ciao/ciao-x.y. This allows you to install site-specific
programs under /usr/local/lib/ciao and they will not be overwritten if a new ver-
sion of Ciao is installed. It also again allows having several Ciao versions installed
simultaneously.

• DOCDIR: directory where the manuals will be installed. It is often convenient if this
directory is accessible via WWW (DOCDIR=/home/httpd/html/ciao, or something like
that).

For network-based installations, it is of utmost importance that the configured paths be
reachable in all the networked machines. Different machines with different architectures can
share the same physical source directory during installation, since compilations for different
architectures take place in dedicated subdirectories. Also, different machines/architectures
can share the same LIBROOT directory (LIBROOT is configured in the menu). This saves
space since the architecture-independent libraries will be shared. See Section 231.5 [Multi-
architecture support], page 1106 below.

3. Compile Ciao: At the ciao top level directory type ./ciaosetup build.

This will:

• Build an engine in $(CIAOSRC)/bin/$(CIAOARCH), where $(CIAOARCH) depends on the
architecture. The engine is the actual interpreter of the low level code into which Ciao
programs are compiled.

• Build a new Ciao standalone compiler (ciaoc), with the default paths set for your
local configuration (nonetheless, these can be overridden by environment variables, as
described below).

• Precompile all the libraries under $(CIAOSRC)/lib and $(CIAOSRC)/library using
this compiler.

• Compile a toplevel Ciao shell and a shell for Ciao scripts, under the $(CIAOSRC)/shell
directory.

• Compile some small, auxiliary applications (contained in the etc directory, and docu-
mented in the part of the manual on ’Miscellaneous Standalone Utilities’).

This step can be repeated successively for several architectures in the same source directory.
Only the engine and some small parts of the libraries (those written in C) differ from one
architecture to the other. Standard Ciao code compiles into bytecode object files (.po)
and/or executables which are portable among machines of different architecture, provided
there is an executable engine accessible in every such machine. See more details below under
Section 231.5 [Multiarchitecture support], page 1106.

4. Check compilation: If the above steps have been satisfactorily finished, the compiler has
compiled itself and all the distribution modules, and very probably everything is fine.

5. Install Ciao: To install Ciao in the directories selected in the configuration script during
step 2 above, type ./ciaosetup install. This will:

• Install the executables of the Ciao program development tools (i.e., the general
driver/top-level ciao, the standalone compiler ciaoc, the script interpreter ciao-
shell, miscellaneous utilities, etc.) in BINROOT (see below). In order to use these
tools, the PATH environment variable of users needs to contain the path BINROOT.

1104 The Ciao System

• Install the Ciao libraries under LIBROOT/ciao (these will be automatically found).

• Install under DOCDIR the Ciao manuals in several formats (such as GNU info, html,
postscript, etc.), depending on the distribution. In order for these manuals to be
found when typing M-x info within emacs, or by the standalone info and man com-
mands, the MANPATH and INFOPATH environment variables of users both need to contain
the path DOCDIR.

• Install under LIBROOT/ciao the Ciao GNU emacs interface (ciao.el, which provides
an interactive interface to the Ciao program development tools, as well as some other
auxiliary files) and a file ciao-mode-init containing the emacs initialization commands
which are needed in order to use the Ciao emacs interface.

6. Set up user environments: In order to automate the process of setting the variables
above, the installation process leaves the files LIBROOT/ciao/DOTcshrc (for csh-like shells),
LIBROOT/ciao/DOTprofile (for sh-like shells), and LIBROOT/ciao/ciao-mode-init (for
emacs) with appropriate definitions which will take care of all needed environment variable
definitions and emacs mode setup. If you has indicated in the menu that the startup files
must be modified, then the install process will do it for you, otherwise you can modify by
hand these files making the following modifications in your startup scripts, so that these
files are used (<v>libroot</v> must be replaced with the appropriate value):

• For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

if (-e <v>libroot</v>/ciao/DOTcshrc) then
source <v>libroot</v>/ciao/DOTcshrc

endif

Note: while this is recognized by the terminal shell, and therefore by the text-mode
Emacs which comes with Mac OS X, the Aqua native Emacs 21 does not recognize
that initialization. It is thus necessary, at this moment, to set manually the Ciao shell
(ciaosh) and Ciao library location by hand. This can be done from the Ciao menu
within Emacs after a Ciao file has been loaded. We believe that the reason is that Mac
OS X does not actually consult the per-user initialization files on startup. It should also
be possible to put the right initializations in the .emacs file using the setenv function
of Emacs-lisp, as in

(setenv "CIAOLIB" "<v>libroot</v>/ciao")

The same can be done for the rest of the variables initialized in
<v>libroot</v>/ciao/DOTcshrc

• For users of an sh-compatible shell (sh, bash, ...), the installer will add to ~/.bashrc
the next lines:

if [-f <v>libroot</v>/ciao/DOTprofile]; then
. <v>libroot</v>/ciao/DOTprofile

fi

This will set up things so that the Ciao executables are found and you can access the
Ciao system manuals using the info command. Note that, depending on your shell,
you may have to log out and back in for the changes to take effect.

• Also, if you use emacs (highly recommended) the install will add the next line to your
~/.emacs file:

(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")
(if (file-exists-p "<v>libroot</v>/ciao/ciao-mode-init.el")
(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")

)

If you are installing Ciao globally in a multi-user machine, make sure that you instruct
all users to do the same. If you are the system administrator, the previous steps can
be done once and for all, and globally for all users by including the lines above in the

Chapter 231: Installing Ciao from the source distribution 1105

central startup scripts (e.g., in Linux /etc/bashrc, /etc/csh.login, /etc/csh.cshrc,
/etc/skel, /usr/share/emacs/.../lisp/site-init.pl, etc.).

7. Download and install Emacs (highly recommended): If the (freely available) emacs editor is
not installed in your system, its installation is highly recommended (if you are installing in a
multi-user machine, you may want to do it in a general area so that it is available for other
users, even if you do not use it yourself). While it is easy to use Ciao with any editor of your
choice, the Ciao distribution includes a very powerful application development environment
which is based on emacs and which enables, e.g., source-level debugging, syntax coloring,
context-sensitive on-line help, etc.

The emacs editor (in all its versions: Un*x, Windows, etc.) can be downloaded from, for
example, http://www.emacs.org/, and also from the many GNU mirror sites worldwide
(See http://www.gnu.org/ for a list), in the gnu/emacs and gnu/windows/emacs directo-
ries. You can find answers to frequently asked questions (FAQ) about emacs in general at
http://www.gnu.org/software/emacs/emacs-faq.text and about the Windows version
at http://www.gnu.org/software/emacs/windows/ntemacs.html (despite the ntemacs
name it runs fine also as is on Win9X and Win2000 machines).

8. Check installation / read documentation: You may now want to check your installation
(see Section 231.3 [Checking for correct installation on Un*x], page 1105) and read the
documentation, which is stored in DOCDIR (copied from CIAOSRC/doc/reference) and can
be easily accessed as explained that same section. There are special “getting started”
sections at the beginning of the manual.

If you have any problems you may want to check Section 231.8 [Troubleshooting (nasty
messages and nifty workarounds)], page 1108.

The system can be uninstalled by typing ./ciaosetup uninstall in the top directory. Con-
figuration should have not changed since installation, so that the same directories are cleaned
(i.e. the variables in SETTINGS should have the same value as when the install was performed).

231.3 Checking for correct installation on Un*x

If everything has gone well, several applications and tools should be available to a normal
user. Try the following while logged in as a normal user (important in order to check that
permissions are set up correctly):

• Typing ciao (or ciaosh) should start the typical Prolog-style top-level shell.

• In the top-level shell, Ciao library modules should load correctly. Type for example use_
module(library(dec10_io)) –you should get back a prompt with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

• Typing ciaoc should produce the help message from the Ciao standalone compiler.

• Typing ciao-shell should produce a message saying that no code was found. This is a
Ciao application which can be used to write scripts written in Ciao, i.e., files which do not
need any explicit compilation to be run.

Also, the following documentation-related actions should work:

• If the info program is installed, typing info should produce a list of manuals which should
include Ciao manual(s) in a separate area (you may need to log out and back in so that
your shell variables are reinitialized for this to work).

• Opening with a WWW browser (e.g., netscape) the directory or URL corresponding to the
DOCDIR setting should show a series of Ciao-related manuals. Note that style sheets should
be activated for correct formatting of the manual.

• Typing man ciao should produce a man page with some very basic general information on
Ciao (and pointing to the on-line manuals).

1106 The Ciao System

• The DOCDIR directory should contain the manual also in the other formats such as
postscript or pdf which specially useful for printing. See Section 2.3.7 [Printing man-
uals (Un*x)], page 24 for instructions.

Finally, if emacs is installed, after starting it (typing emacs) the following should work:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should open
a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Ciao file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename (or
using the menus) the code should appear highlighted according to syntax (e.g., comments in
red), and Ciao/Prolog menus should appear in the menu bar on top of the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch the
the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not very
useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to do this
is explained in the emacs frequently asked questions FAQs (see the emacs download instructions
for their location).

231.4 Cleaning up the source directory

After installation, the source directory can be cleaned up in several ways:

• ./ciaosetup uninstall removes the installation but does not touch the source directories.

• ./ciaosetup totalclean leaves the distribution is its original form, throwing away any
intermediate files (as well as any unneeded files left behind by the Ciao developers), while
still allowing recompilation.

231.5 Multiarchitecture support

As mentioned before, Ciao applications (including the compiler and the top level) can run on
several machines with different architectures without any need for recompiling, provided there is
one Ciao engine (compiled for the corresponding architecture) accessible in each machine. Also,
the Ciao libraries (installed in LIBROOT, which contain also the engines) and the actual binaries
(installed in BINROOT) can themselves be shared on several machines with different architectures,
saving disk space.

For example, assume that the compiler is installed as:

/usr/local/share/bin/ciaoc

and the libraries are installed under

/usr/local/share/lib

Assume also that the /usr/local/share directory is mounted on, say, a number of Linux
and a number of Solaris boxes. In order for ciaoc to run correctly on both types of machines,
the following is needed:

1. Make sure you that have done ./ciaosetup install on one machine of each architecture
(once for Linux and once for Solaris in our example). This recompiles and installs a new
engine and any architecture-dependent parts of the libraries for each architecture. The
engines will have names such as ciaoengine.LINUXi86, ciaoengine.SolarisSparc, and
so on.

2. In multi-architecture environments it is even more important to make sure that users make
the modifications to their startup scripts using <v>libroot</v>/ciao/DOTcshrc etc. The
selection of the engine (and architecture-dependent parts of libraries) is done in these scripts
by setting the environment variable CIAOARCH, using the ciao_get_arch command, which

Chapter 231: Installing Ciao from the source distribution 1107

is installed automatically when installing Ciao. This will set CIAOARCH to, say, LINUXi86,
SolarisSparc, respectively, and CIAOENGINE will be set to ciaoengine.CIAOARCH.

However, note that this is not strictly necessary if running on only one architecture: if
CIAOARCH is not set (i.e., undefined), the Ciao executables will look simply for ciaoengine,
which is always a link to the latest engine installed in the libraries. But including the
initialization files provided has the advantage of setting also paths for the manuals, etc.

231.6 Installation and compilation under Windows

There are two possibilities in order to install Ciao on Windows machines:

• Installing from the Windows precompiled distribution. This is the easiest since it requires
no compilation and is highly recommended. This is described in Chapter 232 [Installing
Ciao from a Win32 binary distribution], page 1111.

• Installing the standard Ciao (Un*x) system source distribution and compiling it under
Windows. This is somewhat more complex and currently requires the (freely available)
Cygnus Win32 development libraries –described below.

In order to compile Ciao for Win32 environments you need to have the (public domain)
Cygnus Win32 and development libraries installed in your system. Compilation should be
performed preferably under Windows NT-type systems.

• Thus, the first step, if Cygnus Win32 is not installed in your system, is to download it
(from, e.g., http://www.cygnus.com/misc/gnu-win32) and install it. The compilation
process also requires that the executables rm.exe, sh.exe, and uname.exe from the Cygnus
distribution be copied under /bin prior to starting the process (if these executables are not
available under /bin the compilation process will produce a number of errors and eventually
stop prematurely).

• Assuming all of the above is installed, type ./ciaosetup allwin32. This will compile both
the engine and the Ciao libraries. In this process, system libraries that are normally linked
dynamically under Un*x (i.e., those for which .so dynamically loadable files are generated)
are linked statically into the engine (this is done instead of generating .dlls because of a
limitation in the current version of the Cygnus Win32 environment). No actual installation
is made at this point, i.e., this process leaves things in a similar state as if you had just
downloaded and uncompressed the precompiled distribution. Thus, in order to complete
the installation you should now:

• Follow now the instructions in Chapter 232 [Installing Ciao from a Win32 binary distribu-
tion], page 1111.

A further note regarding the executables generated by the Ciao compiler and top-level: the
same considerations given in Chapter 232 [Installing Ciao from a Win32 binary distribution],
page 1111 apply regarding .bat files, etc. However, in a system in which Cygnus Win32 is
installed these executables can also be used in a very simple way. In fact, the executables can
be run as in Un*x by simply typing their name at the bash shell command line without any
associated .bat files. This only requires that the bash shell which comes with Cygnus Win32
be installed and accessible: simply, make sure that /bin/sh.exe exists.

231.7 Porting to currently unsupported operating systems

If you would like to port Ciao to a currently unsupported platform, there are several issues
to take into account. The main one is to get the engine to compile in that platform, i.e., the
C code under the engine directory. The procedure currently followed by Ciao to decide the
various flags needed to compile is as follows:

1108 The Ciao System

• The shell script $(CIAOSRC)/etc/ciao_get_arch is executed; it returns a string describing
the operating system and the processor architecture (e.g., LINUXi86, SolarisSparc, So-
larisAlpha, etc.). You should make sure it returns a correct (and meaningful) string for
your setup. This string is used trhoughout the compilation to create several architecture-
dependant flags.

• In the directory $(CIAOSRC)/makefile-sysdep there are files called mkf-<OS><ARCH> for
every combination of operating system and architecture in which Ciao is know to (and how
to) compile. They set several flags regarding, for example, whether to use or not threads,
which threads library to use, the optimization flags to use, the compiler, linker, and it also
sets separately the architecture name (ARCHNAME variable) and the operating system
(OSNAME). You should create a new mkf file for your machine, starting from the one
which is closest to you.

• Most times the porting problems happen in the use of locks and threads. You can
either disable them, or have a look at the files $(CIAOSRC)/engine/locks.h and
$(CIAOSRC)/engine/threads.h. If you know how to implement native (assembler) locks
for your architecture, enable HAVE NATIVE SLOCKS for your architecture and add the
definitions. Otherwise, if you have library-based locks, enable them. The mechanism in
threads.h is similar.

Once a working engine is achieved, it should be possible to continue with the standard
installation procedure, which will try to use a completely static version of the standalone compiler
(ciaoc.sta in the ciaoc directory) to compile the interactive top-level (ciaosh) and a new
version of the standalone compiler (ciaoc). These in turn should be able to compile the Ciao
libraries. You may also need to look at some libraries (such as, for example, sockets) which
contain C code. If you do succeed in porting to a platform that is currently unsupported please
send the mkf-CIAOARCH and any patches to ciao@clip.dia.fi.upm.es, and we will include
them (with due credit, of course) in the next distribution.

231.8 Troubleshooting (nasty messages and nifty workarounds)

The following a list of common installation problems reported by users:

• Problem: Compilation errors appear when trying a new installation/compilation after the
previous one was aborted (e.g., because of errors).

Possible reason and solution: It is a good idea to clean up any leftovers from the previous
compilation using ./ciaosetup engclean before restarting the installation or compilation
process.

• Problem:

During engine compilation, messages such as the following appear: tasks.c:102:PTHREAD_
CANCEL_ASYNCHRONOUS undeclared (first use of this function).

Possible reason and solution:

Your (Linux?) system does not have (yet) the Posix threads library installed. You can
upgrade to one which does have it, or download the library from

http://pauillac.inria.fr/~xleroy/linuxthreads/index.html

and install it, or disable the use of threads in Linux: for this, edit the SETTINGS file and
specify USE_THREADS=no, which will avoid linking against thread libraries (it will disable
the use of thread-related primitives as well). Clean the engine with ./ciaosetup engclean
and restart compilation.

If you have any alternative threads library available, you can tinker with engine/threads.h
and the files under makefile-sysdep in order to get the task managing macros right for your
system. Be sure to link the right library. If you succeed, we (ciao@clip.dia.fi.upm.es)
will be happy of knowing about what you have done.

Chapter 231: Installing Ciao from the source distribution 1109

• Problem:

-lpthread: library not found (or similar)

Possible reason and solution:

Your (Linux?) system seems to have Posix threads installed, but there is no threads library
in the system. In newer releases (e.g., RedHat 5.0), the Posix threads system calls have
been included in glibc.so, so specifying -lpthread in makefile-sysdep/mkf-LINUX is
not needed; remove it. ./ciaosetup engclean and restart installation.

Alternatively, you may have made a custom installation of Posix threads in a non-standard
location: be sure to include the flag -L/this/is/where/the/posix/libraries/are before
-lpthread, and to update /etc/ld.so.conf (see man ldconfig).

• Problem:

Segmentation Violation (when starting the first executable)

Possible reason and solution:

This has been observed with certain older versions of gcc which generated erroneous code
under full optimization. The best solution is to upgrade to a newer version of gcc. Alterna-
tively, lowering the level of optimization (by editing the SETTINGS file in the main directory
of the distribution) normally solves the problem, at the cost of reduced execution speed.

• Problem: ciaoc: /home/clip/lib/ciao/ciao-X.Y/engine/ciaoengine: not found

Possible reason and solution:

• The system was not fully installed and the variable CIAOENGINE was not set.

• The system was installed, the variable CIAOENGINE is set, but it is does not point to a
valid ciaoengine.

See the file LIBROOT/ciao/DOTcshrc for user settings for environment variables.

• Problem:

ERROR: File library(compiler) not found - aborting... (or any other library is not
found)

Possible reason and solution:

• The system was not installed and the variable CIAOLIB was not set.

• The system is installed and the variable CIAOLIB is wrong.

See the file LIBROOT/ciao/DOTcshrc for user settings for environment variables.

• Problem:

ERROR: File <some_directory>/<some_file>.itf not found - aborting...

Possible reason and solution:

Can appear when compiling .pl files. The file to compile (<some file>.pl) is not in the
directory <some directory>. You gave a wrong file name or you are in the wrong directory.

• Problem:

ERROR: /(write_option,1) is not a regular type (and similar ones)

Possible reason and solution:

This is not a problem, but rather the type checker catching some minor inconsistencies
which may appear while compiling the libraries. Bug us to remove it, but ignore it for now.

• Problem:

WARNING: Predicate <some_predicate>/<N> undefined in module <some_module>

Possible reason and solution:

It can appear when the compiler is compiling Ciao library modules. If so, ignore it (we will
fix it). If it appears when compiling user programs or modules, you may want to check your
program for those undefined predicates.

1110 The Ciao System

• Problem:

gmake[1]: execve: /home/clip/mcarro/ciao-0.7p2/etc/collect_modules: No such
file or directory

Possible reason and solution:

Check if collect modules is in $(CIAOSRC)/etc and is executable. If it is not here, your
distribution is incorrect: please let us know.

• Problem:

make: Fatal error in reader: SHARED, line 12: Unexpected end of line seen

Possible reason and solution:

You are using standard Un*x make, not GNU’s make implementation (gmake).

• Problem:

WARNINGs or ERRORs while compiling the Ciao libraries during installation.

Possible reason and solution:

It is possible that you will see some such errors while compiling the Ciao libraries during
installation. This is specially the case if you are installing a Beta or Alpha release of Ciao.
These releases (which have “odd” version numbers such as 1.5 or 2.1) are typically snapshots
of the development directories, on which many developers are working simultaneously, which
may include libraries which have typically not been tested yet as much as the “official”
distributions (those with “even” version numbers such as 1.6 or 2.8). Thus, minor warnings
may not have been eliminated yet or even errors can sneak in. These warnings and errors
should not affect the overall operation of the system (e.g., if you do not use the affected
library).

Chapter 232: Installing Ciao from a Win32 binary distribution 1111

232 Installing Ciao from a Win32 binary
distribution

Author(s): Daniel Cabeza, Manuel Carro, Manuel Hermenegildo.

This describes the installation of Ciao after downloading the Windows binary (i.e., precom-
piled) distribution. It includes the installation of libraries and manuals and applies to Windows
95/98/NT/2000/XP systems. This is the simplest Windows installation, since it requires no
compilation and is highly recommended. However, it is also possible to compile Ciao from the
source distribution on these systems (please refer to Chapter 231 [Installing Ciao from the source
distribution], page 1101 for details).

If you find any problems during installation, please refer to Section 231.8 [Troubleshooting
(nasty messages and nifty workarounds)], page 1108. See also Section 233.3 [Downloading new
versions], page 1115 and Section 233.4 [Reporting bugs], page 1116.

232.1 Win32 binary installation summary

Please follow these steps (below we use the terms folder and directory interchangeably):

1. Download the precompiled distribution and unpack it into any suitable folder, such as, e.g.,
C:\Program Files.

This will create there a folder whose name reflects the Ciao version. Due to limitations
of Windows related to file associations, do not put Ciao too deep in the folder hierarchy.
For unpacking you will need a recent version of a zip archive manager – there are many
freely available such as WinZip, unzip, pkunzip, etc. (see for example www.winzip.com).
Some users have reported some problems with version 6.2 of WinZip, but no problems with,
e.g., version 7. With WinZip, simply click on “Extract” and select the extraction folder as
indicated above.

2. Stop any Ciao-related applications.

If you have a previous version of Ciao installed, make sure you do not have any Ciao
applications (including, e.g., a toplevel shell) running, or the extraction process may not be
able to complete. You may also want to delete the entire folder of the previous installation
to save space.

3. Open the Ciao source directory created during extraction and run (e.g. by double-clicking
on it) the install(.bat) script. Answer “yes” to the dialog that pops up and type any
character in the installation window to finish the process. You may need to reboot for the
changes in the registry to take effect.

This will update the windows registry (the file ciao(.reg) lists the additions) and also
create some .bat files which may be useful for running Ciao executables from the command
line. It also creates initialization scripts for the emacs editor. The actions performed by
the installation script are reported in the installation window.

4. You may want to add a windows shortcut in a convenient place, such as the desktop, to
ciaosh.cpx, the standard interactive toplevel shell. It is located inside the shell folder
(e.g., click on the file ciaosh.cpx with the right mouse button and select the appropriate
option, Send to->Desktop as shortcut).

5. You may also want to add another shortcut to the file ciao(.html) located inside
doc\reference\ciao_html so that you can open the Ciao manual by simply double-clicking
on this shortcut.

6. Finally, if the (freely available) emacs editor/environment is not installed in your system,
we highly recommend that you also install it at this point. While it is easy to use Ciao
with any editor of your choice, the Ciao distribution includes a very powerful application
development environment which is based on emacs and which enables, e.g., source-level
debugging, syntax coloring, context-sensitive on-line help, etc. If you are not convinced,
consider that many programmers inside Micros*ft use emacs for developing their programs.

1112 The Ciao System

The emacs editor (in all its versions: Un*x, Windows, etc.) can be downloaded from, for
example, http://www.emacs.org/, and also from the many GNU mirror sites worldwide
(See http://www.gnu.org/ for a list), in the gnu/emacs and gnu/windows/emacs directo-
ries. You can find answers to frequently asked questions (FAQ) about emacs in general at
http://www.gnu.org/software/emacs/emacs-faq.text and about the Windows version
at http://www.gnu.org/software/emacs/windows/ntemacs.html (despite the ntemacs
name it runs fine also as is on Win9X and Win2000 machines).

You need to tell emacs how to load the Ciao mode automatically when editing and how to
access the on-line documentation:

• Start emacs (double click on the icon or from the Start menu). Open (menu Files-
>Open File or simply 〈̂ X〉〈̂ F〉) the file ForEmacs.txt that the installation script has
created in directory where you installed the Ciao distribution.

• Copy the lines in the file (select with the mouse and then menu Edit->Copy).
Open/Create using emacs (menu Files->Open File or simply 〈̂ X〉〈̂ F〉) the file
~/.emacs (or, if this fails, c:/.emacs).

• Paste the two lines (menu Edit->Paste or simply 〈̂ Y〉) into the file and save (menu
Files->Save Buffer or simply 〈̂ X〉〈̂ S〉).

• Exit emacs and start it again.

emacs should not report any errors (at least related to Ciao) on startup. At this point the
emacs checks in the following section should work.

232.2 Checking for correct installation on Win32

After the actions and registry changes performed by the installation procedure, you should
check that the following should work correctly:

• Ciao-related file types (.pl source files, .cpx executables, .itf,.po,.asr interface files,
.pls scripts, etc.) should have specific icons associated with them (you can look at the files
in the folders in the Ciao distribution to check).

• Double-clicking on the shortcut to ciaosh(.cpx) on the desktop should start the typical
Prolog-style top-level shell in a window. If this shortcut has not been created on the
desktop, then double-clicking on the ciaosh(.cpx) icon inside the shell folder within the
Ciao source folder should have the same effect.

• In the top-level shell, Ciao library modules should load correctly. Type for example use_
module(library(dec10_io)). at the Ciao top-level prompt –you should get back a prompt
with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

Also, the following documentation-related actions should work:

• Double-clicking on the shortcut to ciao(.html) which appears on the desktop should show
the Ciao manual in your default WWW browser. If this shortcut has not been created you
can double-click on the ciao(.html) file in the doc\reference\ciao_html folder inside the
Ciao source folder. Make sure you configure your browser to use style sheets for correct
formatting of the manual (note, however, that some older versions of Explorer did not
support style sheets well and will give better results turning them off).

• The doc\reference folder contains the manual also in the other formats present in the dis-
tribution, such as info (very convenient for users of the emacs editor/program development
system) and postscript or pdf, which are specially useful for printing. See Section 3.2.7
[Printing manuals (Win32)], page 29 for instructions.

Finally, if emacs is installed, after starting it (double-clicking on the emacs icon or from the
Start menu) the following should work:

Chapter 232: Installing Ciao from a Win32 binary distribution 1113

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should open
a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Ciao file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename (or
using the menus) the code should appear highlighted according to syntax (e.g., comments in
red), and Ciao/Prolog menus should appear in the menu bar on top of the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch the
the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not very
useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to do this
is explained in the emacs frequently asked questions FAQs (see the emacs download instructions
for their location).

If you find that everything works but emacs cannot start the Ciao toplevel you may want
to check if you can open a normal Windows shell within emacs (just do 〈M-x〉 shell). If you
cannot, it is possible that you are using some anti-virus software which is causing problems. See
http://www.gnu.org/software/emac/windows/faq3.html#anti-virus for a workaround.

In some Windows versions it is possible that you had to change the first back-
slashes in the ciao-mode-init.el file in the Ciao Directory. E.g., assuming you have
installed in drive c:, instances of c:\ need to be changed to c:/. For example:
c:\prolog/ciao-1.7p30Win32/shell/ciaosh.bat should be changed to c:/prolog/ciao-
1.7p30Win32/shell/ciaosh.bat.

232.3 Compiling the miscellaneous utilities under Windows

The etc folder contains a number of utilities, documented in the manual in PART V -
Miscellaneous Standalone Utilities. In the Win32 distribution these utilities are not compiled
by the installation process. You can create the executable for each of them when needed by
compiling the corresponding .pl file.

232.4 Server installation under Windows

If you would like to install Ciao on a server machine, used by several clients, the following
steps are recommended:

• Follow the standard installation procedure on the server. When selecting the folder in which
Ciao is installed make sure you select a folder that is visible by the client machines. Also
make sure that the functionality specified in the previous sections is now available on the
server.

• Perform a client installation on each client, by running (e.g., double-click on it) the
client.bat script. This should update the registry of each client. At this point all the
functionality should also be available on the clients.

232.5 CGI execution under IIS

The standard installation procedure updates the windows registry so that Ciao executables
(ending in .cpx) are directly executable as CGIs under Microsoft’s IIS, i.e., so that you make
applications written in Ciao available on the WWW (see the pillow library for specific support
for this task). In the event you re-install IIS, you probably would lose the entries in the registry
which allow this. In that case, processing the file ciao.reg produced during the installation (or
simply reinstalling Ciao) will add those entries again.

1114 The Ciao System

232.6 Uninstallation under Windows

To uninstall Ciao under Windows, simply delete the directory in which you put the Ciao
distribution. If you also want to delete the registry entries created by the Ciao installation (not
strictly needed) this must currently be done by hand. The installation leaves a list of these
entries in the file ciao.reg to aid in this task. Also, all the register entries contain the word
ciao. Thus, to delete all Ciao entries, run the application regedit (for example, by selecting
Run from the Windows Start menu), search (〈̂ F〉) for ciao in all registry entries (i.e., select all
of Keys, Values, and Data in the Edit->Find dialog), and delete each matching key (click on
the left window to find the matching key for each entry found).

%% Local Variables: %% mode: CIAO %% update-version-comments: "off" %% End:

Chapter 233: Beyond installation 1115

233 Beyond installation

Author(s): Manuel Carro, Daniel Cabeza, Manuel Hermenegildo.

233.1 Architecture-specific notes and limitations

Ciao makes use of advanced characteristics of modern architectures and operating systems
such as multithreading, shared memory, sockets, locks, dynamic load libraries, etc., some of
which are sometimes not present in a given system and others may be implemented in very
different ways across the different systems. As a result, currently not all Ciao features are
available in all supported operating systems. Sometimes this is because not all the required
features are present in all the OS flavors supported and sometimes because we simply have not
had the time to port them yet.

The current state of matters is as follows:

LINUX: multithreading, shared DB access, and locking working.

Solaris: multithreading, shared DB access, and locking working.

IRIX: multithreading, shared DB access, and locking working.

SunOS 4: multithreading, shared DB access, and locking NOT working.

Win 95/98/NT/2000/XP:
multithreading, shared DB access, and locking working. Dynamic linking of object
code (C) libraries NOT working.

Mac OS X (Darwin):
multithreading, shared DB access, and locking working.

The features that do not work are disabled at compile time.

233.2 Keeping up to date with the Ciao users mailing list

We recommend that you join the Ciao users mailing
list (ciao-users@clip.dia.fi.upm.es), in order to receive information on new versions and
solutions to problems. Simply send a message to ciao-users-request@clip.dia.fi.upm.es,
containing in the body only the word:

subscribe

alone in one line. Messages in the list are strictly limited to issues directly related to Ciao and
your email address will of course be kept strictly confidential. You mail also want to subscribe
to the comp.lang.prolog newsgroup.

There is additional info available on the Ciao system, other CLIP group software, pub-
lications on the technology underlying these systems, etc. in the CLIP group’s WWW site
http://clip.dia.fi.upm.es.

233.3 Downloading new versions

Ciao and its related libraries and utilities are under constant improvement, so you should
make sure that you have the latest versions of the different components, which can be dowloaded
from:

http://clip.dia.fi.upm.es/Software

1116 The Ciao System

233.4 Reporting bugs

If you still have problems after downloading the latest version and reading the installation in-
structions you can send a message to ciao-bug@clip.dia.fi.upm.es. Please be as informative
as possible in your messages, so that we can reproduce the bug.

• For installation problems we typically need to have the version and patch number of the Ciao
package (e.g., the name of the file downloaded), the output produced by the installation
process (you can capture it by redirecting the output into a file or cutting and pasting with
the mouse), and the exact version of the Operating System you are using (as well as the C
compiler, if you took a source distribution).

• For problems during use we also need the Ciao and OS versions and a small example of
code which we can run to reproduce the bug.

References 1117

References

[AAF91] J. Almgren, S. Andersson, L. Flood, C. Frisk, H. Nilsson, and J. Sundberg.
Sicstus Prolog Library Manual.
Po Box 1263, S-16313 Spanga, Sweden, October 1991.

[AKNL86] Hassan Ait-Kaci, Roger Nasr, and Pat Lincoln.
E An Overview.
Technical Report AI-420-86-P, Microelectronics and Computer Technology Corpo-
ration, 9430 Research Boulevard, Austin, TX 78759, December 1986.

[AKPS92] H. Aı̈t-Kaci, A. Podelski, and G. Smolka.
A feature-based constraint system for logic programming with entailment.
In Proc. Fifth Generation Computer Systems 1992, pages 1012–1021, 1992.

[Apt97] K. Apt, editor.
From Logic Programming to Prolog.
Prentice-Hall, Hemel Hempstead, Hertfordshire, England, 1997.

[BA82] M. Ben-Ari.
Principles of Concurrent Programming.
Prentice Hall International, 1982.

[BBP81] D.L. Bowen, L. Byrd, L.M. Pereira, F.C.N. Pereira, and D.H.D. Warren.
Decsystem-10 prolog user’s manual.
Technical report, Department of Artificial Intelligence, University of Edinburgh,
October 1981.

[BCC97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla.
The Ciao Prolog System. Reference Manual.
The Ciao System Documentation Series–TR CLIP3/97.1, School of Computer Sci-
ence, Technical University of Madrid (UPM), August 1997.
System and on-line version of the manual available at http://www.ciaohome.org
(http://www.ciaohome.org).

[BGH99] F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo.
Effectiveness of Abstract Interpretation in Automatic Parallelization: A Case Study
in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189–238, March
1999.

[BLGPH04]
F. Bueno, P. López-Garćıa, G. Puebla, and M. Hermenegildo.
The Ciao Prolog Preprocessor.
Technical Report CLIP1/04, Technical University of Madrid (UPM), Facultad de
Informática, 28660 Boadilla del Monte, Madrid, Spain, January 2004.

[Bue95] F. Bueno.
The CIAO Multiparadigm Compiler: A User’s Manual.
Technical Report CLIP8/95.0, Facultad de Informática, UPM, June 1995.

[Byr80] L. Byrd.
Understanding the Control Flow of Prolog Programs.
In S.-A. Tärnlund, editor, Proceedings of the 1980 Logic Programming Workshop,
pages 127–138, Debrecen, Hungary, July 1980.

[Cab04] D. Cabeza.
An Extensible, Global Analysis Friendly Logic Programming System.
PhD thesis, Universidad Politécnica de Madrid (UPM), Facultad Informatica UPM,
28660-Boadilla del Monte, Madrid-Spain, August 2004.

1118 The Ciao System

[Car87] M. Carlsson.
Freeze, Indexing, and Other Implementation Issues in the Wam.
In Fourth International Conference on Logic Programming, pages 40–58. University
of Melbourne, MIT Press, May 1987.

[Car88] M. Carlsson.
Sicstus Prolog User’s Manual.
Po Box 1263, S-16313 Spanga, Sweden, February 1988.

[CCG98] I. Caballero, D. Cabeza, S. Genaim, J.M. Gomez, and M. Hermenegildo.
persdb sql: SQL Persistent Database Interface.
Technical Report D3.1.M2-A2 CLIP10/98.0, RADIOWEB Project, December 1998.

[CCH06] A. Casas, D. Cabeza, and M. Hermenegildo.
A Syntactic Approach to Combining Functional Notation, Lazy Evaluation and
Higher-Order in LP Systems.
In The 8th International Symposium on Functional and Logic Programming
(FLOPS’06), pages 142–162, Fuji Susono (Japan), April 2006.

[CGH93] M. Carro, L. Gómez, and M. Hermenegildo.
Some Paradigms for Visualizing Parallel Execution of Logic Programs.
In 1993 International Conference on Logic Programming, pages 184–201. MIT Press,
June 1993.

[CH95] D. Cabeza and M. Hermenegildo.
Distributed Concurrent Constraint Execution in the CIAO System.
In Proc. of the 1995 COMPULOG-NET Workshop on Parallelism and Implemen-
tation Technologies, Utrecht, NL, September 1995. U. Utrecht / T.U. Madrid.
Available from http://www.cliplab.org/.

[CH97] D. Cabeza and M. Hermenegildo.
WWW Programming using Computational Logic Systems (and the PiLLoW/Ciao
Library).
In Proceedings of the Workshop on Logic Programming and the WWW at WWW6,
San Francisco, CA, April 1997.

[CH99a] D. Cabeza and M. Hermenegildo.
Higher-order Logic Programming in Ciao.
Technical Report CLIP7/99.0, Facultad de Informática, UPM, September 1999.

[CH99b] D. Cabeza and M. Hermenegildo.
The Ciao Modular Compiler and Its Generic Program Processing Library.
In ICLP’99 WS on Parallelism and Implementation of (C)LP Systems, pages 147–
164. N.M. State U., December 1999.

[CH00a] D. Cabeza and M. Hermenegildo.
A New Module System for Prolog.
In International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 131–148. Springer-Verlag, July 2000.

[CH00b] D. Cabeza and M. Hermenegildo.
The Ciao Modular, Standalone Compiler and Its Generic Program Processing Li-
brary.
In Special Issue on Parallelism and Implementation of (C)LP Systems, volume 30(3)
of Electronic Notes in Theoretical Computer Science. Elsevier - North Holland,
March 2000.

[CH00c] M. Carro and M. Hermenegildo.
Tools for Constraint Visualization: The VIFID/TRIFID Tool.

References 1119

In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 253–272.
Springer-Verlag, September 2000.

[CH00d] M. Carro and M. Hermenegildo.
Tools for Search Tree Visualization: The APT Tool.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 237–252.
Springer-Verlag, September 2000.

[CHGT98] D. Cabeza, M. Hermenegildo, S. Genaim, and C. Taboch.
Design of a Generic, Homogeneous Interface to Relational Databases.
Technical Report D3.1.M1-A1, CLIP7/98.0, RADIOWEB Project, September 1998.

[CHL04] D. Cabeza, M. Hermenegildo, and J. Lipton.
Hiord: A Type-Free Higher-Order Logic Programming Language with Predicate
Abstraction.
In Ninth Asian Computing Science Conference (ASIAN’04), number 3321 in LNCS,
pages 93–108. Springer-Verlag, December 2004.

[CHV96a] D. Cabeza, M. Hermenegildo, and S. Varma.
The PiLLoW/Ciao Library for INTERNET/WWW Programming using Computa-
tional Logic Systems.
In Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET
Applications, pages 72–90, JICSLP’96, Bonn, September 1996.

[CHV96b] D. Cabeza, M. Hermenegildo, and S. Varma.
The PiLLoW/Ciao Library for INTERNET/WWW Programming using Computa-
tional Logic Systems.
In Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET
Applications, JICSLP’96, Bonn, September 1996.
Available from http://clement.info.umoncton.ca/~lpnet
(http://clement.info.umoncton.ca/~lpnet).

[CLI95] The CLIP Group.
CIAO Compiler: Distributed Execution and Low Level Support Subsystem.
Public Software, ACCLAIM Deliverable D4.3/2-A3, Facultad de Informática, UPM,
June 1995.

[CM81] W.F. Clocksin and C.S. Mellish.
Programming in Prolog.
Springer-Verlag, 1981.

[Col78] A. Colmerauer.
Metamorphosis grammars.
In Natural language communication with computers, pages 133–189. Springer LNCS
63, 1978.

[Col82] A. Colmerauer et al.
Prolog II: Reference Manual and Theoretical Model.
Groupe D’intelligence Artificielle, Faculté Des Sciences De Luminy, Marseille, 1982.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni.
Prolog: The Standard.
Springer-Verlag, 1996.

[Dij65] E.W. Dijkstra.
Co-operating sequential processes.
In F. Genuys, editor, Programming Languages. Academic Press, London, 1965.

1120 The Ciao System

[DL93] S. K. Debray and N. W. Lin.
Cost Analysis of Logic Programs.
ACM Transactions on Programming Languages and Systems, 15(5):826–875,
November 1993.

[DLGH97] S.K. Debray, P. López-Garćıa, and M. Hermenegildo.
Non-Failure Analysis for Logic Programs.
In 1997 International Conference on Logic Programming, pages 48–62, Cambridge,
MA, June 1997. MIT Press, Cambridge, MA.

[DLGHL97]
S. K. Debray, P. López-Garćıa, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs.
In 1997 International Logic Programming Symposium, pages 291–305. MIT Press,
Cambridge, MA, October 1997.

[GCH98] J.M. Gomez, D. Cabeza, and M. Hermenegildo.
WebDB: A Database WWW Interface.
Technical Report D3.1.M2-A3 CLIP11/98.0, RADIOWEB Project, December 1998.

[GdW94] J.P. Gallagher and D.A. de Waal.
Fast and precise regular approximations of logic programs.
In Pascal Van Hentenryck, editor, Proc. of the 11th International Conference on
Logic Programming, pages 599–613. MIT Press, 1994.

[HBC96] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda, P.
López-Garćıa, and G. Puebla.
The CIAO Multi-Dialect Compiler and System: A Demo and Status Report.
In Proceedings of the JICSLP’96 Workshop on Parallelism and Implementation
Technology. Computer Science Department, Technical University of Madrid,
September 1996.
Available from
http://www.cliplab.org/Projects/COMPULOG/meeting96/papers/PS/clip.ps.gz
(http://www.cliplab.org/Projects/COMPULOG/meeting96/papers/PS/clip.ps.gz).

[HBC99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M. Garćıa de la Banda, P. López-
Garćıa, and G. Puebla.
The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench
for Future (C)LP Systems.
In Parallelism and Implementation of Logic and Constraint Logic Programming,
pages 65–85. Nova Science, Commack, NY, USA, April 1999.

[HBdlBP95]
M. Hermenegildo, F. Bueno, M. Garćıa de la Banda, and G. Puebla.
The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench
for Future (C)LP Systems.
In Proceedings of the ILPS’95 Workshop on Visions for the Future of Logic Pro-
gramming, Portland, Oregon, USA, December 1995.
Available from http://www.cliplab.org/ (http://www.cliplab.org/).

[HBPLG99]
M. Hermenegildo, F. Bueno, G. Puebla, and P. López-Garćıa.
Program Analysis, Debugging and Optimization Using the Ciao System Preproces-
sor.
In 1999 Int’l. Conference on Logic Programming, pages 52–66, Cambridge, MA,
November 1999. MIT Press.

[HC93] M. Hermenegildo and The CLIP Group.
Towards CIAO-Prolog – A Parallel Concurrent Constraint System.

References 1121

In Proc. of the Compulog Net Area Workshop on Parallelism and Implementation
Technologies. FIM/UPM, Madrid, Spain, June 1993.

[HC94] M. Hermenegildo and The CLIP Group.
Some Methodological Issues in the Design of CIAO - A Generic, Parallel, Concurrent
Constraint System.
In Principles and Practice of Constraint Programming, number 874 in LNCS, pages
123–133. Springer-Verlag, May 1994.

[HC97] M. Hermenegildo and The CLIP Group.
An Automatic Documentation Generator for (C)LP – Reference Manual.
The Ciao System Documentation Series–TR CLIP5/97.3, Facultad de Informática,
UPM, August 1997.
Online at http://www.ciaohome.org.

[HCC95] M. Hermenegildo, D. Cabeza, and M. Carro.
Using Attributed Variables in the Implementation of Concurrent and Parallel Logic
Programming Systems.
In Proc. of the Twelfth International Conference on Logic Programming, pages
631–645. MIT Press, June 1995.

[Her86] M. Hermenegildo.
An Abstract Machine for Restricted AND-parallel Execution of Logic Programs.
In Third International Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 25–40. Imperial College, Springer-Verlag, July
1986.

[Her96] M. Hermenegildo.
Writing “Shell Scripts” in SICStus Prolog, April 1996.
Posting in comp.lang.prolog. Available from http://www.cliplab.org/
(http://www.cliplab.org/).

[Her99] M. Hermenegildo.
A Documentation Generator for Logic Programming Systems.
Technical Report CLIP10/99.0, Facultad de Informática, UPM, September 1999.

[Her00] M. Hermenegildo.
A Documentation Generator for (C)LP Systems.
In International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 1345–1361. Springer-Verlag, July 2000.

[HG91] M. Hermenegildo and K. Greene.
The &-Prolog System: Exploiting Independent And-Parallelism.
New Generation Computing, 9(3,4):233–257, 1991.

[Hog84] C. J. Hogger.
Introduction to Logic Programming.
Academic Press, London, 1984.

[Hol90] C. Holzbaur.
Specification of Constraint Based Inference Mechanisms through Extended Unifica-
tion.
PhD thesis, University of Vienna, 1990.

[Hol92] C. Holzbaur.
Metastructures vs. Attributed Variables in the Context of Extensible Unification.
In 1992 International Symposium on Programming Language Implementation and
Logic Programming, pages 260–268. LNCS631, Springer Verlag, August 1992.

1122 The Ciao System

[Hol94] C. Holzbaur.
SICStus 2.1/DMCAI Clp 2.1.1 User’s Manual.
University of Vienna, 1994.

[HPBLG05]
M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa.
Integrated Program Debugging, Verification, and Optimization Using Abstract In-
terpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2):115–140, 2005.

[JL88] D. Jacobs and A. Langen.
Compilation of Logic Programs for Restricted And-Parallelism.
In European Symposium on Programming, pages 284–297, 1988.

[Knu84] D. Knuth.
Literate programming.
Computer Journal, 27:97–111, 1984.

[Kor85] R. Korf.
Depth-first iterative deepening: an optimal admissible tree search.
Artificial Intelligence, 27:97–109, 1985.

[LGHD96] P. López-Garćıa, M. Hermenegildo, and S. K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
Journal of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
21(4–6):715–734, 1996.

[MH89] K. Muthukumar and M. Hermenegildo.
Determination of Variable Dependence Information at Compile-Time Through Ab-
stract Interpretation.
In 1989 North American Conference on Logic Programming, pages 166–189. MIT
Press, October 1989.

[Nai85] L. Naish.
The MU-Prolog 3.2 Reference Manual.
TR 85/11, Dept. of Computer Science, U. of Melbourne, October 1985.

[Nai91] Lee Naish.
Adding equations to NU-Prolog.
In Proceedings of The Third International Symposium on Programming Language
Implementation and Logic Programming (PLILP’91), number 528 in Lecture Notes
in Computer Science, pages 15–26, Passau, Germany, August 1991. Springer-Verlag.

[Par97] The RADIOWEB Project Partners.
RADIOWEB EP25562: Automatic Generation of Web Sites for the Radio Brod-
casting Industry – Project Description / Technical Annex.
Technical Report, RADIOWEB Project, July 1997.

[PBH97] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Debugging of Constraint Logic Programs.
In Proceedings of the ILPS’97 Workshop on Tools and Environments for (Con-
straint) Logic Programming, October 1997.
Available from ftp://clip.dia.fi.upm.es/pub/papers/assert_lang_tr_
discipldeliv.ps.gz (ftp://clip.dia.fi.upm.es/pub/papers/assert_lang_
tr_discipldeliv.ps.gz) as technical report CLIP2/97.1.

[PBH00] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 23–61.
Springer-Verlag, September 2000.

References 1123

[PH99] G. Puebla and M. Hermenegildo.
Some Issues in Analysis and Specialization of Modular Ciao-Prolog Programs.
In ICLP’99 Workshop on Optimization and Implementation of Declarative Lan-
guages, pages 45–61. U. of Southampton, U.K, November 1999.

[PW80] F.C.N. Pereira and D.H.D. Warren.
Definite clause grammars for language analysis - a survey of the formalism and a
comparison with augmented transition networks.
Artificial Intelligence, 13:231–278, 1980.

[SS86] L. Sterling and E. Shapiro.
The Art of Prolog.
MIT Press, 1986.

[Swe95] Swedish Institute of Computer Science, P.O. Box 1263, S-16313 Spanga, Sweden.
Sicstus Prolog V3.0 User’s Manual, 1995.

[War88] D.H.D. Warren.
The Andorra Model.
Presented at Gigalips Project workshop. U. of Manchester, March 1988.

1124 The Ciao System

Library/Module Index 1125

Library/Module Index

A
actmods . 585

agent . 589

aggregates . 233

andorra . 539

andprolog . 543

apll . 545

argnames . 521

arithmetic . 151

arrays . 775

assertions . 339

assertions_props . 349

assoc . 777

assrt_write . 455

atom2term . 413

atomic_basic. 141

attributes . 201

B
basic_props . 105

basiccontrol . 99

basicmodes . 373

between . 299

BeyondInstall . 1115

bf . 593

block . 845

bltclass . 857

boundary . 1005

build_foreign_interface . 669

builtin_directives . 103

C
callgraph . 825

chartlib . 847

chartlib_errhandle . 859

CiaoMode . 67

ciaopaths . 383

class . 617

clpq . 597

clpr . 601

color_pattern . 861

compiler . 297

conc_aggregates . 471

concurrency . 465

condcomp . 209

counters . 785

ctrlcclean . 417

cyclic_terms. 449

D
data_facts . 187

davinci . 685

dcg . 271

dcg_tr . 275

ddlist . 919

debugger. 49, 59

dec10_io . 329

default_predicates . 211

det_hook . 571

det_hook_rt . 575

dht_client . 929

dht_config . 975

dht_logic . 941

dht_logic_misc . 957

dht_misc . 979

dht_routing . 953

dht_rpr . 961

dht_s2c . 937

dht_s2s . 939

dht_server . 935

dht_storage . 971

dict . 399

dictionary . 1007

dictionary_tree . 1009

dynamic_rt . 239

E
ecrc . 385

emacs . 767

errhandle . 419

exceptions . 177

expansion_tools . 461

F
factsdb . 733

factsdb_rt . 735

fastrw . 421

fd . 981

field_type . 1015

field_value . 1017

field_value_check . 1019

file_locks . 433

file_utils . 429

filenames . 423

foreign_compilation . 667

foreign_interface . 645

foreign_interface_properties 661

1126 The Ciao System

format . 277

formulae . 435

freeze . 579

fsyntax . 525

fuzzy . 605

G
genbar1 . 865

genbar2 . 871

genbar3 . 875

genbar4 . 879

gendot . 987

generator . 1021

generator_util . 1023

gengraph1 . 883

gengraph2 . 893

genmultibar . 901

getopts . 391

GetStartUnix . 21

GetStartWin32. 27

global . 537

gnuplot . 989

graphs . 793

H
hiord_rt . 515

hiordlib . 517

html . 703

http . 713

I
id . 595

idlists . 787

indexer . 511

Install . 1101

InstallWin32bin . 1111

interface . 641

internal_types . 1035

io_alias_redirection . 411

io_aux . 197

io_basic . 169

iso . 231

iso_byte_char . 259

iso_incomplete . 267

iso_misc . 265

isomodes . 371

J

javart . 749

javasock . 763

jtopl . 759

L

lazy . 993

lgraphs . 803

libpaths . 65

librowser . 457

linda . 771

lists . 283

llists . 395

loading_code . 97

lookup . 1041

M

make . 481

make_rt . 487

menu . 673

menu_generator . 675

messages . 405

modules . 91

mycin . 997

N

native_props. 359

numlists . 789

O

objects . 629

objects_rt . 635

ociao . 611

odd . 577

old_database. 331

operators . 255

Library/Module Index 1127

P
parser_util . 1049

patterns . 791

persdbrt . 723

persdbtr_sql. 743

pillow . 701

pillow_types. 715

pl2sqlinsert. 745

possible . 1063

pretty_print. 451

profiler . 999

prolog_flags. 181

prolog_sys . 323

provrml . 1001

provrml_io . 1039

provrml_parser . 1047

provrmlerror . 1013

pure . 509

Q
queues . 805

R
random . 807

read . 245

regexp . 1069

regexp_code . 1073

regtypes . 355

rtchecks . 377

runtime_ops . 335

S
sets . 809

sockets . 473

sockets_io . 479

sort . 295

sqltypes . 739

streams . 397

streams_basic . 159

strings . 401

symfnames . 427

syntax_extensions . 193

system . 301

system_extra. 493

system_info . 205

T
table_widget1 . 905

table_widget2 . 909

table_widget3 . 911

table_widget4 . 913

tcltk . 689

tcltk_low_level . 697

term_basic . 129

term_compare. 135

term_typing . 121

terms . 441

terms_check . 445

terms_vars . 447

test_format . 915

tester . 1077

time_analyzer . 1083

tokeniser . 1065

toplevel . 41

ttyout . 333

U
ugraphs . 797

unittest . 379

V
vndict . 813

W
wgraphs . 801

when . 581

write . 249

X
xdr_handle . 1089

xml_path . 1093

1128 The Ciao System

Predicate/Method Index 1129

Predicate/Method Index

!
!/0 . 100

$
$~/3 . 522

$cancellation/1 . 551

$clean_measures/0 . 559

$enter_mutex/1 . 558

$enter_mutex_remote/1 . 558

$enter_mutex_self/0 . 558

$exit_mutex/1 . 559

$exit_mutex_remote/1 . 559

$exit_mutex_self/0 . 559

$factsdb$cached_goal/3 733, 736

$find_goal/3. 551

$goal_available/1 . 551

$goal_cancelled/1 . 555

$goal_det/1 . 552

$goal_failed/1 . 555

$goal_finished/1 . 553

$goal_not_executed/1 . 552

$goal_rem_executing/1 . 553

$goal_tobacktrack/1 . 554

$goal_toreexecute/1 . 554

$incr_num_local_backtr/0 . 560

$is_persistent/2 . 681, 729

$meta_call/1. 516

$more_solutions/1 . 556

$move_execution_top/1 . 557

$new_measure/0 . 560

$nodebug_call/1 . 516

$not_measure/0 . 560

$number_agents/1 . 550

$print_measures/0 . 559

$push_goal/3. 551

$read_event/1 . 556

$release/1 . 557

$release_all_for_unwinding/0 558

$release_remote/1 . 557

$release_some_suspended_thread/0 558

$retrieve_goal/2 . 552

$save_end_execution/1 . 556

$save_init_execution/1 . 556

$send_event/1 . 556

$set_goal_cancelled/1 . 555

$set_goal_det/1 . 552

$set_goal_failed/1 . 555

$set_goal_finished/1 . 554

$set_goal_nondet/1 . 552

$set_goal_not_executed/1 . 553

$set_goal_rem_executing/1 553

$set_goal_tobacktrack/1 . 554

$set_goal_toreexecute/1 . 554

$show_handler/1 . 555

$start_thread/1 . 550

$suspend/0 . 557

$waiting/1 . 557

,
,/2 . 99

-
--/1 . 496

-/1 . 496

->/2 . 100

.

./2 . 45

:
:#/2 . 606

::/2 . 590

:~/2 . 607

;
;/2 . 99

=
=../2 . 132

=:=/2 . 155

=>/4 . 608

=\=/2 . 156

=</2 . 153

@
@=</2 . 137

@>/2 . 137

@>=/2 . 137

@</2 . 136

1130 The Ciao System

>
>/2 . 154

>=/2 . 155

^
^/2 . 236

\
\=/2 . 129

\==/2 . 136

\+/1 . 100

<
</2 . 153

A
abolish/1 . 242

abort/0 . 179

absolute_file_name/2 . 164

absolute_file_name/7 . 165

accepted_type/2 . 739

acyclic_term/1 . 449

add_after/4 . 290, 787

add_assoc/4 . 783

add_before/4 . 290, 788

add_edges/3 . 798

add_environment_whitespace/3 1055

add_indentation/3 . 1056

add_lines/4 . 200

add_name_value/2 . 489

add_preffix/3 . 498

add_suffix/3. 498

add_vertices/3 . 798

add_vpath/1 . 490

add_vpath_mode/3 . 490

alias_file/1. 428

all_values/2. 488

any_to_term/2 . 499

append/2 . 395

append/3 . 283

apply_vpath_mode/4 . 491

apropos/1 . 459

aref/3 . 775

arefa/3 . 775

arefl/3 . 776

arg/2 . 442

arg/3 . 130

arg_expander/6 . 462

arithm_average/2 . 390

array_to_list/2 . 776

asbody_to_conj/2 . 438

aset/4 . 776

ask/2 . 445

assert/1 . 240

assert/2 . 241

asserta/1 . 239

asserta/2 . 240

asserta_fact/1 . 187, 726, 735

asserta_fact/2 . 187

assertz/1 . 240

assertz/2 . 240

assertz_fact/1 . 188, 727, 735

assertz_fact/2 . 188

assoc_to_list/2 . 777

at_least_one/4 . 1049

at_least_one/5 . 1049

atom_chars/2. 259

atom_codes/2. 142

atom_concat/2 . 442

atom_concat/3 . 147

atom_length/2 . 147

atom_lock_state/2 . 469

atom_number/2 . 143

atom_number/3 . 146

atom2term/2 . 413

attach_attribute/2 . 201

B
bagof/3 . 234, 472

barchart1/7 . 865

barchart1/9 . 866

barchart2/11. 872

barchart2/7 . 871

barchart3/7 . 875

barchart3/9 . 876

barchart4/11. 880

barchart4/7 . 879

basename/2 . 425

benchmark/6 . 1084

benchmark2/6 . 1085

between/3 . 299

bind_socket/3 . 474

bind_socket_interface/1 . 763

body_expander/6 . 461

body2list/2 . 438

Predicate/Method Index 1131

bold_message/1 . 490

bold_message/2 . 490

bolder_message/1 . 490

bolder_message/2 . 490

boundary_check/3 . 1005

boundary_rotation_first/2 1005

boundary_rotation_last/2. 1006

bounds/3 . 985

browse/2 . 458

build_foreign_interface/1 669

build_foreign_interface_explicit_decls/2 . . 670

build_foreign_interface_object/1 670

C
C/3 . 133

c_errno/1 . 305

call/1 . 515, 736

call/2 . 515

call_graph/2. 825

call_in_module/2 . 59

call_unknown/1 . 488

cancellation/1 . 562

case_insensitive_match/2 . 791

cat/2 . 494

cat_append/2. 494

catch/3 . 177

cd/1 . 310

char_code/2 . 259

char_codes/2. 260

character_count/2 . 162

chartlib_text_error_protect/1 859

chartlib_visual_error_protect/1 859

check/1 . 346

check_sublist/4 . 916

check_var_exists/1 . 489

children_nodes/1 . 1006

chmod/2 . 317

chmod/3 . 317

choose_free_var/2 . 984

choose_value/2 . 984

choose_var/3. 983

choose_var_nd/2 . 984

ciao_c_headers_dir/1 . 207

ciao_flag/3 . 184

ciao_lib_dir/1 . 208

cl_option/2 . 392

clause/2 . 242

clean_measures/0 . 568

clearerr/1 . 163

close/1 . 160

close/2 . 267

close_client/0 . 771

close_DEF/5 . 1032

close_EXTERNPROTO/6 . 1031

close_file/1. 330

close_input/1 . 397

close_node/5 . 1029

close_nodeGut/4 . 1030

close_output/1 . 398

close_predicate/1 . 190

close_PROTO/6 . 1030

close_Script/5 . 1033

code_class/2. 173

collect_singletons/2 . 395

color/2 . 862

combine_attributes/2 . 202

compare/3 . 138

compare_benchmark/7 . 1084

compare_benchmark2/7 . 1085

compile/1 . 45

compiler_and_opts/2 . 667

complete_dict/3 . 814

complete_vars_dict/3 . 814

compound/1 . 265

concurrent/1. 469

conj_to_list/2 . 436

conj_to_llist/2 . 437

connect_to_socket/3 . 474

connect_to_socket_type/4 . 473

consistent_hash/2 . 958

constructor/0 . 621

consult/1 . 45

contains_ro/2 . 291

contains1/2 . 291

continue/3 . 1063

convert_atoms_to_string/2 1039

convert_permissions/2 . 499

convert_permissions/4 . 499

copy_args/3 . 441

copy_file/2 . 305

copy_file/3 . 305

copy_files/2. 494

copy_files/3. 494

copy_files_nofail/3 . 494

copy_stdout/1 . 429

copy_term/2 . 132

copy_term_nat/2 . 133

core/1 . 700

correct_commenting/4 . 1052

1132 The Ciao System

cost/3 . 1086

cp_name_value/2 . 489

create/2 . 728

create_dict/2 . 813

create_dictionaries/1 . 1009

create_directed_field/5 . 1052

create_environment/4 . 1054

create_field/3 . 1051

create_field/4 . 1051

create_field/5 . 1051

create_from_list/2 . 919

create_node/3 . 1051

create_parse_structure/1. 1053

create_parse_structure/2. 1053

create_parse_structure/3. 1053

create_pretty_dict/2 . 813

create_proto_element/3 . 1041

cross_product/2 . 294

ctrlc_clean/1 . 417

ctrlcclean/0. 417

current_atom/1 . 327

current_ciao_flag/2 . 184

current_env/2 . 304

current_executable/1 . 308

current_fact/1 . 188, 736

current_fact/2 . 189

current_fact_nb/1 . 190

current_host/1 . 308

current_infixop/4 . 256

current_input/1 . 161

current_key/2 . 332

current_module/1 . 207

current_op/3. 256

current_output/1 . 162

current_postfixop/3 . 257

current_predicate/1 . 242

current_predicate/2 . 243

current_prefixop/3 . 256

current_prolog_flag/2 . 182

current_stream/3 . 163

cyclic_term/1 . 449

cyg2win/3 . 319

D
data/1 . 243

datime/1 . 302

datime/9 . 302

datime_atom/1 . 498

datime_atom/2 . 498

datime_string/1 . 498

datime_string/2 . 498

davinci/0 . 685

davinci_get/1 . 685

davinci_get_all/1 . 685

davinci_lgraph/1 . 686

davinci_put/1 . 686

davinci_quit/0 . 686

davinci_ugraph/1 . 686

dbId/2 . 743

dcg_translation/2 . 275

ddlist_member/2 . 923

debug/1 . 199

debug_goal/2. 408

debug_goal/3. 409

debug_message/1 . 408

debug_message/2 . 408

dec_indentation/2 . 1056

decompose_field/3 . 1033

define_flag/3 61, 186, 247, 254, 320, 711, 1076

del_assoc/4 . 783

del_dir_if_empty/1 . 493

del_edges/3 . 798

del_endings_nofail/2 . 495

del_env/1 . 305

del_file_nofail/1 . 495

del_file_nofail/2 . 495

del_files_nofail/1 . 495

del_global/1. 537

del_max_assoc/4 . 784

del_min_assoc/4 . 784

del_name_value/1 . 489

del_vertices/3 . 798

delete/1 . 700

delete/2 . 921

delete/3 . 287, 788

delete_after/2 . 921

delete_directory/1 . 318

delete_file/1 . 317

delete_files/1 . 495

delete_non_ground/3 . 287

delete_on_ctrlc/2 . 417

delete_top/2. 921

derived_from/2 . 637

describe/1 . 459

destroy/1 . 638

destructor/0. 622

det_try/3 . 575

detach_attribute/1 . 202

dgraph_to_ugraph/2 . 793

Predicate/Method Index 1133

dht_check_predecessor/1 . 942

dht_closest_preceding_finger/2 942

dht_connect/2 . 929

dht_connect/3 . 929

dht_consult_b/2 . 972

dht_consult_b/4 . 930

dht_consult_nb/2 . 973

dht_consult_nb/4 . 931

dht_consult_server_b/3 . 946

dht_consult_server_nb/3 . 948

dht_disconnect/1 . 930

dht_extract_b/2 . 971

dht_extract_b/4 . 931

dht_extract_from_server_b/3 949

dht_extract_from_server_nb/3 950

dht_extract_nb/2 . 972

dht_extract_nb/4 . 931

dht_find_and_consult_b/2 . 946

dht_find_and_consult_nb/2 947

dht_find_and_extract_b/2 . 948

dht_find_and_extract_nb/2 950

dht_find_and_store/2 . 951

dht_find_predecessor/2 . 943

dht_find_successor/2 . 944

dht_finger/2. 941

dht_finger_start/2 . 954

dht_finger_table/2 . 953

dht_fix_fingers/0 . 945

dht_hash/3 . 932

dht_id_by_node/2 . 946

dht_init/1 . 941

dht_join/1 . 944

dht_join_host/1 . 976

dht_key_hash/2 . 973

dht_notify/1. 944

dht_predecessor/1 . 956

dht_prolog/1. 935

dht_reset_predecessor/0 . 956

dht_rpr_call/2 . 965

dht_rpr_call/3 . 968

dht_rpr_clear_by_node/1 . 964

dht_rpr_compose_id/3 . 964

dht_rpr_id_by_node/2 . 962

dht_rpr_node/1 . 965

dht_rpr_node_by_id/2 . 962

dht_rpr_register_node/1 . 961

dht_rpr_register_node/2 . 961

dht_s2c_main/0 . 937

dht_s2c_port/1 . 975

dht_s2c_threads/1 . 976

dht_s2s_main/0 . 939

dht_s2s_port/1 . 976

dht_s2s_threads/1 . 976

dht_server/1. 935

dht_server_host/1 . 977

dht_server_id/1 . 977

dht_set_finger/4 . 955

dht_set_hash_power/1 . 975

dht_set_join_host/1 . 977

dht_set_predecessor/1 . 956

dht_set_s2c_port/1 . 976

dht_set_s2c_threads/1 . 976

dht_set_s2s_port/1 . 976

dht_set_s2s_threads/1 . 976

dht_set_server_host/1 . 977

dht_set_server_id/1 . 977

dht_stabilize/0 . 945

dht_store/3 . 971

dht_store/4 . 932

dht_store_to_server/4 . 951

dht_successor/1 . 942

dht_update_finger/2 . 955

dic_get/3 . 400

dic_lookup/3. 399

dic_lookup/4. 400

dic_node/2 . 399

dic_replace/4 . 400

dict2varnamesl/2 . 814

dictionary/5. 399

dictionary/6 . 1007

dictionary_insert/5 . 1010

dictionary_lookup/5 . 1010

diff_vars/3 . 447

difference/3. 293

dir_path/2 . 305

directory_files/2 . 313

disj_to_list/2 . 437

disj_to_llist/2 . 438

display/1 . 175

display/2 . 174

display_list/1 . 199

display_string/1 . 199

display_term/1 . 199

displayq/1 . 175

displayq/2 . 175

div_times/2 . 1086

dlgraph_to_lgraph/2 . 794

dlist/3 . 290

do/2 . 496

do/3 . 496

1134 The Ciao System

do/4 . 496

do/5 . 497

do_atmlist__popen/2 . 500

do_interface/1 . 671

do_on_abolish/1 . 244

do_str/3 . 500

do_str_without_nl/3 . 500

do_str_without_nl__popen/2 500

dot_concat/2. 488

dyn_load_cfg_module_into_make/1 491

dynamic/1 . 243

dynamic_search_path/1 . 46

E
edges/2 . 797

edges_to_lgraph/2 . 794

edges_to_ugraph/2 . 794

emacs_edit/1. 768

emacs_edit_nowait/1 . 768

emacs_eval/1. 768

emacs_eval_nowait/1 . 768

empty_assoc/1 . 777

eng_backtrack/2 . 466

eng_call/3 . 466

eng_call/4 . 465

eng_cut/1 . 466

eng_goal_id/1 . 468

eng_kill/1 . 467

eng_killothers/0 . 467

eng_release/1 . 467

eng_self/1 . 467

eng_status/0. 468

eng_wait/1 . 467

ensure_loaded/1 . 44, 297

ensure_loaded/2 . 297

enter_mutex/1 . 567

enter_mutex_remote/1 . 568

enter_mutex_self/0 . 568

eq/3 . 681

equal_lists/2 . 293

equalnumber/3 . 915

erase/1 . 191, 244

error/1 . 198

error_file/2. 860

error_message/1 . 405

error_message/2 . 405, 860

error_message/3 . 405

error_protect/1 . 419

error_vrml/1 . 1013

etags/2 . 499

exec/3 . 312

exec/4 . 312

exec/8 . 312

execute_permissions/2 . 499

execute_permissions/4 . 499

exit_mutex/1. 568

exit_mutex_remote/1 . 568

exit_mutex_self/0 . 568

extension/2 . 425

extract_paths/2 . 306

F
fail/0 . 101

false/0 . 102

false/1 . 347

fast_read/1 . 421

fast_read/2 . 421

fast_write/1. 421

fast_write/2. 421

fast_write_to_string/3 . 422

fetch_url/3 . 713

fieldType/1 . 1015

fieldValue/6 . 1017

fieldValue_check/8 . 1019

file_alias/2 . 428, 737

file_dir_name/3 . 306

file_directory_base_name/3 424

file_exists/1 . 314

file_exists/2 . 314

file_name_extension/3 . 424

file_properties/6 . 315

file_property/2 . 315

file_search_path/2 . 65, 167

file_terms/2. 429

file_to_string/2 . 429

file_to_string/3 . 430

fileerrors/0. 185

fillout/4 . 1050

fillout/5 . 1050

filter_alist_pattern/3 . 495

find_det_goal/2 . 561

find_file/2 . 489

find_goal/2 . 561

find_name/4 . 815

findall/3 . 234, 471

findall/4 . 235

findnsols/4 . 235

findnsols/5 . 236

Predicate/Method Index 1135

flatten/2 . 395

flush_output/0 . 163

flush_output/1 . 163

fmode/2 . 316

fnot/1 . 607

foldl/4 . 518, 782

force_lazy/1 . 46

form_default/3 . 706

form_empty_value/1 . 706

form_request_method/1 . 710

format/2 . 277

format/3 . 278

format_to_string/3 . 278

formatting/2. 686

forward/2 . 922

freeze/2 . 579

frozen/2 . 579

functor/3 . 131

fuzzy/1 . 606

fuzzy_predicate/1 . 606

G
garbage_collect/0 . 327

gc/0 . 185

gen_assoc/3 . 778

gendot/3 . 987

generate_benchmark_list/7 1085

generate_benchmark_list2/7 1086

generate_human_file/0 . 389

generate_js_menu/1 . 678

generate_machine_file/0 . 389

generate_plot/2 . 990

generate_plot/3 . 990

generator/2 . 1021

geom_average/2 . 390

get_active_config/1 . 491

get_address/2 . 308

get_alias_path/0 . 65

get_all_values/2 . 488

get_arch/1 . 205

get_assoc/3 . 779

get_assoc/5 . 779

get_attribute/2 . 201

get_byte/1 . 261

get_byte/2 . 261

get_char/1 . 262

get_char/2 . 262

get_ciao_ext/1 . 206

get_code/1 . 169

get_code/2 . 169

get_cookies/1 . 707

get_debug/1 . 206

get_definition_dictionary/2 1009

get_dictionaries/2 . 1058

get_eng_location/1 . 206

get_environment/2 . 1058

get_environment_name/2 . 1054

get_environment_type/2 . 1055

get_exec_ext/1 . 206

get_first_parsed/3 . 1061

get_form_input/1 . 706

get_form_value/3 . 706

get_general_options/1 . 989

get_gid/1 . 307

get_global/2. 537

get_grnam/1 . 307

get_indentation/2 . 1056

get_line/1 . 401

get_line/2 . 401

get_menu_configs/1 . 676

get_menu_flag/3 . 676

get_menu_flags/1 . 677

get_menu_flags/2 . 678

get_menu_options/2 . 677

get_name/2 . 492

get_name_value/3 . 489

get_name_value_string/3 . 489

get_next_assoc/4 . 780

get_os/1 . 205

get_parsed/2 . 1057

get_perms/2 . 499

get_pid/1 . 306

get_platform/1 . 206

get_prev_assoc/4 . 780

get_primes/2. 789

get_prototype_definition/2 1042

get_prototype_dictionary/2 1010

get_prototype_interface/2 1041

get_pwnam/1 . 307

get_row_number/2 . 1055

get_settings_nvalue/1 . 491

get_so_ext/1. 207

get_stream/2. 411

get_tmp_dir/1 . 307

get_type/2 . 739

get_uid/1 . 307

get_value/2 . 488

get_value_def/3 . 488

get1_code/1 . 170

1136 The Ciao System

get1_code/2 . 170

getcounter/2. 785

getct/2 . 173

getct1/2 . 174

getenvstr/2 . 304

getopts/4 . 391

glb/2 . 985

goal_available/1 . 561

goal_cancelled/1 . 565

goal_det/1 . 562

goal_failed/1 . 564

goal_finished/1 . 563

goal_id/1 . 468

goal_not_executed/1 . 563

goal_rem_executing/1 . 563

goal_tobacktrack/1 . 564

goal_toreexecute/1 . 564

graph_b1/13 . 885

graph_b1/9 . 884

graph_b2/13 . 894

graph_b2/9 . 893

graph_w1/13 . 886

graph_w1/9 . 885

graph_w2/13 . 896

graph_w2/9 . 895

H
halt/0 . 179

halt/1 . 179

halt_server/0 . 772

handle_error/2 . 419

hash_power/1. 975

hash_size/1 . 957

hash_term/2 . 511

highest_hash_number/1 . 957

hook_menu_check_flag_value/3 673, 683

hook_menu_default_option/3 674, 684

hook_menu_flag_help/3 673, 684

hook_menu_flag_values/3 673, 683

hostname_address/2 . 476

html_expansion/2 . 711

html_protect/1 . 710

html_report_error/1 . 706

html_template/3 . 704

html2terms/2. 703

http_lines/3. 710

I

icon_address/2 . 710

if/3 . 100

imports_meta_pred/3 . 461

in/1 . 771

in/2 . 771

in_circle_oc/3 . 959

in_circle_oo/3 . 959

in_noblock/1. 771

in_stream/2 . 772

inc_indentation/2 . 1056

inccounter/2. 785

include/1 . 44

incr_num_local_backtr/0 . 569

indentation_list/2 . 1033

inform_user/1 . 199

inherited/1 . 621

initial/0 . 550

initialize_db/0 . 727

insert/3 . 809, 920

insert_after/3 . 921

insert_begin/3 . 921

insert_comments_in_beginning/3 1054

insert_end/3. 921

insert_last/3 . 291

insert_parsed/3 . 1060

insert_top/3. 920

inside_proto/1 . 1058

instance_codes/2 . 637

instance_of/2 . 636

intercept/3 . 177

interface/2 . 637

interp_file/2 . 858

intersect_vars/3 . 447

intersection/3 . 292

intset_delete/3 . 292

intset_in/2 . 292

intset_insert/3 . 292

intset_sequence/3 . 292

is/2 . 151

is_array/1 . 775

is_assoc/1 . 778

is_connected_to_java/0 . 765

is_dictionaries/1 . 1009

issue_debug_messages/1 . 410

Predicate/Method Index 1137

J
java_add_listener/3 . 756

java_connect/2 . 753

java_create_object/2 . 754

java_debug/1. 765

java_debug_redo/1 . 765

java_delete_object/1 . 755

java_disconnect/0 . 753

java_get_value/2 . 756

java_invoke_method/2 . 755

java_query/2. 764

java_remove_listener/3 . 757

java_response/2 . 764

java_set_value/2 . 756

java_start/0. 752

java_start/1. 752

java_start/2. 753

java_stop/0 . 753

java_use_module/1 . 754

join_socket_interface/0 . 764

just_benchmarks/0 . 389

K
keysort/2 . 296

keyword/1 . 730, 737

L
labeling/1 . 983

last/2 . 291

length/2 . 288, 922

length_next/2 . 923

length_prev/2 . 923

letter_match/2 . 792

library_directory/1 . 66, 167

linda_client/1 . 771

linda_timeout/2 . 772

line_count/2. 162

line_position/2 . 163

linker_and_opts/2 . 667

list_concat/2 . 291

list_insert/2 . 291, 787

list_lookup/3 . 292

list_lookup/4 . 292

list_to_assoc/2 . 780

list_to_conj/2 . 435

list_to_conj/3 . 435

list_to_disj/2 . 436

list_to_disj2/2 . 439

list_to_list_of_lists/2 . 294

llist_to_conj/2 . 437

llist_to_disj/2 . 438

lock_atom/1 . 468

lock_file/3 . 433

look_ahead/3 . 1062

look_first_parsed/2 . 1061

lookup_check_field/6 . 1042

lookup_check_interface_fieldValue/8 1043

lookup_check_node/4 . 1042

lookup_field/4 . 1043

lookup_field_access/4 . 1044

lookup_fieldTypeId/1 . 1044

lookup_get_fieldType/4 . 1044

lookup_route/5 . 1044

lookup_set_def/3 . 1045

lookup_set_extern_prototype/4 1046

lookup_set_prototype/4 . 1045

ls/2 . 495

ls/3 . 495

lub/2 . 985

M
main/1 . 388

make/1 . 487

make_actmod/2. 46

make_directory/1 . 309

make_directory/2 . 309

make_dirpath/1 . 309

make_dirpath/2 . 309

make_exec/2 . 44

make_option/1 . 488

make_persistent/2 . 728

make_po/1 . 45, 297

make_wam/1 . 297

map/3 . 517, 781

map/4 . 518

map_assoc/2 . 781

map_assoc/3 . 781

match_pattern/2 . 791

match_pattern/3 . 791

match_pattern_pred/2 . 792

match_posix/2 . 1070, 1073

match_posix/4 . 1070, 1074

match_posix_matches/3 1070, 1074

match_posix_rest/3 1070, 1074

match_pred/2 . 1071, 1075

match_shell/2 . 1070, 1073

match_shell/3 . 1069, 1073

1138 The Ciao System

match_struct/4 . 1071, 1075

max_assoc/3 . 778

member_0/2 . 787

member_var/2. 447

memberchk/2 . 787

menu/1 . 675

menu/2 . 675

menu/3 . 675

menu/4 . 675

menu_default/3 . 673, 682

menu_opt/6 . 673, 682

merge/3 . 812

merge_tree/2 . 1011

message/1 . 199

message/2 . 197

message_lns/4 . 198

messages/1 . 198

mfclause/2 . 242

mfstringValue/5 . 1017

mfstringValue/7 . 1020

min_assoc/3 . 778

minimum/3 . 518

mkdir_perm/2. 499

mktemp/2 . 314

mktemp_in_tmp/2 . 314

mode_of_module/2 . 298

modif_time/2. 316

modif_time0/2 . 316

module_address/2 . 590

module_of/2 . 298

more_solutions/1 . 566

most_general_instance/3 . 445

most_specific_generalization/3 445

move_execution_top/1 . 566

move_file/2 . 494

move_files/2. 493

multibarchart/10 . 902

multibarchart/8 . 902

multifile/1 . 47

my_url/1 . 708

N
name/2 . 141

name_value/2. 489

neighbors/3 . 797

neq/3 . 681

new/2 . 635

new_array/1 . 775

new_atom/1 . 325

new_interp/1 . 697, 857

new_interp/2. 697

new_interp_file/2 . 698

new_measure/0 . 569

newer/2 . 490

next/2 . 920

next_on_circle/2 . 958

nl/0 . 172

nl/1 . 172

no_path_file_name/2 . 423

no_swapslash/3 . 320

no_tr_nl/2 . 498

nocontainsx/2 . 291

node_id/2 . 969

nodeDeclaration/4 . 1021, 1047

nofileerrors/0 . 185

nogc/0 . 185

nonsingle/1 . 283

normal_message/2 . 490

not_empty/3 . 916

not_empty/4 . 915

not_in_circle_oc/3 . 958

not_measure/0 . 569

note/1 . 199

note_message/1 . 407

note_message/2 . 407

note_message/3 . 407

nth/3 . 289

null_ddlist/1 . 919

number_agents/1 . 560

number_chars/2 . 260

number_codes/2 . 143

numbervars/3. 253

O
once/1 . 265

op/3 . 255

open/3 . 159, 427

open/4 . 160

open_client/2 . 772

open_DEF/5 . 1031

open_EXTERNPROTO/5 . 1031

open_input/2. 397

open_node/6 . 1029

open_null_stream/1 . 397

open_output/2 . 397

open_predicate/1 . 191

open_PROTO/4 . 1030

open_Script/5 . 1032

Predicate/Method Index 1139

optional_message/2 . 408

optional_message/3 . 408

ord_delete/3. 809

ord_disjoint/2 . 812

ord_intersect/2 . 810

ord_intersection/3 . 810

ord_intersection_diff/4 . 810

ord_list_to_assoc/2 . 781

ord_member/2. 809

ord_subset/2. 811

ord_subset_diff/3 . 811

ord_subtract/3 . 810

ord_test_member/3 . 810

ord_union/3 . 811

ord_union_change/3 . 812

ord_union_diff/4 . 811

ord_union_symdiff/4 . 812

otherwise/0 . 102

out/1 . 771, 1039

out/3 . 1039

out_stream/2. 772

output_error/1 . 1013

output_html/1 . 703

output_to_file/2 . 431

P
parse_term/3. 414

parse_term/4. 415

parser/2 . 1047

passerta_fact/1 . 726

passertz_fact/1 . 726

pattern/2 . 863

pause/1 . 301

peek_byte/1 . 261

peek_byte/2 . 261

peek_char/1 . 263

peek_char/2 . 263

peek_code/1 . 171

peek_code/2 . 170

percentbarchart1/7 . 867

percentbarchart2/7 . 873

percentbarchart3/7 . 876

percentbarchart4/7 . 880

performance/3 . 1083

persistent_dir/2 681, 729, 736

persistent_dir/4 . 682, 729

phrase/2 . 275

phrase/3 . 275

pipe/2 . 165

pitm/2 . 983

pl2sqlInsert/2 . 745

point_to/3 . 799

pop_active_config/0 . 491

pop_ciao_flag/1 . 184

pop_global/2. 537

pop_name_value/1 . 491

pop_prolog_flag/1 . 183

popen/3 . 311

portray/1 . 254

portray_attribute/2 . 254

portray_clause/1 . 253

portray_clause/2 . 252

postgres2sqltype/2 . 741

postgres2sqltypes_list/2 . 741

powerset/2 . 294

predicate_property/2 . 327

predicate_property/3 . 327

pretract_fact/1 . 726

pretractall_fact/1 . 726

pretty_print/2 . 451

pretty_print/3 . 451

pretty_print/4 . 451

prettyvars/1. 253

prettyvars/2. 815

prev/2 . 920

print/1 . 252

print/2 . 252

print_measures/0 . 569

printable_char/1 . 253

prolog_flag/3 . 182

prolog_query/2 . 764

prolog_response/2 . 765

prolog_server/0 . 759

prolog_server/1 . 760

prolog_server/2 . 760

prompt/2 . 184

prune_dict/3. 814

push_active_config/1 . 491

push_ciao_flag/2 . 184

push_dictionaries/3 . 1057

push_global/2 . 537

push_goal/1 . 561

push_goal/3 . 560

push_name_value/3 . 491

push_prolog_flag/2 . 183

push_whitespace/3 . 1057

put_assoc/4 . 782

put_assoc/5 . 782

put_byte/1 . 262

1140 The Ciao System

put_byte/2 . 262

put_char/1 . 263

put_char/2 . 263

put_code/1 . 172

put_code/2 . 171

Q
q_delete/3 . 805

q_empty/1 . 805

q_insert/3 . 805

q_member/2 . 805

query_requests/2 . 760

query_solutions/2 . 760

R
random/1 . 807

random/3 . 807

random_color/1 . 863

random_darkcolor/1 . 864

random_lightcolor/1 . 863

random_pattern/1 . 864

rd/1 . 772

rd/2 . 772

rd_findall/3. 772

rd_noblock/1. 772

reachability/4 . 825

read/1 . 245

read/2 . 245

read_event/1. 566

read_page/2 . 1004

read_pr/2 . 979

read_term/2 . 246

read_term/3 . 246

read_terms_file/2 . 1040

read_top_level/3 . 246

read_vrml_file/2 . 1040

readf/2 . 497

reading/4 . 1023

reading/5 . 1025

reading/6 . 1029

rebuild_foreign_interface/1 669

rebuild_foreign_interface_explicit_decls/2

. 670

rebuild_foreign_interface_object/1 671

receive_confirm/2 . 699

receive_event/2 . 699

receive_list/2 . 699

receive_result/2 . 698

recorda/3 . 331

recorded/3 . 332

recordz/3 . 331

recycle_term/2 . 449

reduce_indentation/3 . 1057

register_module/1 . 490

release/1 . 567

release_all_for_unwinding/0 567

release_remote/1 . 567

release_some_suspended_thread/0 567

remove_all_elements/3 . 922

remove_code/3 . 1062

remove_comments/4 . 1034

remove_menu_config/1 . 677

rename/2 . 815

rename_file/2 . 318

repeat/0 . 101

replace_all/4 . 1071, 1075

replace_characters/4 . 320

replace_first/4 . 1071, 1075

replace_strings/3 . 498

replace_strings_in_file/3 498

reserved_words/1 . 1006

restore_menu_config/1 . 677

restore_menu_flags/2 . 678

restore_menu_flags_list/1 678

retract/1 . 241

retract_fact/1 . 189, 727, 736

retract_fact_nb/1 . 190

retractall/1. 241

retractall_fact/1 . 190, 727

retrieve_goal/2 . 562

retrieve_list_of_values/2 986

retrieve_range/2 . 984

retrieve_store/2 . 984

reverse/2 . 286

reverse/3 . 286

reverse_parsed/2 . 1061

rewind/2 . 922

rooted_subgraph/3 . 799

run_tester/10 . 1077

running_queries/2 . 760

Predicate/Method Index 1141

S
safe_write/2. 479

save_addr_actmod/1 . 590

save_end_execution/1 . 566

save_init_execution/1 . 566

save_menu_config/1 . 676

scattergraph_b1/12 . 887

scattergraph_b1/8 . 887

scattergraph_b2/12 . 897

scattergraph_b2/8 . 896

scattergraph_w1/12 . 889

scattergraph_w1/8 . 888

scattergraph_w2/12 . 898

scattergraph_w2/8 . 898

second_prompt/2 . 246

see/1 . 329

seeing/1 . 329

seen/0 . 329

select/3 . 288

select_socket/5 . 475

self/1 . 590, 621

send_event/1. 565

send_info_to_developers/0 389

send_signal/1 . 178

send_silent_signal/1 . 178

send_term/2 . 699

sequence_to_list/2 . 294

serve_socket/3 . 479

set_ciao_flag/2 . 184

set_cookie/2. 707

set_debug_mode/1 . 46, 298

set_debug_module/1 . 298

set_debug_module_source/1 298

set_env/2 . 304

set_environment/3 . 1060

set_exec_mode/2 . 317

set_exec_perms/2 . 499

set_fact/1 . 191

set_general_options/1 . 989

set_global/2. 537

set_goal_cancelled/1 . 565

set_goal_det/1 . 562

set_goal_failed/1 . 565

set_goal_finished/1 . 563

set_goal_nondet/1 . 562

set_goal_not_executed/1 . 563

set_goal_rem_executing/1 . 563

set_goal_tobacktrack/1 . 564

set_goal_toreexecute/1 . 564

set_input/1 . 161

set_menu_flag/3 . 676

set_name_value/2 . 489

set_nodebug_mode/1 . 46, 298

set_nodebug_module/1 . 298

set_output/1. 161

set_owner/2 . 497

set_parsed/3 . 1060

set_perms/2 . 499

set_prolog_flag/1 . 186

set_prolog_flag/2 . 182

set_stream/3. 411

setarg/3 . 577

setcounter/2. 785

setenvstr/2 . 304

setof/3 . 233, 471

setproduct/3. 812

sformat/3 . 278

shell/0 . 310

shell/1 . 310

shell/2 . 310

shell_s/0 . 760

show_handler/1 . 565

show_menu_config/1 . 677

show_menu_configs/0 . 677

show_message/2 . 409

show_message/3 . 409

show_message/4 . 409

simple_message/1 . 407

simple_message/2 . 407

skip_code/1 . 171

skip_code/2 . 171

skip_line/0 . 171

skip_line/1 . 171

socket_accept/2 . 474

socket_recv/2 . 476

socket_recv_code/3 . 475

socket_send/2 . 475

socket_shutdown/2 . 476

sort/2 . 295

sort_dict/2 . 814

space/1 . 676

split/4 . 519

sql__attribute/4 . 745

sql__relation/3 . 745

sql_goal_tr/2 . 743

sql_persistent_tr/2 . 743

srandom/1 . 808

standard_ops/0 . 257

start_socket_interface/2 . 763

start_thread/1 . 560

1142 The Ciao System

start_threads/0 . 765

start_vrmlScene/4 . 1033

statistics/0. 323

statistics/2. 323

stop_parse/2 . 1061

stop_socket_interface/0 . 764

stream_code/2 . 164

stream_property/2 . 267

stream_to_string/2 . 430

stream_to_string/3 . 431

string/3 . 403

string_to_file/2 . 430

string2term/2 . 414

strip_clean/2 . 1059

strip_exposed/2 . 1059

strip_from_list/2 . 1058

strip_from_term/2 . 1059

strip_interface/2 . 1059

strip_restricted/2 . 1059

sub_atom/4 . 149

sub_atom/5 . 265

sub_times/3 . 1086

subtract/3 . 788

sum_list/2 . 789

sum_list/3 . 790

sum_list_of_lists/2 . 790

sum_list_of_lists/3 . 790

suspend/0 . 567

sybase2sqltype/2 . 741

sybase2sqltypes_list/2 . 740

symbolic_link/2 . 494

symbolic_link/3 . 494

SYSCALL/1 . 516

system/1 . 311

system/2 . 311

system_error_report/1 . 320

system_lib/1. 459

T
tab/1 . 173

tab/2 . 173

tablewidget1/4 . 905

tablewidget1/5 . 905

tablewidget2/4 . 909

tablewidget2/5 . 909

tablewidget3/4 . 911

tablewidget3/5 . 911

tablewidget4/4 . 913

tablewidget4/5 . 913

tcl_delete/1. 693

tcl_eval/3 . 692

tcl_event/3 . 693

tcl_new/1 . 692

tcltk/2 . 698

tcltk_raw_code/2 . 698, 857

tell/1 . 329

telling/1 . 329

term_size/2 . 441

terms_file_to_vrml/2 . 1002

terms_file_to_vrml_file/2 1003

terms_to_vrml/2 . 1003

terms_to_vrml_file/2 . 1003

this_module/1 . 207

throw/1 . 178

time/1 . 301

tk_event_loop/1 . 694

tk_main_loop/1 . 694

tk_new/2 . 694

tk_next_event/2 . 695

to_list/2 . 920

token_read/3 . 1065

tokeniser/2 . 1065

told/0 . 329

top/2 . 922

topd/0 . 685

touch/1 . 499

transpose/2 . 396, 799

true/0 . 101

true/1 . 347

trust/1 . 346

try_finally/3 . 497

ttydisplay/1. 334

ttydisplay_string/1 . 334

ttydisplayq/1 . 334

ttyflush/0 . 334

ttyget/1 . 333

ttyget1/1 . 333

ttynl/0 . 333

ttyput/1 . 333

ttyskip/1 . 333

ttyskipeol/0. 334

ttytab/1 . 333

type_compatible/2 . 740

type_union/3. 740

Predicate/Method Index 1143

U
ugraph2term/2 . 686

umask/2 . 308

uncycle_term/2 . 449

undo/1 . 577

undo_force_lazy/1 . 46

unfold_tree/2 . 1090

unfold_tree_dic/3 . 1091

uni_type/2 . 681

unify_with_occurs_check/2 266

union/3 . 293

union_idlists/3 . 788

unload/1 . 45, 298

unlock_atom/1 . 468

unlock_file/2 . 433

unregister_module/1 . 490

update/0 . 458

update_assoc/5 . 783

update_attribute/2 . 201

update_files/0 . 728

update_files/1 . 728

url_info/2 . 708

url_info_relative/3 . 709

url_query/2 . 707

url_query_amp/2 . 707

url_query_values/2 . 708

use_class/1 . 638

use_module/1 . 43, 297

use_module/2 . 44, 297

use_module/3. 297

use_package/1. 45

using_windows/0 . 318

V
valid_attributes/2 . 917

valid_format/4 . 916

valid_table/2 . 917

valid_vectors/4 . 917

variant/2 . 445

varnamesl2dict/2 . 815

vars_names_dict/3 . 815

varsbag/3 . 447

varset/2 . 447

varset_in_args/2 . 447

vectors_format/4 . 916

verbose_message/1 . 488

verbose_message/2 . 488

verify_attribute/2 . 202

vertices/2 . 798

vertices_edges_to_lgraph/3 803

vertices_edges_to_ugraph/3 797

vertices_edges_to_wgraph/3 801

vmember/2 . 681

vpath/1 . 490

vpath_mode/3. 490

vrml_file_to_terms/2 . 1001

vrml_file_to_terms_file/2 1002

vrml_http_access/2 . 1004

vrml_in_out/2 . 1004

vrml_to_terms/2 . 1003

vrml_web_to_terms/2 . 1001

vrml_web_to_terms_file/2. 1002

W
wait/3 . 313

waiting/1 . 566

warning/1 . 198

warning_message/1 . 406

warning_message/2 . 406

warning_message/3 . 406

wellformed_body/3 . 244

when/2 . 582

where/1 . 458

whitespace/2. 402

whitespace0/2 . 402

winpath/2 . 318

winpath/3 . 319

winpath_c/3 . 319

working_directory/2 . 309

write/1 . 251

write/2 . 250

write_assertion/6 . 455

write_assertion/7 . 455

write_assertion_as_comment/6 455

write_assertion_as_comment/7 456

write_assertion_as_double_comment/6 456

write_assertion_as_double_comment/7 456

write_attribute/1 . 253

write_canonical/1 . 252

write_canonical/2 . 251

write_list1/1 . 252

write_pr/2 . 979

write_string/1 . 402

write_string/2 . 402

write_term/2. 249

write_term/3. 249

write_terms_file/2 . 1040

write_vrml_file/2 . 1040

1144 The Ciao System

writef/2 . 498

writef/3 . 498

writef_list/2 . 499

writef_list/3 . 498

writeq/1 . 251

writeq/2 . 251

X
xdr_tree/1 . 1089

xdr_tree/3 . 1089

xdr_xpath/2 . 1091

xdr2html/2 . 1090

xdr2html/4 . 1090

xml_index/1 . 1095

xml_index_query/3 . 1095

xml_index_to_file/2 . 1095

xml_parse/3 . 1094

xml_parse_match/3 . 1094

xml_query/3 . 1096

xml_search/3 . 1094

xml_search_match/3 . 1095

xml2terms/2 . 704

Property Index 1145

Property Index

=
=/2 . 129

==/2 . 135

A
assert_body_type/1 . 438

atom/1 . 122

atomic/1 . 125

B
bind_ins/1 . 119

C
class_name/1. 638

class_source/1 . 639

clique/1 . 359

clique_1/1 . 359

compat/2 . 116

const_head/1. 133

constraint/1. 360

constructor/1 . 638

covered/1 . 360

covered/2 . 360

D
davinci_command/1 . 686

deprecated/1. 117

do_not_free/2 . 663

docstring/1 . 354

E
equiv/2 . 118

error_free/1. 119

eval/1 . 118

exception/1 . 360

exception/2 . 360

expander_pred/1 . 462

F
fails/1 . 361

field_Id/1 . 1048

filter/2 . 119

finite_solutions/1 . 361

float/1 . 124

foreign/1 . 662

foreign/2 . 662

foreign_low/1 . 662

foreign_low/2 . 662

fuzzybody/1 . 608

G

ground/1 . 126

H

have_choicepoints/1 . 361

head_pattern/1 . 350

I

indep/1 . 361

indep/2 . 361

inst/2 . 116

instance/2 . 369, 445

instance_id/1 . 639

integer/1 . 123

interface_name/1 . 639

interface_source/1 . 639

is_det/1 . 361

iso/1 . 116

L

lgraph/1 . 687

linear/1 . 362

list1/2 . 290

M

member/2 . 113

memo/1 . 119

method_spec/1 . 639

mshare/1 . 362

mut_exclusive/1 . 362

1146 The Ciao System

N
nabody/1 . 352

native/1 . 118

native/2 . 118

needs_state/1 . 663

no_choicepoints/1 . 362

no_exception/1 . 363

no_exception/2 . 363

no_rtcheck/1. 118

no_signal/1 . 363

no_signal/2 . 363

non_det/1 . 363

nonground/1 . 363

nonvar/1 . 122

not_covered/1 . 363

not_fails/1 . 364

not_further_inst/2 . 117

not_mut_exclusive/1 . 364

num_solutions/2 . 364

number/1 . 125

P
parse/1 . 1018

pe_type/1 . 119

possibly_fails/1 . 365

possibly_nondet/1 . 365

R
regtype/1 . 118

relations/2 . 365

returns/2 . 662

S
sideff/2 . 117

sideff_hard/1 . 365

sideff_pure/1 . 365

sideff_soft/1 . 366

signal/1 . 366

signal/2 . 366

signals/2 . 366

size/2 . 366

size/3 . 366

size_lb/2 . 366

size_metric/3 . 367

size_metric/4 . 367

size_o/2 . 366

size_of/3 . 662

size_ub/2 . 367

solutions/2 . 364

sourcenames/1. 47

steps/2 . 367

steps_lb/2 . 367

steps_o/2 . 367

steps_ub/2 . 368

sublist/2 . 293

subordlist/2. 293

T
tau/1 . 368

terminates/1. 368

test_type/2 . 368

throws/2 . 368

ttr/3 . 663

type/2 . 127

U
ugraph/1 . 687

user_output/2 . 369

V
var/1 . 121

virtual_method_spec/1 . 639

W
write_option/1 . 250

Regular Type Index 1147

Regular Type Index

A
address/1 . 662

any_term/1 . 662

apropos_spec/1 . 460

argspec/1 . 513

arithexpression/1 . 156

assrt_body/1. 349

assrt_status/1 . 353

assrt_type/1. 354

atm/1 . 108

atm_or_atm_list/1 . 115

atm_or_int/1. 167

atom_or_str/1 . 425

attributes/1. 890

axis_limit/1. 868

B
benchmark_usage/1 . 388

bltwish_interp/1 . 857

body/1 . 452

bound/1 . 1035

bound_double/1 . 1035

byte/1 . 661

byte_list/1 . 661

C
c_assrt_body/1 . 352

callable/1 . 110

canonic_html_term/1 . 715

canonic_xml_item/1 . 1096

canonic_xml_query/1 . 1096

canonic_xml_subquery/1 . 1097

canonic_xml_term/1. 716, 1096

cell_value/1. 907

character_code/1 . 114

clause/1 . 452

clauses/1 . 452

clockfreq_option/1 . 326

clockfreq_result/1 . 325

clterm/1 . 452

color/1 . 861

comparator/1. 138

complex_arg_property/1 . 350

complex_goal_property/1 . 351

conj_disj_type/1 . 438

constant/1 . 110

D
datime_struct/1 . 304

ddlist/1 . 923

detcond/1 . 540

dgraph/1 . 793

dht_rpr_node_id/1 . 963

dictionary/1 . 352, 399, 1035

directoryname/1 . 728

dlgraph/1 . 793

do_options/1. 500

double_list/1 . 661

E
elisp_string/1 . 769

environment/1 . 1036

F
faggregator/1 . 608

fd_item/1 . 982

fd_range/1 . 982

fd_store/1 . 983

fd_store_entity/1 . 983

fd_subrange/1 . 982

flag/1 . 452

flag_values/1 . 119

flt/1 . 107

footer/1 . 869

form_assignment/1 . 719

form_dict/1 . 719

form_value/1. 719

format_control/1 . 279

G
g_assrt_body/1 . 353

garbage_collection_option/1 326

gc_result/1 . 326

gnd/1 . 109

gndstr/1 . 109

H
handler_type/1 . 860

header/1 . 869

hms_time/1 . 721

html_term/1 . 717

http_date/1 . 721

http_request_param/1 . 720

1148 The Ciao System

http_response_param/1 . 720

I
image/1 . 906

indexspecs/1. 512

int/1 . 106

int_list/1 . 661

internal_module_id/1 . 208

intexpression/1 . 158

intlist/1 . 789

io_mode/1 . 167

J
java_constructor/1 . 754

java_event/1. 754

java_field/1. 754

java_method/1 . 755

java_object/1 . 754

K
keylist/1 . 296

keypair/1 . 296

L
lgraph/2 . 803

line/1 . 401

list/1 . 111

list/2 . 112

list_functor/1 . 134

list_of_lists/1 . 294

M
machine_name/1 . 753

memory_option/1 . 326

memory_result/1 . 326

menu_flag_values/1 . 681

message_info/1 . 199

message_t/1 . 410

message_type/1 . 200

meta_predname/1 . 728

metaspec/1 . 94

modulename/1 . 94

month/1 . 721

multibar_attribute/1 . 903

N

nlist/2 . 112

nnegint/1 . 106

non_empty_dictionary/1 . 400

non_empty_list/1 . 132

null/1 . 661

null_dict/1 . 813

num/1 . 107

num_code/1 . 115

numlist/1 . 789

O

old_or_new/1. 400

open_option_list/1 . 160

operator_specifier/1 . 110

P

pair/1 . 795

parse/1 . 1036

path/1 . 541

pattern/1 . 500, 792, 863

popen_mode/1. 311

posix_regexp/1 . 1075

postgrestype/1 . 741

predfunctor/1 . 354

predname/1 . 115

prolog_goal/1 . 754

property_conjunction/1 . 351

property_starterm/1 . 351

propfunctor/1 . 354

R

read_option/1 . 246

reference/1 . 192

row/1 . 906

Regular Type Index 1149

S
s_assrt_body/1 . 352

sequence/2 . 113

sequence_or_list/2 . 113

shell_regexp/1 . 1075

shutdown_type/1 . 477

size/1 . 891

smooth/1 . 890

socket_type/1 . 477

sourcename/1. 165

spec/1 . 393

sqltype/1 . 739

stream/1 . 166

stream_alias/1 . 166

string/1 . 114

struct/1 . 108

struct_regexp/1 . 1076

sybasetype/1. 740

symbol/1 . 890

symbol_option/1 . 326

symbol_result/1 . 326

T
t_conj/1 . 438

t_disj/1 . 439

table/1 . 906

tag_attrib/1 . 1096

target/1 . 487

tclCommand/1. 694

tclInterpreter/1 . 693

term/1 . 105

tick_option/1 . 327

tick_result/1 . 325

time_option/1 . 327

time_result/1 . 326

title/1 . 869

translation_predname/1 . 195

tree/1 . 1036

triple/1 . 795

U
ugraph/1 . 799

url_term/1 . 720

V
valid_base/1. 149

value_dict/1. 720

varnamedict/1 . 815

vector/1 . 889

W
wakeup_exp/1. 582

weekday/1 . 721

whitespace/1 . 1036

X
xbarelement1/1 . 869

xbarelement2/1 . 873

xbarelement3/1 . 877

xbarelement4/1 . 881

xdr_node/1 . 1090

xelement/1 . 904

Y
yelement/1 . 867

1150 The Ciao System

Declaration Index 1151

Declaration Index

A
add_clause_trans/2 . 195

add_goal_trans/2 . 195

add_sentence_trans/2 . 194

add_term_trans/2 . 194

aggr/1 . 606

argnames/1 . 521

B
block/1 . 845

C
calls/1 . 341

calls/2 . 341

comment/2 . 346

comp/1 . 343

comp/2 . 343

concurrent/1 . 192, 619

D
data/1 . 192, 618

decl/1 . 345

decl/2 . 345

determinate/2 . 539

discontiguous/1 . 103

doc/2 . 345

dynamic/1 . 619

E
ensure_loaded/1 . 97

entry/1 . 344

exit/1 . 344

exit/2 . 344

export/1 . 92, 618, 997

extra_compiler_opts/1 . 664

extra_compiler_opts/2 . 664

extra_linker_opts/1 . 664

extra_linker_opts/2 . 665

F
facts/2 . 737

foreign_inline/2 . 665

I

impl_defined/1 . 103

implements/1. 620

import/2 . 93

include/1 . 97

index/1 . 512

inherit_class/1 . 619

inheritable/1 . 618

initialization/1 . 104

instance_of/2 . 629

L

load_compilation_module/1 194

M

meta_predicate/1 . 94

modedef/1 . 345

module/2 . 92

module/3 . 91

multifile/1 . 103

N

new/2 . 630

new_declaration/1 . 193

new_declaration/2 . 193

O

on_abort/1 . 104

op/3 . 193

P

package/1 . 92

persistent/2. 729

pred/1 . 340

pred/2 . 341

prop/1 . 343

prop/2 . 344

protocol/1 . 589

public/1 . 618

1152 The Ciao System

R
redefining/1. 104

reexport/1 . 94

reexport/2 . 93

regtype/1 . 358

regtype/2 . 358, 547

S
success/1 . 342

success/2 . 342

T
test/1 . 342

test/2 . 342

texec/1 . 341

texec/2 . 341

U
use_active_module/2 . 587

use_class/1 . 629

use_compiler/1 . 664

use_compiler/2 . 664

use_foreign_library/1 . 663

use_foreign_library/2 . 663

use_foreign_source/1 . 663

use_foreign_source/2 . 663

use_linker/1. 665

use_linker/2. 665

use_module/1 . 93

use_module/2 . 93

use_package/1. 97

V
virtual/1 . 620

Concept Index 1153

Concept Index

&
&-Prolog . 10

.

.ciaorc . 24, 29

A
abort . 56

abstract methods . 620

acceptable modes . 350

acknowledgments . 9

active module . 37, 585

active object . 585

addmodule and pred(N) meta-arguments 617

ancestors . 55

answer variable . 42

assertion body syntax 349, 352, 353

assertions . 67

attribute . 618

attributed variables . 201

Austrian Research Institute for AI 10

auto-documenter command args, setting 78

auto-documenter command, setting 78

auto-documenter default format, setting 77

auto-documenter lib path, setting 78

auto-documenter working dir, setting 78

auto-fill . 67

auto-indentation . 67

B
binary directory. 1103

box-type debugger . 49

breakpoints . 72

Bristol University . 10

bugs, reporting . 1116

C
calls assertion . 341

certainty factor . 997

CGI . 701

CGI executables . 63

change, author . 75

change, comment . 75

changelog . 67

changing the executables used 78

check assertion . 346

Ciao basic builtins . 8, 89

Ciao engine . 10

Ciao mode version . 79

Ciao preprocessor . 10, 67, 73

Ciao top-level . 67

ciao, global description . 3

Ciao, why this name . 5

ciao-users . 1115

client installation . 1113

CLIP group . 9

closed . 190

coloring, syntax . 67

command . 56

comment assertion . 346

comments, machine readable 339

comp assertion . 343

compatibility properties . 355

compiler, standalone. 33

compiling . 69, 70

compiling programs 22, 23, 28, 29

compiling, from command line 33

compiling, Win32 . 1107

concurrency . 465

concurrent attribute . 619

concurrent predicate. 187

concurrent predicates . 187

configuration file . 831

constructor . 621

contributed libraries . 9, 843

creating executables . 69

creep . 54

csh-compatible shell 21, 1101, 1104

current input stream . 161

current output stream . 161

customize . 68, 78

Cygnus Win32 . 1107

D
data declaration . 187

data predicate . 187

database initialization . 727

debug (interpreted) mode . 49

debug options . 54

debugger . 49

debugging . 55, 72

debugging, source-level . 67, 72

decl assertion . 345

declarations, user defined . 103

DECsystem-10 Prolog User’s Manual 10

1154 The Ciao System

depth first iterative deepening 595

depth limit . 595

destructor . 622

determinate goal . 539

development environment . . . 24, 29, 1102, 1105, 1111

display . 55

Distributed Programming Model 747

downloading emacs . 1105, 1111

downloading, latest versions 1115

E
emacs interface . 7, 31

emacs lisp . 767

emacs mode . 67

emacs mode, loading several . 79

emacs mode, setting up, Win32 1112

emacs server . 767

emacs, download . 1105, 1111

emacs, intro . 24, 29

engine directory . 8, 89

engine module . 509

entry assertion . 344

environment variable definitions 1101

environment variables . 87

environment variables, setup . 21

executable . 33

executables, compressed . 37

executables, dynamic . 35

executables, generating . 23, 28

executables, how to run . 34

executables, lazy load . 36

executables, self-contained . 36

executables, static . 36

executables, types . 35

exit assertion . 344

extensibility . 4

F
fail . 55

false assertion . 347

feature terms . 521

formatting commands . 339

formatting conventions, for emacs 67

Function applications . 525

Functional definitions . 526

G
German Puebla . 9

H
hard side-effects . 365

help . 24, 27, 29, 56, 1112

help, unix . 22

help, windows . 28

HTML . 701

HTTP . 701

I
IMDEA Software Institute . 9

INFOPATH . 1104

inheritable interface . 618

inheritance relationship . 620

initialization clauses . 619

initialization file . 24, 29

INRIA . 10

installation, checking the . 1105

installation, Mac OS X, full instructions 1102

installation, Mac OS X, summary 1101

installation, network based . 1103

installation, Un*x, full instructions 1102

installation, Un*x, summary 1101

installation, Windows clients 1113

installation, Windows server 1113

installation, Windows, from binaries 1111

installation, Windows, from sources 1107

instantiation properties . 355

interface inheritance . 620

interfaces . 617

interpreting . 69, 70

iso . 8, 229

ISO-Prolog . 4, 157

ISO-Prolog builtins . 8, 229

iso-prolog, compliance . 4

iterative-deepening . 595

J
Java event handling from Prolog 750

Java exception handling from Prolog 752

Java to Prolog interface . 759

Johan Andersson . 87

Johan Bevemyr . 87

Concept Index 1155

K
K.U. Leuven . 10

key sequences . 68

keyboard . 6

L
leap . 54

lib library . 8, 89

library directory . 1103

limitations, architecture-specific 1115

Linkoping U. 10

loading mode . 50

loading programs . 22, 28, 69

locating errors . 72

LogIn . 42

LPdoc . 3

lpdoc command args, setting . 78

lpdoc command, setting . 78

lpdoc default format, setting . 77

lpdoc lib path, setting . 78

lpdoc working dir, setting . 78

lpmake . 831

lpmake autodocumentation . 831

M
mailing list . 1115

main module. 70

make . 831

MANPATH . 1104

manual, printing 24, 27, 29, 1112

manual, tour . 7

manuals, printing . 24, 29

Maria Jose Garcia de la Banda 9

Masanobu Umeda . 87

Mats Carlsson . 87

MCC . 10

Melbourne U. 10

modular interface . 37

module qualification . 91

modules, active . 37

Monash U. 10

moving changelog entries . 76

multi-evaluated . 618

multiarchitecture support . 1106

N
Naming term arguments . 521

New Mexico State University. 10

nodebug . 55

nospy . 56

notation . 5

O
Other functionality . 527

overriden . 619

P
parallel Prolog . 10

parallelizing compiler . 10

parametric type functor . 358

PATH . 1103

path alias . 165

patterns . 791, 1069

Pedro Lopez . 9

Peter Olin . 87

PiLLoW on-line tutorial . 701

Platform independence . 747

Polymorphism . 611

pred assertion . 340, 341

Predefined evaluable functors 525

preprocessing programs . 73

preprocessor command args, setting 78

preprocessor command, setting 78

print . 55

printdepth . 56

printing, manual 24, 27, 29, 1112

program development environment 67

program transformations . 67

programming environment . 7, 31

prolog flag . 181, 197

Prolog server . 759, 760

Prolog shell scripts . 63

Prolog to Java Interface Structure 749

Prolog to Java Interface Structure. Java side 749

Prolog to Java Interface Structure. Prolog side . . 749

prolog-emacs interface . 767

prop assertion . 343, 344

properties of computations . 355

properties of execution states 355

properties, basic . 105

properties, native . 359

protected . 618

public domain . 1

1156 The Ciao System

public interface . 618

pure Prolog . 509

Q
query . 41

Quoting functors . 526

R
records . 8, 507, 521

recursive level . 42

references, to Ciao . 5

referring to Ciao . 5

regtype assertion . 358

regular expressions . 791

regular type expression . 358

reporting bugs . 1116

retry . 55

running programs . 22, 23, 28, 29

running unit tests . 379

S
script header, inserting automatically 72

scripts . 23, 29, 1103

sh-compatible shell 22, 1102, 1104

sharing sets . 362

shortcut, windows . 1111

SICS. 10, 87

SICStus Prolog . 10

skip . 54

Socket implementation . 763

soft side-effects . 366

Some scoping issues . 527

source directory . 1102

source-level debugging . 67, 72

spy . 56

standard total ordering . 135

static checks . 67

status, this manual . 3

style sheets . 21, 27, 1105, 1112

subterm . 56

success assertion . 342

super class. 619

Swedish Institute of Computer Science 10

Syntax-based highlighting . 67

T
tar . 1102

Technical University of Madrid 9

test assertion . 342, 379

texec assertion . 341

top-level shell, starting, unix . 22

top-level shell, starting, windows 27

toplevel command args, setting 78

toplevel command, setting . 78

tour, of the manual . 7

tracing the source code . 67

troubleshooting 1101, 1108, 1111

true assertion . 347

trust assertion . 346

U
U. of Arizona . 10

unify . 56

uninstalling . 1102, 1105

unit tests . 379

UPM . 10

user module . 91

user modules, debugging . 49

user setup . 21

users mailing list . 1115

V
variables . 55

version control . 67

version maintenance mode for packages 75

version number . 74

virtual . 620

W
WAM . 10

why the name Ciao . 5

windows shortcut . 1111

write . 55

WWW, interfacing with . 701

X
XML . 701

Author Index 1157

Author Index

A
A. Ciepielewski . 49, 59

Amadeo Casas. 525, 543, 545, 993

Angel Fernandez Pineda 423, 457, 461, 611, 617,

629, 635, 641, 997

Anil Nair . 511

Arsen Kostenko . . . 927, 929, 935, 937, 939, 941, 953,

957, 961, 971, 975, 979

C
Christian Holzbaur 201, 597, 601

Claudio Ochoa . 987

Claudio Vaucheret 539, 595, 605

D
Daniel Cabeza . . 33, 41, 49, 59, 63, 65, 67, 91, 97, 99,

103, 105, 121, 129, 135, 151, 159, 169, 181, 187,

193, 197, 201, 205, 211, 233, 239, 245, 249, 255,

259, 265, 275, 301, 323, 335, 371, 401, 413, 421,

423, 433, 449, 473, 515, 517, 521, 525, 577, 579,

585, 593, 597, 601, 701, 703, 713, 715, 723, 807,

823, 827, 841, 1101, 1111, 1115

David H.D. Warren . 233

David Trallero Mena 919, 989, 1077, 1083

E
Edison Mera 33, 49, 59, 197, 259, 359, 377, 379,

487, 517, 813, 999

F
Francisco Bueno . . . 339, 355, 359, 413, 427, 455, 479,

511, 539, 589, 605, 685, 733, 735, 787, 793, 797,

803, 813, 829

G
German Puebla . 339

Goran Smedback 1001, 1005, 1007, 1009, 1013,

1015, 1017, 1019, 1021, 1023, 1035, 1039, 1041,

1047, 1049, 1063, 1065

I
Isabel Martin Garcia . . . 847, 857, 859, 861, 865, 871,

875, 879, 883, 893, 901, 905, 909, 911, 913, 915

J

Jesus Correas 747, 749, 759, 763

Jose F. Morales 205, 209, 323, 521, 525, 571, 575,

645, 661, 667, 669

Jose Manuel Gomez Perez . . 433, 723, 981, 1089, 1093

K

K. Shen . 49, 59

L

Lena Flood . 775, 809

M

Manuel C. Rodriguez . 49, 59, 67

Manuel Carro 187, 201, 205, 245, 249, 255, 301,

323, 385, 391, 411, 433, 465, 471, 473, 517, 571,

575, 577, 579, 581, 593, 595, 645, 661, 667, 669,

777, 797, 819, 835, 837, 839, 841, 981, 1001,

1101, 1111, 1115

Manuel Hermenegildo . . . 21, 27, 63, 67, 99, 105, 121,

129, 135, 151, 233, 249, 259, 339, 349, 355, 359,

371, 373, 413, 481, 487, 493, 521, 525, 585, 593,

595, 701, 703, 723, 821, 827, 831, 1101, 1111,

1115

Mats Carlsson. . . 49, 59, 159, 169, 181, 233, 249, 323,

797

Montse Iglesias Urraca . 689, 697

O

Oscar Portela Arjona . 421

P

Pablo Chico . 777

Pedro Lopez . 355, 359

R

Remy Haemmerle . 579, 595, 845

Richard A. O’Keefe 233, 249, 295, 797

Robert Manchek . 835

1158 The Ciao System

S
Sacha Varma . 703

Samir Genaim . 597, 601

Sergio Guadarrama . 605

T

T. Chikayama . 49, 59

The CLIP Group . . . 31, 33, 41, 89, 91, 141, 177, 229,

231, 239, 259, 267, 269, 271, 277, 283, 295, 299,

331, 337, 381, 383, 399, 405, 429, 441, 445, 447,

451, 507, 509, 643, 673, 689, 723, 731, 747, 767,

773, 789, 791, 831, 843, 1001, 1069, 1099

Tom Howland. 511

Global Index 1159

Global Index

This is a global index containing pointers to places where concepts, predicates, modes, prop-
erties, types, applications, etc., are referred to in the text of the document.

!
!!/0 . 575

!/0 . 99, 100

#
/2 . 157

##/2 . 605

#>/2 . 605

$
$/1 . 701

$/2 . 521, 673, 701

$~/3 . 521, 522

$cancellation/1 . 546, 551

$clean_measures/0 . 546, 559

$enter_mutex/1 . 546, 558

$enter_mutex_remote/1 546, 558

$enter_mutex_self/0. 546, 558

$exit_mutex/1 . 546, 559

$exit_mutex_remote/1 546, 559

$exit_mutex_self/0 . 546, 559

$factsdb$cached_goal/3 733, 735, 736

$find_goal/3 . 546, 551

$goal_available/1 . 546, 551

$goal_cancelled/1 . 546, 555

$goal_det/1 . 546, 552

$goal_failed/1 . 546, 555

$goal_finished/1 . 546, 553

$goal_not_executed/1 546, 552

$goal_rem_executing/1 546, 553

$goal_tobacktrack/1. 546, 554

$goal_toreexecute/1. 546, 554

$incr_num_local_backtr/0 546, 560

$is_persistent/2 675, 681, 725, 729

$meta_call/1 . 515, 516

$more_solutions/1 . 546, 556

$move_execution_top/1 546, 557

$new_measure/0 . 546, 560

$nodebug_call/1 . 515, 516

$not_measure/0 . 546, 560

$number_agents/1 . 546, 550

$print_measures/0 . 546, 559

$push_goal/3 . 546, 551

$read_event/1 . 546, 556

$release/1 . 546, 557

$release_all_for_unwinding/0 546, 558

$release_remote/1 . 546, 557

$release_some_suspended_thread/0 546, 558

$retrieve_goal/2 . 546, 552

$save_end_execution/1 546, 556

$save_init_execution/1 546, 556

$send_event/1 . 546, 556

$set_goal_cancelled/1 546, 555

$set_goal_det/1 . 546, 552

$set_goal_failed/1 . 546, 555

$set_goal_finished/1 546, 554

$set_goal_nondet/1 . 546, 552

$set_goal_not_executed/1 546, 553

$set_goal_rem_executing/1 546, 553

$set_goal_tobacktrack/1 546, 554

$set_goal_toreexecute/1 546, 554

$show_handler/1 . 546, 555

$start_thread/1 . 546, 550

$suspend/0 . 546, 557

$waiting/1 . 546, 557

&
&!/1 . 543

&!/2 . 543

&!>/2 . 543

&&!/1 . 543

&&!/2 . 543

&&!>/2 . 543

&&/1 . 543

&&/2 . 543

&&>/2 . 543

&-Prolog. 10, 87

&/1 . 543

&/2 . 543

&?/1 . 543

&>/2 . 543

’
’$predicate_property’/2 . 328

’$xml_search_match/3 . 1094

’,’/2 . 113

’<-’/1 . 593

’<-’/2 . 593

’bf/af’ . 594

’bf/bfall’ . 593, 594

’persdb/ll’ . 725, 726

1160 The Ciao System

*
* /2 . 157

** /2 . 157

*/1 . 371, 546, 547, 571, 572

*/2 351, 371, 372, 546, 549, 571, 572

,
,/2 . 99

-
- /1 . 156

- /2 . 157

-- /1 . 156

--/1 . 493, 496

-->/2 . 231, 383, 546

-/1 . 371, 373, 496, 546, 547, 571

-/2 292, 371, 372, 373, 374, 546, 548, 571, 572

->/2 . 99, 100

.

. /2 . 527

.&./2 . 982

../2 . 982

./2 . 43, 45

./my_program -file input.txt -file input2.txt

--output_file out.txt -create-dir --decode

--unsorte . 391

.=./2 . 597, 601, 982

.=<./2 . 597, 601, 982

.>. 599

.>./2 . 597, 601, 982

.>=./2 . 597, 601, 982

.<./2 . 597, 601, 982

.<>./2 . 597, 601, 982

.ciaorc . 23, 24, 28, 29, 41

.emacs . 24, 29, 67, 85, 86, 767

.tar files . 827

/
/ /2 . 157

// /2 . 157

/\ /2 . 157

/bin/sh . 311

/bin/sh.exe . 35, 1107

/etc/bashrc . 1102, 1105

/etc/csh.cshrc . 1102, 1105

/etc/csh.login . 1102, 1105

/etc/skel . 1102, 1105

/usr/share/emacs/.../lisp/site-init.pl . . . 1102,

1105

:

:#/2 . 605, 606

::/2 . 340, 481, 589, 590, 673

:= /2 . 526

:=/1 . 605

:=/2 . 605

:~/1 . 605

:~/2 . 605, 607

;

;/2 . 99

=

=../2 . 129, 132

=/2 . 129

=:=/2 . 151, 155

==/2 . 135, 797

=~/1 . 1069

=>/1 . 605

=>/2 . 340, 521, 673

=>/4 . 605, 608

=\=/2 . 151, 156

=</2 . 151, 153

?

? /2 . 525

?/1 . 371, 373, 546, 547, 571

?/2 371, 372, 373, 374, 546, 548, 571, 572

?=/2 . 539

?\=/2 . 539

Global Index 1161

@
@/1 . 371, 373, 546, 547, 571

@/2 371, 372, 373, 375, 546, 548, 571, 572

@=</2 . 135, 137

@>/2 . 135, 137

@>=/2 . 135, 137

@</2 . 135, 136

[
[’-file’, ’input.txt’, ’-file’, ’input2.txt’,

’--output_file’, ’out.txt’, ’-create-dir’,

’--decode’, ’--unsorte’] 391

|
| /2 . 525

|/2 . 99, 231, 383

~
~ /1 . 525

~/.bashrc . 22, 1102, 1104

~/.ciaorc . 211

~/.cshrc . 21, 1101, 1104

~/.emacs . 22, 1102, 1104, 1112

+
+ /1 . 156

+ /2 . 157

+/1 . 350, 371, 373, 546, 547, 571

+/2 350, 371, 373, 374, 546, 547, 571, 572

++ /1 . 157

++ /2 . 527

>
>/2 . 151, 154

>=/2 . 151, 155

>> /2 . 157

^
^ /1 . 526

^/2 . 212, 233, 234, 236, 472

^^ /1 . 527

\
\ /1 . 157

\/ /2 . 157

\=/2 . 129

\==/2 . 135, 136

\+/1 . 99, 100

<
<#/2 . 605

<&!/1 . 543

<&&!/1 . 543

<&&/1 . 543

<&/1 . 543

<-/1 . 481, 594

<-/2 . 481, 594, 673

</2 . 151, 153

<=/2 . 481

<?/1 . 543

<< /2 . 157

<v>libroot</v>/ciao/DOTcshrc 1106

A
A. Ciepielewski . 49, 59

a_string/1 . 654

abolish/1 . 213, 239, 242

abort . 56

abort/0 . 177, 179

abs/1 . 157

absolute_file_name/2 159, 164, 301

absolute_file_name/7 159, 165

abstract methods . 620

acceptable modes . 350

accepted_type/2 . 739

access_benchmark_data/8 . 388

ACCLAIM . 10

acknowledgments . 9

acrobat reader . 24, 29

active module . 37, 46, 585

active modules . 9, 507

active object . 585

activemod . 69

actmods . 585

acyclic_term/1 . 449

add_after/4 . 283, 290, 787

add_assoc/4 . 777, 783

1162 The Ciao System

add_before/4 283, 290, 787, 788

add_clause_trans/2 . 195

add_edges/3 . 797, 798

add_environment_whitespace/3 1049, 1055

add_goal_trans/1 . 195

add_goal_trans/2 . 195

add_indentation/3 . 1049, 1056

add_lines/4 . 197, 200

add_name_value/2 . 487, 489

add_preffix/3 . 493, 498

add_sentence_trans/1 193, 195

add_sentence_trans/2 . 194

add_suffix/3 . 493, 498

add_term_trans/1 . 195

add_term_trans/2 . 194

add_vertices/3 . 797, 798

add_vpath/1 . 487, 490

add_vpath_mode/3 . 487, 490

addmodule and pred(N) meta-arguments 617

address/1 . 661, 662

agent . 589

aggr/1 . 605, 606

aggregates . . . 211, 212, 213, 231, 233, 383, 388, 471,

487, 669, 675, 685, 725, 1005, 1007, 1009, 1021,

1039, 1041, 1047, 1049, 1089

aggregation predicates . 236

alias_file/1 . 427, 428

all_values/2 . 487, 488

Amadeo Casas. 525, 543, 545, 993

AMOS . 10

analyzer output . 347

ancestors . 55

andorra . 539

andprolog . 543

andprolog/andprolog_rt . 543

Angel Fernandez Pineda 423, 457, 461, 611, 617,

629, 635, 641, 997

Anil Nair . 511

Anne Mulkers . 10

answer variable . 42

any_term/1 . 661, 662

any_to_term/2 . 493, 499

apll . 545

apll/visandor . 546

append/2 . 12, 395

append/3 . 211, 283

apply_vpath_mode/4 . 487, 491

apropos/1 . 457, 459

apropos_spec/1 . 460

aref/3 . 775

arefa/3 . 775

arefl/3 . 775, 776

arg/2 . 441, 442

arg/3 . 129, 130

arg_expander/6 . 461, 462

argnames . 521

argnames/1 . 521, 522, 673

argspec/1 . 513

arithexpression/1 . 151, 156

arithm_average/2 . 388, 390

arithmetic . 151, 341

array_to_list/2 . 775, 776

arrays . 775

Arsen Kostenko . . . 927, 929, 935, 937, 939, 941, 953,

957, 961, 971, 975, 979

ASAP . 10

asbody_to_conj/2 . 435, 438

ASCII code . 157

aset/4 . 775, 776

ask/2 . 445

assert/1 . 214, 239, 240

assert/2 . 214, 239, 241

assert_body_type/1 . 435, 438

asserta/1 . 214, 239

asserta/2 . 214, 239, 240, 244

asserta_fact/1 187, 188, 723, 725, 726, 735

asserta_fact/2 . 187

assertion body syntax 349, 352, 353

assertion language . 3

assertion language . 6

assertion language . 74

assertion normalizer . 821

assertion status . 341, 342, 345

assertions 67, 75, 339, 340, 349

assertions/assertions_props 340, 357, 455

assertions/assrt_lib 455, 669

assertions/c_itf_props . 825

assertions/doc_props 275, 277

assertions/native_props . . . 99, 105, 121, 129, 135,

141, 151, 169, 197, 233, 249, 283, 423, 441, 471,

511, 517

assertions_props . 349

assertz/1 . 214, 239, 240

assertz/2 . 214, 239, 240, 244

assertz_fact/1 187, 188, 723, 725, 726, 727, 735

assertz_fact/2 . 187, 188

Global Index 1163

assoc . 777

assoc_to_list/2 . 777

assrt_body/1 . 340, 349

assrt_status/1 . 349, 353

assrt_type/1 . 349, 354

assrt_write . 455

at_least_one/4 . 1049

at_least_one/5 . 1049

atan/1 . 157

atm/1 105, 108, 929, 930, 931, 932, 933

atm_or_atm_list/1 . 105, 115

atm_or_int/1 . 159, 167

atom/1 . 121, 122

atom_chars/2 . 217, 259

atom_codes/2 . 141, 142

atom_concat/2 . 441, 442

atom_concat/3 . 141, 147

atom_length/2 . 141, 147

atom_lock_state/2 . 465, 469

atom_number/2 . 141, 143

atom_number/3 . 141, 146

atom_or_str/1 . 423, 425

atom2term . 413

atom2term/2 . 413, 414

atomic/1 . 121, 125

atomic_basic. 141

AtomName/Arity . 393

attach_attribute/2 . 201

attribute . 618

attributed variables . 201

attributes . 133, 201

attributes/1 883, 884, 890, 893

Austrian Research Institute for AI 10

auto-documenter command args, setting 78

auto-documenter command, setting 78

auto-documenter default format, setting 77

auto-documenter lib path, setting 78

auto-documenter working dir, setting 78

auto-fill . 67

auto-indentation . 67

axis_limit/1 865, 866, 868, 872

B
backup file . 724

bagof/3 . 213, 233, 234, 471, 472

baktrak1/1 . 385

baktrak2/1 . 385

barchart1/10. 876

barchart1/7 . 852, 865

barchart1/8 . 875

barchart1/9 . 852, 865, 866

barchart2/10. 880

barchart2/11 . 852, 871, 872

barchart2/7 . 852, 871

barchart2/8 . 879

barchart3/7 . 852, 875

barchart3/9 . 852, 875, 876

barchart4/11 . 853, 879, 880

barchart4/7 . 853, 879

basename/2 . 423, 425

bash 22, 35, 87, 1102, 1104, 1107

basic_props . 105, 547

basic_props.pl . 377

basic_props:regtype/1 . 355

basiccontrol . 99

basicmodes . 373

basictypes . 739

benchmark/6 . 1083, 1084

benchmark_usage/1 . 388

benchmark2/6 . 1083, 1085

benchmarks/benchmark_utilities 388

benchmarks/boresea . 388

benchmarks/choice . 388

benchmarks/cut . 388

benchmarks/deref . 388

benchmarks/envir . 388

benchmarks/index . 388

benchmarks/results . 388

benchmarks/small_programs 388

benchmarks/unif . 388

between . 211, 219, 265, 299

between/3 . 219, 299

BeyondInstall . 1115

bf . 593, 596

binary directory. 1103

bind_ins/1 . 105, 119

bind_socket/3 . 473, 474

bind_socket_interface/1 . 763

block . 845

block/1 . 845

bltclass . 857

bltwish_interp/1 . 857

body/1 . 452

body_expander/6 . 461, 462

body2list/2 . 435, 438

1164 The Ciao System

bold_message/1 . 487, 490

bold_message/2 . 487, 490

bolder_message/1 . 487, 490

bolder_message/2 . 487, 490

bound/1 . 1035

bound_double/1 . 1035

boundary . 1005

boundary_check/3 . 1005

boundary_rotation_first/2 1005

boundary_rotation_last/2 1005, 1006

bounds/3 . 982, 985

box-type debugger . 49

breadth first execution . 596

breadth-first execution 9, 507

breakpoins . 51

breakpoints . 49, 72

breakpt/6 . 50, 51, 59

Bristol University . 10

browse/2 . 457, 458

buffer . 68

bugs, reporting . 1116

build_foreign_interface . 669

build_foreign_interface/1 669, 670

build_foreign_interface_explicit_decls/1 . . 670

build_foreign_interface_explicit_decls/2 . . 669,

670

build_foreign_interface_object/1 669, 670

building standalone distributions 827

builtin directives . 103, 193

builtin modules . 91

builtin_directives . 103

byrd-box model . 72

byte/1 . 661

byte_list/1 . 646, 661, 662

bytecode object files. 1103

C
C . 1103

C/3 . 129, 133

c:/.emacs . 1112

c_assrt_body/1 . 349, 352

c_errno/1 . 223, 301, 305, 505

c_itf . 461

c_itf_internal . 410

cache . 733

call/1 . 265, 352, 515, 735, 736

call/2 . 95, 515

call/N . 247, 515

call_graph/2. 825

call_in_module/2 . 56, 59

call_unknown/1 . 487, 488

callable/1 . 105, 110

callgraph . 825

Calling emacs . 9, 643

calls assertion . 341

calls/1 . 340, 341, 344

calls/2 . 340, 341

cancellation/1 . 546, 562

canonic_html_term/1 715, 716, 717

canonic_xml_item/1 . 1096

canonic_xml_query/1 . 1096

canonic_xml_subquery/1 . 1097

canonic_xml_term/1 715, 716, 717, 1096

case_insensitive_match/2 . 791

cat/2 . 493, 494

cat_append/2 . 493, 494

catch/3 . 177, 178

cd/1 . 23, 28, 222, 301, 310, 503

ceiling/1 . 157

cell_value/1 . 906, 907

certainty factor . 997

CGI . 701, 703

CGI executables . 63

change, author . 75

change, comment . 75

changelog . 67

changelog entry . 75

changing the executables used 78

char_code/2 . 217, 259

char_codes/2 . 217, 259, 260

char_conversion/2 . 193

character string . 339

character_code/1 . 105, 114

character_count/2 . 159, 162

chartlib . 847

chartlib/bltclass 859, 865, 871, 875, 879, 884,

893, 901, 905, 909, 911, 913

chartlib/chartlib_errhandle 852

chartlib/color_pattern . . . 865, 871, 875, 879, 884,

893, 901

chartlib/genbar1 852, 871, 875, 879, 884, 893,

901, 905, 909, 911, 913

chartlib/genbar2 . 852

chartlib/genbar3 . 852

chartlib/genbar4 . 852

Global Index 1165

chartlib/gengraph1 . 852, 893

chartlib/gengraph2 . 852

chartlib/genmultibar . 852

chartlib/install_utils . . . 859, 865, 871, 875, 879,

884, 893, 901, 905, 909, 911, 913

chartlib/table_widget1 852, 909, 911, 913

chartlib/table_widget2 . 852

chartlib/table_widget3 . 852

chartlib/table_widget4 . 852

chartlib/test_format 865, 871, 875, 879, 884,

893, 901, 905, 909, 911, 913

chartlib_errhandle . 855, 859

chartlib_text_error_protect/1 855, 859, 915

chartlib_visual_error_protect/1 855, 859

check assertion . 346

Check(X) . 364

check/1 . 340, 346, 347

check_sublist/4 . 915, 916

check_var_exists/1 . 487, 489

checking the assertions . 73

children_nodes/1 . 1005, 1006

chmod/2 . 220, 301, 317, 501

chmod/3 . 220, 301, 317, 501

choice_point/1 . 385

choose_free_var/2 . 982, 984

choose_value/2 . 982, 984

choose_var/3 . 982, 983

choose_var_nd/2 . 982, 984

Christian Holzbauer . 10

Christian Holzbaur 201, 597, 601

ciao 21, 24, 29, 80, 87, 1103, 1105, 1111

Ciao basic builtins . 8, 89

Ciao engine . 10, 34, 36

Ciao engine builtins . 167

Ciao mode version . 79

Ciao preprocessor . 10, 67, 73

Ciao Prolog . 391

Ciao scripts . 1103

Ciao shell . 1103

Ciao top-level . 67

ciao, global description . 3

Ciao, why this name . 5

ciao-mode-init . 1104

ciao-shell 21, 63, 64, 65, 1103, 1105

ciao-users . 1115

ciao.el . 1104

ciao.reg . 1113, 1114

ciao_c_headers_dir/1 205, 207

ciao_flag/3 . 182, 184

ciao_lib_dir/1 . 205, 208

ciaoc 21, 23, 28, 33, 35, 38, 65, 103, 1102, 1103,

1105, 1108

ciaoc.bat . 33

CiaoMode . 67

ciaopaths . 383

ciaopp 1, 7, 10, 14, 31, 36, 49, 67, 73, 80, 359

CiaoPP . 647

ciaosh 7, 21, 27, 31, 41, 65, 67, 457, 1105, 1108,

1112

ciaosh.cpx . 1111

cl_option/2 . 391, 392

class . 617

class constructor. 635

class instances . 635

class_doc . 641

class_name/1 . 635, 638

class_source/1 . 635, 639

Claudio Ochoa . 987

Claudio Vaucheret 539, 595, 605

clause/1 . 452

clause/2 . 213, 239, 242

clause/3 . 213

clauses/1 . 452

clean_imperative_guard/2 . 680

clean_measures/0 . 546, 568

clearerr/1 . 159, 163

client installation . 1113

client.bat . 1113

CLIP group . 9

clique/1 . 359

clique_1/1 . 359

clockfreq_option/1 225, 323, 326

clockfreq_result/1 226, 323, 325

close/1 . 159, 160, 311

close/2 . 267

close_client/0 . 771

close_DEF/5 . 1023, 1032

close_EXTERNPROTO/6 1023, 1031

close_file/1 . 226, 329, 330

close_input/1 . 397

close_node/5 . 1023, 1029

close_nodeGut/4 . 1023, 1030

close_output/1 . 397, 398

close_predicate/1 . 187, 190

close_PROTO/6 . 1023, 1030

close_Script/5 . 1023, 1033

1166 The Ciao System

closed . 188, 189, 190

clp_entailed/1 . 599

clp_meta/1 . 599

clpq . 533, 597

clpr . 601

clterm/1 . 452

CM . 10

code_class/2 . 169, 170, 173

collect_singletons/2 . 395

collecting files which are modules 841

color/1 . 861, 890

color/2 . 861, 862

color_pattern . 861

coloring, syntax . 67

combine_attributes/2 201, 202, 203

command . 56

comment assertion. 346

comment string . 350, 352, 353

comment/2 . 75, 340, 346

comments, machine readable 339

comp assertion . 343

comp/1 . 340, 343, 353

comp/2 . 340, 343

comparator/1 . 135, 138

compare/3 . 135, 138, 472

compare_benchmark/7 1083, 1084

compare_benchmark2/7 1083, 1085

compat/2 . 105, 116

compatibility properties . 355

compatible . 349

compile the whole Ciao distribution 839

compile/1 . 23, 28, 43, 45, 79

compiler . 212, 297, 1102

compiler, standalone . 33

compiler/c_itf. 43, 461, 669

compiler/c_itf_internal 297, 405

compiler/compiler 43, 211, 487, 635, 759

compiler/engine_path . 669

compiler/exemaker . 43, 297

compiler_and_opts/2 . 667

compiling . 69, 70

compiling programs 22, 23, 28, 29

compiling, from command line 33

compiling, Win32. 1107

complete proof procedure . 595

complete_dict/3 . 813, 814

complete_vars_dict/3 813, 814

complex argument property 349, 350, 352, 353

complex goal property 349, 351, 353

complex_arg_property/1 349, 350, 352, 353

complex_goal_property/1 349, 351, 353

compound/1 . 218, 265

computational cost . 73

conc_aggregates . 471

concurrency . 465

concurrency/concurrency . . 752, 759, 763, 937, 939,

971

concurrent . 189, 190, 469

concurrent attribute . 619

concurrent predicate 187, 190, 191, 192

concurrent predicates . 187

concurrent updates . 723

concurrent/1 187, 192, 465, 469, 470, 617, 619

condcomp . 209

configuration file . 831

conj_disj_type/1 . 435, 438

conj_to_list/2 . 435, 436

conj_to_llist/2 . 435, 437

connect_to_socket/3. 473, 474

connect_to_socket_type/4 473, 474, 477

consistent_hash/2 . 957, 958

const_head/1 . 129, 133

constant/1 . 105, 110

constraint logic programming 9, 507

constraint/1 . 359, 360

constructor . 621

constructor/0 . 617, 621

constructor/1 . 635, 638

consult/1 . 23, 28, 43, 45, 79

contains_ro/2 . 283, 291

contains1/2 . 283, 291

Context-sensitive . 22, 28

continue/3 . 1063

contributed libraries . 9, 843

control . 577

convert_atoms_to_string/2 1039

convert_permissions/2 493, 499

convert_permissions/4 493, 499

copy_args/3 . 441

copy_file/2 . 223, 301, 305, 505

copy_file/3 . 223, 301, 305, 505

copy_files/2 . 493, 494

copy_files/3 . 493, 494

copy_files_nofail/3. 493, 494

copy_stdout/1 . 429

copy_term/2 . 129, 132, 133, 449

Global Index 1167

copy_term_nat/2 . 129, 133

core/1 . 700

correct_commenting/4 1049, 1052

cos/1 . 157

cost/3 . 1083, 1086

counters . 735, 785

covered/1 . 359, 360

covered/2 . 359, 360

cp_name_value/2 . 487, 489

create/2 . 725, 728

create_dict/2 . 813

create_dictionaries/1 . 1009

create_directed_field/5 1049, 1052

create_environment/4 1049, 1054

create_field/3 . 1049, 1051

create_field/4 . 1049, 1051

create_field/5 . 1049, 1051

create_from_list/2 . 919

create_node/3 . 1049, 1051

create_parse_structure/1 1049, 1053

create_parse_structure/2 1049, 1053

create_parse_structure/3 1049, 1053

create_pretty_dict/2 . 813

create_proto_element/3 . 1041

creating executables . 69

creep . 54

cross_product/2 . 12, 283, 294

csh . 21, 87, 1101, 1104

csh-compatible shell 21, 1101, 1104

ctrlc_clean/1 . 417

ctrlcclean . 417, 669

ctrlcclean/0. 417

CUBICO . 10

current input . 246

current input stream . 161

current output stream 161, 162

current_atom/1 . 224, 323, 327

current_ciao_flag/2. 182, 184

current_env/2 224, 301, 304, 505

current_executable/1. 222, 301, 308, 504

current_fact/1. 187, 188, 190, 735, 736

current_fact/2 . 187, 189

current_fact_nb/1 . 187, 190

current_host/1 222, 301, 308, 504

current_infixop/4 . 255, 256

current_input/1 . 159, 161, 162

current_key/2. 226, 331, 332

current_module/1 . 205, 207

current_op/3 211, 255, 256, 257

current_output/1 . 159, 162

current_postfixop/3. 255, 257

current_predicate/1 213, 239, 242

current_predicate/2 213, 239, 243

current_prefixop/3 . 255, 256

current_prolog_flag/2 . 182

current_stream/3 . 159, 163

customize . 68, 78

cuttest/1 . 387

cyclic_term/1 . 449

cyclic_terms. 449

cyg2win/3 . 219, 301, 319, 501

Cygnus Win32 . 1107

Cygwin . 11

D
D.H.D. Warren . 10

D.L. Bowen . 10

Daniel Cabeza . . . 9, 33, 41, 49, 59, 63, 65, 67, 91, 97,

99, 103, 105, 121, 129, 135, 151, 159, 169, 181,

187, 193, 197, 201, 205, 211, 233, 239, 245, 249,

255, 259, 265, 275, 301, 323, 335, 371, 401, 413,

421, 423, 433, 449, 473, 515, 517, 521, 525, 577,

579, 585, 593, 597, 601, 701, 703, 713, 715, 723,

807, 823, 827, 841, 1101, 1111, 1115

data . 243

data declaration . 187

data file . 724

data predicate 187, 188, 189, 190, 191, 192

data/1 . . . 187, 192, 213, 239, 243, 521, 617, 618, 619,

624, 724

data_facts . 187

data_facts:asserta_fact/1 735

data_facts:assertz_fact/1 735

data_facts:current_fact/1 736

data_facts:retract_fact/1 736

database initialization . 727

datime/1 . 224, 301, 302, 506

datime/9 . 224, 301, 302, 506

datime_atom/1 . 493, 498

datime_atom/2 . 493, 498

datime_string/1 . 493, 498

datime_string/2 . 493, 498

datime_struct/1 224, 301, 304, 506

David H.D. Warren . 233, 471

David Trallero Mena 919, 989, 1077, 1083

1168 The Ciao System

davinci . 685

davinci/0 . 685

davinci_command/1 . 686

davinci_get/1 . 685

davinci_get_all/1 . 685

davinci_lgraph/1 . 685, 686

davinci_put/1 . 685, 686

davinci_quit/0 . 685, 686

davinci_ugraph/1 . 685, 686

dbId/2 . 743

dcg . 271

dcg_tr . 275

dcg_translation/2 . 275

ddlist . 919

ddlist/1 . 919, 923

ddlist_member/2 . 919, 923

debug . 50

debug (interpreted) mode . 49

debug options . 54

debug/0 . 50, 59

debug/1 . 197, 198, 199

debug_goal/2 . 405, 408

debug_goal/3 . 405, 409

debug_message/1 . 405, 408

debug_message/2 . 405, 408

debug_module/1 . 50, 59

debug_module_source/1 . 50, 60

debugger . 49, 50, 59

debugger/debugger . 43, 99

debugger/debugger_lib . 59

debugger_lib . 59, 60, 61

debugging . 55, 72

debugging tools . 49

debugging, source-level 67, 72

debugging/0 . 60

debugrtc/0 . 60

dec_indentation/2 . 1049, 1056

dec10_io . 211, 226, 329, 388

decl assertion . 345

decl/1 . 340, 345, 349

decl/2 . 340, 345

declarations, user defined 103

decompose_field/3 . 1023, 1033

DECsystem-10 Prolog User’s Manual 10

deductive database . 723

default constructor . 632, 636

default_for_ciaosh . 41

default_predicates . 211, 745

define_flag/3 . . 59, 61, 182, 186, 245, 247, 249, 254,

301, 320, 703, 711, 1073, 1076

del_assoc/4 . 777, 783

del_dir_if_empty/1 . 493

del_edges/3 . 797, 798

del_endings_nofail/2 493, 495

del_env/1 . 223, 301, 305, 505

del_file_nofail/1 . 493, 495

del_file_nofail/2 . 493, 495

del_files_nofail/1 . 493, 495

del_global/1. 537

del_max_assoc/4 . 777, 784

del_min_assoc/4 . 777, 784

del_name_value/1 . 487, 489

del_vertices/3 . 797, 798

delaying predicate execution 8, 507

delete/1 . 697, 700

delete/2 . 919, 921

delete/3 211, 283, 287, 787, 788

delete_after/2 . 919, 921

delete_directory/1 219, 301, 318, 501

delete_file/1 219, 301, 317, 501

delete_files/1 . 493, 495

delete_non_ground/3 12, 283, 287

delete_on_ctrlc/2 . 417

delete_top/2 . 919, 921

dependent files . 827

deprecated/1 . 105, 117

depth first iterative deepening 595

depth limit . 595

derived_from/2 . 635, 637

describe/1 . 457, 459

destroy/1 . 635, 638

destructor . 622

destructor/0 . 617, 622

det_hook . 571

det_hook/det_hook_rt . 571

det_hook_rt . 575

det_try/3 . 575

detach_attribute/1 . 201, 202

detcond/1 . 539, 540

determinacy . 73

determinate goal . 539

determinate/2 . 539

development environment . . 24, 29, 1102, 1105, 1111

dgraph/1 . 793

dgraph_to_ugraph/2 . 793

dht/dht_config 935, 937, 939, 941, 957, 961

Global Index 1169

dht/dht_logic . 937, 939

dht/dht_logic_misc 935, 937, 941

dht/dht_misc 929, 937, 939, 961

dht/dht_routing . 941

dht/dht_rpr . 941

dht/dht_s2c . 935

dht/dht_s2s . 935

dht/dht_storage . 941

dht_check_predecessor . 942

dht_check_predecessor/1 941, 942

dht_client . 929

dht_closest_preceding_finger/2 941, 942, 943

dht_config . 975

dht_config.pl 935, 937, 939, 957

dht_connect/2. 929, 930, 931

dht_connect/3 . 929

dht_connection/2 929, 930, 931, 932, 933

dht_consult/4 . 930, 931

dht_consult_b/2 . 971, 972

dht_consult_b/4 . 929, 930

dht_consult_nb/2 . 971, 973

dht_consult_nb/4 . 929, 931

dht_consult_server_b/3 941, 946, 949, 950

dht_consult_server_nb/3 941, 947, 948

dht_disconnect/1 . 929, 930

dht_extract_b/2 . 971, 972

dht_extract_b/4 . 929, 931

dht_extract_from_server_b/3 941, 949

dht_extract_from_server_nb/3 941, 950

dht_extract_nb/2 971, 972, 973

dht_extract_nb/4 . 929, 931

dht_find_and_*/2 946, 947, 951

dht_find_and_consult/2 947, 948, 949, 950

dht_find_and_consult_b/2 941, 946

dht_find_and_consult_nb/2 941, 947

dht_find_and_extract/2 949, 950

dht_find_and_extract_b/2 941, 948

dht_find_and_extract_nb/2 941, 950

dht_find_and_store . 951

dht_find_and_store/2 941, 951

dht_find_predecessor/2 941, 943, 944

dht_find_successor/2 941, 944

dht_finger/1. 942

dht_finger/2 . 941, 942

dht_finger_start/2 . 953, 954

dht_finger_table/2 . 953

dht_fix_fingers/0 941, 945, 946

dht_hash/3 . 929, 932

dht_id_by_node/2 . 941, 946

dht_init/1 . 941

dht_join/1 . 941, 944, 945

dht_join/2 . 944

dht_join_host/1 . 975, 976

dht_key_hash. 974

dht_key_hash/2 . 971, 973

dht_logic . 941

dht_logic.pl . 953, 957

dht_logic_misc . 957

dht_misc . 979

dht_notify/1 . 941, 944, 945

dht_predecessor/1 . 953, 956

dht_prolog/1. 935

dht_reset_predecessor/0 953, 956

dht_routing . 953

dht_routing.pl . 946

dht_rpr . 961

dht_rpr.pl . 946

dht_rpr_call/2 . 961, 965, 968

dht_rpr_call/3 . 961, 968, 969

dht_rpr_clear_by_node/1 961, 964

dht_rpr_clear_node . 964

dht_rpr_compose_id/3 961, 964

dht_rpr_id_by_node/2 946, 961, 962

dht_rpr_node/1 . 961, 965

dht_rpr_node_by_id/2 961, 962, 963

dht_rpr_node_id/1 . 961, 963

dht_rpr_register_node/1 . 961

dht_rpr_register_node/2 . 961

dht_s2c . 937

dht_s2c.pl . 937

dht_s2c:dht_s2c_mian/0 . 935

dht_s2c_main/0 . 937

dht_s2c_port/1 . 975

dht_s2c_threads/1 . 975, 976

dht_s2s . 939

dht_s2s:dht_s2s_mian/0 . 935

dht_s2s_main/0 . 939

dht_s2s_port/1 . 975, 976

dht_s2s_threads/1 . 975, 976

dht_server . 935

dht_server.pl . 937, 939

dht_server/1. 935

dht_server_host/1 . 975, 977

dht_server_id/1 . 975, 977

dht_set_finger/4 . 953, 955

dht_set_hash_power/1 . 975

1170 The Ciao System

dht_set_join_host/1. 975, 977

dht_set_predecessor/1 953, 956

dht_set_s2c_port/1 . 975, 976

dht_set_s2c_threads/1 975, 976

dht_set_s2s_port/1 . 975, 976

dht_set_s2s_threads/1 975, 976

dht_set_server_host/1 975, 977

dht_set_server_id/1. 975, 977

dht_stabilize/0 941, 942, 944, 945

dht_storage . 971

dht_store/3 . 971

dht_store/4 . 929, 932

dht_store_to_server/4 941, 951

dht_successor/1 . 941, 942

dht_update_finger/2. 953, 955

dic_get/3 . 399, 400

dic_lookup/3. 399

dic_lookup/4 . 399, 400

dic_node/2 . 399

dic_replace/4 . 399, 400

dict . 399

dict2varnamesl/2 . 813, 814

dictionary . 1007

dictionary/1 349, 352, 399, 1035

dictionary/5. 399

dictionary/6 . 1007

dictionary_insert/5 1009, 1010

dictionary_lookup/5 1009, 1010

dictionary_tree . 1009

diff_vars/3 . 447

difference/3 . 283, 293

dir_path/2 . 223, 301, 305, 505

directives . 103

directory_files/2 221, 301, 313, 502

directoryname/1 . 725, 728

DISCIPL . 10

discontiguous/1 . 103, 617

disj_to_list/2 . 435, 437

disj_to_llist/2 . 435, 438

display . 55

display/1 169, 175, 197, 198, 199, 249

display/2 . 169, 174, 175, 249

display_list/1 . 197, 199

display_string/1 197, 198, 199

display_term/1 . 197, 199

displayq/1 . 169, 175, 197, 198

displayq/2 . 169, 175

distributed execution . 585

Distributed Programming Model 747

div_times/2 . 1083, 1086

dlgraph/1 . 793

dlgraph_to_lgraph/2. 793, 794

dlist/3 . 283, 290

do/2 . 493, 496

do/3 . 493, 496

do/4 . 493, 496

do/5 . 493, 496, 497

do_atmlist__popen/2. 493, 500

do_interface/1 . 669, 671

do_not_free/2. 646, 661, 663

do_on_abolish/1 . 239, 244

do_options/1 . 493, 497, 500

do_str/3 . 493, 500

do_str_without_nl/3. 493, 500

do_str_without_nl__popen/2 493, 500

doc/2 . 340, 345, 346

docstring/1 339, 349, 350, 352, 353, 354

documentation generator . 7, 31

dot_concat/2 . 487, 488

double_list/1 . 661

DOVES . 10

downloading emacs . 1105, 1111

downloading new versions 9, 1099

downloading, latest versions 1115

dump_benchmark_data/0 . 388

dump_constraints/3 . 599

dvips . 831

dyn_load_cfg_module_into_make/1 487, 491

dynamic 211, 213, 214, 231, 243, 383, 1005, 1007,

1009, 1021, 1039, 1041, 1047, 1049

dynamic predicate. 187

dynamic/1 213, 239, 243, 617, 619

dynamic_clauses . 239

dynamic_rt . 239

dynamic_search_path/1 . 43, 46

E
ecrc . 385

edges/2 . 797

edges_to_lgraph/2 . 793, 794

edges_to_ugraph/2 . 793, 794

EDIPIA . 10

Edison Mera 33, 49, 59, 197, 259, 359, 377, 379,

487, 517, 813, 999

elisp_string/1 . 768, 769

Global Index 1171

ELLA . 10

emacs . . 3, 21, 22, 24, 27, 28, 29, 30, 49, 52, 53, 54, 64,

67, 68, 70, 73, 75, 76, 79, 80, 85, 767, 768, 769,

1101, 1102, 1104, 1105, 1106, 1111, 1112, 1113

emacs Ciao mode . 75

emacs interface . 7, 31, 41, 67

emacs lisp . 767

emacs menu bar . 68

emacs mode . 49, 64, 67, 767

emacs mode setup . 1104

emacs mode, loading several. 79

emacs mode, setting up, Win32 1112

emacs server . 767

emacs, download . 1105, 1111

emacs, intro . 24, 29

emacs_edit/1. 768

emacs_edit_nowait/1 . 768

emacs_eval/1. 768

emacs_eval_nowait/1 . 768

embedded debugger . 49, 51, 79

empty_assoc/1 . 777

eng_backtrack/2 . 465, 466

eng_call/3 . 465, 466

eng_call/4 . 465, 466

eng_cut/1 . 465, 466

eng_goal_id/1 . 465, 468

eng_kill/1 . 465, 467

eng_killothers . 467

eng_killothers/0 . 465, 467

eng_release/1. 465, 466, 467

eng_self/1 . 465, 467

eng_status/0 . 465, 468

eng_wait/1 . 465, 467

engine . 1103

engine directory . 8, 89

engine module . 509

Enrico Pontelli . 10

ensure_loaded/1 34, 35, 43, 44, 45, 97, 212, 297

ensure_loaded/2 . 297

enter_mutex/1 . 546, 567

enter_mutex_remote/1 546, 568

enter_mutex_self/0 . 546, 568

entry assertion . 344

entry/1 . 340, 344, 352

envir0ar/1 . 386

environment variable . 1103

environment variable definitions 1101, 1104

environment variables 87, 1104

environment variables, setup 21

environment/1 . 1035, 1036

eq/3 . 675, 681

equal_lists/2 . 283, 293

equalnumber/3 . 915

equiv/2 . 105, 118

erase/1 . 187, 191, 244

errhandle . 419, 669

error term . 181

error(a,b) . 379

error(unintercepted_signal(Signal),

send_signal/1-1) . 178

error/1 . 197, 198

error_file/2. 860

error_free/1 . 105, 119

error_message/1 . 405

error_message/2 . 405, 860

error_message/3 . 405

error_protect/1 . 419

error_vrml/1 . 1013

etags/2 . 493, 499

etc . 1103, 1113

eval/1 . 105, 118

evaluable functors . 156

examples . 23, 28, 29

examples/webbased_server/webbased_server.pl

. 587, 588

exception(error(a,b)) . 379

exception/1 . 359, 360

exception/2 . 359, 360

exceptions . 177, 649

exec(’ls -lRa ../sibling_dir’, In, Out, Err)

. 312

exec/3 . 221, 301, 312, 503

exec/4 . 221, 301, 312, 321, 503

exec/8 . 221, 301, 312, 313, 502

executable . 33

executables . 1103

executables, compressed . 37

executables, dynamic . 35

executables, generating 23, 28

executables, how to run . 34

executables, lazy load. 36

executables, self-contained 36

executables, static . 36

executables, types . 35

execute_permissions/2 493, 499

execute_permissions/4 493, 499

1172 The Ciao System

execution visualizers . 49

exit assertion . 344, 345

exit/1 . 340, 344, 345

exit/2 . 340, 344

exit_mutex/1 . 546, 568

exit_mutex_remote/1. 546, 568

exit_mutex_self/0 . 546, 568

exp/1 . 157

expander_pred/1 . 462

expansion . 193

expansion_tools . 461

expansions . 7

Explorer . 27, 1112

export/1. 92, 617, 618, 997

exports . 377, 821

extensibility . 4

extension/2 . 423, 425

External interface . 9, 643

extra_compiler_options . 664

extra_compiler_opts/1 . 664

extra_compiler_opts/2 . 664

extra_linker_options/1 . 665

extra_linker_opts/1 . 664

extra_linker_opts/2 . 665

extract_paths/2 223, 301, 306, 505

F
F.C.N. Pereira . 10

facts . 735, 736

facts/2 . 737

factsdb . 733, 735

factsdb/factsdb_rt . 733

factsdb_rt . 733, 735

faggregator/1 . 605, 608

fail . 55

fail/0 . 99, 101

fails/1 . 359, 361

false assertion . 347

false/0. 99, 102

false/1 . 340, 347

fast_read/1 . 421, 422

fast_read/2 . 421, 422, 979

fast_write/1 . 421, 422

fast_write/2 . 421, 422, 979

fast_write_to_string/3 421, 422

fastrw . 421, 457, 763, 771, 979

fd . 981

fd_item/1 . 982

fd_range/1 . 982

fd_store/1 . 982, 983

fd_store_entity/1 . 982, 983

fd_subrange/1 . 982

feature terms . 8, 507, 521

fetch_url/3 . 713

field_Id/1 . 1047, 1048

field_type . 1015

field_value . 1017

field_value_check . 1019

fieldType/1 . 1015

fieldValue/6 . 1017

fieldValue_check/8 . 1019

file_alias . 737

file_alias/2 427, 428, 735, 737

file_dir_name/3 223, 301, 306, 505

file_directory_base_name/3 423, 424

file_exists/1 220, 301, 314, 502

file_exists/2 220, 301, 314, 502

file_locks . 433

file_locks/file_locks . 725

file_name_extension/3 423, 424

file_properties/6 220, 301, 315, 502

file_property/2 220, 301, 315, 502

file_search_path/2 34, 35, 65, 159, 166, 167

file_terms/2. 429

file_to_string/2 . 429

file_to_string/3 . 429, 430

file_utils . 359, 429, 493

filed predicate . 733

fileerrors/0 . 182, 185

fileinfo . 821

filenames . 405, 423, 487, 669

fillout/4 . 1049, 1050

fillout/5 . 1049, 1050

filter/2 . 105, 119

filter_alist_pattern/3 493, 495

find_det_goal/2 . 546, 561

find_file/2 . 487, 489

find_goal/2 . 546, 561

find_name/4 . 813, 815

find_server/3 . 946, 947

findall/3 212, 233, 234, 235, 236, 471

findall/4 . 212, 233, 235

findnsols/4 . 212, 233, 235, 236

findnsols/5 . 212, 233, 236

finite_solutions/1 . 359, 361

Global Index 1173

first-timers. 211

flag/1 . 452

flag_values/1 . 105, 119

flatten/2 . 395

float/1 . 121, 124, 157

float_fractional_part/1 . 157

float_integer_part/1 . 157

floor/1 . 157

flt/1 . 105, 107, 156

flush_output/0 . 159, 163

flush_output/1 . 159, 163

fmode/2 . 220, 301, 316, 502

fnot/1 . 605, 607

foldl/4 . 517, 518, 777, 782

footer/1 . 865, 869

force_lazy/1 . 43, 46

foreign/1 . 661, 662

foreign/2 . 661, 662

foreign_compilation. 667, 669

foreign_inline/2 . 665

foreign_interface . 645

foreign_interface/foreign_interface_properties

. 465, 473, 546, 807

foreign_interface_properties 661

foreign_low/1 . 661, 662

foreign_low/2 . 661, 662

ForEmacs.txt . 1112

form_assignment/1 . 715, 719

form_default/3 . 703, 706

form_dict/1 . 715, 719

form_empty_value/1 . 703, 706

form_request_method/1 703, 710

form_value/1 . 715, 719

format 59, 211, 218, 277, 388, 405, 455, 487, 685,

697, 763, 935, 961, 987

format/2 . 218, 277

format/3 . 218, 277, 278

format_control/1 218, 277, 279

format_to_string(Format, Arguments, String)

. 278

format_to_string/3 218, 277, 278, 281

formatting commands . 339

formatting conventions, for emacs 67

formatting/2 . 685, 686

formulae . 435

forward/2 . 919, 922

Francisco Bueno 9, 339, 355, 359, 413, 427, 455,

479, 511, 539, 589, 605, 685, 733, 735, 787, 793,

797, 803, 813, 829

free variable . 475

freeze . 579

freeze/2 . 203, 579

freeze/freeze . 995

frozen/2 . 579

fsyntax . 481, 482, 483, 525, 527

fun_eval/1 . 525

fun_return/1. 525

func/1 . 352

Function applications . 525

functional . 527, 529

Functional definitions . 526

functional syntax . 8, 507

functions . 7

functor/3 . 129, 131, 971

fuzzy . 605

fuzzy/1 . 605, 606

fuzzy_discrete/1 . 605

fuzzy_predicate/1 . 605, 606

fuzzybody/1 . 605, 608

G
g_assrt_body/1 . 349, 353

garbage collection . 324, 326

garbage_collect/0 224, 323, 327

garbage_collection_option/1 225, 323, 326

gc/0 . 182, 185

gc_result/1 . 225, 323, 326

gcc . 1109

gcd/2 . 157

gen_assoc/3 . 777, 778

genbar1 . 852, 865

genbar2 . 852, 871

genbar3 . 852, 853, 875

genbar4 . 853, 879

gendot . 987

gendot/3 . 987

generate_benchmark_list/7 1083, 1085

generate_benchmark_list2/7 1083, 1086

generate_human_file/0 388, 389

generate_js_menu/1 . 675, 678

generate_machine_file/0 388, 389

generate_menu_path/2 . 680

generate_plot/2 989, 990, 1087

1174 The Ciao System

generate_plot/3 989, 990, 1087

generator . 1021

generator/2 . 1021

generator_util . 1023

gengraph1 . 854, 883

gengraph2 . 854, 855, 893

genmultibar . 853, 901

geom_average/2 . 388, 390

Gerda Janssens . 10

German Puebla . 9, 339

get_active_config/1. 487, 491

get_address/2 222, 301, 308, 504

get_alias_path/0 . 65

get_all_values/2 . 487, 488

get_arch/1 . 205

get_assoc/3 . 777, 779

get_assoc/5 . 777, 779

get_attribute/2 . 201, 203

get_byte/1 . 217, 259, 261

get_byte/2 . 217, 259, 261

get_char/1 . 217, 259, 262

get_char/2 . 216, 259, 262

get_ciao_ext/1 . 205, 206

get_code/1 . 169

get_code/2 . 169

get_cookies/1 . 703, 707

get_debug/1 . 205, 206

get_debugger_state/1 . 60

get_definition_dictionary/2 1009

get_dictionaries/2 1049, 1058

get_eng_location/1 . 205, 206

get_environment/2 . 1049, 1058

get_environment_name/2 1049, 1054

get_environment_type/2 1049, 1055

get_exec_ext/1 . 205, 206

get_first_parsed/3 1049, 1061

get_form_input/1 12, 703, 706, 711

get_form_value/3 . 703, 706

get_general_options/1 989, 1087

get_gid/1 . 223, 301, 307, 504

get_global/2. 537

get_grnam/1 . 222, 301, 307, 504

get_indentation/2 . 1049, 1056

get_line/1 . 401

get_line/2 . 401

get_menu_configs/1 . 675, 676

get_menu_flag/3 . 675, 676

get_menu_flags/1 . 675, 677

get_menu_flags/2 . 675, 678

get_menu_options/2 . 675, 677

get_name/2 . 487, 492

get_name_value/3 . 487, 489

get_name_value_string/3 487, 489

get_next_assoc/4 . 777, 780

get_os/1 . 205

get_parsed/2 . 1049, 1057

get_perms/2 . 493, 499

get_pid/1 . 223, 301, 306, 505

get_platform/1 . 205, 206

get_prev_assoc/4 . 777, 780

get_primes/2. 789

get_prototype_definition/2 1041, 1042

get_prototype_dictionary/2 1009, 1010

get_prototype_interface/2 1041

get_pwnam/1 . 223, 301, 307, 504

get_row_number/2 . 1049, 1055

get_settings_nvalue/1 487, 491

get_so_ext/1 . 205, 207

get_stream/2. 411

get_tmp_dir/1 222, 301, 307, 504

get_type/2 . 739

get_uid/1 . 223, 301, 307, 504

get_value/2 . 487, 488

get_value_def/3 . 487, 488

get1_code/1 . 169, 170

get1_code/2 . 169, 170

getcounter/2. 785

getct/2 . 169, 173

getct1/2 . 169, 174

getenvstr/2 . 224, 301, 304, 505

getopts . 388, 391

getopts/1 . 392

getopts/4 . 391

GetStartUnix . 21

GetStartWin32. 27

ghostview . 24, 29, 482

glb/2 . 982, 985

global . 537

global variables . 8, 507

GlobalChangeLog . 77

gmake . 833

gmax/3 . 581

gnd/1 . 105, 109

gndstr/1 . 105, 109

GNU . 1101

GNU emacs . 7, 31, 87

Global Index 1175

GNU general public license . 74

GNU Library General Public License (LGPL) 1

gnuplot . 989, 1087

gnuplot/gnuplot . 1083

go/1 . 373, 374, 546, 549

go/2 . 373, 375, 546, 550

Goal . 582

goal_available/1 . 546, 561

goal_cancelled/1 . 546, 565

goal_det/1 . 546, 562

goal_failed/1 . 546, 564

goal_finished/1 . 546, 563

goal_id/1 . 465, 468

goal_not_executed/1. 546, 563

goal_rem_executing/1 546, 563

goal_tobacktrack/1 . 546, 564

goal_toreexecute/1 . 546, 564

Gopal Gupta . 10

Goran Smedback . . 1001, 1005, 1007, 1009, 1013, 1015,

1017, 1019, 1021, 1023, 1035, 1039, 1041, 1047,

1049, 1063, 1065

grammar rule . 403

granularity control . 73

graph_b1/13 . 854, 884, 885, 886

graph_b1/9 . 854, 884, 885

graph_b2/13 . 854, 893, 894, 896

graph_b2/9 . 854, 893, 895

graph_w1/13 . 854, 884, 886

graph_w1/9 . 854, 884, 885

graph_w2/13 . 855, 893, 896

graph_w2/9 . 855, 893, 895

graphs . 793

graphs/lgraphs . 793

graphs/ugraphs . 685, 793, 825

ground/1 121, 126, 359, 360, 362

guard/1 . 673

gunzip . 1101, 1102

H
H. Ait-Kaci . 42

halt/0 . 177, 179

halt/1 . 177, 179

halt_server/0 . 771, 772

handle_error/2 . 419

handler_type/1 . 860

hard side-effects. 365

hash_power/1 . 957, 958, 975

hash_size/1 . 957

hash_term/2 . 511

have_choicepoints/1. 359, 361

head pattern . 349, 350, 353

head_pattern/1 . 349, 350, 353

header/1 . 865, 869

hello . 63

help . 24, 27, 29, 56, 1112

help, unix . 22

help, windows . 28

higher-order . 8, 507

highest_hash_number/1 957, 958

hiord_rt . 515

hiordlib 388, 517, 532, 777, 1083

hms_time/1 . 715, 721

hook_menu_check_flag_value/3 673, 675, 683

hook_menu_default_option/3 674, 675, 684

hook_menu_flag_help/3 673, 675, 684

hook_menu_flag_values/3 673, 675, 683, 684

hostname_address/2 . 473, 476

html . 703

HTML . 701, 703

html_expansion/2 . 703, 711

html_protect/1 . 703, 710

html_report_error/1. 703, 706

html_template/3 . 703, 704

html_term/1 . 703, 715, 717

html2terms/2. 703

http . 713

HTTP . 701, 713

http_date/1 . 715, 720, 721

http_lines/3 . 703, 710

http_request_param/1 715, 720

http_response_param/1 715, 720

hw . 23

hw.pls . 23, 29

I
icon_address.pl . 701

icon_address/2 . 703, 710, 717

id . 594, 595

identifier of a location 729, 737

idlists . 447, 787, 813

if/3 . 99, 100

image/1 . 905, 906

IMDEA Software Institute . 9

impl_defined/1 . 103

1176 The Ciao System

implements/1 617, 619, 620, 624, 641

import/2 . 93

imports . 821

imports_meta_pred/3 . 461

in/1 . 373, 374, 546, 549, 771

in/2 373, 375, 546, 549, 771, 982

in_circle_oc/3 . 957, 959

in_circle_oo/3 . 957, 959

in_noblock/1. 771

in_stream/2 . 771, 772

inc_indentation/2 . 1049, 1056

inccounter/2. 785

include/1 . 43, 44, 97

incr_num_local_backtr/0 546, 569

indentation_list/2 1023, 1033

indep/1 . 359, 360, 361, 362

indep/2 . 359, 360, 361, 362

index/1 . 512

indexer . 511

indexer(hash) . 511

indexer/hash . 511, 957

indexspecs/1. 512

Inference of properties . 73

info 21, 22, 67, 68, 70, 1102, 1104, 1105

INFOPATH . 1104

inform_user/1 . 197, 199

inherit_class/1 . 617, 619

inheritable interface . 618

inheritable/1 . 617, 618

inheritance relationship . 620

inherited/1 . 617, 621

initial/0 . 546, 550

initialization clauses . 619

initialization file . 24, 29

initialization/1 . 104, 525

initialize_db/0 . 725, 727

inner . 377

INRIA . 10

insert/3 . 809, 919, 920

insert_after/3 . 919, 921

insert_begin/3 . 919, 921

insert_comments_in_beginning/3. 1049, 1054

insert_end/3 . 919, 921

insert_last/3 . 283, 291

insert_parsed/3 . 1049, 1060

insert_top/3 . 919, 920

inside_proto/1 . 1049, 1058

inst/2 . 105, 116

Install . 1101

installation . 9, 1099

installation, checking the 1105

installation, Mac OS X, full instructions . . 1102

installation, Mac OS X, summary 1101

installation, network based 1103

installation, Un*x, full instructions 1102

installation, Un*x, summary 1101

installation, Windows clients 1113

installation, Windows server 1113

installation, Windows, from binaries 1111

installation, Windows, from sources 1107

InstallWin32bin . 1111

instance/2 . 369, 445

instance_codes/2 . 635, 637

instance_id/1 . 635, 639

instance_of/2 629, 630, 631, 632, 635, 636, 637

instances . 635

instantiation mode . 8, 337

instantiation properties . 355

instantiation state . 6

int/1 . 105, 106, 156, 181

int_list/1 . 661

integer/1 . 121, 123, 157, 351

inter-process communication 585

intercept/3 . 177, 178

interface . 641

interface file . 194

interface inheritance . 620

interface/2 . 635, 637

interface_name/1 . 635, 639

interface_source/1 . 635, 639

interfaces . 617

internal_module_id/1 205, 208

internal_types . 1035

interp_file/2 . 857, 858

interpreting . 69, 70

intersect_vars/3 . 447

intersection/3 . 283, 292

intexpression/1 . 151, 158

intlist/1 . 789

intset_delete/3 . 283, 292

intset_in/2 . 283, 292

intset_insert/3 . 283, 292

intset_sequence/3 . 283, 292

io_alias_redirection 411, 1077

io_aux . 181, 197

io_basic . 169

Global Index 1177

io_mode/1 . 159, 167

IPL-D . 10

is/2 . 151, 525, 535

is_array/1 . 775

is_assoc/1 . 777, 778

is_connected_to_java/0 763, 765

is_det/1 . 359, 361

is_dictionaries/1 . 1009

Isabel Martin Garcia . . 847, 857, 859, 861, 865, 871,

875, 879, 883, 893, 901, 905, 909, 911, 913, 915

iso . 8, 229, 231

ISO-Prolog . . . 4, 6, 156, 157, 169, 173, 193, 231, 255

ISO-Prolog builtins . 8, 89, 229

iso-prolog, compliance . 4

iso/1 . 105, 116

iso_byte_char 211, 216, 217, 231, 259, 383, 752,

1005, 1007, 1009, 1021, 1039, 1041, 1047, 1049

iso_incomplete 231, 267, 383, 1005, 1007, 1009,

1021, 1039, 1041, 1047, 1049

iso_misc 211, 217, 218, 231, 239, 265, 383, 1005,

1007, 1009, 1021, 1039, 1041, 1047, 1049

isomodes. 6, 371

issue_debug_messages/1 405, 408, 409, 410

iterative deepening-based execution 9, 507

iterative-deepening . 595

J
Jan Maluzynski . 10

Java event handling from Prolog. 750

Java exception handling from Prolog 752

Java interface . 9, 643

Java to Prolog interface . 759

java_add_listener/3. 752, 756

java_connect/2 . 752, 753

java_constructor/1 . 752, 754

java_create_object/2 752, 754

java_debug/1 . 763, 765

java_debug_redo/1 . 763, 765

java_delete_object/1 752, 755

java_disconnect/0 . 752, 753

java_event/1 . 752, 754

java_field/1 . 752, 754

java_get_value/2 . 752, 756

java_invoke_method/2 752, 755

java_method/1 . 752, 755

java_object/1 . 752, 754

java_query/2 . 763, 764

java_remove_listener/3 752, 757

java_response/2 . 763, 764

java_set_value/2 . 752, 756

java_start/0. 752

java_start/1. 752

java_start/2 . 752, 753

java_stop/0 . 752, 753

java_use_module/1 . 752, 754

javall/javasock . 752, 759

javall/jtopl. 763

javart . 749, 763

javasock . 763

Jesus Correas 747, 749, 759, 763

Johan Andersson . 87

Johan Bevemyr . 87

Johan Widen . 10

John Gallagher . 10

join_socket_interface/0 763, 764

Jose F. Morales . . . 205, 209, 323, 521, 525, 571, 575,

645, 661, 667, 669

Jose Manuel Gomez Perez . . 433, 723, 981, 1089, 1093

jtopl . 759, 763

just_benchmarks/0 388, 389, 390

K
K. Shen . 49, 59

K.U. Leuven . 10

Kalyan Muthukumar . 10

Kevin Greene . 10

key sequences . 68

keyboard . 6

keylist/1 . 218, 295, 296

keypair/1 . 218, 295, 296

keysort/2 . 218, 295, 296

keyword/1 . 730, 737

Kim Marriott . 10

L
L. Byrd . 10

L.M. Pereira . 10

labeling/1 . 982, 983

last/2 . 212, 283, 291

latex . 831

lazy . 525, 993

lazy/1 . 995

leap . 54

1178 The Ciao System

leash/1 . 54, 60

Lena Flood . 775, 809

length/2 212, 283, 288, 919, 922

length_next/2 . 919, 923

length_prev/2 . 919, 923

letter_match/2 . 791, 792

lgraph/1 . 687

lgraph/2 . 803

lgraphs . 803

lib library . 8, 89

libpaths. 43, 65

libraries used . 821

library directory . 1103

library(actmods/examples/webbased_

server/webbased_server) 590

library(basicmodes) . 350

library(iso_byte_char) . 169

library(isomodes) . 350

library(pure). 91

library/pillow/doc . 701

library_directory/1 34, 65, 66, 159, 167

librowser . 457

limitations . 9, 1099

limitations, architecture-specific 1115

linda . 771

linda_client/1 . 771

linda_timeout/2 . 771, 772

line/1 . 401

line_count/2 . 159, 162

line_position/2 . 159, 163

linear/1 . 359, 362

linker_and_opts/2 . 667

Linkoping U. 10

Linux . 1106

list/1 . 105, 111, 116

list/2 . 105, 112, 351

list_breakpt/0 . 60

list_concat/2 . 283, 291

list_functor/1 . 129, 134

list_insert/2. 283, 291, 787

list_lookup/3 . 283, 292

list_lookup/4 . 283, 292

list_of_lists/1 . 283, 294

list_to_assoc/2 . 777, 780

list_to_conj/2 . 435

list_to_conj/3 . 435

list_to_disj/2 . 435, 436

list_to_disj2/2 . 435, 439

list_to_list_of_lists/2 283, 294

list1/2 . 283, 290

lists 65, 211, 212, 233, 245, 283, 301, 340, 343,

359, 388, 391, 395, 405, 423, 449, 457, 479, 487,

493, 669, 675, 703, 713, 725, 745, 752, 768, 777,

789, 791, 865, 871, 875, 879, 884, 893, 901, 905,

909, 911, 913, 915, 919, 989, 1009, 1017, 1039,

1047, 1049, 1065, 1073, 1077, 1083, 1089

literal . 378

llist_to_conj/2 . 435, 437

llist_to_disj/2 . 435, 438

llists . 395, 493, 669

load_compilation_module/1 194, 195

loading mode . 50

loading programs . 22, 28, 69

loading_code . 97

locating errors . 72

location_t/1. 410

lock_atom/1 . 465, 468

lock_file/3 . 433

log of changes . 74

log/1 . 157

LogIn . 42

long . 378

look_ahead/3 . 1049, 1062

look_first_parsed/2 1049, 1061

lookup . 1041

lookup_check_field/6 1041, 1042

lookup_check_interface_fieldValue/8 1041,

1043

lookup_check_node/4 1041, 1042

lookup_field/4 . 1041, 1043

lookup_field_access/4 1041, 1044

lookup_fieldTypeId/1 1041, 1044

lookup_get_fieldType/4 1041, 1044

lookup_route/5 . 1041, 1044

lookup_set_def/3 . 1041, 1045

lookup_set_extern_prototype/4 1041, 1046

lookup_set_prototype/4 1041, 1045

lpdoc 1, 3, 7, 31, 67, 68, 74, 75, 79, 80, 339, 346,

350, 354

LPdoc . 3

lpdoc command args, setting. 78

lpdoc command, setting. 78

lpdoc default format, setting 77

lpdoc lib path, setting . 78

lpdoc working dir, setting . 78

lpmake . 481, 483, 487, 831

Global Index 1179

lpmake autodocumentation . 831

ls/2 . 493, 495

ls/3 . 493, 495

lub/2 . 982, 985

M
machine_name/1 . 752, 753

mailing list . 9, 1099, 1115

main module . 70

main/0 . 23, 28, 29, 33, 34, 69

main/1 23, 25, 28, 29, 30, 33, 34, 51, 63, 64, 69,

181, 388, 389, 391, 935

major version number . 74

make 481, 483, 485, 487, 831, 1101

make/1 . 487

make/make_rt. 481

make/up_to_date . 487

make_actmod/2 . 43, 46, 586

make_directory/1 222, 301, 309, 504

make_directory/2 222, 301, 309, 504

make_dirpath/1 222, 301, 309, 503

make_dirpath/2 222, 301, 309, 504

make_exec/2 . 23, 28, 43, 44

make_option/1 . 487, 488

make_persistent/2 724, 725, 728

make_po/1 . 43, 45, 297

make_rt . 487

make_wam/1 . 297

Makefile . 33, 481, 483, 491, 493

Makefile.pl . 482, 831

man . 1104

MANPATH . 1104

manual, printing 24, 27, 29, 1112

manual, tour . 7

manuals . 1103

manuals, printing . 24, 29

Manuel C. Rodriguez . 49, 59, 67

Manuel Carro . . . 9, 187, 201, 205, 245, 249, 255, 301,

323, 385, 391, 411, 433, 465, 471, 473, 517, 571,

575, 577, 579, 581, 593, 595, 645, 661, 667, 669,

777, 797, 819, 835, 837, 839, 841, 981, 1001,

1101, 1111, 1115

Manuel Hermenegildo . . 9, 10, 21, 27, 63, 67, 99, 105,

121, 129, 135, 151, 233, 249, 259, 339, 349, 355,

359, 371, 373, 413, 481, 487, 493, 521, 525, 585,

593, 595, 701, 703, 723, 821, 827, 831, 1101,

1111, 1115

map/3 . 517, 777, 781

map/4 . 517, 518

map_assoc/2 . 777, 781

map_assoc/3 . 777, 781

Maria Jose Garcia de la Banda 9

marshalling . 8, 381

Masanobu Umeda . 87

match_pattern/2 . 791

match_pattern/3 . 791

match_pattern_pred/2 791, 792

match_posix/2 . 1070, 1073

match_posix/3 . 1070, 1074

match_posix/4 1070, 1073, 1074

match_posix_matches/3 1070, 1073, 1074

match_posix_rest/3 1070, 1073, 1074

match_pred/2 . 1071, 1073, 1075

match_shell/2 . 1070, 1073

match_shell/3 1069, 1070, 1073

match_struct/4 1071, 1073, 1075

Mats Carlsson 10, 49, 59, 87, 159, 169, 181, 233,

249, 323, 797

Maurice Bruynooghe . 10

max/3 . 581

max_assoc/3 . 777, 778

maxdepth/1 . 60

MCC . 10

Melbourne U. 10

member . 681

member/2 . 105, 113

member_0/2 . 787

member_var/2. 447

memberchk/2 . 787

memo/1 . 105, 119

memory management . 324, 326

memory_option/1 . 225, 323, 326

memory_result/1 . 225, 323, 326

menu . 673

Menu . 682

menu/1 . 675

menu/2 . 675

menu/3 . 675

menu/4 . 675

menu/menu_generator . 673

menu/menu_rt. 673

menu_default/3 673, 675, 682, 684

menu_flag_values/1 . 675, 681

menu_generator . 675

menu_opt/6 673, 675, 679, 681, 682

1180 The Ciao System

merge/3 . 809, 812

merge_tree/2 . 1009, 1011

MERIT . 10

message/1 . 197, 198, 199

message/2 . 197, 198, 200

message_info/1 . 197, 199

message_lns/4 . 197, 198

message_t/1 . 405, 410

message_type/1 . 197, 200

messages 405, 435, 455, 487, 493, 669, 675

messages/1 . 197, 198, 200

meta_predicate/1 . 94, 617

meta_predname/1 . 725, 728

metaprops/meta_props . 373

metaspec/1 . 94

method_spec/1 . 635, 639

mfclause/2 . 239, 242

mfstringValue/5 . 1017

mfstringValue/7 . 1019, 1020

MICYT . 10

min_assoc/3 . 777, 778

minimum/3 . 517, 518

minor version number . 74

mkdir_perm/2 . 493, 499

mkf-CIAOARCH . 1108

mktemp/2 . 220, 301, 314, 502

mktemp_in_tmp/2 220, 301, 314, 502

MOBIUS . 10

mod/2 . 157

mode . 6

mode . 340, 350

mode spec . 6

mode_of_module/2 . 297, 298

modedef/1 . 6, 340, 345, 350

modes . 73, 371, 373

modif_time/2 220, 301, 316, 502

modif_time0/2 220, 301, 316, 502

modular interface . 37

module qualification . 91

module/2 . 92, 211

module/3 51, 91, 92, 97, 617, 641

module_address/2 . 589, 590

module_of/2 . 297, 298

modulename/1 . 94

modules . 91

modules, active . 37

Monash U. 10

month/1 . 715, 721

Montse Iglesias Urraca 689, 697

more_solutions/1 . 546, 566

most_general_instance/3 13, 445

most_specific_generalization/3 13, 445

move_execution_top/1 546, 566

move_file/2 . 493, 494

move_files/2. 493

moving changelog entries . 76

mshare/1 . 359, 362

multi-evaluated . 618

multiarchitecture support 1106

multibar_attribute/1 . 903

multibarchart/10 853, 901, 902

multibarchart/8 . 853, 901, 902

multifile predicate . 103

multifile/1 43, 47, 91, 103, 617

multifile:alias_file/1 . 427

mut_exclusive/1 . 359, 362

my_url/1 . 703, 708

mycin . 997

N
n = arity. 391

n_assrt_body/5 . 352, 353

nabody/1 . 349, 352

Name . 662, 663

name server . 586

name/2 . 141, 706

name_value/2 . 487, 489

Naming term arguments . 521

native/1 . 105, 118

native/1,2 . 12

native/2 . 105, 118

native_props. 359

nativeprops.pl . 377

needs_state/1 . 661, 663

neighbors/3 . 797

neq/3 . 675, 681

netscape . 21, 1105

New Mexico State University. 10

new/2 621, 629, 630, 631, 635, 636, 637

new_array/1 . 775

new_atom/1 . 225, 323, 325

new_declaration/1 . 103, 193

new_declaration/2 . 103, 193

new_interp/1 . 697, 857

new_interp/2. 697

Global Index 1181

new_interp_file/2 . 697, 698

new_measure/0 . 546, 569

newer/2 . 487, 490

next/2 . 919, 920

next_on_circle/2 . 957, 958

nl/0 . 169, 172

nl/1 . 169, 172

nlist/1 . 112

nlist/2 . 105, 112

nnegint/1 . 105, 106

no . 377, 378

no_choicepoints/1 . 359, 362

no_exception/1 . 359, 363

no_exception/2 . 359, 363

no_path_file_name/2 . 423

no_rtcheck/1 . 105, 118

no_signal/1 . 359, 363

no_signal/2 . 359, 363

no_swapslash/3 219, 301, 320, 500

no_tr_nl/2 . 493, 498

nobreakall/0 . 60

nobreakpt/6 . 50, 51, 60

nocontainsx/2 . 283, 291

node_id/2 961, 962, 963, 964, 965, 966, 967, 968,

969

nodebug . 50, 55

nodebug/0 . 60

nodebug_module/1 . 50, 60

nodebugrtc/0 . 61

nodeDeclaration/4 . 1021, 1047

nofileerrors/0 . 182, 185

nogc/0 . 182, 185

non-failure . 73

non_det/1 . 359, 363

non_empty_dictionary/1 399, 400

non_empty_list/1 . 129, 132

nonground/1 . 12, 359, 363

nonsingle/1 . 283

nonvar/1 . 121, 122

normal_message/2 . 487, 490

nospy . 56

nospy/1 . 50, 51, 57, 61

nospyall/0 . 61

not_covered/1 . 359, 363

not_empty/3 . 915, 916

not_empty/4 . 915

not_fails . 379

not_fails/1 . 359, 364

not_further_inst/1 . 352

not_further_inst/2 . 105, 117

not_in_circle_oc/3 . 957, 958

not_measure/0 . 546, 569

not_mut_exclusive/1. 359, 364

notation . 5

note/1 . 197, 198, 199

note_message/1 . 405, 407

note_message/2 . 405, 407

note_message/3 . 405, 407

notrace/0 . 61

ntemacs . 1105, 1112

nth/3 . 212, 283, 289

null/1 . 661

null_ddlist/1 . 919

null_dict/1 . 813

num/1 . 105, 107

num_code/1 . 105, 115

num_solutions/2 . 359, 364

number/1 . 121, 125

number_agents/1 . 546, 560

number_chars/2 . 217, 259, 260

number_codes/2 . 141, 143

number_codes/3 . 141

numbervars/3 . 215, 249, 253

numlist/1 . 789

numlists . 789

O
object . 635

object oriented programming 9, 507

objects . 629

objects/objects_rt . 617, 629

objects_rt . 635

ociao . 611

odd . 577

old_database 211, 226, 227, 331

old_or_new/1 . 399, 400

on-line help . 67

on_abort/1 . 104, 525

once/1 . 218, 265

op/3 . 193, 211, 255

open/3 . 13, 159, 427

open/4 . 159, 160

open_client/2 . 771, 772

open_DEF/5 . 1023, 1031

open_EXTERNPROTO/5 1023, 1031

1182 The Ciao System

open_input/2. 397

open_node/6 . 1023, 1029

open_null_stream/1 . 397

open_option_list/1 . 159, 160

open_output/2 . 397

open_predicate/1 . 187, 191

open_PROTO/4 . 1023, 1030

open_Script/5 . 1023, 1032

operations file . 724

operator table . 193

operator_specifier/1 105, 110

operators 211, 231, 245, 249, 255, 335, 383, 451,

745, 1005, 1007, 1009, 1021, 1039, 1041, 1047,

1049

optional_message/2 . 405, 408

optional_message/3 . 405, 408

ord_delete/3. 809

ord_disjoint/2 . 809, 812

ord_intersect/2 . 809, 810

ord_intersection/3 . 809, 810

ord_intersection_diff/4 809, 810

ord_list_to_assoc/2. 777, 781

ord_member/2. 809

ord_subset/2 . 809, 811

ord_subset_diff/3 . 809, 811

ord_subtract/3 . 809, 810

ord_test_member/3 . 809, 810

ord_union/3 . 809, 811

ord_union_change/3 . 809, 812

ord_union_diff/4 . 809, 811

ord_union_symdiff/4. 809, 812

Oscar Portela Arjona . 421

Other functionality . 527

otherwise/0 . 99, 102

out/1 373, 374, 546, 549, 771, 1039

out/2 . 373, 375, 546, 549

out/3 . 1039

out_stream/2 . 771, 772

output_error/1 . 1013

output_html/1 . 703, 711

output_to_file/2 . 429, 431

overriden . 618, 619

P
P. Lincoln . 42

Pablo Chico . 777

package file 92, 97, 193, 194, 195

package/1 . 92

pair/1 . 795

parallel programming . 8, 507

parallel Prolog . 10

parallelizing compiler . 10

parametric type functor . 358

PARFORCE . 10

parse/1 . 1017, 1018, 1035, 1036

parse_term/3 . 413, 414

parse_term/4 . 413, 415

parser/2 . 1047

parser_util . 1049

partial evaluation . 73

passerta_fact/1 . 725, 726, 727

passertz_fact/1 . 725, 726, 727

patch number . 75

PATH . 1103

path alias 46, 65, 92, 165, 167, 301

path aliases . 35

path/1 . 539, 541

pattern/1 493, 500, 791, 792, 861, 863

pattern/2 . 861, 863

patterns . 459, 791, 1069

Paulo Moura . 13

pause/1 . 224, 301, 506

Pawel Pietrzak . 10

pe_type/1 . 105, 119

Pedro Lopez . 9, 355, 359

peek_byte/1 . 217, 259, 261

peek_byte/2 . 217, 259, 261

peek_char/1 . 216, 259, 263

peek_char/2 . 216, 259, 263

peek_code/1 . 169, 171, 263

peek_code/2 . 169, 170, 263

PEPMA . 10

percentbarchart1/7 852, 865, 867

percentbarchart2/7 852, 871, 873

percentbarchart3/7 853, 875, 876

percentbarchart4/7 853, 879, 880

performance/3 . 1083

perl . 85

persdb . 724, 725, 727, 733, 737

persdb/persdbcache . 725, 735

persdb/persdbrt . 675

persdb_sql . 723, 724

persdbrt . 723, 737

persdbtr_sql. 743

persistence set . 724

Global Index 1183

persistent . 726, 728

persistent predicate . 723

Persistent predicate . 9, 643

persistent/2 . 724, 729

persistent_dir . 729

persistent_dir/2 675, 681, 725, 727, 729, 730,

735, 736, 737

persistent_dir/2-4 . 724

persistent_dir/4 13, 675, 682, 725, 729

Peter Olin . 87

Peter Stuckey . 10

phrase/2 . 275

phrase/3 . 275

Pierre Deransart . 10

pillow . 701, 724, 1113

PiLLoW on-line tutorial . 701

pillow.pl . 701

pillow/html . 701, 1001, 1089

pillow/http . 701, 1001, 1089

pillow/http_ll . 713

pillow/pillow_aux . 703, 713

pillow/pillow_types 703, 713, 1089

pillow_types. 715

pipe/2 . 159, 165

pitm/2 . 982, 983

pkunzip . 1111

pl2sqlinsert. 745

pl2sqlInsert/2 . 745

Platform independence . 747

platform-dependent . 36

platform-independent . 35, 36

point_to/3 . 797, 799

Polymorphism. 611

pop_active_config/0. 487, 491

pop_ciao_flag/1 . 182, 184

pop_global/2. 537

pop_name_value/1 . 487, 491

pop_prolog_flag/1 . 182, 183

popen/2 . 311

popen/3 . 221, 301, 311, 503

popen_mode/1 221, 301, 311, 503

portray/1 . 249, 250, 254

portray_attribute/2 203, 249, 250, 254

portray_clause/1 215, 249, 253

portray_clause/2 215, 249, 252, 253

Posix threads . 1108

posix_regexp/1 . 1073, 1075

possible . 1063

possibly_fails/1 . 359, 365

possibly_nondet/1 . 359, 365

postgres2sqltype/2 . 739, 741

postgres2sqltypes_list/2 739, 741

postgrestype/1 . 739, 741

powerset/2 . 283, 294

pred assertion . 340, 341

pred/1 340, 341, 342, 343, 345, 349, 352

pred/2 . 340, 341

pred1/Arity1. 999

Predefined evaluable functors 525

predfunctor/1 . 349, 354

predicate . 378

predicate declarations . 821

predicate spec . 6

predicate spec . 470

predicate/n . 379

predicate_property/2. 224, 323, 327, 328

predicate_property/3 224, 323, 327

predN/ArityN. 999

predname/1 . 105, 115, 350

preprocessing programs . 73

preprocessor . 7, 31

preprocessor command args, setting 78

preprocessor command, setting 78

pretract_fact/1 . 725, 726, 727

pretractall_fact/1 12, 725, 726, 727

pretty_print. 451

pretty_print/2 . 451

pretty_print/3 . 451

pretty_print/4 . 451

prettyvars/1 215, 249, 253, 815

prettyvars/2 . 813, 815

prev/2 . 919, 920

print . 55

print/1 . 56, 215, 249, 252

print/2 . 215, 249, 252

print_measures/0 . 546, 569

printable_char/1 215, 249, 253

printdepth . 56

printing assertion information 821

printing code-related information 821

printing, manual 24, 27, 29, 1112

Procedure Box . 49

profiler . 999

program assertions . 339

program development environment 67

program development tools 1103

1184 The Ciao System

program parallelization . 73

program specialization . 73

program transformations 67, 73

programming environment . 7, 31

project files . 33

prolog flag 41, 42, 63, 103, 164, 181, 197, 1069

prolog flags . 1069

Prolog server . 759, 760

Prolog shell scripts . 63

Prolog to Java Interface Structure 749

Prolog to Java Interface Structure. Java side

. 749

Prolog to Java Interface Structure. Prolog side

. 749

prolog-emacs interface . 767

prolog.el . 87

prolog_flag/3 . 182

prolog_flags. 181

prolog_goal/1 . 752, 754

prolog_predicate/N . 645

prolog_query/2 . 763, 764

prolog_response/2 . 763, 765

prolog_server/0 . 759

prolog_server/1 . 759, 760

prolog_server/2 . 759, 760

prolog_sys . . . 211, 224, 225, 226, 239, 323, 388, 465,

471, 635, 1083

PrologName . . . 468, 469, 473, 474, 475, 476, 477, 550,

551, 552, 553, 554, 555, 556, 557, 558, 559, 560,

662, 807, 808

PROMESAS . 10

PROMETIDOS . 10

prompt . 675, 685

prompt/2 . 182, 184

prop assertion . 343, 344

prop/1 . 340, 343, 344

prop/2 . 340, 344

properties of computations 355

properties of execution states 355

properties, basic. 105

properties, native . 359

property . 343

property compatibility . 116

property declarations . 821

property_conjunction/1 349, 350, 351

property_starterm/1 349, 350, 351

propfunctor/1 . 349, 354

protected . 618

protocol/1 . 589

providing information to the compiler . . . 344, 347

provrml . 1001

ProVRML . 1001

provrml/boundary . 1019, 1041

provrml/dictionary . 1041

provrml/dictionary_tree 1041, 1049

provrml/field_type . 1041

provrml/field_value 1023, 1041, 1047

provrml/field_value_check 1023, 1041

provrml/generator . 1001, 1019

provrml/generator_util 1019, 1021, 1041

provrml/internal_types. . . . 1005, 1007, 1009, 1021,

1041, 1049

provrml/lookup . 1023, 1047

provrml/parser_util 1017, 1019, 1021, 1023,

1041, 1047

provrml/possible . 1047

provrml/provrml_io . . . 1001, 1019, 1021, 1023, 1041

provrml/provrml_parser 1001, 1017

provrml/provrmlerror 1005, 1017, 1021, 1023,

1041, 1047, 1065

provrml/tokeniser . 1019, 1047

provrml_io . 1039

provrml_parser . 1047

provrmlerror . 1013

prune_dict/3 . 813, 814

public . 619

public domain . 1

public interface . 618

public/1 . 617, 618, 625

pure . 8, 89, 509

pure Prolog . 8, 507, 509

push_active_config/1 487, 491

push_ciao_flag/2 . 182, 184

push_dictionaries/3 1049, 1057

push_global/2 . 537

push_goal/1 . 546, 561

push_goal/3 . 546, 560

push_name_value/2 . 491

push_name_value/3 . 487, 491

push_prolog_flag/2 . 182, 183

push_whitespace/3 . 1049, 1057

put_assoc/4 . 777, 782

put_assoc/5 . 777, 782, 783

put_byte/1 . 217, 259, 262

put_byte/2 . 217, 259, 262

put_char/1 . 216, 259, 263

Global Index 1185

put_char/2 . 216, 259, 263

put_code/1 . 169, 172, 263

put_code/2 . 169, 171, 264

put_value/5 . 783

putbyte/2 . 262

Q
q_delete/3 . 805

q_empty/1 . 805

q_insert/3 . 805

q_member/2 . 805

query . 41

query_requests/2 . 759, 760

query_solutions/2 . 759, 760

queues . 805

quoted string . 157

Quoting functors . 526

R
random . 807

random/1 . 807

random/3 . 807

random/random 861, 865, 871, 875, 879, 884, 893,

901

random_color/1 . 861, 863

random_darkcolor/1 . 861, 864

random_lightcolor/1. 861, 863

random_pattern/1 . 861, 864

rd/1 . 771, 772

rd/2 . 771, 772

rd_findall/3 . 771, 772

rd_noblock/1 . 771, 772

reachability/4 . 825

read 211, 214, 215, 231, 245, 383, 427, 429, 457,

493, 685, 697, 703, 725, 735, 752, 759, 771, 1005,

1007, 1009, 1021, 1039, 1041, 1047, 1049

read/1 . 199, 215, 245

read/2 . 214, 245, 246, 473, 474

read_event/1 . 546, 566

read_option/1. 214, 245, 246

read_page/2 . 1004

read_pr . 979

read_pr/2 . 979

read_term/[2,3] . 246

read_term/2 . 214, 245, 246, 251

read_term/3 175, 214, 245, 246, 250

read_terms_file/2 . 1039, 1040

read_top_level/3 214, 245, 246

read_vrml_file/2 . 1039, 1040

readf/2 . 493, 497

reading/4 . 1023

reading/5 . 1023, 1025

reading/6 . 1023, 1029

rebuild_foreign_interface/1 669

rebuild_foreign_interface_explicit_decls/2

. 669, 670

rebuild_foreign_interface_object/1 669, 671

receive_confirm/2 . 697, 699

receive_event/2 . 697, 699

receive_list/2 . 697, 699

receive_result/2 . 697, 698

recorda/3 . 227, 331

recorded/3 . 226, 331, 332

records . 8, 507, 521

recordz/3 . 227, 331

recursive level . 42

recycle_term/2 . 449

redefined . 621

redefining/1. 104

RedHat 5.0 . 1109

reduce_indentation/3 1049, 1057

reexport/1 . 94

reexport/2 . 93

reference/1 . 187, 192

references, to Ciao . 5

referring to Ciao . 5

regedit . 1114

regexp . 1069

regexp/regexp_code 457, 493, 1069

regexp_code . 1073

register_module/1 . 487, 490

regtype assertion. 358

regtype/1 105, 118, 357, 358, 546, 547

regtype/2 . 357, 358, 546, 547

regtypes . 355

regular expresions . 459

regular expressions . 791

regular type . 358

regular type definitions . 355

regular type expression . 358

regular types . 355

relations/2 . 359, 365

release/1 . 546, 567

release_all_for_unwinding/0 546, 567

1186 The Ciao System

release_remote/1 . 546, 567

release_some_suspended_thread/0 546, 567

rem/2 . 157

remove_all_elements/3 919, 922

remove_code/3 . 1049, 1062

remove_comments/4 . 1023, 1034

remove_menu_config/1 675, 677

Remy Haemmerle . 579, 595, 845

rename/2 . 813, 815

rename_file/2 219, 301, 318, 493, 494, 501

repeat/0 . 99, 101

replace_all/4 1071, 1073, 1075

replace_characters/4. 219, 301, 320, 500

replace_first/4 1071, 1073, 1075

replace_strings/3 . 493, 498

replace_strings_in_file/3 493, 498

reporting bugs . 9, 1099, 1116

reserved_words/1 . 1005, 1006

restore_flags_list/1 . 677

restore_menu_config/1 675, 677

restore_menu_flags/2 675, 678

restore_menu_flags_list/1 675, 678

retract/1 . 213, 239, 241

retract_fact/1 . . . 187, 189, 190, 723, 725, 726, 727,

735, 736

retract_fact_nb/1 . 187, 190

retractall/1 . 213, 239, 241

retractall_fact/1 12, 187, 190, 725, 727

retrieve_goal/2 . 546, 562

retrieve_list_of_values/2 982, 986

retrieve_range/2 . 982, 984

retrieve_store/2 . 982, 984

retry . 55

returns/2 . 661, 662

reverse/2 . 212, 283, 286

reverse/3 . 283, 286

reverse_parsed/2 . 1049, 1061

rewind/2 . 919, 922

Richard A. O’Keefe 233, 249, 295, 471, 797

Robert Manchek . 835

Roger Nasr . 10, 42

rooted_subgraph/3 . 797, 799

round/1 . 157

row/1 . 906

rtchecks . 377

rtchecks_asrloc . 377

rtchecks_callloc . 378

rtchecks_entry . 377

rtchecks_exit . 377

rtchecks_inline . 377

rtchecks_level . 377

rtchecks_namefmt . 378

rtchecks_predloc . 377

rtchecks_rt.pl . 377

rtchecks_test . 377

rtchecks_trust . 377

run-time checks . 343

run-time libraries . 1103

run-time tests . 73

run_tester/10 . 1077

running programs 22, 23, 28, 29

running unit tests . 379

running_queries/2 . 759, 760

runtime_ops . 335

S
s_assrt_body/1 . 349, 352

Sacha Varma . 703

safe_write/2. 479

Samir Genaim . 597, 601

Saumya Debray . 10

save_addr_actmod/1 . 589, 590

save_end_execution/1 546, 566

save_init_execution/1 546, 566

save_menu_config/1 675, 676, 677

scattergraph_b1/12 854, 884, 887

scattergraph_b1/8 854, 884, 887, 888

scattergraph_b2/12 855, 893, 897

scattergraph_b2/8 855, 893, 896

scattergraph_w1/12 854, 884, 889

scattergraph_w1/8 854, 884, 888, 898

scattergraph_w2/12 855, 893, 898

scattergraph_w2/13 . 898

scattergraph_w2/8 855, 893, 898

scattergraph1_b1/13 . 889

script header, inserting automatically 72

scripts . 21, 23, 29, 1103, 1105

SCUBE . 10

second_prompt/2 . 214, 245, 246

see/1 . 226, 329

seeing/1 . 226, 329

seen/0 . 226, 329

Seif Haridi . 10

select/3 . 211, 283, 288

select_socket/5 . 473, 475

Global Index 1187

self/1 . 590, 617, 621

semantic analisys. 636

semaphore . 468, 469

send_event/1 . 546, 565

send_info_to_developers/0 388, 389

send_signal/1. 177, 178, 179

send_silent_signal/1 177, 178

send_term/2 . 697, 699

sequence/2 . 105, 113

sequence_or_list/2 . 105, 113

sequence_to_list/2 . 283, 294

Sergio Guadarrama. 605

serve_socket/3 . 479

set_ciao_flag/2 . 182, 184

set_cookie/2 . 703, 707

set_debug_mode/1. 43, 46, 50, 297, 298

set_debug_module/1 . 297, 298

set_debug_module_source/1 297, 298

set_env/2 . 223, 301, 304, 505

set_environment/3 . 1049, 1060

set_exec_mode/2 220, 301, 317, 501

set_exec_perms/2 . 493, 499

set_fact/1 . 187, 191

set_general_options/1 989, 1087

set_global/2. 537

set_goal_cancelled/1 546, 565

set_goal_det/1 . 546, 562

set_goal_failed/1 . 546, 565

set_goal_finished/1. 546, 563

set_goal_nondet/1 . 546, 562

set_goal_not_executed/1 546, 563

set_goal_rem_executing/1 546, 563

set_goal_tobacktrack/1 546, 564

set_goal_toreexecute/1 546, 564

set_input/1 . 159, 161

set_menu_flag/3 . 675, 676

set_name_value/2 . 487, 489

set_nodebug_mode/1 43, 46, 50, 297, 298

set_nodebug_module/1 297, 298

set_output/1 . 159, 161

set_owner/2 . 493, 497

set_parsed/3 . 1049, 1060

set_perms/2 . 493, 499

set_prolog_flag/1 . 186, 626

set_prolog_flag/2 . 182, 183

set_stream/3. 411

setarg/3 . 577

setcounter/2. 785

setenvstr/2 . 224, 301, 304, 505

setof/3 . 213, 233, 471, 472

setproduct/3 . 809, 812

sets 582, 797, 801, 803, 809, 813, 825

SETTINGS . 1105, 1108, 1109

sformat/3 . 218, 277, 278

sh . 22, 87, 1102, 1104

sh-compatible shell 22, 1102, 1104

sharing sets . 362

shell . 27

shell scripts . 33

shell/0 . 221, 301, 310, 503

shell/1 . 221, 301, 310, 503

shell/2 . 221, 301, 310, 503

shell/n . 321

shell_regexp/1 . 1073, 1075

shell_s/0 . 759, 760

short . 378

shortcut, windows . 1111

show_handler/1 . 546, 565

show_menu_config/1 . 675, 677

show_menu_configs/0. 675, 677

show_message/2 . 405, 409

show_message/3 . 405, 409

show_message/4 . 405, 409

shutdown_type/1 . 473, 477

SICS . 10, 87

SICStus . 79

SICStus Prolog . 10

sideff/2 . 105, 117

sideff_hard/1 . 359, 365

sideff_pure/1 . 359, 365

sideff_soft/1 . 359, 366

sign/1 . 157

signal/1 . 359, 366

signal/2 . 359, 366

signals/2 . 359, 366

simple_client.pl . 586

simple_message/1 . 405, 407

simple_message/2 . 405, 407

sin/1 . 157

site-specific programs . 1103

size/1 . 884, 891

size/2 . 359, 366

size/3 . 359, 366

size_lb/2 . 359, 366

size_metric/3 . 359, 367

size_metric/4 . 359, 367

1188 The Ciao System

size_o/2 . 359, 366

size_of/2 . 646

size_of/3 . 661, 662

size_ub/2 . 359, 367

sizes of terms . 73

skip . 54

skip_code/1 . 169, 171

skip_code/2 . 169, 171

skip_line/0 . 169, 171

skip_line/1 . 169, 171

SmallerThan(X, Y). 519

smooth/1 . 884, 890

Socket implementation . 763

Socket interface . 9, 643

socket_accept/2 . 473, 474

socket_recv/2 . 473, 476

socket_recv_code/3 473, 475, 476

socket_send/2 . 473, 475

socket_shutdown/2 . 473, 476

socket_type/1 . 473, 477

sockets . 473, 1108

sockets/sockets . . 479, 697, 763, 771, 929, 935, 937,

939, 961

sockets/sockets_io . 763

sockets_io . 479

soft side-effects. 366

Solaris . 1106

solutions/2 . 359, 364

Some scoping issues . 527

sort 211, 218, 233, 249, 295, 359, 447, 493, 582,

793, 797, 801, 803, 809, 813

sort/2 . 218, 295

sort_dict/2 . 13, 813, 814

source directory. 1102

source-level debugger . 49, 67

source-level debugging 49, 50, 52, 53, 67, 72

sourcename/1 . 47, 159, 164, 165

sourcenames/1. 47

space/1 . 675, 676

spec/1 . 393

specifications . 73, 339

split/4 . 517, 519

spy . 56

spy-points . 49, 51, 72

spy/1 . 50, 51, 57, 61

SQL-like database interface 9, 643

sql__attribute/4 . 745

sql__relation/3 . 745

sql_goal_tr/2 . 743

sql_persistent_tr/2 . 743

sqltype/1 . 739

sqltypes . 739

sqrt/1 . 157

srandom/1 . 807, 808

stabilize_successor/2 . 945

standalone compiler 21, 1103, 1105

standalone utilities . 9, 817

standard total ordering . 135

standard_ops/0 . 255, 257

start_socket_interface/2 . 763

start_thread/1 . 546, 560

start_threads/0 . 763, 765

start_vrmlScene/4 . 1023, 1033

static checks . 67

static debugging . 73

statistics/0 . 226, 323

statistics/2 . 226, 323

status bar . 68

status, this manual . 3

steps/2 . 359, 367

steps_lb/2 . 359, 367

steps_o/2 . 359, 367

steps_ub/2 . 359, 368

stop_parse/2 . 1049, 1061

stop_socket_interface/0 763, 764

stream/1 . 159, 166

stream_alias/1 . 159, 166

stream_code/2 . 159, 164

stream_property/2 . 267

stream_to_string/2 . 429, 430

stream_to_string/3 . 429, 431

streams . 359, 397, 429, 457, 669

streams_basic . 159

streams_basic:open/3 . 427

streams_basic:stream/1 929, 930, 931, 932, 933

string/1 . 105, 114

string/3 . 401, 403

string_to_file/2 . 429, 430

string2term/2 . 413, 414

stringcommand/1 346, 350, 352, 353, 354

strings 401, 429, 493, 697, 703, 713, 857

strip_clean/2 . 1049, 1059

strip_exposed/2 . 1049, 1059

strip_from_list/2 . 1049, 1058

strip_from_term/2 . 1049, 1059

strip_interface/2 . 1049, 1059

Global Index 1189

strip_restricted/2 1049, 1059

struct/1 . 105, 108

struct_regexp/1 . 1073, 1076

style sheets. 21, 27, 1105, 1112

sub-shell . 67

sub_atom/4 . 141, 149

sub_atom/5 . 218, 265

sub_times/3 . 1083, 1086

sublist/2 . 283, 293

subordlist/2 . 283, 293

subterm . 56

subtract/3 . 787, 788

success assertion. 342

success/1 . 340, 342, 344

success/2 . 340, 342

sum_list/2 . 789

sum_list/3 . 789, 790

sum_list_of_lists/2. 789, 790

sum_list_of_lists/3. 789, 790

super class . 619

suspend/0 . 546, 567

Swedish Institute of Computer Science 10

sybase2sqltype/2 . 739, 741

sybase2sqltypes_list/2 739, 740

sybasetype/1 . 739, 740

symbol/1 . 884, 890

symbol_option/1 . 225, 323, 326

symbol_result/1 . 225, 323, 326

symbolic_link/2 . 493, 494

symbolic_link/3 . 493, 494

symfnames . 427, 737

syntax-based coloring . 67

Syntax-based highlighting . 67

syntax_extensions . 193

SYSCALL/1 . 515, 516

system . . 23, 28, 65, 211, 219, 220, 221, 222, 223, 224,

277, 297, 301, 359, 388, 417, 419, 427, 457, 483,

487, 493, 500, 501, 502, 503, 504, 505, 506, 669,

685, 697, 703, 725, 752, 759, 768, 935, 939, 989

system libraries . 458

system/1 . 221, 301, 311, 503

system/2 . 221, 301, 311, 503

system_error_report/1 219, 301, 320, 500

system_extra . 483, 493

system_info . 205

system_lib/1 . 457, 459

T
T. Chikayama . 49, 59

t_conj/1 . 435, 438

t_disj/1 . 435, 439

tab/1 . 169, 173

tab/2 . 169, 173

table/1 . 905, 906

table_widget1 . 853, 905

table_widget2 . 853, 909

table_widget3 . 853, 911

table_widget4 . 854, 913

tablewidget1/4 . 853, 905

tablewidget1/5 . 853, 905

tablewidget2/4 . 853, 909, 910

tablewidget2/5 . 853, 909

tablewidget3/4 . 853, 911

tablewidget3/5 . 853, 911

tablewidget4/4 . 854, 913, 914

tablewidget4/5 . 854, 913

tag_attrib/1 . 716, 1096

tar . 1102

target/1 . 487

tau/1 . 359, 368

Tcl/tk interface . 9, 643

tcl_delete/1 . 690, 692, 693

tcl_eval/3 . 12, 690, 692

tcl_event/3 . 690, 691, 692, 693

tcl_new/1 . 690, 692

tclCommand/1 . 692, 694

tclInterpreter/1 . 692, 693

tcltk . 689, 697

tcltk/2 . 697, 698

tcltk/tcltk_low_level . 692

tcltk_low_level . 697

tcltk_raw_code/2 697, 698, 857

tcsh . 21, 87, 1101, 1104

Technical University of Madrid 9

tell/1 . 226, 329

telling/1 . 226, 329

term/1 . 105

term_basic . 129

term_compare. 135

term_size/2 . 441

term_typing . 121

terminates/1 . 359, 368

terms 275, 388, 441, 487, 493, 669, 697, 768, 825,

987, 1089

1190 The Ciao System

terms_check . 105, 359, 445, 768

terms_file_to_vrml/2 1001, 1002

terms_file_to_vrml_file/2 1001, 1003

terms_to_vrml/2 . 1001, 1003

terms_to_vrml_file/2 1001, 1003

terms_vars . 359, 447, 582, 813

test assertion . 342, 379

test/1 . 340, 342

test/2 . 340, 342

test_format . 915

test_type/2 . 359, 368

tester . 1077

texec assertion . 341

texec/1 . 340, 341

texec/2 . 340, 341

The CLIP Group 31, 33, 41, 89, 91, 141, 177, 229,

231, 239, 259, 267, 269, 271, 277, 283, 295, 299,

331, 337, 381, 383, 399, 405, 429, 441, 445, 447,

451, 507, 509, 643, 673, 689, 723, 731, 747, 767,

773, 789, 791, 831, 843, 1001, 1069, 1099

this_module/1 . 205, 207

throw/1 . 177, 178

throws/2 . 359, 368

tick_option/1. 225, 323, 327

tick_result/1. 225, 323, 325

time stamp . 75

time/1 . 224, 301, 302, 506

time_analyzer . 1083

time_option/1. 225, 323, 327

time_result/1. 225, 323, 326

times(N) . 379

title/1 . 865, 869

tk_event_loop/1 . 691, 692, 694

tk_main_loop/1 . 691, 692, 694

tk_new/2 . 691, 692, 694

tk_next_event/2 . 691, 692, 695

to_list/2 . 919, 920

token_read/3 . 1065

tokeniser . 1065

tokeniser/2 . 1065

tokenize . 245

told/0 . 226, 329

Tom Howland . 511

top-level . 49

top-level shell, starting, unix 22

top-level shell, starting, windows 27

top/2 . 919, 922

topd/0 . 685

toplevel . 41, 207

toplevel command args, setting 78

toplevel command, setting . 78

toplevel/toplevel . 43

touch/1 . 493, 499

tour, of the manual . 7

trace . 50

trace/0 . 50, 51, 61

tracertc/0 . 61

tracing the source code . 67

transactional update . 723

transient state . 725

translation_predname/1 . 195

transpose/2 12, 395, 396, 797, 799

tree/1 . 1035, 1036

triple/1 . 795

troubleshooting 1101, 1108, 1111

true assertion . 347

true/0 . 91, 99, 101, 327

true/1 . 340, 347

truncate/1 . 157

trust assertion . 346

trust/1 . 340, 346

try_finally/3 . 493, 497

try_sols(N) . 379

ttr/3 . 661, 663

ttydisplay/1 . 227, 333, 334

ttydisplay_string/1 227, 333, 334

ttydisplayq/1. 227, 333, 334

ttyflush/0 . 227, 333, 334

ttyget/1 . 227, 333

ttyget1/1 . 227, 333

ttynl/0 . 227, 333

ttyout . 59, 211, 227, 333

ttyput/1 . 227, 333

ttyskip/1 . 227, 333

ttyskipeol/0 . 227, 333, 334

ttytab/1 . 227, 333

type . 8, 337

type declarations. 821

type of version control . 76

type/2 . 121, 127

type_compatible/2 . 739, 740

type_union/3 . 739, 740

types . 73

Global Index 1191

U
U. of Arizona . 10

ugraph/1 . 687, 797, 799

ugraph2term/2 . 685, 686

ugraphs . 797, 803

umask/2 . 222, 301, 308, 504

uncycle_term/2 . 449

undo/1 . 577

undo_force_lazy/1 . 43, 46

unfold_tree/2 . 1089, 1090

unfold_tree_dic/3 . 1089, 1091

uni_type . 681

uni_type/2 . 675, 681

unify . 56

unify_with_occurs_check/2 217, 265, 266

uninstalling . 1102, 1105

union/3 . 283, 293

union_idlists/3 . 787, 788

unit tests . 379

unittest . 379

unload/1 . 43, 45, 297, 298

unlock_atom/1 . 465, 468

unlock_file/2 . 433

unmarshalling . 8, 381

unregister_module/1. 487, 490

unzip . 1111

up_to_date . 492

up_to_date/2. 492

update/0 . 457, 458, 459

update_assoc/5 . 777, 783

update_attribute/2 . 201

update_files. 725

update_files/0 . 725, 728

update_files/1 . 725, 728

updated state . 724

Updates to persistent predicates 723

UPM . 10

url_info/2 . 703, 708, 709

url_info_relative/3. 703, 709

url_query/2 . 12, 703, 707

url_query_amp/2 . 703, 707

url_query_values/2 12, 703, 707, 708

url_term/1 . 715, 720

usage . 340

usage relationship . 629

use_active_module . 585

use_active_module/2. 586, 587

use_class/1 618, 629, 631, 632, 635, 638

use_compiler/1 . 664

use_compiler/2 . 664, 665

use_foreign_library/1 . 663

use_foreign_library/2 . 663

use_foreign_source/1 . 663

use_foreign_source/2 . 663

use_linker/1. 665

use_linker/2. 665

use_module . 585

use_module/1 . . 34, 35, 41, 43, 93, 166, 212, 297, 457,

461, 629, 638, 639

use_module/2 43, 44, 93, 212, 297

use_module/3 . 297, 481

use_package . 51

use_package/1 . . . 43, 45, 97, 211, 239, 511, 725, 733

user module . 41, 91

user modules, debugging . 49

user setup . 21

user:file_alias/2 . 427

user_output/2 . 359, 369

users mailing list . 1115

using alternate engines or libraries 37

using_windows/0 219, 301, 318, 501

V
valid_attributes/2 . 915, 917

valid_base/1 . 141, 149

valid_format/4 . 915, 916

valid_table/2 . 915, 917

valid_vectors/4 . 915, 917

value_dict/1 . 715, 720

var/1 . 121, 351

variable instantiation . 73

variable names . 339

variables . 55

variant/2 . 445

varnamedict/1 . 813, 815

varnames/dict_types . 813

varnamesl2dict/2 . 813, 815

vars_names_dict/3 . 813, 815

varsbag/3 . 447

varset/2 . 447

varset_in_args/2 . 447

vector/1 . 884, 889

vectors_format/4 . 915, 916

verbose_message/1 . 487, 488

1192 The Ciao System

verbose_message/2 . 487, 488

verify_attribute/2 201, 202, 203

Veroniek Dumortier . 10

version control . 67, 74

version maintenance mode for packages 75

version number . 74

version numbering . 75

vertices/2 . 797, 798

vertices_edges_to_lgraph/3 803

vertices_edges_to_ugraph/3 797

vertices_edges_to_wgraph/3 801

virtual . 620

virtual/1 . 617, 620

virtual_method_spec/1 635, 639

vmember/2 . 675, 681

vndict . 451, 455, 813

vpath/1 . 483, 487, 490

vpath_mode/3 . 487, 490

vrml_file_to_terms/2 . 1001

vrml_file_to_terms_file/2 1001, 1002

vrml_http_access/2 1001, 1004

vrml_in_out/2 . 1001, 1004

vrml_to_terms/2 . 1001, 1003

vrml_web_to_terms/2 . 1001

vrml_web_to_terms_file/2 1001, 1002

W
wait/3 . 221, 301, 313, 502

waiting/1 . 546, 566

wakeup_exp/1. 582

WAM . 10

warning/1 . 197, 198

warning_message/1 . 405, 406

warning_message/2 . 405, 406

warning_message/3 . 405, 406

Web interface . 9, 643

WebDB . 724

weekday/1 . 715, 721

wellformed_body/3 213, 239, 244

wgraphs . 801

when . 581

when/2 . 581, 582

where/1 . 457, 458

whitespace/1 . 1035, 1036

whitespace/2 . 401, 402

whitespace0/2 . 401, 402

why the name Ciao . 5

Win32 . 35

windows shortcut. 1111

winpath/2 . 219, 301, 318, 501

winpath/3 . 219, 301, 319, 501

winpath_c/3 . 219, 301, 319, 501

WinZip . 1111

Wlodek Drabent . 10

word-help.el . 68, 70

working_directory/2 222, 301, 309, 503

write 55, 197, 198, 211, 215, 216, 231, 249, 277,

383, 405, 451, 493, 675, 685, 692, 697, 752, 989,

1005, 1007, 1009, 1013, 1021, 1039, 1041, 1047,

1049, 1077, 1083

write/1 56, 197, 198, 216, 249, 251, 254

write/2 . 216, 249, 250, 473, 474

write_assertion/6 . 455

write_assertion/7 . 455

write_assertion_as_comment/6 455

write_assertion_as_comment/7 455, 456

write_assertion_as_double_comment/6 . . . 455, 456

write_assertion_as_double_comment/7 . . . 455, 456

write_attribute/1 215, 249, 253

write_c/write_c . 669

write_canonical/1 215, 249, 252

write_canonical/2 215, 249, 251

write_list1/1. 215, 249, 252

write_option/1 . 216, 249, 250

write_pr/2 . 979

write_string/1 . 401, 402

write_string/2 . 401, 402

write_term/2 . 216, 249

write_term/3 . 216, 249

write_terms_file/2 1039, 1040

write_vrml_file/2 . 1039, 1040

writef/2 . 493, 498

writef/3 . 493, 498

writef_list/2 . 493, 499

writef_list/3 . 493, 498

writeq/1 197, 198, 216, 249, 251

writeq/2 . 216, 249, 251

WWW . 1103

WWW browser. 21, 1105

WWW, interfacing with . 701

Global Index 1193

X
xbarelement1. 865

xbarelement1/1 . 865, 869

xbarelement2/1 . 871, 873

xbarelement3/1 . 877

xbarelement4/1 . 881

xdr_handle . 1089

xdr_handle/xdr_types . 1089

xdr_node/1 . 1089, 1090

xdr_tree/1 . 1089

xdr_tree/3 . 1089

xdr_xpath/2 . 1089, 1091

xdr2html/2 . 1089, 1090

xdr2html/4 . 1089, 1090

xelement/1 . 904

xemacs . 87

XML . 701, 703

xml_index/1 . 1093, 1095

xml_index_query/3 . 1093, 1095

xml_index_to_file/2 1093, 1095

xml_parse/3 . 1093, 1094

xml_parse_match/3 . 1093, 1094

xml_path . 1093

xml_path/xml_path_types . 1093

xml_query/3 . 1093, 1096

xml_search/3 . 1093, 1094

xml_search_match/3 1093, 1095

xml2terms/2 . 703, 704

xrefs/xrefsread . 825

Y
yelement/1 . 865, 867

yes . 377, 378

1194 The Ciao System

