The Ciao System

A New Generation, Multi-Paradigm Programming Language and Environment
(Including a State-of-the-Art ISO-Prolog)

REFERENCE MANUAL

The Ciao Documentation Series

http://ciao-lang.org/

Generated/Printed on: 12 March 2013
Technical Report CLIP 3/97-1.15
Version 1.15 (2011/7/8, 11:48:1 CEST)

Edited by:

Francisco Bueno
Manuel Carro

Rémy Haemmerlé
Manuel Hermenegildo
Pedro Lopez

Edison Mera

José F. Morales
German Puebla

The Computational logic, Languages,
Implementation, and Parallelism (CLIP) Lab
http://wuw.cliplab.org/

webmaster@clip.dia.fi.upm.es

School of CS, T. U. of Madrid (UPM)
IMDEA Software Institute

Copyright © 1997-2011 Francisco Bueno, Manuel Carro, Remy Haemmerlé, Manuel
Hermenegildo, Pedro Lépez, Edison Mera, José F. Morales, and German Puebla This docu-
ment may be freely read, stored, reproduced, disseminated, translated or quoted by any means
and on any medium provided the following conditions are met:

1.

Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and
fitness for any purpose.

No modification is made other than cosmetic, change of representation format, translation,
correction of obvious syntactic errors, or as permitted by the clauses below.

Comments and other additions may be inserted, provided they clearly appear as such;
translations or fragments must clearly refer to an original complete version, preferably one
that is easily accessed whenever possible.

Translations, comments and other additions or modifications must be dated and their au-
thor(s) must be identifiable (possibly via an alias).

This licence is preserved and applies to the whole document with modifications and additions
(except for brief quotes), independently of the representation format.

Any reference to the "official version", "original version" or "how to obtain original versions"
of the document is preserved verbatim. Any copyright notice in the document is preserved
verbatim. Also, the title and author(s) of the original document should be clearly mentioned
as such.

In the case of translations, verbatim sentences mentioned in (6.) are preserved in the
language of the original document accompanied by verbatim translations to the language
of the traslated document. All translations state clearly that the author is not responsible
for the translated work. This license is included, at least in the language in which it is
referenced in the original version.

Whatever the mode of storage, reproduction or dissemination, anyone able to access a
digitized version of this document must be able to make a digitized copy in a format directly
usable, and if possible editable, according to accepted, and publicly documented, public
standards.

Redistributing this document to a third party requires simultaneous redistribution of this
licence, without modification, and in particular without any further condition or restriction,
expressed or implied, related or not to this redistribution. In particular, in case of inclusion
in a database or collection, the owner or the manager of the database or the collection re-
nounces any right related to this inclusion and concerning the possible uses of the document
after extraction from the database or the collection, whether alone or in relation with other
documents.

Any incompatibility of the above clauses with legal, contractual or judiciary decisions or con-
straints implies a corresponding limitation of reading, usage, or redistribution rights for this
document, verbatim or modified.

Table of Contents

SUMIMATY .+« v vttt ettt e ennnnnnnnnns 1
1 Introduction.................... ..., 3
1.1 About thismanual 3
1.2 About the Ciao development system 3
1.3 ISO-Prolog compliance versus extensibility 4
1.4 About the name of the System 5
1.5 Referring to Ciao........ ..o 5
1.6 Syntax terminology and notational conventions)
1.6.1 Predicates and their components.....................)
1.6.2 Characters and character strings 6
1.6.3 Predicate Specs.........oooiiiiiiiii 6
1.6.4 Modes ... 6
1.6.5 Properties and types ..., 6
1.6.6 Declarations................. i, 6
1.6.7 Operatorscoouinee i 7
1.7 Atourofthemanual 7
1.7.1 PART I - The program development environment 7
1.7.2 PART II - The Ciao basic language (engine) 8
1.7.3 PART III - ISO-Prolog library (iso) 8
1.7.4 PART IV - Classic Prolog library (classic) 8
1.7.5 PART V - Assertions, Properties, Types, Modes,

Comments (assertions)c.oeeviieeinno.... 8
1.7.6 PART VI - Ciao library miscellanea 8
1.7.7 PART VII - Ciao extensions 8

1.7.8 PART VIII - Interfaces to other languages and systems
.. 9
1.7.9 PART IX - Abstract data types...................... 9
1.7.10 PART X - Contributed libraries..................... 9
1.7.11 PART XI - Contributed standalone utilities.......... 9
1.7.12 PART XII - Appendices...........covviineennnn... 9
1.8 Acknowledgments 9
1.9 Version/Change Log.............oiiiiiii i 10
2 Getting started on Un*x-like machines........ 29
2.1 Testing your Ciao Un*x installation.......................... 29
2.2 Un* X USer SCUUD . . oottt 29
2.3 Using Ciao from a Un*x command shell 30
2.3.1 Starting/exiting the top-level shell (Un*x)........... 30
2.3.2 Getting help (Un™*x)o .. 30
2.3.3 Compiling and running programs (Un*x)............ 30
2.3.4 Generating executables (Un*x) 31
2.3.5 Running Ciao scripts (Un*x) 31
2.3.6 The Ciao initialization file (Un*x)................... 32
2.3.7 Printing manuals (Un*x)........................... 32
2.4 An introduction to the Ciao emacs environment (Un*x) 32

2.5 Keeping up to date (Un™x).......... 33

ii The Ciao System

3 Getting started on Windows machines 35
3.1 Testing your Ciao Win32 installation......................... 35
3.2 Using Ciao from the Windows explorer and command shell 35

3.2.1 Starting/exiting the top-level shell (Win32).......... 35
3.2.2 Getting help (Win32) ...t 36
3.2.3 Compiling and running programs (Win32) 36
3.2.4 Generating executables (Win32) 36
3.2.5 Running Ciao scripts (Win32) 37
3.2.6 The Ciao initialization file (Win32).................. 37
3.2.7 Printing manuals (Win32) 37
3.3 An introduction to the Ciao emacs environment (Win32) 37
3.4 Keeping up to date (Win32). ..., 38

PART I - The program development environment

... 39
4 The stand-alone command-line compiler 41
4.1 Introduction to building executables 41
4.2 Paths used by the compiler during compilation 42
4.3 Running executables from the command line 42
4.4 Types of executables generated 43
4.5 Environment variables used by Ciao executables 45
4.6 Intermediate files in the compilation process.................. 45
4.7 Usage (Cla0C) ..ot 45
4.8 Known bugs and planned improvements (ciaoc).............. 47
5 The interactive top-level shell 49
5.1 Shell invocation and startup................ 49
5.2 Shell interaction........... 49
5.3 Entering recursive (conjunctive) shell levels................... 50
5.4 Usage and interface (toplevel_doc)couueennn... 51
5.5 Documentation on exports (toplevel_doc)................... 52
use_module/1 (pred)............ L. 52

use_module/2 (pred)............ L. 52
ensure_loaded/1 (pred)................ 52

make_exec/2 (pred)......... ... 52

include/1 (pred).........oooiiiiiiii 52

use_package/1 (pred) 53

consult/1 (pred)........ 53

compile/1 (pred) i 53

J2(pred). ..o 53

make po/1 (pred) i 53

unload/1 (pred) ... 53
set_debug_mode/1 (pred)........................... 54
set_-nodebug_mode/1 (pred) 54
make_actmod/2 (pred)........... 54

forcelazy/1 (pred) ... 54
undo_force_lazy/1 (pred) 54
dynamic_search_path/1 (pred)...................... 54

(multifile) /1 (pred) ... 55

5.6 Documentation on internals (toplevel_doc) 95

sourcenames/1 (Prop)............ooouveiiiieaia... 55

6 The interactive debugger..................... 57
6.1 Marking modules and files for debugging in the top-level debugger

... 57

6.2 The debugging process............cooiiiiiiiii ... 58
6.3 Marking modules and files for debugging with the embedded

debuggero 58

6.4 The procedure box control flow model........................ 60

6.5 Format of debugging messages.............., 61

6.6 Options available during debugging 62

6.7 Calling predicates that are not exported by a module 64

6.8 Acknowledgements (debugger).............l 64
7 Predicates controlling the interactive debugger

... 67

7.1 Usage and interface (debugger) 67

7.2 Documentation on exports (debugger) 67

callin-module/2 (pred) 67

breakpt/6 (udreexp)..............ooiiiiiiii. 67

debug/0 (udreexp)cooiiiiiiii 67

debug_module/1 (udreexp)......................... 67

debug_module_source/1 (udreexp) 68

debugging /0 (udreexp)..........ocovviiiiiaiiia... 68

debugrtc/0 (udreexp) ..., 68

get_debugger state/1 (udreexp)..................... 68

get_debugger_state/1 (udreexp)..................... 68

leash/1 (udreexp)coooiiiiiiiii .. 68

list_breakpt/0 (udreexp)o.... 68

maxdepth/1 (udreexp)............................. 68

nobreakall /0 (udreexp) 68

nobreakpt /6 (udreexp)........... ...l 68

nodebug/0 (udreexp) ..o 68

nodebug_module/1 (udreexp)....................... 69

nodebugrtc/0 (udreexp)................... ... 69

nospy/1 (udreexp) 69

nospyall/0 (udreexp) ..., 69

notrace/0 (udreexp) ..o 69

spy/1 (udreexp) ... 69

trace/0 (udreexp) ... 69

tracertc/0 (UAreexp)c.vveeiiiiienii 69

7.3 Documentation on multifiles (debugger) 69

define flag/3 (pred).............. i 69

7.4 Known bugs and planned improvements (debugger)........... 69

8 The script interpreter........................ 71

81 Howit works...... ... 71

8.2 Command line arguments in scripts.......................... 72

Other miscellaneous standalone utilities.......... 73

9 Printing the declarations and code in a file.... 75

9.1 Usage (fileinfo) 75
9.2 More detailed explanation of options (fileinfo) 75

v

10

11

12

13

14

15

16

17

The Ciao System

Printing the contents of a bytecode file 77
10.1 Usage (VIEWDPO) .« vttt 7
callgraph (library)o, 79
11.1 Usage and interface (callgraph)c.ovevune.... 79
11.2 Documentation on exports (callgraph)..................... 79

call_graph/2 (pred) 79

reachability /4 (pred) 79
Gathering the dependent files for a file....... 81
12.1 Usage (8et-deps) ... 81

Finding differences between two Prolog files.. 83

13.1 Usage (pldiff) ... 83
13.2 Known bugs and planned improvements (pldiff)............ 83
The Ciao lpmake scripting facility 85
14.1 General operationoiiiiii 85
14.2 Format of the Configuration File 85
14.3 Ipmake USAZEot 86
14.4 Acknowledgments (1pmake)oouiiiiiniain.... 87
14.5 Known bugs and planned improvements (1pmake)............ 87

Find out which architecture we are running on

... 89
15.1 Usage (clao_get_arch), 89
15.2 More details (ciao_get-arch) 89
Print out WAMcode 91
16.1 Usage (compiler_output) 91

Customizing library paths and path aliases... 93

17.1 Usage and interface (1ibpaths)coiii.... 93
17.2 Documentation on exports (libpaths)...................... 93
get_alias_path/0 (pred) 93
17.3 Documentation on multifiles (1ibpaths) 93
file_search_path/2 (pred) 93

library_directory/1 (pred) 94

18 Using Ciao inside GNU emacs............... 95

18.1 Conventions for writing Ciao programs under Emacs......... 95
18.2 Checking the installation........... 96
18.3 Functionality and associated key sequences (bindings)........ 96
18.4 Syntax coloring and syntax-based editing.................... 96
18.5 Getting on-line help 97
18.6 Loading and compiling programs 97
18.7 Commands available in toplevel and preprocessor buffers 98
18.8 Locating errors and checking the syntax of assertions........ 100
18.9 Commands which help typing in programs 100
18.10 Debugging programs.c.c.ueeiinineiinineennn... 100
18.11 Testing programs.oouuetnnein et 101
18.12 Preprocessing programs.ouueerneenneennenn... 102
18.13 Version control.......... ... i 103
18.14 Generating program documentation....................... 105
18.15 Setting top level preprocessor and documenter executables.. 106
18.16 Other commands.ot 107
18.17 Traditional Prolog Mode Commands...................... 107
18.18 Coexistence with other Prolog-like interfaces 107
18.19 Getting the Ciao mode version 107
18.20 Using Ciao mode capabilities in standard shells............ 108
18.21 Customization i 108
18.21.1 Ciao general variables........................... 108
18.21.2 CiaoPP variables 109
18.21.3 LPdoc variables 110
18.21.4 Faces used in syntax-based highlighting (coloring)
... 110
18.22 Installation of the Ciao emacs interface 114
18.23 Emacs version compatibility............ 115
18.24 Acknowledgments (ciao.el) L 115
PART II - The Ciao basic language (engine)..... 117
19 The modulesystem........................ 119
19.1 Usage and interface (modules)coovuuen.... 119
19.2 Documentation on internals (modules)..................... 119
module/3 (decl)............ .. 119
module/2 (decl)......... 120
package/1 (decl) L. 120
export/1 (decl)........ ... 120
use_module/2 (decl) oL 121
use_module/1 (decl) ... L 121
import/2 (decl)o. 121
reexport/2 (decl) 121
reexport/1 (decl)........ L 122
(meta_predicate) /1 (decl) 122
modulename/1 (regtype).........covviiiiiiii... 122
metaspec/1 (regtype)oiiiiiiiiii.. 122
20 Directives for using code in other files 125
20.1 Usage and interface (loading_code)....................... 125
20.2 Documentation on internals (loading_code) 125
ensure_loaded/1 (decl) 125
include/1 (decl) ... 125

use_package/1 (decl).............., 125

vi The Ciao System

21 Control constructs/predicates.............. 127
21.1 Usage and interface (basiccontrol)....................... 127
21.2 Documentation on exports (basiccontrol) 127

J2 (pred). ..o 127
/2 (pred) ..o 127
S /2(pred) ..o 128
1O (pred) ..o 128
(\+)/1(pred) ..o 128
if/3 (pred) ... 128
true/0 (pred) 129
fail /0 (pred)o 129
repeat/0 (pred) ... 130
false/0 (pred) ..o 130
otherwise/0 (pred), 130
21.3 Known bugs and planned improvements (basiccontrol).... 130

22 Basic builtin directives..................... 131
22.1 Usage and interface (builtin_directives) 131
22.2 Documentation on internals (builtin_directives)......... 131

(multifile) /1 (decl) ... 131
(discontiguous)/1 (decl).................... ..., 131
impl_defined/1 (decl) L 131
redefining/1 (decl).......... L 132
initialization/1 (decl) 132
on-abort/1 (decl)........... 132

23 Basic data types and properties............ 133
23.1 Usage and interface (basic_props)............c.covvvun... 133
23.2 Documentation on exports (basic_props).................. 133

term/1 (regtype) ..o 133
int/1 (regtype)vovniei 134
nnegint/1 (regtype) L. 134
flt/1 (regtype) .o 135
num/1 (Tegtype) .. vvvvene e 135
atm/1 (Tegtype)vvveie 136
struct/1 (regtype)cooiiii 137
gnd/1 (regtype) ..o 137
gndstr/1 (regtype)ovvii i 138
constant/1 (Tegtype)........covuiiiiiiniinenii.. 138
callable/1 (regtype)cooveeiiniii .. 139
operator_specifier/1 (regtype) 139
list/1 (regtype). ..o oovreee 140
list/2 (Tegtype) ..« .voneei 140
nlist/2 (regtype) ... 141
member/2 (Prop).......oueeiii i 141
sequence/2 (Tegtype)ovreenniiean .. 142
sequence_or_list/2 (regtype) 142
character_code/1 (regtype)i... 143
string/1 (regtype)oooiiiii i 143
num_code/1 (regtype)coviiiiiiiiii 144
predname/1 (regtype)c.oveiiiiiiiiii. .. 144
atm_or_atm_list /1 (regtype) 144
compat/2 (Prop) ..ot 145
INSE/2 (PrOP) e+ vve et 145

1S0/1 (PrOP) .« e vvee e e 146

vii

deprecated/1 (Prop)oovuviniiei 146
not_further_inst/2 (prop).......................... 146

sideff/2 (prop) 146

(regtype)/1 (Prop) « o vvvvnriei e 147

native/1 (Prop) ... 147

native/2 (prop)o i 147

rtcheck/1 (Prop) ... 147

rtcheck/2 (Prop) ..o 148

no_rtcheck/1 (prop) ... 148

eval/1 (Drop) - .vvoeeeei 149

eqUIV/2 (PIOP) . v oo 149

bindins/1 (Prop).........cooviiuiiii .. 149

error_free/1 (prop)ol 149

memo/1 (Prop) «...vvevrieei 149

filter/2 (Prop)ovveueii 149

flag_values/1 (regtype).......ccoovueeiiiiiio.. 149

pe_type/1 (Prop) - ..vvvev 150

23.3 Known bugs and planned improvements (basic_props)..... 150
24 Extra-logical properties for typing.......... 151
24.1 Usage and interface (term_typing)................c........ 151
24.2 Documentation on exports (term_typing).................. 151
var/1 (Prop) . ..ooveoe i 151

nonvar/1 (Prop)ooouieiiiieiiinia... 152

atom/1 (Prop)vvvrii 153

integer/1 (Prop).....couuveneni i 153

float/1 (Prop)cooeii 154

number/1 (Prop)ovvviiii i 155

atomic/1 (Prop)..........oooiiii i 155

ground/1 (Prop)........c.oueeuiiiiiieniiein. 156

tYDPE/2 (DTOD) « v v v vt 157

24.3 Known bugs and planned improvements (term_typing)..... 158
25 Basic term manipulation................... 159
25.1 Usage and interface (term_basic)......................... 159
25.2 Documentation on exports (term_basic)................... 159
= /2 (PrOD) « e veee e 159

\=/2(pred) ... 159

arg/3 (pred)oovii 160

functor/3 (pred) L 161

= /2 (pred) ..o 162
non_empty_list/1 (regtype) ..., 162

copy-term/2 (pred)........... 162
copy-term-nat/2 (pred)........................... 163

cyclic_term/1 (pred)o 163

C/3(pred) ..o 163

const_head/1 (prop) ..., 164

list_functor/1 (regtype) ..., 164

25.3 Known bugs and planned improvements (term_basic) 164

viii The Ciao System

26 Comparingterms.......................... 165
26.1 Usage and interface (term_compare)....................... 165
26.2 Documentation on exports (term_compare) 165

== /2 (DOD) -« e e 165

== /2(pred) ..o 166
Q< /2 (pred) . .vvveei 166
Q=< /2 (pred)......oovii 167
@ /2 (pred) ...vvei 167
@= /2 (pred)......vvvi 168
compare/3 (pred) ... 168
comparator/1 (regtype)..........cooviiiiii... 169

26.3 Known bugs and planned improvements (term_compare) 169

27 Basic predicates handling names of constants

.. 171
27.1 Usage and interface (atomic_basic)....................... 171
27.2 Documentation on exports (atomic_basic) 171
name/2 (pred) i 171

atom_codes/2 (pred)............. 172
number_codes/2 (pred) ... 173
atom_number/2 (pred).............. 174
atom_number/3 (pred)............. 176
atom_length/2 (pred) 177
atom_concat/3 (pred).......... 177

sub_atom/4 (pred) 179

valid_base/1 (regtype) ..., 180

27.3 Known bugs and planned improvements (atomic_basic).... 180
28 Arithmetic............ L. 181
28.1 Usage and interface (arithmetic)......................... 181
28.2 Documentation on exports (arithmetic)................... 181
is/2 (pred) . ..o 181

</2(pred) oo 183

=< /2 (pred) ... 184

> /2 (pred) oo 184

>= /2 (pred) ..o 185

== /2 (pred)o 185
=\=/2(pred) ... 186
arithexpression/1 (regtype) 187
intexpression/1 (regtype) 188

28.3 Documentation on multifiles (arithmetic)................. 188
$internal_error_where_term/4 (pred) 188

28.4 Known bugs and planned improvements (arithmetic)...... 189

29 Basic file/stream handling 191

29.1 Usage and interface (streams_basic)...................... 191
29.2 Documentation on exports (streams_basic) 191
open/3 (pred) 191

open/4 (pred)o 192
open_option_list/1 (regtype)....................... 192

close/1 (pred).......ccoouiiiiiii . 193

set_input/1 (pred)............... .. 193
current_input/1 (pred)............. 193

set_output/1 (pred)............. 193
current_output/1 (pred) 194
character_count/2 (pred).......................... 194

line_count/2 (pred), 194
line_position/2 (pred).............. 195
flush_output/1 (pred).............. 195
flush_output/0 (pred)......... ..., 195

clearerr/1 (pred) ... 195
current_stream/3 (pred) 195
stream_code/2 (pred), 196

absolute_file name/2 (pred) 196

absolute_file name/7 (pred), 197

pipe/2 (pred) ... 197

sourcename/1 (regtype).........ooiiiiiiiiii... 197

stream/1 (regtype) ...t 198
stream_alias/1 (regtype) ... 199

io_mode/1 (regtype)ccooiiiiiii 199

atm_or_int/1 (regtype) 199

29.3 Documentation on multifiles (streams_basic).............. 199
file_search_path/2 (pred) 199
library_directory/1 (pred) 199

29.4 Known bugs and planned improvements (streams_basic)... 200
30 Basic input/output........................ 201
30.1 Usage and interface (io_basic)cooviuiii... 201
30.2 Documentation on exports (io_basic)..................... 201
get_code/2 (pred) i 201

get_code/1 (pred)l 201

getl_code/2 (pred)o.o i, 202

getl code/1 (pred) ..o 202

peek_code/2 (pred) ... 202

peek_code/1 (pred) ..., 203

skip_code/2 (pred) 203

skip_code/1 (pred) L. 203

skip_line/1 (pred) 203

skip_line/0 (pred)o 203

put_code/2 (pred) ... 204

put_code/1 (pred) L. 204

nl/1 (pred) ... 204

nl/0 (pred) ... 204

tab/2 (pred)t 205

tab/1 (pred) ... 205

code_class/2 (pred), 205

getet/2 (pred). ... 206

getetl/2 (pred) ... 206

display/2 (pred).........cooiiiiii i 206

X The Ciao System

display/1 (pred) ... 207

displayq/2 (pred) ... 207

displayq/1 (pred). ..o 207

30.3 Known bugs and planned improvements (io_basic) 208
31 Exception and Signal handling 209
31.1 Usage and interface (exceptions)......................... 209
31.2 Documentation on exports (exceptions)................... 209
catch/3 (pred) ... 209

intercept/3 (pred) i 210

throw/1 (pred)......... i 210

send_signal /1 (pred), 210
send_silent_signal /1 (pred) 211

halt/0 (pred) ... 211

halt/1 (pred) ... 211

abort/0 (pred) i 211

31.3 Known bugs and planned improvements (exceptions) 211

32 Changing system behaviour and various flags

.. 213
32.1 Usage and interface (prolog_flags).............cvvennnn. 214
32.2 Documentation on exports (prolog_flags) 214
set_prolog flag/2 (pred) 214
current_prolog flag/2 (pred) 214
prolog flag/3 (pred) 215
push_prolog_flag/2 (pred) 215
pop_prolog flag/1 (pred) 215
set_ciaoflag/2 (pred) 216
current_ciao_flag/2 (pred) 216
ciaoflag/3 (pred) 216
push_ciao_flag/2 (pred) 216
pop-ciao_flag/1 (pred) 216
prompt/2 (pred) ... 216
ge/0 (pred) ..o 217
nogc/0 (pred) ...t 217
fileerrors/0 (pred) i 217
nofileerrors/0 (pred) ..., 217
32.3 Documentation on multifiles (prolog_flags)............... 218
define_flag/3 (pred)............ L. 218
32.4 Documentation on internals (prolog_flags) 218
set_prolog_flag/1 (pred) 218

32.5 Known bugs and planned improvements (prolog_flags).... 218

33 Fast/concurrent update of facts 219

33.1 Usage and interface (data_facts) 219
33.2 Documentation on exports (data_facts)................... 219
asserta_fact/1 (pred)............., 219

asserta_fact/2 (pred)............. 220

assertz_fact/1 (pred)............ 220

assertz_fact/2 (pred)............ 220

current_fact/1 (pred) 220
current_fact/2 (pred) 221

retract_fact/1 (pred).......... 221

retractall fact/1 (pred) 222
current_fact_.nb/1 (pred), 222
retract_fact_.nb/1 (pred).............. 222
close_predicate/1 (pred)........................... 223
open_predicate/1 (pred) 223

set_fact/1 (pred) il 223

erase/1 (pred) ...l 224

reference/1 (regtype) ..o, 224

33.3 Documentation on internals (data_facts).................. 224
(data)/1 (decl) ..o 224
(concurrent)/1 (decl) il 224

33.4 Known bugs and planned improvements (data_facts)...... 224
34 Extending the syntax...................... 225
34.1 Usage and interface (syntax_extensions) 225
34.2 Documentation on internals (syntax_extensions).......... 225
op/3(decl) ... 225
new_declaration/1 (decl) 225
new_declaration/2 (decl) 225
load_compilation_module/1 (decl).................. 226
add_sentence_trans/2 (decl) 226
add_term_trans/2 (decl)................... 226
add_goal_trans/2 (decl) 227
add_clause_trans/2 (decl) 227
translation_predname/1 (regtype).................. 227

35 Message printing primitives................ 229
35.1 Usage and interface (io_aux).................oiii ... 229
35.2 Documentation on exports (1o_aux) 229
message/2 (pred). ... 229

message_lns/4 (pred) 230

messages/1 (pred)........... ... L 230

error/1 (pred)......... 231

warning/1 (pred)......... o oL 231

note/1 (pred) ... 231

message/1 (pred)......... ... L. 231

debug/1 (pred)....... ..o 231

inform_user/1 (pred)............, 231
display_string/1 (pred)........... 231

displaylist/1 (pred) ... 232
display_term/1 (pred)............ ...l 232
message_info/1 (regtype)...........coooiiiii.. 232
message_type/1 (regtype) 232

add_lines/4 (pred)........ ..., 232

35.3 Known bugs and planned improvements (io_aux)........... 232

xii The Ciao System

36 Attributed Variables Package 233
36.1 Example. 233

36.2 Usage and interface (attr_doc) 234

37 Attributed Variables Runtime.............. 235
37.1 Usage and interface (attr_rt), 235

37.2 Documentation on exports (attr_rt)...................... 235
attvar/1 (pred)......... i 235

put_attr_local/2 (pred).................. 235

put_attr/3 (pred)............. 235

get_attr_local/2 (pred) 235

get_attr/3 (pred) 236

del_attr_local/1 (pred) 236

attvarset/2 (pred) 236

copy-term/3 (pred) il 236

38 Attributed variables (deprecated) 237
38.1 Usage and interface (attributes)......................... 237

38.2 Documentation on exports (attributes)................... 237
attach_attribute/2 (pred) 237

get_attribute/2 (pred) L 237

update_attribute/2 (pred)......................... 238

detach_attribute/1 (pred) 238

38.3 Documentation on multifiles (attributes)................. 238
verify_attribute/2 (pred).............., 238

combine_attributes/2 (pred)....................... 238

38.4 Other information (attributes) 239

38.5 Known bugs and planned improvements (attributes) 239

39 Internal Runtime Information.............. 241
39.1 Usage and interface (system_info)........................ 241

39.2 Documentation on exports (system_info).................. 241
get_arch/1 (pred). ..., 241

get_os/1 (pred)o 241

get_platform/1 (pred)................... .. 242

get_debug/1 (pred)co i 242

get_eng_ location/1 (pred) 242

get_ciao_ext/1 (pred) ... 242

get_exec_ext/1 (pred), 243

get_so_ext/1 (pred) 243

this_module/1 (pred) 243

current_module/1 (pred) 243

ciao_c_headers_dir/1 (pred)........................ 243

ciaolib_dir/1 (pred) i 243

ciaolibdir/1 (pred)ccooiiiiiii 244

internal_module_id/1 (regtype) 244

39.3 Known bugs and planned improvements (system_info)..... 244

40 Conditional Compilation................... 245
40.1 Conditional Conditions 245

40.2 Usage and interface (condcomp_doc)....................... 245

40.3 Known bugs and planned improvements (condcomp_doc) 245

xiii

41 Other predicates and features defined by default

.. 247
41.1 Usage and interface (default_predicates) 247
41.2 Documentation on exports (default_predicates).......... 247
op/3 (udreexp)oooiiiiiiii 247
current_op/3 (udreexp) ... 247
append/3 (udreexp) ... 247
delete/3 (udreexp)ooviiiiiiiii 247
select/3 (udreexp)oooeviiiiiiiii .. 247
nth/3 (udreexp) ..o, 248
last/2 (udreexp)...........co i 248
reverse/2 (Wdreexp).ooiieiieniineniii... 248
length/2 (udreexp) ... 248
use_module/1 (udreexp)cooviiia... 248
use_module/2 (udreexp) 248
ensure_loaded/1 (udreexp) 248
(7)/2 (udreexp)cooviii 248
findnsols/5 (udreexp) 248
findnsols/4 (udreexp)ooiiiiiiiiiiii... 248
findall/4 (udreexp)cooiiiiiii .. 248
findall/3 (udreexp) L. 249
bagof/3 (udreexp) L 249
setof/3 (udreexp)o.oviiiiii 249
wellformed_body/3 (udreexp) 249
(data)/1 (udreexp)covuieiiiiiiin .. 249
(dynamic)/1 (udreexp) ... 249
current_predicate/2 (udreexp) 249
current_predicate/1 (udreexp) 249
clause/3 (udreexp) ..., 249
clause/2 (udreexp)oiiiiiiiiiii. 249
abolish/1 (udreexp)ccooiiiii. .. 249
retractall/1 (udreexp) 249
retract/1 (udreexp)............ L. 250
assert/2 (udreexp)...........oiiiiiiiiiiii ... 250
assert/1 (udreexp). ..., 250
assertz/2 (udreexp) 250
assertz/1 (udreexp).............c.ooiiiL. 250
asserta/2 (udreexp)................ i 250
asserta/1 (udreexp). ..., 250
read_option/1 (udreexp)oiii.. 250
second_prompt/2 (udreexp) 250
read_top_level /3 (udreexp) 250
read_term/3 (udreexp)............. 250
read_term/2 (udreexp)ooiiiiiii... 250
read/2 (udreexp) i 251
read/1 (udreexp)oooiiiiiiiiiiii 251
write_attribute/1 (udreexp) 251
printable_char/1 (udreexp)........................ 251
prettyvars/1 (udreexp)............................ 251
numbervars/3 (udreexp) ..., 251
portray_clause/1 (udreexp)........................ 251
portray_clause/2 (udreexp)........................ 251
printq/1 (udreexp) i 251
printq/2 (udreexp) i 251
print/1 (udreexp) L 251

print/2 (udreexp) i 251

xiv The Ciao System

write_canonical /1 (udreexp) 252
write_canonical/2 (udreexp)....................... 252
write_list1/1 (udreexp). ... 252
writeq/1 (udreexp) ... 252
writeq/2 (udreexp) ...t 252
write/1 (udreexp) il 252
write/2 (udreexp) i 252
write_option/1 (udreexp).................... ... 252
write_term/2 (udreexp)coiiiiii... 252
write_term/3 (udreexp)ii... 252
put_char/2 (udreexp), 252
put_char/1 (udreexp) 252
peek_char/2 (udreexp) ..., 253
peek_char/1 (udreexp) ..., 253
get_char/2 (udreexp)iiiiiiiL 253
get_char/1 (udreexp) 253
put_byte/2 (udreexp) 253
put_byte/1 (udreexp)ooiiiiii... 253
peek_byte/2 (udreexp) ... 253
peek_byte/1 (udreexp)..............iiiiL 253
get_byte/2 (udreexp)oiii. 253
get_byte/1 (udreexp) i, 253
char_codes/2 (udreexp)c.ooeeiiiiai... 253
number_chars/2 (udreexp) 253
atom_chars/2 (udreexp)...........oeeeuiiiea... 254
char_code/2 (udreexp)cooiiiii... 254
unify_with_occurs_check/2 (udreexp)............... 254
sub_atom/5 (udreexp)oiiiiiii. 254
compound/1 (udreexp), 254
once/1 (udreexp)cooiiiiiiiii 254
format_control/1 (udreexp)........................ 254
format_to_string/3 (udreexp) 254
sformat /3 (udreexp)........... 254
format/3 (udreexp).......... L. 254
format/2 (udreexp)............c.oiiiiiiii., 254
keypair/1 (udreexp)ccovuiiiiiiiii.. 254
keylist/1 (udreexp)oooeiiiiiiiiii... 255
keysort/2 (udreexp) 255
sort/2 (udreexp) ... 255
between/3 (udreexp) ..., 255
system_error_report/1 (udreexp)................... 255
replace_characters/4 (udreexp) 255
no_swapslash/3 (udreexp) 255
cyg2win/3 (udreexp)l 255
winpath_c¢/3 (udreexp).......... ..., 255
winpath/3 (udreexp)o i 255
winpath/2 (udreexp) ...l 255
using_windows/0 (udreexp) 255
rename-_file/2 (udreexp)........................... 256
delete_directory/1 (udreexp) 256
delete_file/1 (udreexp)c.ooveiiiienino. .. 256
set_exec.mode/2 (udreexp)oiiii... 256
chmod/3 (udreexp)............c.ooiiiiiiii.. 256
chmod/2 (udreexp)...............coiiiiii.. 256
fmode/2 (udreexp) oL 256

touch/1 (udreexp)coovvviiieiiiii .. 256

modif_time0/2 (udreexp).......................... 256
modif_time/2 (udreexp)............. 256
file_properties/6 (udreexp) 256
file_property /2 (udreexp), 256
file_exists/2 (udreexp) ... 257
file_exists/1 (udreexp)coii. 257
mktemp_in_tmp/2 (udreexp) 257
mktemp/2 (udreexp) ... 257
directory_files/2 (udreexp) 257
wait/3 (udreexp) ... 257
exec/8 (udreexp) ... 257
exec/3 (udreexp) ... 257
exec/4 (udreexp) i 257
popen_mode/1 (udreexp) 257
popen/3 (Udreexp)ovveiii i 257
system/2 (udreexp)............ooiiiiiiii... 257
system/1 (udreexp)..........ooveiiiiiiiieiii... 258
shell/2 (udreexp) ...l 258
shell/1 (udreexp)ccoeiiiieiii .. 258
shell/0 (udreexp) 258
cd/1 (udreexp)oouiiiiiiii 258
working_directory/2 (udreexp)..................... 258
make_dirpath/1 (udreexp) 258
make_dirpath/2 (udreexp) 258
make_directory/1 (udreexp) 258
make_directory/2 (udreexp) 258
umask/2 (udreexp) i 258
current_executable/1 (udreexp).................... 258
current_host/1 (udreexp)............., 259
get_address/2 (udreexp) ... 259
get_tmp_dir/1 (udreexp)i... 259
get_grnam/1 (udreexp) 259
get_pwnam/1 (udreexp)................cooii.... 259
get_gid/1 (udreexp) L. 259
get_uid/1 (udreexp)ooeiiiiiiiiiiii. 259
get_pid/1 (udreexp)cooiiiiiiiii 259
file_dir name/3 (udreexp) 259
extract_paths/2 (udreexp)......................... 259
dir_path/2 (udreexp) 259
copy-file/3 (udreexp) 259
copy-file/2 (udreexp) 260
cerrno/1 (udreexp)oooiiii i 260
del_env/1 (udreexp) 260
set_env/2 (udreexp) i 260
current_env/2 (udreexp) ..., 260
setenvstr/2 (udreexp) ... 260
getenvstr/2 (udreexp) ... 260
datime_struct/1 (udreexp) 260
datime/9 (udreexp).............. ...l 260
datime/1 (udreexp). ..., 260
time/1 (udreexp)cooiiiiii i 260
pause/1 (udreexp)........ ... 260
current_heap_limit/1 (udreexp) 261
set_heap_limit/1 (udreexp) 261
garbage_collect /0 (udreexp) 261

current_atom/1 (udreexp)......................... 261

XV

xvi The Ciao System

predicate_property/3 (udreexp).................... 261
predicate_property/2 (udreexp).................... 261
time_option/1 (udreexp)c.oiii... 261
tick_option/1 (udreexp)..................iiii... 261
clockfreq-option/1 (udreexp) 261
memory_option/1 (udreexp)....................... 261
garbage_collection_option/1 (udreexp).............. 261
symbol_option/1 (udreexp)........................ 261
time_result/1 (udreexp)............c.ooiiiia... 262
memory_result/1 (udreexp) 262
geresult/1 (udreexp) ...l 262
symbol_result/1 (udreexp) 262
new_atom/1 (udreexp)............. 262
tick_result/1 (udreexp)...........c.cooviiiiii.. 262
clockfreq-result/1 (udreexp)....................... 262
statistics/2 (udreexp).............. 262
statistics/0 (udreexp)ooviiiiiiiia.. 262
closefile/1 (udreexp) ..., 262
told/0 (udreexp)c.oviiiiii 262
telling/1 (udreexp) ..., 262
tell/1 (udreexp)oooiiiiiii 263
seen/0 (udreexp) ... 263
seeing/1 (udreexp)oouiiii i, 263
see/1 (udreexp)oviiiini 263
current_key/2 (udreexp) ... 263
recorded/3 (udreexp) ..., 263
recordz/3 (udreexp) 263
recorda/3 (udreexp)ooiiiiiiii .. 263
ttydisplay string/1 (udreexp)...................... 263
ttyskipeol /0 (udreexp)cooiiiiii... 263
ttydisplayq/1 (udreexp).........oooeeiiiiiia.. 263
ttydisplay /1 (udreexp)...........ooveiiiia.. 263
ttyflush/0 (udreexp)........ L. 264
ttytab/1 (udreexp) oLl 264
ttyskip/1 (udreexp) ... 264
ttyput/1 (udreexp)o i 264
ttynl/0 (udreexp) ... 264
ttygetl/1 (udreexp) i 264
ttyget/1 (udreexp) ... 264
PART III - ISO-Prolog library (iso)............. 265
42 1ISO-Prolog package................oou... 267

42.1 Usage and interface (iso_doc), 267

xvii

43 All solutions predicates 269
43.1 Usage and interface (aggregates)cooviuuo .. 269
43.2 Documentation on exports (aggregates)................... 269

setof /3 (pred) 269
bagof/3 (pred) ... 270
findall/3 (pred)oc i 271
findall/4 (pred) 271
findnsols/4 (pred) L 272
findnsols/5 (pred) 272
(7)/2 (pred) . ovooe 272
43.3 Known bugs and planned improvements (aggregates) 273

44 Dynamic predicates........................ 275
44.1 Usage and interface (dynamic_rt)......................... 275
44.2 Documentation on exports (dynamic_rt)................... 275

asserta/1 (pred)......... ... i 275
asserta/2 (pred)......... ... i 276
assertz/1 (pred) i 276
assertz/2 (pred) i 276
assert/1 (pred).............. . L. 276
assert/2 (pred) ... 277
retract/1 (pred) ... 277
retractall/1 (pred)......... 277
abolish/1 (pred)............ 278
clause/2 (pred). ... 278
mfclause/2 (pred) il 278
current_predicate/1 (pred) 278
current_predicate/2 (pred) 279
(dynamic)/1 (pred) ... 279
(data)/1 (pred) ... 279
erase/1 (pred)............ il 280
wellformed_body/3 (pred)......................... 280
44.3 Documentation on multifiles (dynamic_rt)................. 280
do-on_abolish/1 (pred)............................ 280
44.4 Known bugs and planned improvements (dynamic_rt)...... 280

45 Terminput, 281
45.1 Usage and interface (read)..............ccoovviiieii.... 281
45.2 Documentation on exports (read) 281

read/1 (pred) i 281
read/2 (pred) ... 281
read_term/2 (pred) 282
read_term/3 (pred) 282
read_top_level/3 (pred) 282
second_prompt/2 (pred) 282
read_option/1 (regtype).........cooveeiiiia.. 282
45.3 Documentation on multifiles (read)........................ 283
define flag/3 (pred)........... 283

45.4 Known bugs and planned improvements (read)............. 283

xviii The Ciao System

46 Termoutput.............................. 285
46.1 Usage and interface (write)............................... 285
46.2 Documentation on exports (write) 285

write_term/3 (pred) oL 285
write_term/2 (pred) i 286
write_option/1 (Prop)...........c.ooiiiiiii... 286
write/2 (pred) ... 286
write/1 (pred) 287
writeq/2 (pred) ... 287
writeq/1 (pred) ... 287
write list1/1 (pred) ... 287
write_canonical/2 (pred) 287
write_canonical/1 (pred) 288
print/2 (pred)......... 288
print/1 (pred)........ ..o 288
printq/2 (pred) ... 288
printq/1 (pred) ... 289
portray_clause/2 (pred) 289
portray_clause/1 (pred)........................... 289
numbervars/3 (pred) L 289
prettyvars/1 (pred)............... ... 289
printable_char/1 (pred) 290
write_attribute/1 (pred) 290
46.3 Documentation on multifiles (write)....................... 290
define_flag/3 (pred)............ 290
portray_attribute/2 (pred) 290
portray/1 (pred) 291
46.4 Known bugs and planned improvements (write)............ 291

47 Defining operators............... 293
47.1 Usage and interface (operators) 293
47.2 Documentation on exports (operators).................... 293

op/3 (Pred) ..o 293
current-op/3 (pred) ... 294
current_prefixop/3 (pred), 294
current_infixop/4 (pred) 294
current_postfixop/3 (pred) 295
standard_ops/0 (pred) 295

48 The Iso Byte Char module................. 297
48.1 Usage and interface (iso_byte_char)...................... 297
48.2 Documentation on exports (iso_byte_char) 297

char_code/2 (pred) oL 297
atom_chars/2 (pred) i 297
number_chars/2 (pred)............................ 298
char_codes/2 (pred) 298
get_byte/1 (pred)....... ... i 299
get_byte/2 (pred).......... i 299
peek_byte/1 (pred) ... 299
peek_byte/2 (pred) L. 299
put_byte/1 (pred) 300
put_byte/2 (pred) 300
get_char/1 (pred).......... 300
get_char/2 (pred)..............ciiiiiiii 301

peek_char/1 (pred) L. 301

peek_char/2 (pred), 301

put_char/1 (pred) 301

put_char/2 (pred) 301

49 Miscellaneous ISO Prolog predicates........ 303
49.1 Usage and interface (iso_misc) 303

49.2 Documentation on exports (iso_misc)..................... 303
once/l (pred)coviuiiiii 303

compound/1 (pred)................ i 303

sub_atom/5 (pred)o 303
unify_with_occurs_check/2 (pred) 304

49.3 Known bugs and planned improvements (iso_misc) 304

50 Incomplete ISO Prolog predicates 305
50.1 Usage and interface (iso_incomplete)..................... 305

50.2 Documentation on exports (iso_incomplete) 305
close/2 (pred) ... 305

stream_property/2 (pred) 305

PART IV - Classic Prolog library (classic)....... 307
51 Definite Clause Grammars................. 309
51.1 Usage and interface (deg_doc) 311

52 Phrase Support for DCGs.................. 313
52.1 Usage and interface (dcg_phrase_doc)..................... 313

52.2 Known bugs and planned improvements (dcg_phrase_doc).. 313

53 Formatted output 315
53.1 Usage and interface (format).............................. 315

53.2 Documentation on exports (format) 315
format/2 (pred) 315

format/3 (pred) 316

sformat/3 (pred) 316

format_to_string/3 (pred), 316

format_control/1 (regtype) 317

53.3 Known bugs and planned improvements (format)........... 319

xix

XX The Ciao System

54 List processingcoiviuinn.... 321
54.1 Usage and interface (1ists)............. 321
54.2 Documentation on exports (1ists)........................ 321

nonsingle/1 (pred)................ 321
append/3 (pred) 322
reverse/2 (pred) ... 324
reverse/3 (pred)......... ... 324
delete/3 (pred) ... 325
deletenon_ground/3 (pred) 325
select/3 (pred) ... 326
length/2 (pred)o i 326
nth/3 (pred) ... 327
add_after/4 (pred).............. 328
add_before/4 (pred) 329
liSt1/2 (Prop) «oovveneei i 329
dlist/3 (pred) ..o 329
list_concat/2 (pred).............ccooiiiiiiL 329
list_insert/2 (pred) 329
insert_last/3 (pred).......... L 330
contains 10/2 (pred) ... 330
containsl/2 (pred) 330
nocontainsx/2 (pred) L. 330
last/2 (pred) ... 330
list_lookup/3 (pred) L 330
list_lookup/4 (pred) ... 330
intset_insert/3 (pred)l 330
intset_delete/3 (pred) ... 330
intset_in/2 (pred) 331
intset_sequence/3 (pred) 331
intersection/3 (pred)l 331
union/3 (pred) 331
difference/3 (pred) ... 331
sublist /2 (Prop)coovuiiii 332
subordlist/2 (prop) ... 332
equal lists/2 (pred).......... 332
list_to_list_of lists /2 (pred) 332
powerset/2 (pred) ... 332
cross_product/2 (pred).............. 333
sequence_to_list/2 (pred)............... 333
list_of_lists/1 (regtype).........cooeeiiiiii.. 333

55 Sorting lists.................. 335
55.1 Usage and interface (sort)................ooiiiii.. 335
55.2 Documentation on exports (sort) 335

sort/2 (pred). ... 335
keysort/2 (pred) i 336
keylist/1 (regtype)ooooviii i 336
keypair/1 (Tegtype)ovvevureeie i 336

55.3 Known bugs and planned improvements (sort)............. 336

xx1

56 compiler (library) 337
56.1 Usage and interface (compiler)c....... 337
56.2 Documentation on exports (compiler)..................... 337

make_po/1 (pred) 337
make_wam/1 (pred) 337
ensure_loaded/1 (pred) 337
ensure_loaded/2 (pred) 337
use_module/1 (pred)........... 337
use_module/2 (pred)........... L. 337
use_module/3 (pred)................ 338
unload/1 (pred)........ i 338
set_debug_mode/1 (pred) 338
set_nodebug_mode/1 (pred) 338
set_debug_module/1 (pred)........................ 338
set_nodebug_module/1 (pred) 338
set_debug_module_source/1 (pred) 338
mode_of_ module/2 (pred) 338
module_of /2 (pred)l 338

57 Enumeration of integers inside a range...... 339
57.1 Usage and interface (between) 339
57.2 Documentation on exports (between)...................... 339

between/3 (pred)............oiiiiiiiiii 339

58 Operating system utilities.................. 341
58.1 Usage and interface (system).............................. 341
58.2 Documentation on exports (system) 341

pause/1 (pred) 341
time/1 (pred) . ..ot 342
datime/1 (pred)........ ... 342
datime/9 (pred).......... ... i 342
datime_struct/1 (regtype).............. 344
getenvstr/2 (pred)........ il 344
setenvstr/2 (pred)...........c.. i 344
current_env/2 (pred)............. ... 344
setenv/2 (pred). 344
delenv/1 (pred) ... 345
ceerrno/1 (pred). ..o 345
copy-file/2 (pred) ... 345
copy-file/3 (pred) ... 345
dir_path/2 (pred)............ L 345
extract_paths/2 (pred)............................ 346
file_dir name/3 (pred) 346
get_pid/1 (pred)....... ... 346
get_uid/1 (pred)........oooiiiii 347
get_gid/1 (pred).........cco i 347
get_pwnam/1 (pred) 347
get_grnam/1 (pred)............ 347
get_tmp_dir/1 (pred) L. 347
get_address/2 (pred) ..., 348
current_host/1 (pred), 348
current_executable/1 (pred) 348
umask/2 (pred) 348
make_directory/2 (pred) 349

make_directory/1 (pred) 349

xxii The Ciao System

make_dirpath/2 (pred)................, 349
make_dirpath/1 (pred)............. 349
working_directory/2 (pred)........................ 349
cd/1 (pred) . ..o 350
shell/O (pred)o 350
shell/1 (pred) i 350
shell/2 (pred) ..o 350
system/1 (pred)o 351
system/2 (pred) ... 351
popen/3 (pred) ... 351
popen_mode/1 (regtype) ..., 351
exec/4 (pred) 352
exec/3 (pred) 352
exec/8 (pred)ooii i 352
wait/3 (pred) ... 353
directory_files/2 (pred)........... 353
mktemp/2 (pred). ... 354
mktemp_in_tmp/2 (pred) 354
file_exists/1 (pred) ... 354
file_exists/2 (pred). ... 354
file_property/2 (pred).......... ... i 354
file_properties/6 (pred) 355
modif_time/2 (pred) 356
modif_time0/2 (pred) 356
touch/1 (pred) ... 356
fmode/2 (pred) 357
chmod/2 (pred) 357
chmod/3 (pred) ... 357
set_execmode/2 (pred)l 357
delete_file/1 (pred)o 358
delete_directory/1 (pred).......................... 358
rename file/2 (pred) 358
using_windows/0 (pred)..................... ... 358
winpath/2 (pred)............ ... i 358
winpath/3 (pred)............... . i 359
winpath_c/3 (pred)............ 359
cyg2win/3 (pred) ... 360
no_swapslash/3 (pred) 360
replace_characters/4 (pred)........................ 360
system_error_report/1 (pred) 360
58.3 Documentation on multifiles (system) 360
define_flag/3 (pred)............ 360

58.4 Known bugs and planned improvements (system)........... 361

xx1il

59 Prolog system internal predicates........... 363
59.1 Usage and interface (prolog_sys)ovuueeennnno... 363
59.2 Documentation on exports (prolog_sys)................... 363

statistics/0 (pred) ... 363
statistics/2 (pred) i 363
clockfreq_result/1 (regtype)covvieeeni.. 365
tick_result/1 (regtype) ..., 365
new_atom/1 (pred) 365
symbol_result/1 (regtype)......................... 366
geresult/1 (regtype)ovvviiii 366
memory_result/1 (regtype), 366
time_result/1 (regtype)o 366
symbol_option/1 (regtype)coeeiii... 366
garbage_collection_option/1 (regtype) 366
memory_option/1 (regtype)oi... 366
clockfreq_option/1 (regtype)..........covvii .. 367
tick_option/1 (regtype)ccovviiieeiiii... 367
time_option/1 (regtype).......c.ovvuueeiiiii.. 367
predicate_property/2 (pred) 367
predicate_property/3 (pred) 367
current_atom/1 (pred) 367
garbage_collect /0 (pred) 368
59.3 Known bugs and planned improvements (prolog_sys) 368

60 DEC-10 Prolog file IO 369
60.1 Usage and interface (dec10_io)ooo.... 369
60.2 Documentation on exports (dec10_io)..................... 369

see/l (pred)o.ooeiii 369
seeing/1 (pred)....... ... 369
seen/0 (pred) ... 369
tell/1 (pred) ..o 369
telling/1 (pred) ..o 369
told/0 (pred) ..o 370
closefile/1 (pred) ... 370

61 Quintus-like internal database.............. 371
61.1 Usage and interface (old_database)....................... 371
61.2 Documentation on exports (old_database) 371

recorda/3 (pred) ... 371
recordz/3 (pred) i 371
recorded/3 (pred) 372

current _key/2 (pred)..........ol 372

xxiv The Ciao System

62 ttyout (library)..........coviiiiiiia.. 373
62.1 Usage and interface (ttyout).................ooiiiii... 373

62.2 Documentation on exports (ttyout)....................... 373
ttyget/1 (pred). 373

ttygetl/1 (pred).......cooieiiiiiii 373

ttynl/0 (pred) ... i 373

ttyput/1 (pred) ... 373

ttyskip/1 (pred).........c.oo i 373

ttytab/1 (pred) 374

ttyflush/0 (pred) L 374

ttydisplay/1 (pred)o il 374

ttydisplayq/1 (pred) ... 374

ttyskipeol/0 (pred) i 374

ttydisplay _string/1 (pred)......................... 374

63 Enabling operators at run-time............. 375
63.1 Usage and interface (runtime_ops_doc).................... 375

PART V - Assertions, Properties, Types, Modes,

Comments (assertions)..................... 377
64 The Ciao assertion package 379
64.1 Moreinfo........o 379
64.2 Some attention points i 379
64.3 Usage and interface (assertions_doc)..................... 380
64.4 Documentation on new declarations (assertions_doc)...... 380
(pred)/1 (decl). ... 380

(pred)/2 (decl) ... 381

(texec)/1 (decl) ... 381

(texec)/2 (decl) ... 381

(calls)/1 (decl) ..o 381

(calls)/2 (decl) ..o 381

(success)/1 (decl) ... 382

(success)/2 (decl) ... 382

(test)/1 (decl). ... 382

(test)/2 (decl). ... 382

(comp)/1 (decl) ... 383

(comp)/2 (decl) ... 383

(prop)/1 (decl)o 383

(prop)/2 (decl) ... 384

(entry)/1 (decl) 384

(exit)/1 (decl) ... 384

(exit)/2 (decl) ... 385

(modedef)/1 (decl) ... 385

(decl)/1 (decl) oo 385

(decl)/2 (decl) ..o 385

doc/2 (decl) ..o 386

comment/2 (decl) 386

64.5 Documentation on exports (assertions_doc) 386
check/1 (pred) ... 386

trust/1 (pred)........ ... 386

true/1 (pred) ...t 387

false/1 (pred) ..o 387

65 Types and properties related to assertions .. 389
65.1 Usage and interface (assertions_props) 389
65.2 Documentation on exports (assertions_props)............ 389

assrt_body /1 (regtype). ..o, 389
head_pattern/1 (prop)c.oovevuueeinno.... 390
complex_arg_property/1 (regtype) 390
property_conjunction/1 (regtype).................. 391
property _starterm/1 (regtype)..................... 391
complex_goal_property/1 (regtype)................. 391
nabody/1 (Prop) ... 392
dictionary /1 (regtype)ovvviieiiiiiia.. 392
c_assrt_body /1 (regtype)covviieiii. .. 392
s_assrt_body/1 (regtype) ..., 392
g-assrt_body/1 (regtype) ..., 393
assrt_status/1 (regtype)............c.oiiiii... 393
assrt_type/1 (regtype)oovvi 394
predfunctor/1 (regtype).......c.ooveeeeiiiiii... 394
propfunctor/1 (regtype)c.ooviiiiii... 394
docstring/1 (Prop) ... 394

66 Declaring regular types.................... 395
66.1 Defining properties 395
66.2 Usage and interface (regtypes_doc)....................... 397
66.3 Documentation on new declarations (regtypes_doc)........ 398

(regtype)/1 (decl) ... 398
(regtype)/2 (decl) ... i 398

67 Properties which are native to analyzers.... 399

67.1 Usage and interface (native_props)....................... 399
67.2 Documentation on exports (native_props) 399
clique/1 (Prop).......coouiiuiiii i 399
clique_1/1 (Prop) . .vovvvei e 400
compat/1 (Prop)oovviiiii 400
constraint/1 (prop)...........cooieiiiiii.. 400
covered/1 (Prop)ooouiiiiiiii .. 400
covered/2 (Prop) .. .vvve e 401
exception/1 (Prop) ... 401
exception/2 (Prop)ovuueenie i 401
fails/1 (Prop) ..o 401
finite_solutions/1 (prop) 401
have_choicepoints/1 (prop)........................ 401
indep/1 (Prop)oovueiuiii 402
INdep/2 (Prop) -« vvvvve e 402
instance/1 (Prop)ccooueiiiieiiiaa.. 402
is_det/1 (Prop) - - .vvvuvre i 402
linear/1 (Prop)cooviiiiiii .. 402
mshare/1 (Prop) ..., 403
mut_exclusive/1 (prop) 403
no_choicepoints/1 (prop)............oooooiioi... 404
no_exception/1 (prop)c.ooiiiiii. 404
no_exception/2 (Prop) ... 404
nosignal/1 (prop)............ 404
no_signal/2 (prop) ..., 404
non_det/1 (Prop)..........coevuieiiiiiiinenii.n. 404

nonground/1 (Prop)cooiiiiiiiii.. 404

XXV

xxVi The Ciao System

not_covered/1 (Prop)oveeuiiiiiianii.. 405
not_fails/1 (prop)l 405
not_mut_exclusive/1 (prop)........................ 405
num_solutions/2 (Prop)ccoieeeiii.... 405
solutions/2 (Prop)c.ovuuiiiiiiii ... 406
possibly_fails/1 (prop) 406
possibly_nondet/1 (prop)coii.. 406
relations/2 (Prop)coovuiiineniii .. 406
sideff_hard/1 (prop) ... 407
sideff_pure/1 (prop) ... 407
sideff_soft/1 (prop) il 407
signal/1 (Prop)..........oiuiiiiii .. 407
signal/2 (Prop) ... oo 407
signals/2 (Prop) . ..covvenee e 408
S12€/2 (PTODP) « v e 408
812€/3 (PIOD) - v v 408
size 1b/2 (Prop) ... 408
S12€.0/2 (PrOP) ..o o vv e 408
Size_ub/2 (Prop)oviieii 409
size_metric/3 (Prop)ooeeiiiiiii .. 409
size_metric/4 (Prop) ... 409
succeeds/1 (Prop)oovvieiii 409
SEEPS/2 (DTOD) v v vt e et 410
steps1b/2 (Prop)oveiii i 410
StEPS_0/2 (PIOP) . v vt ee e 410
steps_ub/2 (Prop) ... 410
tau/1 (Prop)ovve e 410
terminates/1 (Prop) ... 411
test_type/2 (Prop)oovvemiiii 411
throws/2 (Prop)ooeevi e 411
user_output/2 (Prop)voeviiiee i 411
instance/2 (Prop) ... 411
67.3 Known bugs and planned improvements (native_props).... 412
68 ISO-Prologmodes......................... 413
68.1 Usage and interface (isomodes_doc)....................... 413
68.2 Documentation on new modes (isomodes_doc) 413
(+)/1 (modedef)......... 413
(-)/1 (modedef) 413
(7)/1 (modedef) 413
(@)/1 (modedef)....... ... 413
(+)/2 (modedef)........ 413
(-)/2 (modedef) 414
(7)/2 (modedef) ... 414
(@)/2 (modedef)........ i 414

69 Classical Prologmodes 415
69.1 Usage and interface (basicmodes_doc)..................... 415

69.2 Documentation on new modes (basicmodes_doc)........... 415

(+)/1 (modedef) 415

(-)/1 (modedef) 415

(7)/1 (modedef) 415

(@)/1 (modedef)............ .. 415

in/1 (modedef)....... 416

out/1 (modedef) L 416

go/1 (modedef) 416

(+)/2 (modedef)............ 416

(-)/2 (modedef) 416

?)/2 (modedef)........ ... 417

(@)/2 (modedef). 417

in/2 (modedef)........... i 417

out/2 (modedef) L 417

go/2 (modedef) 417

70 Run-time checking of assertions 419
70.1 Usage and interface (rtchecks_doc)....................... 420

71 Unit Testing Library....................... 421
71.1 Additional noteso 421

71.2 Usage and interface (unittest_doc)....................... 422

71.3 Known bugs and planned improvements (unittest_doc).... 422

PART VI - Ciao library miscellanea............. 423
72 Library Paths for Ciao Bundles 425
72.1 Usage and interface (ciaopaths_doc)...................... 425

72.2 Known bugs and planned improvements (ciaopaths_doc)... 425

73 Analytic benchmarks 427
73.1 Testing Calls.o 427
73.2 Testing non-deterministic behavior......................... 427
73.3 Testing environment handling 427
73.4 Testing indexing mechanisms.............................. 428
73.5 Testing unification 428
73.6 Testing dereferencing i, 428
73.7 Testing the cut........ ... i 429
73.8 Assorted small programs................... i 429
73.9 Usage and interface (ecrc)............. 430
73.10 Documentation on exports (ecrc) 430

main/1 (pred). ... 430
benchmark_usage/1 (regtype) 431
just_benchmarks/0 (pred)......................... 431
generate_human file/0 (pred)...................... 431
generate_machine _file/0 (pred)..................... 431
send_info_to_developers/0 (pred)................... 432
arithm_average/2 (pred) 432
geom_average/2 (pred).................... ... 432

73.11 Known bugs and planned improvements (ecrc)............ 432

xXxVvii

xxviii The Ciao System

74 Parse and return command-line options..... 433
74.1 Usage and interface (getopts) 433

74.2 Documentation on exports (getopts)...................... 433
getopts/4 (pred) ... 433

clloption/2 (pred) ... 435

74.3 Documentation on internals (getopts)..................... 435

spec/1 (TeGLyPe) . vvveee i 435

75 llists (library)ccovviviininiia... 437
75.1 Usage and interface (11ists)...................oooo. .. 437

75.2 Documentation on exports (11ists)....................... 437
append/2 (pred) i 437

flatten/2 (pred)o 437

collect_singletons/2 (pred) 437

transpose/2 (pred) ... 438

76 Structured stream handling 439
76.1 Usage and interface (streams) 439

76.2 Documentation on exports (streams)...................... 439
open_null_stream/1 (pred) 439

open_input/2 (pred) 439

close_input/1 (pred) ..., 439

open_output/2 (pred).............. 439

close_output/1 (pred).............. 440

77 Dictionaries..........ooviiiiiiinnennn.. 441
77.1 Usage and interface (dict)............cooviiiiaioa... 441

77.2 Documentation on exports (dict) 441
dictionary /1 (regtype)ovviiiiiiii 441

dictionary/5 (pred)........... L. 441

dicnode/2 (pred) ... 441

dicdookup/3 (pred) ...l 441

diclookup/4 (pred) ... 442

dic_get/3 (pred)oviiii 442

dicreplace/4 (pred) ... 442

old_or_new/1 (regtype)oovuveeniieeennn... 442
non_empty_dictionary/1 (regtype) 442

77.3 Known bugs and planned improvements (dict)............. 443

78 String processingcovvviiiiunnnn. 445
78.1 Usage and interface (strings) 445

78.2 Documentation on exports (strings)...................... 445
getline/2 (pred) il 445

getline/1 (pred) ... 445

line/1 (regtype)vvvneiei 445

write_string/2 (pred) L 446

write_string/1 (pred) 446

whitespace/2 (pred)l 446

whitespace0/2 (pred) ..., 446

string/3 (pred) ... 447

XXIX

79 Printing status and error messages 449
79.1 Usage and interface (messages) 449
79.2 Documentation on exports (messages)..................... 449

error_message/1 (pred) 449
error_message/2 (pred)l 449
error_message/3 (pred)l 450
warning_message/1 (pred)......................... 450
warning_message/2 (pred)......................... 450
warning_message/3 (pred)......................... 450
note_message/1 (pred) 451
note_message/2 (pred) ..., 451
note_message/3 (pred) 451
simple_message/1 (pred) 451
simple_message/2 (pred) 451
optional_message/2 (pred) 452
optional_message/3 (pred) 452
debug_message/1 (pred) 452
debug_message/2 (pred) 452
debug_goal/2 (pred) 452
debug_goal/3 (pred) ... 453
show_message/2 (pred), 453
show_message/3 (pred) 453
show_message/4 (pred) 453
message_t/1 (regtype) 454
location_t/1 (udreexp)c.oooviiieni.... 454
79.3 Documentation on multifiles (messages) 454
issue_debug_messages/1 (pred) 454
79.4 Known bugs and planned improvements (messages) 454

80 Accessing and redirecting the stream aliases

.. 455
80.1 Usage and interface (io_alias_redirection).............. 455
80.2 Documentation on exports (io_alias_redirection)........ 455
set_stream/3 (pred)........... 455

get_stream/2 (pred) 455

81 Reading terms from strings 457
81.1 Usage and interface (read_from_string) 457
81.2 Documentation on exports (read_from_string)............ 457
read_from_string/2 (pred) 457
read_from_string/3 (pred) 457
read_from_string_opts/4 (pred) 457
read_from_string_atmvars/2 (pred) 458
read_from_string_atmvars/3 (pred) 459
read_from_atom_atmvars/2 (pred).................. 459
read_from_atom/2 (pred).......................... 460

81.3 Known bugs and planned improvements (read_from_string)

XXX The Ciao System

82 ctrlcclean (library) 461
82.1 Usage and interface (ctrlcclean)......................... 461

82.2 Documentation on exports (ctrlcclean)................... 461
ctrlc_clean/1 (pred).............. 461

delete_on_ctrle/2 (pred).......... 461

ctricclean/0 (pred) ... 461

83 errhandle (library) 463
83.1 Usage and interface (errhandle) 463

83.2 Documentation on exports (errhandle).................... 463
error_protect/1 (pred) 463

handle_error/2 (pred).............., 463

84 Fast reading and writing of terms 465
84.1 Usage and interface (fastrw)................... 465

84.2 Documentation on exports (fastrw)....................... 465
fast_read/1 (pred) i 465

fast_write/1 (pred) 465

fast read/2 (pred) 465

fast_write/2 (pred) L 466

fast_write_to_string/3 (pred)....................... 466

84.3 Known bugs and planned improvements (fastrw)........... 466

85 File name manipulation.................... 467
85.1 Usage and interface (filenames) 467

85.2 Documentation on exports (filenames).................... 467
no_path_filename/2 (pred)........................ 467
file_directory_base_name/3 (pred).................. 468

file name_extension/3 (pred) 468

basename/2 (pred)iiiiiiii.. 469

atom_or_str/1 (regtype)...........cooiiiii.. 469

extension/2 (pred) 469

86 Symbolic filenames 471
86.1 Usage and interface (symfnames) 471

86.2 Documentation on exports (symfnames).................... 471
open/3 (pred)o 471

86.3 Documentation on multifiles (symfnames) 472
alias_file/1 (pred).......... ... i 472

file_alias/2 (pred)....... ... 472

86.4 Other information (symfnames)............................ 472

87 File/Stream Utilities....................... 473
87.1 Usage and interface (file_utils)......................... 473

87.2 Documentation on exports (file_utils)................... 473
file_terms/2 (pred) ... 473

copy-stdout/1 (pred) 473

file_to_string/2 (pred).............., 474

file_to_string/3 (pred).............., 474

string-to_file/2 (pred)............ 474

stream_to_string/2 (pred) 474

stream_to_string/3 (pred) 474

output_tofile/2 (pred).................. 475

88 Filelocksl 477
88.1 Usage and interface (file_1ocks)cou.... 477
88.2 Documentation on exports (file_locks)................... 477

lock file/3 (pred) ... 477
unlock file/2 (pred)............ 477
88.3 Known bugs and planned improvements (file_locks) 477

89 Lists and conjunctions and disjunctions..... 479
89.1 Usage and interface (formulae)c....... 479
89.2 Documentation on exports (formulae)..................... 479

list_to_conj/3 (pred)ccoiiiiiiiii... 479
list_to_conj/2 (pred)coiiiiiiiia. 479
conj_tolist/2 (pred)l 480
list_to_disj/2 (pred)............. ... L. 480
disj-to_list/2 (pred).......... ... L. 481
conj_tollist/2 (pred) L. 481
llist_to_conj/2 (pred) ..., 482
disj_tollist/2 (pred)c.o i 482
list_to_disj/2 (pred) ... 482
body2list/2 (pred)............... 482
asbody_to_conj/2 (pred) 482
assert_body_type/1 (prop) ... 482
conj_disj_type/1 (regtype)........ccooviiii.. 482
t_conj/1 (regtype)ooviiii 483
todisj/1 (regbtype) . ..o vvee 483
list_to_disj2/2 (pred)..........ccoiiiiiiiii... 483

90 Term manipulation utilities 485
90.1 Usage and interface (terms).................. 485
90.2 Documentation on exports (terms) 485

term_size/2 (pred)........ ... 485
copy-args/3 (pred) ... 486
arg/2 (pred) ...ooe e 486
atom_concat/2 (pred).......... 486

91 Term checking utilities..................... 489
91.1 Usage and interface (terms_check)........................ 489
91.2 Documentation on exports (terms_check).................. 489

ask/2 (pred) ... 489
instance/2 (Prop)oieiiiiiiiiiii 489
subsumes_term/2 (pred) 489
variant/2 (pred).......... ... i 489
most_general_instance/3 (pred) 489
most_specific_generalization/3 (pred)............... 490
unifiable/3 (pred) L 490
91.3 Other information (terms_check) 490

91.4 Known bugs and planned improvements (terms_check) 490

XXX1

xxxii The Ciao System

92 Sets of variablesinterms 491
92.1 Usage and interface (terms_vars)......................... 491

92.2 Documentation on exports (terms_vars)................... 491
varset/2 (pred)......... i 491

intersect_vars/3 (pred)ciiii.. 491

member_var/2 (pred) 491

diff vars/3 (pred)............o i 491

varsbag/3 (pred) i 491

varset_in_args/2 (pred)............ ... 491

term_variables/2 (pred) 492

term_variables/3 (pred) 492

93 Cyclic terms handling 493
93.1 Usage and interface (cyclic_terms)....................... 493

93.2 Documentation on exports (cyclic_terms) 493
acyclic_term/1 (pred) 493

uncycle_term/2 (pred) L. 493

recycle_term/2 (pred).............., 493

cyclicsterm/1 (pred) L 493

cyclicsterm/1 (pred) ... 494

cyclic.term/1 (pred)o 494

94 A simple pretty-printer for Ciao programs .. 495

94.1 Usage and interface (pretty_print)....................... 495
94.2 Documentation on exports (pretty_print) 495
pretty_print/2 (pred) oL 495
pretty_print/3 (pred) L. 495
pretty_print/4 (pred)l 495

94.3 Documentation on internals (pretty_print) 496
clauses/1 (regtype)cooieiiiiii i 496

clause/1 (regtype)oovvuiiiiii i 496

clterm/1 (regtype) ... 496

body/1 (regtype)o 496

flag/1 (regtype) - . .vvvee 496

94.4 Known bugs and planned improvements (pretty_print).... 497
95 Pretty-printing assertions.................. 499
95.1 Usage and interface (assrt_write)........................ 499
95.2 Documentation on exports (assrt_write).................. 499
write_assertion/6 (pred)..............., 499
write_assertion/7 (pred)............... 499
write_assertion_as_comment/6 (pred)............... 500
write_assertion_as_comment/7 (pred)............... 500
write_assertion_as_double_comment /6 (pred)........ 500

write_assertion_as_double_comment/7 (pred)........ 500

96 The Ciao library browser 501
96.1 Usage and interface (librowser) 501

96.2 Documentation on exports (librowser).................... 502
update/0 (pred).......... i 502

browse/2 (pred)ot 502

where/1 (pred) ... 502

describe/1 (pred)........ ... 503

system_lib/1 (pred)............ 503

apropos/1 (pred) i 503

96.3 Documentation on internals (librowser)................... 504
apropos_spec/1 (regtype) ... 504

97 Code translation utilities................... 505
97.1 Usage and interface (expansion_tools).................... 505

97.2 Documentation on exports (expansion_tools)............. 505
imports_meta_pred/3 (pred)....................... 505

body_expander/6 (pred) 505

arg_expander/6 (pred) 506

97.3 Documentation on internals (expansion_tools)............ 506
expander_pred/1 (Prop)...........cooieiiiiiii.. 506

97.4 Known bugs and planned improvements (expansion_tools)

.. 509
98.1 Usage and interface (concurrency)........................ 509
98.2 Documentation on exports (concurrency).................. 509
engcall/4 (pred) 509

eng-call/3 (pred) 510
eng_backtrack/2 (pred) 510

engcut/1 (pred) i 510

eng.release/1 (pred)l 511

eng_wait/1 (pred) 511

eng kill/1 (pred) ... 511

eng killothers/0 (pred)............................ 511

engself/1 (pred) 511

goalid/1 (pred)coouiiiiiiiii 512

eng_goal_id/1 (pred) 512

eng_status/0 (pred)............. 512

lock_atom/1 (pred) 512
unlock_atom/1 (pred)........... 512
atom_lock_state/2 (pred).......................... 513
(concurrent)/1 (pred). ..., 513

98.3 Known bugs and planned improvements (concurrency) 514
99 All solutions concurrent predicates 515
99.1 Usage and interface (conc_aggregates).................... 515
99.2 Documentation on exports (conc_aggregates) 515
findall/3 (pred) 515

setof /3 (pred)............ . 515

bagof/3 (pred)c. 516

99.3 Known bugs and planned improvements (conc_aggregates)

xxxiil

XXXV The Ciao System

100 The socket interface...................... 517
100.1 Usage and interface (sockets) 517

100.2 Documentation on exports (sockets)..................... 517
connect_to_socket_type/4 (pred) 017

connect_to_socket/3 (pred) 518

bind_socket/3 (pred)............l 518

socket_accept/2 (pred)............ 518

select_socket/5 (pred)............... 519

socket_send/2 (pred)............. 519

socket_recv_code/3 (pred) 520

socket_recv/2 (pred) 520

socket_shutdown/2 (pred) 520

hostname_address/2 (pred)........................ 521

socket_type/1 (regtype) ..., 521

shutdown_type/1 (regtype).............cooeoi... 521

101 Sockets I/O........cooiiiiiiiinan... 523
101.1 Usage and interface (sockets_io)........................ 523

101.2 Documentation on exports (sockets_io).................. 523
serve_socket/3 (pred)ol 523

safe_write/2 (pred) i 523

102 The Ciao Make Package 525
102.1 Usage and interface (make_doc) 525

102.2 Other information (make_doc)............................ 525
102.2.1 The Dependency Rules.......................... 525

102.2.2 Specifying Paths........... 527

102.2.3 Documenting Rules............................. 527

102.2.4 An Example of a Makefile....................... 527

103 Predicates Available When Using The Make

Package.......... ... oo il 531
103.1 Usage and interface (make_rt) 531
103.2 Documentation on exports (make_rt)..................... 531

make/1 (pred) i 531
target/1 (regtype)ovveviei 531
make_option/1 (pred).................. 532
verbose_message/1 (pred) 532
verbose_message/2 (pred) 532
dot_concat/2 (pred), 532
call_unknown/1 (pred)............................ 532
all_values/2 (pred) ... 532
get_value/2 (pred) L. 532
get_value_def/3 (pred) 532
get_all_values/2 (pred)c.ooiii.... 532
name_value/2 (pred)............ 533
set_name_value/2 (pred)c...... 533
cp-name_value/2 (pred)........................... 533
get_name_value/3 (pred) 533
get_name_value_string/3 (pred) 533
add_name_value/2 (pred) 533
del .name_value/1 (pred) 533
check_var_exists/1 (pred).......................... 533

findfile/2 (pred) i 533

XXXV

vpath/1 (pred)....... ... 533
add_vpath/1 (pred).......... 534
vpath-mode/3 (pred) 534
add_vpath-mode/3 (pred) 534
bold_message/1 (pred)............................ 534
bold_message/2 (pred) 534
normal message/2 (pred) 534
bolder_message/1 (pred) 534
bolder_message/2 (pred) 534
newer/2 (pred) ... 534
register_module/1 (pred).......................... 534
unregister_module/1 (pred) 534
push_name_value/3 (pred)......................... 535
pop_name_value/1 (pred) 535
push_active_config/1 (pred) 535
pop-active_config/0 (pred) 535
get_active_config/1 (pred) 535
dyn_load_cfg_module_into_make/1 (pred) 535
get_settings nvalue/1 (pred)....................... 535
apply_vpath-mode/4 (pred) 535
get_name/2 (pred) ... 535
up-to_date/2 (udreexp) 536
103.3 Known bugs and planned improvements (make_rt) 536
104 Additional operating system utilities 537
104.1 Usage and interface (system_extra)...................... 537
104.2 Documentation on exports (system_extra) 537
del_dir_if_empty/1 (pred).................i... 537
move_files/2 (pred)ol 537
move_file/2 (pred)...........l 538
copy-files/2 (pred).......... ... 538
copy-files/3 (pred).......... L 538
copy-files_nofail /3 (pred).......................... 538
symboliclink/2 (pred)............, 538
symbolic_link/3 (pred) 538
Is/3 (pred). ..o 538
pattern/1 (regtype).ouueeeeniii . 539
Is/2 (pred). ... 539
etags/2 (pred) i 539
add_suffix/3 (pred)ol 539
add_prefix/3 (pred)............ ... 539
filter_alist_pattern/3 (pred)........................ 539
(-)/L(pred)....coovnii 540
(5)/1(pred) ..o 540
try_finally /3 (pred) L 540
set_owner/2 (pred) 540
del_endings_nofail/2 (pred) 540
delfilenofail/1 (pred) 540
delfilenofail /2 (pred) 540
delfiles_nofail /1 (pred) 540
delete_files/1 (pred) ..., 541
do/b (pred)covveii 541
do_options/1 (regtype).......oovvuiiieniiiia... 541
do/4 (pred)ccoiiiii 541
do/2 (pred) ... 542

do/3 (pred) ... 542

XXXVi The Ciao System

dostr/3 (pred)o 542
do_str_without nl/3 (pred) 542
do_str_without_nl__popen/2 (pred) 542
do_atmlist__popen/2 (pred) 542
cat/2 (pred) ... 542
cat_append/2 (pred)............... 543
readf/2 (pred) 543
datime_atom/1 (pred) 543
datime_atom/2 (pred) 543
datime_string/1 (pred)............. 543
datime_string/2 (pred)............., 543
datime_to_string/2 (pred) 543
no_trnl/2 (pred).............. .. ool 543
replace_strings_in_file/3 (pred)..................... 543
replace_params_in_file/3 (pred) 543
writef/2 (pred)....... 543
writef/3 (pred) 543
writef list/2 (pred)ol 544
writef list/3 (pred) 544
replace_strings/3 (pred)........................... 544
replace_params/3 (pred) 544
get_perms/2 (pred) 544
set_perms/2 (pred) oL 544
set_exec_perms/2 (pred) 544
mkdir_perm/2 (pred) L. 544
execute_permissions/2 (pred)...................... 544
execute_permissions/4 (pred)...................... 544
convert_permissions/2 (pred) 544
convert_permissions/4 (pred) 544
backup_file/1 (pred) 545
using_tty/0 (pred)............ 545
system_error_report/1 (udreexp)................... 545
replace_characters/4 (udreexp) 545
no_swapslash/3 (udreexp)......................... 545
cyg2win/3 (udreexp) ... 545
winpath_c/3 (udreexp)............... 545
winpath/3 (udreexp) L 545
winpath/2 (udreexp) 545
using_windows/0 (udreexp) 545
rename_file/2 (udreexp)............. 545
delete_directory/1 (udreexp) 546
delete_file/1 (udreexp)cooiiieii. .. 546
set_exec_.mode/2 (udreexp)........................ 546
chmod/3 (udreexp)c.ooviieiiiii.. 546
chmod/2 (udreexp) ...l 546
fmode/2 (udreexp) ... 546
touch/1 (udreexp)..........oooiiiii .. 546
modif_time0/2 (udreexp).......................... 546
modif_time/2 (udreexp)........................... 546
file_properties/6 (udreexp) 546
file_property/2 (udreexp)o... 546
file_exists/2 (udreexp)c..oiiiiiii 547
file_exists/1 (udreexp) ... 547
mktemp_in_tmp/2 (udreexp) 547
mktemp/2 (udreexp) ... 547

directory_files/2 (udreexp) 547

XXXVil

wait/3 (Udreexp)oviiiii 547
exec/8 (udreexp) ...l 547
exec/3 (Udreexp)vvviiii 547
exec/4 (udreexp) ..ot 547
popen_mode/1 (udreexp) 547
popen/3 (udreexp) ...t 547
system/2 (udreexp). ..., 547
system/1 (udreexp)..........ooveiiiiiiiiiii... 548
shell/2 (udreexp) ..., 548
shell/1 (udreexp) ..., 548
shell /0 (udreexp) i 548
cd/1 (udreexp)oouviiiiii i 548
working_directory/2 (udreexp)..................... 548
make_dirpath/1 (udreexp) 548
make_dirpath/2 (udreexp) 548
make_directory/1 (udreexp) 548
make_directory/2 (udreexp) 548
umask/2 (udreexp) 548
current_executable/1 (udreexp).................... 548
current_host/1 (udreexp).......................... 549
get_address/2 (udreexp) 549
get_tmp_dir/1 (udreexp) 549
get_grnam/1 (udreexp) 549
get_pwnam/1 (udreexp)................... .. 549
get_gid/1 (udreexp) ... 549
get_uid/1 (udreexp)cooiiiiiiii 549
get_pid/1 (udreexp) ... 549
file_dir name/3 (udreexp), 549
extract_paths/2 (udreexp)......................... 549
dir_path/2 (udreexp)ooiiii. 549
copy-file/3 (udreexp) L. 549
copy-file/2 (udreexp) L. 550
cerrno/1 (udreexp) . ..oovviii i 550
del_env/1 (udreexp) ... 550
set_env/2 (Udreexp)oouiiiiiiii 550
current_env/2 (udreexp) ... 550
setenvstr/2 (udreexp). ...l 550
getenvstr/2 (udreexp) 550
datime_struct/1 (udreexp) 550
datime/9 (udreexp)...........ooiiiiiiiiiiii 550
datime/1 (udreexp).........cooviiiiiiiiiii. 550
time/1 (udreexp) i 550
pause/1 (udreexp)............ ... L. 550
PART VII - Ciao extensions.................... 551
105 Pure Prolog package...................... 553
105.1 Usage and interface (pure_doc)ooio... 554

105.2 Known bugs and planned improvements (pure_doc) 554

xxxviii The Ciao System

106 Multiple Argument Indexing.............. 555
106.1 Usage and interface (indexer_doc)....................... 556

106.2 Documentation on exports (indexer_doc) 556
hash_term/2 (pred)............ 556

106.3 Documentation on internals (indexer_doc) 556
index/1 (decl) ... 556

indexspecs/1 (regtype)........covviiiiiiiiii. 557

argspec/1 (regtype) 557

106.4 Known bugs and planned improvements (indexer_doc) 558

107 Higher-order............................. 559
107.1 Usage and interface (hiord_rt) 559

107.2 Documentation on exports (hiord_rt).................... 559

call/1 (pred) ... 559

call/2 (pred) . ..o 559

SYSCALL/1 (pred) . ..cvvvvieieiiieae 560

$nodebug_call/1 (pred) ..., 560

$meta_call/1 (pred)....... ..., 560

107.3 Known bugs and planned improvements (hiord_rt) 560

108 Higher-order predicates................... 561
108.1 Usage and interface (hiordlib) 561

108.2 Documentation on exports (hiordlib).................... 561
map/3 (pred) 561

map/4 (pred) ... 562

map/5 (pred) ... 562

map/6 (pred) 562

foldl/4 (pred) ..o 563

minimum/3 (pred) 563

split/4 (pred) ... 563

109 Terms with named arguments -records/feature

L] 1 1 565
109.1 Usage and interface (argnames_doc)...................... 565
109.2 Documentation on new declarations (argnames_doc)....... 565

argnames/1 (decl).......... L 565

109.3 Documentation on exports (argnames_doc) 566
$7 /3 (pred) ..o 566

109.4 Other information (argnames_doc) 567
109.4.1 Using argument names in a toy database 567
109.4.2 Complete code for the zebra example............. 567

109.5 Known bugs and planned improvements (argnames_doc) ... 568

110

111

112

113

114

Functional notation....................... 571
110.1 Function applications.......... i 571
110.2 Predefined evaluable functors 571
110.3 Functional definitions. 572
110.4 Quoting functors............c i 572
110.5 Some SCOPING ISSUES .« ..ot v vttt 573
110.6 Other functionality i 573
110.7 Combining with higher order............................. 574
110.8 Usage and interface (fsyntax_doc)....................... 574
110.9 Other information (fsyntax_doc)c.uo... 574
110.10 Some examples using functional syntax 574
110.11 Examples of combining with higher order 579
110.12 Some additional examples using functional syntax 579

110.13 Known bugs and planned improvements (fsyntax_doc) ... 581

global (library)............cooiiiiiia... 583
111.1 Usage and interface (global)oeeviuee..... 583
111.2 Documentation on exports (global) 583

set_global/2 (pred) 583
get_global/2 (pred) 583
push_global/2 (pred) 583
pop_global/2 (pred) 583
del_global/1 (pred)ooiiiiii.. 583

Andorra execution................ ... 585
112.1 Usage and interface (andorra_doc)....................... 585
112.2 Documentation on new declarations (andorra_doc)........ 585

determinate/2 (decl)............. L 585
112.3 Documentation on exports (andorra_doc) 586
detcond/1 (regtype) ... 586
path/1 (regtype) ..o 587
112.4 Other information (andorra_doc) 587

Call on determinate 589
113.1 Usage and interface (det_hook_doc)...................... 589
113.2 Documentation on new modes (det_hook_doc)............ 589

(+)/1 (modedef)......... 589
(-)/1 (modedef) 589
(7)/1 (modedef) ... 589
(@)/1 (modedef)............ .. 589
(+)/2 (modedef)......... 590
(-)/2 (modedef) 590
(7)/2 (modedef) 590
(@)/2 (modedef)............ 590
113.3 Other information (det_hook_doc) 591

113.4 Known bugs and planned improvements (det_hook_doc)... 591

Runtime predicates for call on determinate

.. 593
114.1 Usage and interface (det_hook_rt)....................... 593
114.2 Documentation on exports (det_hook_rt) 593

det_try/3 (pred)....... ...l 593

XXXIX

xl The Ciao System

115 Miscellaneous predicates.................. 595
115.1 Usage and interface (odd)...................ciiiiii ... 595

115.2 Documentation on exports (odd) 595
setarg/3 (pred)....... i 595

undo/1 (pred). ..o 595

116 Mutable Terms..............occiiinn... 597
116.1 Usage and interface (mutables) 597

116.2 Documentation on exports (mutables).................... 597
create_mutable/2 (pred) 597

get_mutable/2 (pred) 597

update_mutable/2 (pred) 597

mutable/1 (pred).......... 597

117 Block Declarations 599
117.1 Usage and interface (block_doc)ovuurenun.... 599

117.2 Documentation on new declarations (block_doc) 599
block/1 (decl)....... ..o 599

118 Delaying predicates (freeze)............... 601
118.1 Usage and interface (freeze) 601

118.2 Documentation on exports (freeze) 601
freeze/2 (pred)o 601

frozen/2 (pred).......... ... i 601

118.3 Known bugs and planned improvements (freeze).......... 601

119 Delaying predicates (when) 603
119.1 Usage and interface (when)..................ooiiueano... 604

119.2 Documentation on exports (when) 604
when/2 (pred) 604

wakeup_exp/1 (regtype) 604

119.3 Known bugs and planned improvements (when)............ 605

120 Active modules (high-level distributed

execution)o, 607
120.1 Active modules as agents 608
120.2 Usage and interface (actmods_doc)....................... 609
120.3 Documentation on new declarations (actmods_doc)........ 609

use_active_module/2 (decl) 609
120.4 Other information (actmods_doc) 609
120.5 Active module name servers (webbased protocol) 609
120.6 Platforms (platformbased protocol)....................... 610

120.7 Known bugs and planned improvements (actmods_doc) 611

121

122

123

124

125

126

Agents........ciiiiiiiiiiiii i 613
121.1 Usage and interface (agent_doc) 613
121.2 Documentation on new declarations (agent_doc).......... 613

protocol/1 (decl) i 613

121.3 Documentation on multifiles (agent_doc) 614
save_addr_actmod/1 (pred)........................ 614

121.4 Documentation on internals (agent_doc).................. 614
module_address/2 (pred).......................... 614

/2 (pred) .. 614

self/1 (pred) ... 614

121.5 Other information (agent_doc)c.coona... 614
121.5.1 Platforms...........cooiii 614

121.6 Known bugs and planned improvements (agent_doc) 615

Breadth-first execution 617
122.1 Usage and interface (bf_doc)ooviviiio.... 618
122.2 Known bugs and planned improvements (bf_doc).......... 618
Iterative-deepening execution 619
123.1 Usage and interface (id_doc) 620

Constraint programming over rationals 621
124.1 Usage and interface (clpq_doc)ovviiiennn. .. 621
124.2 Other information (clpg_doc)...........c.coiuiiio..... 621

124.2.1 Some CLP(Q) examples......................... 621
124.2.2 Meta-programming with CLP(Q) 622
124.3 Known bugs and planned improvements (clpg_doc) 624

Constraint programming over reals........ 625
125.1 Usage and interface (clpr_doc)c.ooooiui. .. 625
125.2 Other information (clpr_doc)............................ 625

125.2.1 Some CLP(R) examples......................... 625
125.2.2 Meta-programming with CLP(R) 627
125.3 Known bugs and planned improvements (clpr_doc) 627

Fuzzy Prolog.............. 629
126.1 Usage and interface (fuzzy_doc) 630
126.2 Documentation on new declarations (fuzzy_doc).......... 630

aggr/l (decl). ... 630
126.3 Documentation on exports (fuzzy_doc)................... 630
FE /2 (pred) oo 630
fuzzy_predicate/1 (pred) 631
fuzzy/1 (pred) ... 631
fnot/1 (pred) ..o 631
/2 (pred) . 632
fuzzybody /1 (Prop)cooueeeieiiii .. 632
faggregator/1 (regtype)cooviiieeiii. .. 633
=> /4 (pred). ... 633
126.4 Other information (fuzzy_doc)cooveonn... 633

126.5 Known bugs and planned improvements (fuzzy_doc) 634

xli

xlii The Ciao System

127 Object Oriented Programming 635
127.1 Early examples.ooii 635
127.2 Recommendations on when to use objects................. 639
127.3 Limitations on object usage................ 639

128 Declaring classes and interfaces 641
128.1 Usage and interface (class_doc)c.ooeviun .. 641
128.2 Documentation on new declarations (class_doc).......... 642

export/1 (decl)............o i 642

public/1 (decl) i 642

inheritable/1 (decl)............, 642

(data)/1 (decl)........ooo i 642

(dynamic)/1 (decl) 643

(concurrent)/1 (decl) L 643

inherit_class/1 (decl) 643

implements/1 (decl) L. 644

virtual/1 (decl) ... 644

128.3 Documentation on exports (class_doc)................... 645

inherited/1 (pred)........... L 645

self/1 (pred) ... 645

constructor/0 (pred). ..., 645

destructor/0 (pred)........ ... 646

128.4 Other information (class_doc)c..covvueeona... 646
128.4.1 Class and Interface error reporting at compile time

... 647

128.4.2 Class and Interface error reporting at run time. ... 650

128.4.3 Normal Prolog module system interaction 650

128.5 Known bugs and planned improvements (class_doc) 651

129 Compile-time usage of objects............. 653
129.1 Usage and interface (objects_doc)..............ooue.... 653
129.2 Documentation on new declarations (objects_doc)........ 653

useclass/1 (decl) L. 653

instance-of/2 (decl) L 653

new/2 (decl) 654

129.3 Other information (objects_doc) 654
129.3.1 Error reporting at compile time (objects)......... 655
129.3.2 Error reporting at run time (objects)............. 657

130 Run time usage of objects 659
130.1 Usage and interface (objects_rt)........................ 659
130.2 Documentation on exports (objects_rt).................. 659

new/2 (pred) ... 659
instance_of /2 (pred) L. 660
derived_from/2 (pred) 661
interface/2 (pred) 661
instance_codes/2 (pred).................. .. 661
destroy/1 (pred) ... 662
use_class/1 (pred) ... 662
constructor/1 (Prop)..........oeeiiiiiiiiiiii... 662
classname/1 (Prop)cooiiiiiii ... 663
interface_name/1 (prop) 663
instance_id/1 (prop) ..., 663

class_source/1 (Prop)covviiiiiiiiii.. 663

interface_source/1 (Prop)............ccovveiino.... 663

method_spec/1 (Prop)coovviiiiain... 663

virtual_method_spec/1 (prop) 663

130.3 Known bugs and planned improvements (objects_rt) 663

131 Declaring abstract interfaces for classes.... 665

131.1 Usage and interface (interface_doc)..................... 665
PART VIII - Interfaces to other languages and

SYStEIMS . .o vttt i i e e 667

132 Foreign Language Interface 669

132.1 Declaration of Types 669

132.2 Equivalence between Ciao Prolog and C types............. 669

132.3 Equivalence between Ciao Prolog and C modes............ 670

132.4 Custom access to Prolog from C.......................... 670

132.4.1 Term construction 671

132.4.2 Testing the Type of a Term 672

132.4.3 Term navigation................, 672

132.4.4 Testing for Equality and Performing Unification... 673

132.4.5 Raising Exceptions 673

132.4.6 Creating and disposing of memory chunks 674

132.4.7 Calling Prolog from C........................... 674

1325 Examples.o 674

132.5.1 Mathematical functions 675

132.5.2 Addresses and C pointers 675

132.5.3 Lists of bytes and buffers........................ 676

132.5.4 Listsof integers 677

132.5.5 Strings and atoms L 678

132.5.6 Arbitrary Terms 679

13257 Exceptions............cooiiiiiiiiiiiiii... 681

132.5.8 Testing number types and using unbound length

Integers 681

132.5.9 Interfacing with C++............. 683

132.6 Usage and interface (foreign_interface_doc)............ 685

133 Foreign Language Interface Properties..... 687

133.1 Usage and interface (foreign_interface_properties).... 687
133.2 Documentation on exports (foreign_interface_properties)

.. 687

int_list/1 (regtype)ooeeiii i 687

doublelist/1 (regtype).........c.ccoiiiiii .. 687

byte_list /1 (regtype)ovvvriieeiiii . 687

byte/1 (regtype) 687

null/1 (regtype) . ..ovvee 687

address/1 (regtype).o 688

any_term/1 (regtype)c.oveiiiii .. 688

foreign_low/1 (prop) ..., 688

foreign low /2 (Prop)cooviiiiii ., 688

size_of /3 (Prop) .. .oovveeei 688

foreign/1 (Prop)......cooeeereiiieii .. 688

foreign/2 (Prop) ..o 688

returns/2 (Prop)oviiiii i 688

donot_free/2 (prop) ...t 689

xliii

xliv The Ciao System

needs_state/1 (Prop) ... 689
BE0/3 (DLOD) - v v e et e e e 689
133.3 Documentation on internals (foreign_interface_properties)
.. 689
use_foreign_source/1 (decl) 689
use_foreign_source/2 (decl) 689
use_foreign_library/1 (decl)........................ 689
use_foreign library/2 (decl)........................ 689
extra_compiler_opts/1 (decl)....................... 690
extra_compiler_opts/2 (decl)....................... 690
use_compiler/1 (decl) 690
use_compiler/2 (decl)o 690
extra_linker_opts/1 (decl) 690
extra_linker_opts/2 (decl), 691
use_linker/1 (decl)............ L. 691
use_linker/2 (decl)............. L. 691
foreign_inline/2 (decl) 691
133.4 Known bugs and planned improvements
(foreign_interface_properties).......................... 691

134 Utilities for on-demand compilation of foreign

files...ooeii i 693
134.1 Usage and interface (foreign_compilation).............. 693
134.2 Documentation on exports (foreign_compilation)........ 693

compiler_and_opts/2 (pred) 693

linker_and_opts/2 (pred) 693

135 Foreign Language Interface Builder........ 695
135.1 Usage and interface (build_foreign_interface).......... 695

135.2 Documentation on exports (build_foreign_interface)... 695
build_foreign_interface/1 (pred).................... 695
rebuild_foreign_interface/1 (pred).................. 695
build_foreign_interface_explicit_decls/2 (pred) 696
rebuild_foreign_interface_explicit_decls/2 (pred) 696
build_foreign_interface_object/1 (pred) 696
rebuild_foreign_interface_object/1 (pred)............ 697

do_interface/1 (pred) 697

136 Interactive Menus........................ 699
136.1 Usage and interface (menu_doc) 699

136.2 Documentation on multifiles (menu_doc) 699
menu_default/3 (pred) 699

menu-opt/6 (pred) i 699
hook_menu_flag_values/3 (pred).................... 699

hook_menu_check flag_value/3 (pred)............... 699
hook_menu_flag_help/3 (pred) 699

hook_menu_default_option/3 (pred) 699

xlv

137 menu_generator (library).................. 701
137.1 Usage and interface (menu_generator).................... 701
137.2 Documentation on exports (menu_generator) 701

menu/1 (pred) i 701
menu/2 (pred)oviiiii i 701
menu/3 (pred) ... 701
menu/4 (pred) ... 702
get-menu_flag/3 (pred) 702
set_menu_flag/3 (pred).................. 702
space/1 (pred) 702
get-menu_configs/1 (pred)......................... 702
save_menu_config/1 (pred) 702
remove_menu_config/1 (pred)...................... 703
restore_menu_config/1 (pred) 703
show_menu_configs/0 (pred)....................... 703
show_menu_config/1 (pred)........................ 703
get_menu_options/2 (pred) 703
get_menu_flags/1 (pred)........................... 703
restore_menu_flags_list /1 (pred).................... 704
get_menu_flags/2 (pred)........................... 704
restore_menu_flags/2 (pred) 704
generate_js.menu/1 (pred) 704
eq/3 (pred) ... 707
neq/3 (pred) ... 707
uni-type/2 (pred) 707
vmember/2 (pred)........... 707
menu_flag_values/1 (regtype)...................... 707
137.3 Documentation on multifiles (menu_generator)............ 707
$is_persistent/2 (pred)l 707
persistent_dir/2 (pred)............., 707
persistent_dir/4 (pred)............................ 707
menu_default/3 (pred) 708
menu-opt/6 (pred) ... 708
hook_menu_flag_values/3 (pred).................... 709
hook_menu_check_flag_value/3 (pred)............... 709
hook_menu_flag_help/3 (pred) 709
hook_menu_default_option/3 (pred) 710

137.4 Known bugs and planned improvements (menu_generator)

.. 710

138 InterfacetodaVinci...................... 711
138.1 Usage and interface (davineci) 711
138.2 Documentation on exports (davinci)..................... 711

davinci/0 (pred). ... 711
topd/0 (pred)ooiviiii 711
davinci_get/1 (pred) 711
davinci_get_all/1 (pred) 711
davinciput/1 (pred)............. 712
davinci_quit/0 (pred)ol 712
davinci_ugraph/1 (pred) 712
davincilgraph/1 (pred).......... 712
ugraph2term/2 (pred), 712
formatting/2 (pred) 712
138.3 Documentation on internals (davinei).................... 713

davinci_command/1 (prop) 713

xlvi The Ciao System

ugraph /1 (Prop)......c.ovueenie e 713

lgraph/1 (Prop)oovvveii 713

139 The Tcl/Tk interface..................... 715
139.1 Usage and interface (tcltk).................ooiiio.a... 718
139.2 Documentation on exports (tcltk) 718
telmew/1 (pred) ... 718

tcleval/3 (pred) ... 718

teldelete/1 (pred). ... 719

tclevent/3 (pred) 719
tcllnterpreter/1 (regtype)ooovuiveenni... 719
tclCommand/1 (regtype)ccooviiiiiia.. 720
tk_event_loop/1 (pred) 720
tk_main_loop/1 (pred)l 720

tknew/2 (pred) ... 720
tk_next_event/2 (pred)............. 721

140 Low level interface library to Tcl/Tk 723
140.1 Usage and interface (tcltk_low_level)................... 723
140.2 Documentation on exports (tcltk_low_level)............ 723
new_interp/1 (pred) 723

new_interp/2 (pred) 723
new_interp_file/2 (pred)................. 724

teltk/2 (pred)o 724
teltk_raw_code/2 (pred) ..., 724
receive_result/2 (pred) 724

send_term/2 (pred) 725
receive_event/2 (pred) 725

receive list/2 (pred) L 725
receive_confirm/2 (pred) 726

delete/1 (pred)........ccooiiiiiii 726

140.3 Documentation on internals (tcltk_low_level)........... 726
core/1 (pred) ... 726

141 The PiLLoW Web programming library ... 727

141.1 Installing PILLoW 727
141.2 Usage and interface (pillow_doc)oouvennn... 727
142 HTML/XML/CGI programming 729
142.1 Usage and interface (html)............... 729
142.2 Documentation on exports (html) 729
output_html/1 (pred)............. 729

html2terms/2 (pred)............. 729

xml2terms/2 (pred) L 730
html_template/3 (pred) 730

html report_error/1 (pred) 732
get_form_input/1 (pred)..............., 732
get_form_value/3 (pred)........................... 732
form_empty_value/1 (pred)........................ 732
form_default/3 (pred).................. 733

set_cookie/2 (pred) 733

get_cookies/1 (pred), 733

url_query/2 (pred) ... 733

url_query_amp/2 (pred).........., 734

143

144

145

url_query_values/2 (pred) 734
my_url/1 (pred) 734
urlinfo/2 (pred) 734
url-info_relative/3 (pred).......................... 735
form_request_method/1 (pred)..................... 736
icon_address/2 (pred).............. 736
html_protect/1 (pred) 736
http_lines/3 (pred) ... 736
142.3 Documentation on multifiles (html)....................... 737
define_flag/3 (pred)............. 737
html_expansion/2 (pred) 737
142.4 Other information (html)............. 737
HTTP conectivity 739
143.1 Usage and interface (http)...........ccoiviiiiiiii ... 739
143.2 Documentation on exports (http) 739
fetch_url/3 (pred) 739
PiLLoW types ..., 741
144.1 Usage and interface (pillow_types)............ccovvuuo... 741
144.2 Documentation on exports (pillow_types) 741
canonic_html_term/1 (regtype) 741
canonic_xml_term/1 (regtype) 742
html term/1 (regtype) ..o .. 743
form_dict/1 (regtype).........ooiiiiiiiiii.. 745
form_assignment /1 (regtype) 745
form_value/1 (regtype). ... 745
value_dict/1 (regtype) ... 746
url_term/1 (regtype).........ovuiiiiiiiii ... 746
http_request_param/1 (regtype) 746
http_response_param/1 (regtype) 746
http_date/1 (regtype)........ccoviieeeiiiii... 747
weekday /1 (regtype)ooereeeniii . 747
month/1 (regtype) ... 747
hms_time/1 (regtype).........cvvevviieiiann... 747
JSON encoder and decoder 749
145.1 Usage and interface (json).................oiiiiaa... 749
145.2 Documentation on exports (json) 749
json/1 (regtype)cooovuiiiiii 749
json_attrs/1 (regtype)......cooveiiii 749
json_attr/1 (regtype)covviiiii 749
json_val/1 (regtype)cooveeiiiiii. .. 750
jsonlist/1 (regtype) ...vvvenn 750
json_to_string/2 (pred)............. 750
string_to_json/2 (pred)............. 750

145.3 Known bugs and planned improvements (json)............ 751

xlvii

xlviii The Ciao System

146 Persistent predicate database 753
146.1 Introduction to persistent predicates...................... 753
146.2 Persistent predicates, files, and relational databases........ 753
146.3 Using file-based persistent predicates 754
146.4 Implementation Issues........... 754
146.5 Defining an initial database 755
146.6 Using persistent predicates from the top level.............. 755
146.7 Usage and interface (persdbrt) 756
146.8 Documentation on exports (persdbrt).................... 756

passerta_fact/1 (pred) 756
passertz_fact/1 (pred) 756
pretract_fact/1 (pred) 757
pretractall fact/1 (pred) 757
asserta_fact/1 (pred)........... 757
assertz_fact/1 (pred)............ L 757
retract_fact/1 (pred)........... 758
retractall_fact/1 (pred) 758
initialize_db/0 (pred) 758
make_persistent/2 (pred).......................... 758
update_files/0 (pred)l 758
update_files/1 (pred) 758
create/2 (pred)...... ... 759
meta_predname/1 (regtype) 759
directoryname/1 (regtype) ..., 759
146.9 Documentation on multifiles (persdbrt) 759
$is_persistent /2 (pred) 759
persistent_dir/2 (pred)............., 759
persistent_dir/4 (pred)............., 759
146.10 Documentation on internals (persdbrt).................. 760
persistent/2 (decl)........... ... i 760
keyword/1 (pred) ... 760
146.11 Known bugs and planned improvements (persdbrt) 760

147 Using the persdb library.................. 761
147.1 An example of persistent predicates (static version)........ 761
147.2 An example of persistent predicates (dynamic version) 761
147.3 A simple application / a persistent queue 762

148 Filed predicates 763
148.1 Usage and interface (factsdb_doc)....................... 763
148.2 Documentation on multifiles (factsdb_doc)............... 763

$factsdb$cached_goal/3 (pred)..................... 763

148.3 Known bugs and planned improvements (factsdb_doc).... 763

149

150

151

152

153

Filed predicates (runtime) 765
149.1 Usage and interface (factsdb_rt)........................ 765
149.2 Documentation on exports (factsdb_rt).................. 765

asserta_fact/1 (pred)............. 765
assertz_fact/1 (pred).......... ... i 765
call/1 (pred) . ..o 766
current_fact/1 (pred) 766
retract_fact/1 (pred)........... 766
149.3 Documentation on multifiles (factsdb_rt)................ 767
$factsdb$cached_goal/3 (pred)..................... 767
persistent_dir/2 (pred)............., 767
file_alias/2 (pred). ... 767
149.4 Documentation on internals (factsdb_rt) 767
facts/2 (decl) ... 767
keyword/1 (pred)l 767

sqltypes (library).............cooviun... 769
150.1 Usage and interface (sqltypes)cvvvuuvennn... 769
150.2 Documentation on exports (sqltypes).................... 769

sqltype/1 (regtype) . ..ovvveeen 769
accepted_type/2 (pred) 769
get_type/2 (pred) i 769
type_compatible/2 (pred) 770
type_union/3 (pred) ... 770
sybasetype/1 (regtype)ovviiiiiiiiii... 770
sybase2sqltypes_list/2 (pred) 771
sybase2sqltype/2 (pred)...............oo L. 771
postgrestype/1 (regtype)..........cooviiiiiii.. 771
postgres2sqltypes_list/2 (pred) 771
postgres2sqltype/2 (pred) 771

persdbtr_sql (library)..................... 773
151.1 Usage and interface (persdbtr_sql)...................... 773
151.2 Documentation on exports (persdbtr_sql) 773

sql_persistent_tr/2 (pred) 773
sql_goal_tr/2 (pred)............. 773
dbld/2 (pred) ... 773

pl2sqlinsert (library)...................... 775
152.1 Usage and interface (pl2sqlinsert)...................... 775
152.2 Documentation on exports (pl2sqlinsert) 775

pl2sqllnsert/2 (pred) 775
152.3 Documentation on multifiles (pl2sqlinsert).............. 775
sql_relation/3 (pred), 775
sql__attribute/4 (pred)...............oiiii. 775
Prolog/Java Bidirectional Interface........ 7T

153.1 Distributed Programming Model e

xlix

1 The Ciao System

154 Prolog to Java interface................... 779
154.1 Prolog to Java Interface Structure........................ 779
154.1.1 Prolog side of the Java interface 779
154.1.2 Javaside..........coooiiiiii i 779

154.2 Java event handling from Prolog.......................... 780
154.3 Java exception handling from Prolog...................... 782
154.4 Usage and interface (javart) 782
154.5 Documentation on exports (javart)...................... 782
javastart/0 (pred) L 782

java_start/1 (pred) 782

java_start/2 (pred) i 783

java_stop/0 (pred)......... ... i 783
java_connect/2 (pred).............. ... 783
java_disconnect/0 (pred) 783

machine name/1 (regtype) 783
java_constructor/1 (regtype) ..., 784

java_object/1 (regtype) 784

java_event /1 (regtype)ooviiii 784

prolog_goal/1 (regtype)oveeiiiio.. 784

java_field/1 (regtype) L. 784
java_use_module/1 (pred) 784
java_create_object/2 (pred)............. 785
java_delete_object/1 (pred)........................ 785
java_invoke_method/2 (pred) 785
java_method/1 (regtype).......................... 785
java_get_value/2 (pred) 786
java_set_value/2 (pred)................... 786
java_add_listener/3 (pred)......................... 786
java_remove_listener/3 (pred)...................... 787

155 Java to Prolog interface................... 789
155.1 Usage and interface (Jtopl)..........covveeiuiennennn... 789
155.2 Documentation on exports (jtopl)c....... 789
prolog_server/0 (pred) 789
prolog_server/1 (pred) 790
prolog_server/2 (pred), 790

shell s/0 (pred)o i 790
query_solutions/2 (pred) 790
query_requests/2 (pred) ... 790

running_queries/2 (pred)................ 791

156 Low-level Prolog to Java socket connection

.. 793
156.1 Usage and interface (javasock)coouvenun... 793
156.2 Documentation on exports (javasock).................... 793
bind_socket_interface/1 (pred)..................... 793
start_socket_interface/2 (pred)..................... 793
stop_socket_interface/0 (pred) 794
join_socket_interface/0 (pred)...................... 794

java_query/2 (pred) i 794
java_response/2 (pred)........... i 794
prolog_query/2 (pred) ... 794
prolog_response/2 (pred).................c.ooi.... 794
is_connected_to_java/0 (pred)...................... 795

java_debug/1 (pred) i 795
java_debug_redo/1 (pred) 795
start_threads/0 (pred) 795

157 Calling emacs from Prolog................ 797
157.1 Usage and interface (emacs).............................. 798
157.2 Documentation on exports (emacs) 798
emacs_edit/1 (pred) 798
emacs_edit_nowait/1 (pred) 798

emacs_eval/l (pred) L. 798

emacs_eval nowait/1 (pred) 798

elisp_string/1 (regtype)cooveeiieiin... 799

158 linda (library)..........cociiiniinan... 801
158.1 Usage and interface (linda).............................. 801
158.2 Documentation on exports (linda)....................... 801
linda_client/1 (pred)............ ... oL 801

close_client/0 (pred) ...l 801

in/1 (pred) ... 801

in/2 (pred) ... 801

in_noblock/1 (pred) 801

out/1 (pred) ... 801

rd/1 (pred) ..o 802

rd/2 (pred) ..o 802

rd_noblock/1 (pred) 802

rd_findall/3 (pred)............... 802
linda_timeout/2 (pred).............. ..., 802

halt_server/0 (pred) 802

open_client/2 (pred) 802

in_stream/2 (pred) 802

out_stream/2 (pred) 802

PART IX - Abstract data types................. 803

lii The Ciao System

159 Extendable arrays with logarithmic access time

.. 805
159.1 Usage and interface (arrays)c.oovivineen... 805
159.2 Documentation on exports (arrays) 805
new_array/1 (pred).......... L 805

iscarray/1 (pred) 805

aref/3 (pred) ... 805

arefa/3 (pred) ... 805

arefl/3 (pred) ... 806

aset/4 (pred) ... 806
array_to_list/2 (pred) 806

160 Association between key and value 807
160.1 Usage and interface (2ss0c)..........ovvviiiiiaean... 807
160.2 Documentation on exports (aSsoc)oooui... 807
empty_assoc/1 (pred)............. 807
assoc_to_list/2 (pred) 807

is_assoc/1 (pred) 808

min_assoc/3 (pred) ... 808

max_assoc/3 (pred)............ciiiii. 808

gen_assoc/3 (pred) ... 808

get_assoc/3 (pred) ... 809

get_assoc/5 (pred)o 809
get_next_assoc/4 (pred)c. .. 810
get_prev_assoc/4 (pred) 810
list_to_assoc/2 (pred) ..., 810
ord_list_to_assoc/2 (pred) 811

map-_assoc/2 (pred)............. 811

map_assoc/3 (pred) ..., 811

map/3 (pred) 811

foldl/4 (pred) ... 812

put-assoc/4 (pred) 812

put_assoc/b (pred) i 812

add_assoc/4 (pred) ... 813
update_assoc/5 (pred) ... 813

del_assoc/4 (pred) ... 813
delmin_assoc/4 (pred).......... 814
del.max_assoc/4 (pred), 814

161 counters (library)coviia... 815
161.1 Usage and interface (counters) 815
161.2 Documentation on exports (counters).................... 815
setcounter/2 (pred)............ 815

getcounter/2 (pred) L 815

inccounter/2 (pred).............coiiiiiiii 815

162

163

164

165

Identity listso, 817
162.1 Usage and interface (idlists) 817
162.2 Documentation on exports (idlists)..................... 817

member_0/2 (pred)o 817
memberchk/2 (pred)............ 817
list_insert/2 (pred)co i 817
add_after/4 (pred)............ 817
add_before/4 (pred) 818
delete/3 (pred). ... 818
subtract/3 (pred) ... 818
union_idlists/3 (pred).......... 818

Lists of numbers 819
163.1 Usage and interface (numlists) 819
163.2 Documentation on exports (numlists).................... 819

get_primes/2 (pred) i 819
intlist/1 (regtype)oovreie 819
numlist/1 (regtype) ... 819
sum_list/2 (pred)......... 819
sum_list/3 (pred)......... L. 820
sum list_of lists/2 (pred) 820
sum list_of lists/3 (pred) 820
Pattern (regular expression) matching
-deprecated version........................ 821
164.1 Usage and interface (patterns) 821
164.2 Documentation on exports (patterns).................... 821
match_pattern/2 (pred)..................... 821
match_pattern/3 (pred)........... 821
case_insensitive_match/2 (pred).................... 822
letter_match/2 (pred).............., 822
pattern/1 (regtype).oourreeenii . 822
match_pattern_pred/2 (pred) 822

Graphs i 823
165.1 Usage and interface (graphs)c..ovviuee.n... 823
165.2 Documentation on exports (graphs) 823

dgraph/1 (regtype)ooveeeeiniii .. 823
dlgraph/1 (regtype) ... 823
dgraph_to_ugraph/2 (pred)........................ 823
dlgraph_to_lgraph/2 (pred)........................ 824
edges_to_ugraph/2 (pred) 824
edges_tolgraph/2 (pred).......................... 824
165.3 Documentation on internals (graphs)..................... 825
pair/1 (regtype)oovneee 825

triple/1 (regtype) . ..o 825

liii

liv The Ciao System

166 Unweighted graph-processing utilities...... 827
166.1 Usage and interface (ugraphs) 827

166.2 Documentation on exports (ugraphs)..................... 827
vertices_edges_to_ugraph/3 (pred).................. 827

neighbors/3 (pred) i 827

edges/2 (pred)oooiiiiii i 828

del_edges/3 (pred) ... 828

add_edges/3 (pred) 828

vertices/2 (pred) ... 828

del_vertices/3 (pred).........l 828

add_vertices/3 (pred) 828

transpose/2 (pred) 829

rooted_subgraph/3 (pred)......................... 829

point_to/3 (pred). ...t 829

ugraph/1 (regtype)ooveiiiiii 829

167 wgraphs (library)................ 831
167.1 Usage and interface (wgraphs) 831

167.2 Documentation on exports (wgraphs)..................... 831
vertices_edges_to_wgraph/3 (pred) 831

168 Labeled graph-processing utilities 833
168.1 Usage and interface (1graphs)c.oveiie..... 833

168.2 Documentation on exports (1graphs)..................... 833
lgraph/2 (regtype) ... 833
vertices_edges_to_lgraph/3 (pred) 833

169 queues (library), 835
169.1 Usage and interface (queues) 835

169.2 Documentation on exports (queues)...................... 835
gempty/1 (pred) ... 835

g-insert/3 (pred) ... 835

g-member/2 (pred)............. i 835

q-delete/3 (pred) ... 835

170 Random numbers 837
170.1 Usage and interface (random) 837

170.2 Documentation on exports (random) 837
random/1 (pred) ... 837

random/3 (pred) i 837

srandom/1 (pred) 838

171 Set Operations..............cccvvveeeenn.. 839

171.1 Usage and interface (sets)............................... 839
171.2 Documentation on exports (sets) 839
insert/3 (pred) 839

ord_delete/3 (pred) ...t 839
ord_member/2 (pred) 839
ord_test_member/3 (pred)......................... 840
ord_subtract/3 (pred)............... 840
ord_intersection/3 (pred)............ 840
ord_intersection_diff/4 (pred)...................... 840
ord_intersect/2 (pred) L. 840

ord_subset/2 (pred).............. 841
ord_subset_diff/3 (pred)................. 841

ord_union/3 (pred) L. 841
ord_union_diff/4 (pred) 841
ord_union_symdiff/4 (pred)........................ 841
ord_union_change/3 (pred) 842

merge/3 (pred)..........oiiiii 842

ord_disjoint/2 (pred) 842

setproduct/3 (pred) 842

172 Variable name dictionaries................ 843
172.1 Usage and interface (vndict)o ..., 843
172.2 Documentation on exports (vndict)...................... 843
null_dict/1 (regtype).......ccoeevirenia... 843

create_dict/2 (pred) L. 843
create_pretty_dict/2 (pred)............, 843
complete_dict/3 (pred).................... ... 844
complete_vars_dict/3 (pred) 844

prune_dict/3 (pred).............. L 844

sort_dict/2 (pred)l 844
dict2varnamesl/2 (pred) 844
varnamesl2dict/2 (pred) 845

find name/4 (pred) L 845

prettyvars/2 (pred)........... 845

rename/2 (pred) 845
varnamedict/1 (regtype) 845
vars_names_dict/3 (pred).............. 845

PART X - Contributed libraries 847

lvi The Ciao System

173 A Chart Library, 849
173.1 Barcharts............... 849
173.2 Line graphs.o 851
173.3 Scatter graphst 851
173.4 Tables. ... oo 852
173.5 Overview of widgets 853
173.6 Usage and interface (chartlib) 854
173.7 Documentation on exports (chartlib).................... 854

barchartl/7 (udreexp)ccoviiiiiio.... 854
barchart1/9 (udreexp)coiuiiii.... 854
percentbarchart1/7 (udreexp) 854
barchart2/7 (udreexp)ccooiiiiia.. 854
barchart2/11 (udreexp) 854
percentbarchart2/7 (udreexp) 854
barchart3/7 (udreexp)ccoiiiii.... 854
barchart3/9 (udreexp) 854
percentbarchart3/7 (udreexp) 855
barchart4/7 (udreexp)c... 855
barchart4/11 (udreexp) 855
percentbarchart4/7 (udreexp) 855
multibarchart/8 (udreexp) 855
multibarchart/10 (udreexp) 855
tablewidgetl/4 (udreexp) 855
tablewidget1/5 (udreexp) 855
tablewidget2/4 (udreexp) 855
tablewidget2/5 (udreexp) 855
tablewidget3/4 (udreexp)oii... 855
tablewidget3/5 (udreexp) ..., 856
tablewidget4/4 (udreexp) 856
tablewidget4/5 (udreexp) 856
graph b1/9 (udreexp)...........c.ooveiiiiii... 856
graph b1/13 (udreexp)...........c.ooeviiiiii.. 856
graph-w1l/9 (udreexp)ocoiiiiiiii .. 856
graph - wl/13 (udreexp)ooiieion... 856
scattergraph_bl/8 (udreexp) 856
scattergraph_bl/12 (udreexp) 856
scattergraph_wl/8 (udreexp) 856
scattergraph wl/12 (udreexp) 856
graph_b2/9 (udreexp)........... ... 856
graph_b2/13 (udreexp)............................ 857
graph - w2/9 (udreexp)cooiviiiiiiiii... 857
graph w2/13 (udreexp)coovveiieean... 857
scattergraph_b2/8 (udreexp) 857
scattergraph_b2/12 (udreexp) 857
scattergraph-w2/8 (udreexp) 857
scattergraph-w2/12 (udreexp) 857
chartlib_text_error_protect/1 (udreexp)............. 857
chartlib_visual_error_protect/1 (udreexp) 857

173.8 Known bugs and planned improvements (chartlib) 857

174

175

176

177

178

Low level Interface between Prolog and blt
.. 859
174.1 Usage and interface (bltclass)covuvenun... 859
174.2 Documentation on exports (bltclass).................... 859
new_interp/1 (pred) 859
tcltk_raw_code/2 (pred)................. 859
bltwish_interp/1 (regtype)cooovviii.... 860
interp_file/2 (pred) L 860
Error Handler for Chartlib................ 861
175.1 Usage and interface (chartlib_errhandle)............... 861
175.2 Documentation on exports (chartlib_errhandle)......... 861
chartlib_text_error_protect/1 (pred)................ 861
chartlib_visual_error_protect/1 (pred) 861
175.3 Documentation on internals (chartlib_errhandle)........ 862
handler_type/1 (regtype).........covveeniiiio... 862
error_message/2 (pred) 862
errorfile/2 (pred) L. 862
Color and Pattern Library 863
176.1 Usage and interface (color_pattern)..................... 863
176.2 Documentation on exports (color_pattern).............. 863
color/1 (Tegtype) . ..o 863
color/2 (pred)......... ..o i 864
pattern/1 (regtype)........coovuiiiiiiiiiiiiia 865
pattern/2 (pred) i 865
random_color/1 (pred)............................ 865
random_lightcolor/1 (pred)........................ 865
random_darkcolor/1 (pred)........................ 866
random_pattern/1 (pred) 866
Barchart widgets - 1...................... 867
177.1 Usage and interface (genbarl) 867
177.2 Documentation on exports (genbarl)..................... 867
barchartl/7 (pred) 867
barchartl/9 (pred) 868
percentbarchart1/7 (pred) 869
yelement /1 (regtype)covvevie 869
axis_limit/1 (regtype)..............c L. 870
header/1 (regtype)oovveveiniii . 871
title/1 (regtype)oovvee 871
footer/1 (regtype)coveiriii 871
177.3 Documentation on internals (genbarl).................... 871
xbarelement1/1 (regtype) 871
177.4 Known bugs and planned improvements (genbarl) 872
Barchart widgets - 2...................... 873
178.1 Usage and interface (genbar2) 873
178.2 Documentation on exports (genbar2)..................... 873
barchart2/7 (pred) 873
barchart2/11 (pred) ..., 874
percentbarchart2/7 (pred) 875

xbarelement2/1 (regtype)cooieeiii. ... 875

lvii

lviii The Ciao System

179 Depict barchart widgets - 3............... 877
179.1 Usage and interface (genbar3) 877
179.2 Documentation on exports (genbar3)..................... 877

barchart3/7 (pred) i 877
barchart3/9 (pred) 878
percentbarchart3/7 (pred) 878
179.3 Documentation on internals (genbar3).................... 879
xbarelement3/1 (regtype) 879

180 Depict barchart widgets -4 881
180.1 Usage and interface (genbar4) 881
180.2 Documentation on exports (genbar4)..................... 881

barchart4/7 (pred) 881
barchart4/11 (pred) 882
percentbarchart4/7 (pred) 882
180.3 Documentation on internals (genbar4).................... 883
xbarelement4/1 (regtype)cooieiii... 883

181 Depiclinegraph 885
181.1 Usage and interface (gengraphl) 886
181.2 Documentation on exports (gengraphl)................... 886

graph b1/9 (pred) ... 886
graph b1/13 (pred)........... ..., 887
graph-wl/9 (pred) 887
graph - wl/13 (pred) 888
scattergraph_bl/8 (pred).......................... 889
scattergraph b1/12 (pred)......................... 889
scattergraph wl/8 (pred) 890
scattergraph-wl/12 (pred) 891
vector/1 (regtype) 892
smooth/1 (regtype)........covreeiiiii ... 892
attributes/1 (regtype) ... 892
symbol/1 (regtype)oooiiiiiiiiiii .. 893
size/1 (regtype) . ..o 893

182 Line graph widgets 895
182.1 Usage and interface (gengraph2) 895
182.2 Documentation on exports (gengraph2)................... 896

graph b2/9 (pred)............ ... i 896
graph b2/13 (pred)............ 896
graph - w2/9 (pred) 897
graph-w2/13 (pred) 898
scattergraph b2/8 (pred)............. 898
scattergraph b2/12 (pred)......................... 899
scattergraph-w2/8 (pred) 900

scattergraph-w2/12 (pred) 900

183

184

185

186

187

188

Multi barchart widgets 903
183.1 Usage and interface (genmultibar)....................... 903
183.2 Documentation on exports (genmultibar) 904

multibarchart/8 (pred) 904
multibarchart/10 (pred) 904
183.3 Documentation on internals (genmultibar) 905
multibar_attribute/1 (regtype) 905
xelement/1 (regtype) ... 906

table_widgetl (library).................... 907
184.1 Usage and interface (table_widgetl)..................... 907
184.2 Documentation on exports (table_widgetl) 907

tablewidgetl/4 (pred) 907
tablewidget1/5 (pred) 907
table/1 (regtype)o 908
image/1 (regtype)covveiieii 908
184.3 Documentation on internals (table_widgetl)............. 908
row/1 (Tegtype) . ..o 908
row/1 (regtype) 909
cell_value/1 (regtype)...............oooiiii.. 909

table_widget2 (library).................... 911
185.1 Usage and interface (table_widget2)..................... 911
185.2 Documentation on exports (table_widget2) 911

tablewidget2/4 (pred) L 911
tablewidget2/5 (pred) L 911

table_widget3 (library).................... 913
186.1 Usage and interface (table_widget3)..................... 913
186.2 Documentation on exports (table_widget3) 913

tablewidget3/4 (pred) L 913
tablewidget3/5 (pred)l 913

table_widget4 (library).................... 915
187.1 Usage and interface (table_widget4)..................... 915
187.2 Documentation on exports (table_widget4) 915

tablewidget4/4 (pred) 915
tablewidget4/5 (pred) il 916

test_format (library)...................... 917
188.1 Usage and interface (test_format)....................... 917
188.2 Documentation on exports (test_format) 917

equalnumber/3 (pred)l 917
not_empty/4 (pred)........ 917
not_empty/3 (pred)....... ... 918
check_sublist/4 (pred) 918
valid_format/4 (pred).............. 918
vectors_format/4 (pred).............. 918
valid_vectors/4 (pred) 919
valid_attributes/2 (pred)................ 919

valid_table/2 (pred), 919

lix

Ix The Ciao System

189 Doubly linked lists 921
189.1 Usage and interface (ddlist) 921
189.2 Documentation on exports (ddlist)...................... 921

null ddlist/1 (pred).......... 921
create_from_list/2 (pred) 921
tolist/2 (pred) ... 922
next/2 (pred) 922
prev/2 (pred) 922
insert/3 (pred) ... 922
insert_top/3 (pred) ... 922
insert_after/3 (pred) 923
insert_begin/3 (pred)L. 923
insert_end/3 (pred) 923
delete/2 (pred)........ooeiiiiii 923
delete_top/2 (pred)o 923
delete_after/2 (pred)........... ... 924
remove_all_elements/3 (pred) 924

top/2 (pred) ... 924
rewind/2 (pred) 924
forward/2 (pred) il 924
length/2 (pred) 925

length next/2 (pred)................ ...l 925
length_prev/2 (pred)............., 925
ddlist/1 (regtype) ... 925
ddlist_-member/2 (pred)............ 925

189.3 Other information (ddlist).............. 926
189.3.1 Using insertafter................ 926
189.3.2 More Complex example 926

190 Ciao bindings for ZeroM(Q messaging library

.. 929
190.1 Usage and interface (zeromq)coooio.... 929
190.2 Documentation on exports (zeromq) 929
zmqinit /0 (pred) 929
zmq-_term/0 (pred) i 929
zmq-socket/2 (pred) 929
zmq-close/1 (pred) L. 930
zmq-bind/2 (pred) L 930
zmgq_connect/2 (pred) 931
zmq_subscribe/3 (pred) 931
zmq-unsubscribe/3 (pred)......................... 932
zmg-send/4 (pred) 932
zmq-recv/5 (pred) ... 933
zmq-multipart_pending/2 (pred)................... 933
zmq-poll/3 (pred) 934
zmq-device/3 (pred) ... 934
zmq_error_check/1 (pred) 935
zmq-errors/1 (pred) L 935
zmq-send_multipart/3 (pred)...................... 936
zmq_recv_multipart/4 (pred) 936
zmq-send_terms/3 (pred) 936
zmq-recv_terms/4 (pred).......................... 937
demo_responder/0 (pred) 937
demo_requester/1 (pred) 937

demo_requester/2 (pred) 937

Ciao DHT Implementation.....................

191 Top-level user interface to DHT

191.1 Usage and interface (dht_client).......................
191.2 Documentation on exports (dht_client)................
dht_connect/2 (pred) L.
dht_connect/3 (pred)
dht_disconnect/1 (pred)...............,
dht_consult_b/4 (pred)..........................
dht_consult_.nb/4 (pred).........................
dht_extract_b/4 (pred).............
dht_extract_nb/4 (pred).........................
dht_store/4 (pred)......... ... i
dht_hash/3 (pred)

192 Top-level interface to a DHT server

192.1 Usage and interface (dht_server).......................
192.2 Documentation on exports (dht_server)................
dhtserver/1 (pred)..............co ..
dht_prolog/1 (pred)

193 Server to client communication module....

193.1 Usage and interface (dht_s2¢)cooveino....
193.2 Documentation on exports (dht_s2¢)....................
dht_s2c_main/0 (pred)

194 Server to server communication module ...

194.1 Usage and interface (dht_s2s)oviienn. ...
194.2 Documentation on exports (dht_s2s)....................
dht_s2s_main/0 (pred)

195 DHT-related logics

195.1 Usage and interface (dht_logic)covueenn...
195.2 Documentation on exports (dht_logic).................
dhtinit/1 (pred) ...
dht_finger/2 (pred)l
dht_successor/1 (pred)........... ...
dht_check_predecessor/1 (pred)
dht_closest_preceding_finger/2 (pred)..............
dht_find_predecessor/2 (pred)
dht_find_successor/2 (pred)......................
dht_join/1 (pred)........ ..o
dht_notify/1 (pred).......... ...
dht_stabilize/0 (pred)..........
dht_fix fingers/0 (pred)
dht_id_by_node/2 (pred)
dht_find_and_consult_b/2 (pred)
dht_consult_server_b/3 (pred)....................
dht_find_and_consult_nb/2 (pred)
dht_consult_server_nb/3 (pred)
dht_find_and_extract_-b/2 (pred)
dht_extract_from_server_b/3 (pred)...............
dht_find_and_extract nb/2 (pred)

Ixi

Ixii The Ciao System

dht_extract_from_server.nb/3 (pred) 962
dht_find_and_store/2 (pred) 963
dht_store_to_server/4 (pred) 963

196 Finger table and routing information...... 965
196.1 Usage and interface (dht_routing)....................... 965
196.2 Documentation on exports (dht_routing) 965
dht_finger_table/2 (pred).......................... 965

dht_finger start/2 (pred) 966
dht_update_finger/2 (pred) 967
dht_set_finger/4 (pred)............., 967
dht_predecessor/1 (pred).......................... 968
dht_set_predecessor/1 (pred) 968
dht_reset_predecessor/0 (pred)..................... 968

197 Various wrappers for DHT logics module .. 969

197.1 Usage and interface (dht_logic_misc).................... 969
197.2 Documentation on exports (dht_logic_misc)............. 969
hash_size/1 (pred)..............coiiiiii ... 969
highest_hash_number/1 (pred)..................... 969
consistent_hash/2 (pred) 970
next_on_circle/2 (pred) 970
not_in_circle.oc/3 (pred) 970

in_circlecoo/3 (pred) ... 971

in_circlecoc/3 (pred) ... 971

198 Remote predicate calling utilities.......... 973
198.1 Usage and interface (dht_rpr) 973
198.2 Documentation on exports (dht_rpr)..................... 973
dht_rpr_register node/1 (pred)..................... 973
dht_rpr_register node/2 (pred)..................... 973
dht_rprnode_by_id/2 (pred)....................... 974

dht_rpr_id_by node/2 (pred)....................... 975
dht_rpr_node_id/1 (regtype)coooi .. 975
dht_rpr_compose_id/3 (pred) 976
dht_rpr_clear_by node/1 (pred) 976
dht_rprnode/1 (pred) 977

dht_rprcall/2 (pred) 977

dht_rprcall/3 (pred) 980

node_id/2 (pred) il 981

199 Underlying data-storage module........... 983
199.1 Usage and interface (dht_storage)....................... 983
199.2 Documentation on exports (dht_storage) 983
dht_store/3 (pred)...........ccooiiiiiiii 983
dht_extract_b/2 (pred)............., 983
dht_extract_nb/2 (pred)............. 984
dht_consult_-b/2 (pred).................. 984
dht_consult_.nb/2 (pred)........................... 985

dht_key_hash/2 (pred) 985

200

201

202

203

Configuration module..................... 987
200.1 Usage and interface (dht_config)........................ 987
200.2 Documentation on exports (dht_config).................. 987

hash_power/1 (pred)........... ..., 987
dht_set_hash_power/1 (pred) 987
dht_s2c_port/1 (pred).......... L. 988
dht_set_s2c_port/1 (pred) 988
dht_s2c_threads/1 (pred).......................... 988
dht_set_s2c_threads/1 (pred) 988
dht_s2s_port/1 (pred) ..., 988
dht_set_s2s_port/1 (pred) 988
dht_s2s_threads/1 (pred) 988
dht_set_s2s_threads/1 (pred)....................... 988
dht_join_host/1 (pred), 988
dht_set_join_host/1 (pred)......................... 989
dht_server_id/1 (pred) 989
dht_set_server_id/1 (pred)......................... 989
dht_server_host/1 (pred) 989
dht_set_server_host/1 (pred)....................... 989

Tiny module with miscellaneous functions.. 991

201.1 Usage and interface (dht_misc) 991
201.2 Documentation on exports (dht_misc).................... 991
write_pr/2 (pred)........... ... i 991
read_pr/2 (pred) ... 991

Constraint programming over finite domains

.. 993
202.1 Completeness Considerations............................. 993
202.2 Meta-Constraints. ... 993
202.3 Example...... .. 994
202.4 Usage and interface (clpfd_doc) 996
202.5 Known bugs and planned improvements (clpfd_doc) 996
Finite domain solver runtime.............. 997
203.1 Usage and interface (clpfd_rt)ccovveeineana... 997
203.2 Documentation on exports (clpfd_rt).................... 997
in/2 (pred) ... 997
fdvar/1 (regtype)......oovevieii 997
fd_range_expr/1 (regtype) ..o 998
fd_expr/1 (regtype)covuveiieinii .. 998
#H=/2(pred) ..o 998
H\=/2(pred) ..ot 998
H< /2 (pred) ..o 999
#H=</2(pred)...... ... 999
#H> /2 (pred). ..o 999
#>= /2 (pred) 999
domain/3 (pred) ... 999
in/2 (pred) ... 1000
all_different/1 (pred) 1000
labeling/2 (pred) ... 1000
indomain/1 (pred)ooiiiiiL. 1000
label/1 (pred). ... 1000

labeling/2 (pred).......... ... o i 1001

Ixiii

Ixiv The Ciao System

minimize/2 (pred)........ ... 1001
minimize/2 (pred)............... i 1001
wrapper/2 (pred) ... 1001
203.3 Documentation on multifiles (clpfd_rt) 1001
attr_rt:unify_hook/3 (pred)....................... 1001
attr_rt:attribute_goals/4 (pred) 1001

204 Constraint programming over finite domains

... 1003
204.1 Usage and interface (fd_doc)covii. .. 1004
204.2 Documentation on exports (fd_doc)..................... 1004
fd_item/1 (regtype).....coveeen 1004

fd_range/1 (regtype)c.vvvviie 1004

fd_subrange/1 (regtype)coovviiii.. 1005

fd_store/1 (regtype) ... 1005
fd_store_entity/1 (regtype) ..., 1005

labeling/1 (pred) ..., 1005

pitm/2 (pred) ... 1005

choose_var/3 (pred) 1005
choose_free_var/2 (pred) 1006
choose_varnd/2 (pred) 1006
choose_value/2 (pred)...............c.oooiii... 1006
retrieve_range/2 (pred) 1007
retrieve_store/2 (pred) 1007

glb/2 (pred) ... o 1007

lub/2 (pred) ..o 1007

bounds/3 (pred) 1008
retrieve_list_of values/2 (pred).................... 1008

205 Dot generator....................c..... 1009
205.1 Usage and interface (gendot) 1009
205.2 Documentation on exports (gendot) 1009
gendot/3 (pred) ..o 1009

206 Printing graphs using gnuplot as auxiliary tool

... 1011

206.1 Usage and interface (gnuplot)c.oo... 1011

206.2 Documentation on exports (gnuplot).................... 1011
get_general _options/1 (pred) 1011

set_general_options/1 (pred)...................... 1011

generate_plot/2 (pred) 1012

generate_plot/3 (pred) 1012

207 Lazy evaluation 1015
207.1 Usage and interface (lazy_doc) 1017

207.2 Other information (lazy_doc)............ccooiueeea... 1017

208 Programming MYCIN rules 1019
208.1 Usage and interface (mycin_doc)........................ 1019

208.2 Documentation on new declarations (mycin_doc)......... 1019
export/1 (decl)....... i 1019

208.3 Known bugs and planned improvements (mycin_doc) 1020

209

210

211

212

213

214

The Ciao Profiler........................ 1021
209.1 Usage and interface (profiler_doc)..................... 1021
ProVRML - a Prolog interface for VRML
... 1023
210.1 Usage and interface (provrml) 1023
210.2 Documentation on exports (provrml).................... 1023
vrml_web_to_terms/2 (pred)...................... 1023
vrml_file_to_terms/2 (pred)....................... 1024
vrml_web_to_terms_file/2 (pred) 1024
vrml_file_to_terms_file/2 (pred) 1024
terms_file_to_vrml/2 (pred)....................... 1024
terms_file_to_vrml file/2 (pred) 1025
terms_to_vrml file/2 (pred)....................... 1025
terms_to_vrml/2 (pred) 1025
vrml_to_terms/2 (pred) 1025
vrml_in_out/2 (pred) 1025
vrml_http_access/2 (pred) 1026
210.3 Documentation on internals (provrml)................... 1026
read_page/2 (pred) ... 1026
boundary (library) 1027
211.1 Usage and interface (boundary) 1027
211.2 Documentation on exports (boundary)................... 1027
boundary_check/3 (pred) 1027
boundary _rotation first/2 (pred).................. 1027
boundary_rotation_last/2 (pred) 1028
reserved_words/1 (pred) 1028
children nodes/1 (pred).......................... 1028
dictionary (library)...................... 1029
212.1 Usage and interface (dictionary)....................... 1029
212.2 Documentation on exports (dictionary)................. 1029
dictionary/6 (pred)..............., 1029
dictionary_tree (library) 1031
213.1 Usage and interface (dictionary_tree) 1031
213.2 Documentation on exports (dictionary_tree)........... 1031
create_dictionaries/1 (pred) 1031
is_dictionaries/1 (pred) 1031
get_definition_dictionary/2 (pred)................. 1031
get_prototype_dictionary/2 (pred) 1032
dictionary_insert/5 (pred) 1032
dictionary_lookup/5 (pred)....................... 1032
merge_tree/2 (pred) 1033
provrmlerror (library) 1035
214.1 Usage and interface (provrmlerror)..................... 1035
214.2 Documentation on exports (provrmlerror) 1035
error_vrml/1 (pred)........ L 1035

output_error/1 (pred)..............., 1035

Ixv

Ixvi The Ciao System

215 field_type (library) 1037
215.1 Usage and interface (field_type)ccovuuuno... 1037

215.2 Documentation on exports (field_type)................. 1037
fieldType/1 (pred) ..., 1037

216 field_value (library)...................... 1039
216.1 Usage and interface (field_value)...................... 1039

216.2 Documentation on exports (field_value) 1039
fieldValue/6 (pred) ...l 1039

mfstringValue/5 (pred) 1039

parse/1 (Prop)ovevuiiii i 1040

217 field_value_check (library)................ 1041
217.1 Usage and interface (field_value_check) 1041

217.2 Documentation on exports (field_value_check)......... 1041
fieldValue_check/8 (pred) 1041

mfstringValue/7 (pred) 1042

218 generator (library) 1043
218.1 Usage and interface (generator)........................ 1043

218.2 Documentation on exports (generator).................. 1043
generator/2 (pred) ... 1043

nodeDeclaration/4 (pred)........................ 1043

219 generator_util (library) 1045
219.1 Usage and interface (generator_util)................... 1045

219.2 Documentation on exports (generator_util)............ 1045
reading/4 (pred) L 1045

reading/5 (pred)oo i 1047

reading/6 (pred) i 1050

open-node/6 (pred) L. 1051

close_node/5 (pred)................o il 1051

closenodeGut/4 (pred) 1051

open PROTO/4 (pred)oo.. 1052

close PROTO/6 (pred) 1052

open. EXTERNPROTO/5 (pred) 1052

close . EXTERNPROTO/6 (pred) 1053

open.-DEF/5 (pred) 1053

close DEF/5 (pred).............oooiiii... 1053

open_Script/5 (pred) 1054

close_Script/5 (pred) ...l 1054

decompose_field/3 (pred) 1054

indentation_list/2 (pred) 1054

start_vrmlScene/4 (pred) 1055

remove_comments/4 (pred)....................... 1055

219.3 Known bugs and planned improvements (generator_util)

Ixvii

220 internal types (library) 1057
220.1 Usage and interface (internal_types)................... 1057
220.2 Documentation on exports (internal_types)............ 1057

bound/1 (regtype) ... 1057
bound_double/1 (regtype)...........cooveii.... 1057
dictionary /1 (regtype)ooveviiiiieni... 1057
environment/1 (regtype) ... 1058
parse/1 (Tegtype) 1058
tree/1 (regtype)coviiii 1058
whitespace/1 (regtype) 1058

221 provrml.io (library) 1061
221.1 Usage and interface (provrml_io)....................... 1061
221.2 Documentation on exports (provrml_io)................. 1061

out/1 (pred) ... 1061
out/3 (pred) ... 1061
convert_atoms_to_string/2 (pred) 1061
read_terms_file/2 (pred)................. 1062
write_terms_file/2 (pred) 1062
read_vrml file/2 (pred)........................... 1062
write_vrml_file/2 (pred).............., 1062

222 lookup (library)ccoiiiiiiia.. 1065
222.1 Usage and interface (1ookup)ccoveiun ... 1065
222.2 Documentation on exports (Lookup) 1065

create_proto_element/3 (pred) 1065
get_prototype_interface/2 (pred).................. 1065
get_prototype_definition/2 (pred) 1066
lookup_check node/4 (pred) 1066
lookup_check_field/6 (pred) 1066
lookup_check_interface_fieldValue/8 (pred)......... 1067
lookup_field/4 (pred) 1067
lookup_route/5 (pred) i 1068
lookup_fieldTypeld/1 (pred)...................... 1068
lookup_get_fieldType/4 (pred) 1068
lookup_field_access/4 (pred) 1068
lookup_set_def/3 (pred) 1069
lookup_set_prototype/4 (pred).................... 1069
lookup_set_extern_prototype/4 (pred) 1070

223 provrml_parser (library) 1071
223.1 Usage and interface (provrml_parser)................... 1071
223.2 Documentation on exports (provrml_parser)............ 1071

parser/2 (pred) i 1071
nodeDeclaration/4 (pred)........................ 1071

field_Id/1 (Prop) ««.vvvvvveie 1072

Ixviii The Ciao System

224 parser_util (library) 1073
224.1 Usage and interface (parser_util)...................... 1073
224.2 Documentation on exports (parser_util) 1073

at_least_one/4 (pred) 1073
at_least_one/5 (pred) 1074
fillout/4 (pred) ... 1074
fillout/5 (pred).......c.ovviiiii 1074
create_node/3 (pred) ...l 1074
create_field/3 (pred) 1075
create_field/4 (pred)............. 1075
create_field/5 (pred) 1075
create_directed_field/5 (pred)..................... 1076
correct_commenting/4 (pred)..................... 1076
create_parse_structure/1 (pred)................... 1077
create_parse_structure/2 (pred)................... 1077
create_parse_structure/3 (pred)................... 1077
create_environment /4 (pred) 1078
insert_comments_in_beginning/3 (pred)............ 1078
get_environment_name/2 (pred) 1078
get_environment_type/2 (pred) 1079
get_row_number/2 (pred) 1079
add_environment_whitespace/3 (pred)............. 1079
get_indentation/2 (pred) 1080
inc_indentation/2 (pred) 1080
dec_indentation/2 (pred)......................... 1080
add_indentation/3 (pred) 1080
reduce_indentation/3 (pred)...................... 1080
push_whitespace/3 (pred) 1081
push_dictionaries/3 (pred) 1081
get_parsed/2 (pred)l 1081
get_environment/2 (pred) 1082
inside_proto/1 (pred)l 1082
get_dictionaries/2 (pred)................ 1082
strip_from_list/2 (pred) 1082
strip_from_term/2 (pred)......................... 1083
strip_clean/2 (pred) 1083
strip_exposed/2 (pred)..................... ... 1083
strip_restricted/2 (pred) 1083
strip_interface/2 (pred) 1083
set_parsed/3 (pred)........... ..., 1083
set_environment/3 (pred) 1084
insert_parsed/3 (pred) 1084
reverse_parsed/2 (pred) 1084
stop_parse/2 (pred)............c.. i, 1085
look first_parsed/2 (pred) 1085
get_first_parsed/3 (pred) 1085
remove_code/3 (pred)..............., 1085
look_ahead/3 (pred)iii... 1086

225 possible (library) 1087
225.1 Usage and interface (possible) 1087
225.2 Documentation on exports (possible)................... 1087

continue/3 (pred) 1087

226

227

228

229

tokeniser (library)....................... 1089
226.1 Usage and interface (tokeniser)........................ 1089
226.2 Documentation on exports (tokeniser).................. 1089

tokeniser/2 (pred).......... L 1089
token read/3 (pred) 1089

Pattern (regular expression) matching.... 1093
227.1 Usage and interface (regexp_doc).................ooo... 1093
227.2 Documentation on internals (regexp_doc) 1093

match_shell/3 (pred) 1093
match_shell/2 (pred) 1094
match_posix/2 (pred) ... 1094
match_posix/4 (pred) ... 1094
match_posix_rest/3 (pred)........................ 1094
match_posix_matches/3 (pred).................... 1094
match_struct/4 (pred) 1095
match_pred/2 (pred) 1095
replace_first /4 (pred) 1095
replace_all/4 (pred)............. 1095

regexp_code (library) 1097
228.1 Usage and interface (regexp_code)...................... 1097
228.2 Documentation on exports (regexp_code) 1097

match_shell/3 (pred) 1097
match_shell/2 (pred) 1097
match_posix/2 (pred)............, 1097
match_posix/4 (pred)............ ... 1098
match_posix_rest/3 (pred)........................ 1098
match_posix_matches/3 (pred).................... 1098
match_struct/4 (pred), 1098
match_pred/2 (pred) 1099
replace_first /4 (pred) 1099
replace_all/4 (pred)............., 1099
shell_regexp/1 (regtype)oovvvevinieni ... 1099
posix_regexp/1 (regtype)oovvieniiiia. 1099
struct_regexp/1 (regtype) ..., 1099
228.3 Documentation on multifiles (regexp_code).............. 1100
define_flag/3 (pred)................ il 1100

Automatic tester............... 1101
229.1 Usage and interface (tester) 1101
229.2 Documentation on exports (tester)..................... 1101

run_tester/10 (pred)............., 1101
229.3 Other information (tester)............................. 1102
229.3.1 Understanding run_test predicate 1102

229.3.2 More complex example......................... 1103

Ixix

Ixx The Ciao System

230 Measuring features from predicates (time cost

or memory used)iiiiiiiiin... 1107
230.1 Usage and interface (time_analyzer).................... 1107
230.2 Documentation on exports (time_analyzer) 1107
performance/3 (pred).............. 1107

benchmark/6 (pred)............. 1108
compare_benchmark/7 (pred) 1108
generate_benchmark_list/7 (pred)................. 1109

benchmark2/6 (pred)............................ 1109
compare_benchmark2/7 (pred) 1109
generate_benchmark list2/7 (pred)................ 1110

sub_times/3 (pred) 1110

div_times/2 (pred)l 1110

cost/3 (pred) ... 1110
generate_plot/3 (udreexp)........................ 1111
generate_plot/2 (udreexp)........................ 1111

set_general _options/1 (udreexp) 1111

get_general _options/1 (udreexp) 1111

231 XDR handle library 1113
231.1 Usage and interface (xdr_handle)....................... 1113
231.2 Documentation on exports (xdr_handle)................. 1113
xdr_tree/3 (pred)......... ... i 1113

xdr_tree/1 (pred)..........ccoiiiiiiiii 1114

xdrnode/1 (regtype)ovieiiiiiii 1114

xdr2html/4 (pred)........ oL 1114

xdr2html/2 (pred).........l 1114

unfold_tree/2 (pred) L 1114
unfold_tree_dic/3 (pred) 1115

xdrxpath/2 (pred)............. 1115

232 XML query library 1117
232.1 Usage and interface (xml_path_doc)..................... 1118
232.2 Documentation on exports (xml_path_doc) 1118
xml_search/3 (pred) 1118

xml_parse/3 (pred) 1118
xml_parse_match/3 (pred)........................ 1119
xml_search_match/3 (pred)....................... 1119
xml_index_query/3 (pred) 1119
xml_index_to_file/2 (pred)........................ 1120

xmlindex/1 (pred)............ccooiiiiii.. 1120

xml_query/3 (pred)............. 1120

232.3 Documentation on internals (xml_path_doc) 1121
canonic_xml_term/1 (regtype) 1121
canonic_xml_item/1 (regtype) 1121

tag_attrib/1 (regtype) ... 1121
canonic_xml_query/1 (regtype) 1121
canonic_xml_subquery/1 (regtype) 1121

PART XI - Contributed standalone utilities 1123

233 A Program to Help Cleaning your Directories

... 1125
233.1 Usage (cleandirs)......... ..o, 1125
233.2 Known bugs and planned improvements (cleandirs) 1125
PART XII - Appendices................c...... 1127
234 Installing Ciao from the source distribution
... 1129
234.1 Un*x installation sSummaryc.coeeeeeeen.... 1129
234.2 Un*x full installation instructions 1130
234.3 Checking for correct installation on Un*x 1133
234.4 Cleaning up the source directory 1134
234.5 Multiarchitecture support.............. 1134
234.6 Installation and compilation under Windows 1135
234.7 Porting to currently unsupported operating systems and
architectures 1135

234.8 Troubleshooting (nasty messages and nifty workarounds) .. 1136

235 Installing Ciao from a Win32 binary

distribution..................., 1139
235.1 Win32 binary installation summary...................... 1139
235.2 Checking for correct installation on Win32 1140
235.3 Compiling the miscellaneous utilities under Windows 1141
235.4 Server installation under Windows....................... 1141
235.5 CGI execution under IIS................................ 1141
235.6 Uninstallation under Windows 1142
236 Beyond installation...................... 1143
236.1 Architecture-specific notes and limitations................ 1143
236.2 Keeping up to date with the Ciao users mailing list 1143
236.3 Downloading new versions 1143
236.4 Reporting bugs ... 1144
Referencescciiiiiiiiiinennn. 1145
Library/Module Indexcoovivna.. 1153
Predicate/Method Index 1155
Property Index.............., 1157
Regular TypeIndex 1159
Declaration Index 1161
Concept Index............. ..., 1163
Author Index............ccviiiiiiiinnnnn.. 1165

Global Indexco i i i e 1167

Ixxi

Summary 1

Summary

Ciao is a public domain, next generation multi-paradigm programming environment with a

unique set of features:

Ciao offers a complete Prolog system, supporting ISO-Prolog, but its novel modular design
allows both restricting and extending the language. As a result, it allows working with
fully declarative subsets of Prolog and also to extend these subsets (or ISO-Prolog) both
syntactically and semantically. Most importantly, these restrictions and extensions can be
activated separately on each program module so that several extensions can coexist in the
same application for different modules.

Ciao also supports (through such extensions) programming with functions, higher-order
(with predicate abstractions), constraints, and objects, as well as feature terms (records),
persistence, several control rules (breadth-first search, iterative deepening, ...), concurrency
(threads/engines), a good base for distributed execution (agents), and parallel execution.
Libraries also support WWW programming, sockets, external interfaces (C, Java, TclTk,
relational databases, etc.), etc.

Ciao offers support for programming in the large with a robust module/object system,
module-based separate/incremental compilation (automatically —no need for makefiles), an
assertion language for declaring (optional) program properties (including types and modes,
but also determinacy, non-failure, cost, etc.), automatic static inference and static/dynamic
checking of such assertions, etc.

Ciao also offers support for programming in the small producing small executables (including
only those libraries actually used by the program) and support for writing scripts.

The Ciao programming environment includes a classical top-level and a rich emacs interface
with an embeddable source-level debugger and a number of execution visualization tools.

The Ciao compiler (which can be run outside the top level shell) generates several forms of
architecture-independent and stand-alone executables, which run with speed, efficiency, and
executable size which are very competitive with other commercial and academic languages
(including other Prolog/CLP systems). Library modules can be compiled into compact
bytecode or C source files, and linked statically, dynamically, or autoloaded.

The novel modular design of Ciao enables, in addition to modular program development,
effective global program analysis and static debugging and optimization via source to source
program transformation. These tasks are performed by the Ciao preprocessor (ciaopp,
distributed separately).

The Ciao programming environment also includes 1pdoc, an automatic documentation gen-
erator for LP/CLP programs. It processes source files adorned with (Ciao) assertions and
machine-readable comments and generates manuals in many formats including postscript,
pdf, texinfo, info, HTML, man, etc. , as well as on-line help, ascii README files, entries for
indices of manuals (info, WWW, ...), and maintains WWW distribution sites.

Ciao is distributed under the GNU Library General Public License (LGPL).

This documentation corresponds to version 1.15 (2011/7/8, 11:48:1 CEST).

The Ciao System

Chapter 1: Introduction 3

1 Introduction

1.1 About this manual

This is the Reference Manual for the Ciao development system. It contains basic information
on how to install Ciao and how to write, debug, and run Ciao programs from the command line,
from inside GNU emacs, or from a windowing desktop. It also documents all the libraries
available in the standard distribution.

This manual has been generated using the LPdoc semi-automatic documentation generator
for LP/CLP programs [HC97,Her00]. 1pdoc processes Ciao files (and files in Prolog and other
CLP languages) adorned with assertions and machine-readable comments, which should be
written in the Ciao assertion language [PBH97,PBH00|. From these, it generates manuals in
many formats including postscript, pdf, texinfo, info, HTML, man, etc., as well as on-line
help, ascii README files, entries for indices of manuals (info, WWW, ...), and maintains WWW
distribution sites.

The big advantage of this approach is that it is easier to keep the on-line and printed docu-
mentation in sync with the source code [Knu84]. As a result, this manual changes continually as
the source code is modified. Because of this, the manual has a version number. You should make
sure the manual you are reading, whether it be printed or on-line, coincides with the version of
the software that you are using.

The approach also implies that there is often a variability in the degree to which different
libraries or system components are documented. Many libraries offer abundant documentation,
but a few will offer little. The latter is due to the fact that we tend to include libraries in the
manual if the code is found to be useful, even if they may still contain sparse documentation.
This is because including a library in the manual will at the bare minimum provide formal
information (such as the names of exported predicates and their arity, which other modules
it loads, etc.), create index entries, pointers for on-line help in the electronic versions of the
manuals, and command-line completion capabilities inside emacs. Again, the manual is being
updated continuously as the different libraries (and machine-readable documentation in them)
are improved.

1.2 About the Ciao development system

The Ciao system is a full programming environment for developing programs in the Pro-
log language and in several other languages which are extensions and modifications of Prolog
and (Constraint) Logic Programming in several interesting and useful directions. The program-
ming environment offers a number of tools such as the Ciao standalone compiler (ciaoc), a
traditional-style top-level interactive shell (ciaosh or ciao), an interpreter of scripts written in
Ciao (ciao-shell), a Ciao (and Prolog) emacs mode (which greatly helps the task of devel-
oping programs with support for editing, debugging, version/change tracking, etc.), numerous
libraries, a powerful program preprocessor (ciaopp [BGH99,BLGPH04,HBPLG99], which sup-
ports static debugging and optimization from program analysis via source to source program
transformation), and an automatic documentation generator (lpdoc) [HC97,Her00]. A number
of execution visualization tools [CGH93,CH00d,CHO00c] are also available.

This manual documents the first four of the tools mentioned above [see PART I - The program
development environment], and the Ciao language and libraries. The ciaopp and lpdoc tools
are documented in separate manuals.

The Ciao language [see PART II - The Ciao basic language (engine)] has been designed from
the ground up to be small, but to also allow extensions and restrictions in a modular way. The
first objective allows producing small executables (including only those builtins used by the
program), providing basic support for pure logic programming, and being able to write scripts

4 The Ciao System

in Ciao. The second one allows supporting standard ISO-Prolog [see PART III - ISO-Prolog
library (iso)], as well as powerful extensions such as constraint logic programming, functional
logic programming, and object-oriented logic programming [see PART VII - Ciao extensions],
and restrictions such as working with pure horn clauses.

The design of Ciao has also focused on allowing modular program development, as well
as automatic program manipulation and optimization. Ciao includes a robust module system
[CHOOa], module-based automatic incremental compilation [CH99b], and modular global pro-
gram analysis, debugging and optimization [PH99], based on a rich assertion language [see PART
V - Assertions, Properties, Types, Modes, Comments (assertions)] for declaring (optional) pro-
gram properties (including types and modes), which can be checked either statically or dynami-
cally. The program analysis, static debugging and optimization tasks related to these assertions
are performed by the ciaopp preprocessor, as mentioned above. These assertions (together with
special comment-style declarations) are also the ones used by the lpdoc autodocumenter to
generate documentation for programs (the comment-style declarations are documented in the
lpdoc manual).

Ciao also includes several other features and utilities, such as support for several forms of
executables, concurrency (threads), distributed and parallel execution, higher-order, WWW
programming (PiLLoW [CHV96b]), interfaces to other languages like C and Java, database
interfaces, graphical interfaces, etc., etc. [see PARTS VI to XIJ.

1.3 ISO-Prolog compliance versus extensibility

One of the innovative features of Ciao is that it has been designed to subsume ISO-Prolog
(International Standard ISO/IEC 13211-1, PROLOG: Part 1-General Core [DEDC96]), while
at the same time extending it in many important ways. The intention is to ensure that all
ISO-compliant Prolog programs run correctly under Ciao. At the same time, the Ciao module
system (see [PART II - The Ciao basic language (engine)] and [CHO0Oa] for a discussion of the
motivations behind the design) allows selectively avoiding the loading of most ISO-builtins (and
changing some other ISO characteristics) when not needed, so that it is possible to work with
purer subsets of Prolog and also to build small executables. Also, this module system makes
it possible to develop extensions using these purer subsets (or even the full ISO-standard) as a
starting point. Using these features, the Ciao distribution includes libraries which significantly
extend the language both syntactically and semantically.

Compliance with ISO is still not complete: currently there are some minor deviations in,
e.g., the treatment of characters, the syntax, some of the arithmetic functions, and part of the
error system. On the other hand, Ciao has been reported by independent sources (members
of the standarization body) to be one of the most conforming Prologs at the moment of this
writing, and the first one to be able to compile all the standard-conforming test cases. Also,
Ciao does not offer a strictly conforming mode which rejects uses of non-ISO features. However,
in order to aid programmers who wish to write standard compliant programs, library predicates
that correspond to those in the ISO-Prolog standard are marked specially in the manuals, and
differences between the Ciao and the prescribed ISO-Prolog behaviours, if any, are commented
appropriately.

The intention of the Ciao developers is to progressively complete the compliance of Ciao
with the published parts of the ISO standard as well as with other reasonable extensions of the
standard may be published in the future. However, since one of the design objectives of Ciao is
to address some shortcomings of previous implementations of Prolog and logic programming in
general, we also hope that some of the better ideas present in the system will make it eventually
into other systems and the standards.

Chapter 1: Introduction 5

1.4 About the name of the System

Ciao is often referred to as “Ciao Prolog,” a name which has an interesting (and not unin-
tended) interpretation. Ciao is an interesting word which means both hello and goodbye. 'Ciao
Prolog’ intends to be a really good, all-round, freely available ISO-Prolog system which can be
used as a classical Prolog, in both academic and industrial environments (and, in particular, to
introduce users to Prolog and to constraint and logic programming —the hello part). An indeed
many programmers use it just that way. But Ciao is also a new-generation, multiparadigm
programming language and program development system which goes well beyond Prolog and
other classical logic programming languages. And it has the advantage (when compared to other
new-generation LP systems) that it does so while keeping full Prolog compatibility when needed.

1.5 Referring to Ciao

If you find Ciao or any of its components useful, we would appreciate very much if you added
a reference to this manual (i.e., the Ciao reference manual [BCC97]) in your work. The following
is an appropriate BiBTeX entry with the relevant data:

Otechreport{ciao-reference-manual-tr,

author = {F. Bueno and D. Cabeza and M. Carro and M. Hermenegildo
and P. L\’{o}pez-Garc\’{\i}a and G. Puebla},
title = {The Ciao System. Reference Manuall,

institution = {School of Computer Science, T. U. of Madrid (UPM)
and IMDEA Software Institutel},

year = 1997,

month = {August},

number = {{CLIP}3/1997.2011},

note = {Available from http://www.cliplab.org/}

1.6 Syntax terminology and notational conventions

This manual assumes some familiarity with logic programming and the Prolog language.
The reader is referred to standard textbooks on logic programming and Prolog (such as, e.g.,
[SS86,CM81,Apt97,Hog84]) for background. However, we would like to refresh herein some
concepts for the sake of establishing terminology. Also, we will briefly introduce a few of the
extensions that Ciao brings to the Prolog language.

1.6.1 Predicates and their components

Procedures are called predicates and predicate calls literals. They all have the classical syntax
of procedures (and of logic predications and of mathematical functions). Predicates are identified
in this manual by a keyword 'PREDICATE’ at the right margin of the place where they are
documented.

Program instructions are expressions made up of control constructs (Chapter 21 [Control
constructs/predicates|, page 127) and literals, and are called goals. Literals are also (atomic)
goals.

A predicate definition is a sequence of clauses. A clause has the form “H :- B.” (ending in
’.7), where H is syntactically the same as a literal and is called the clause head, and B is a goal
and is called the clause body. A clause with no body is written “H.” and is called a fact. Clauses

with body are also called rules. A program is a sequence of predicate definitions.

6 The Ciao System

1.6.2 Characters and character strings

We adopt the following convention for delineating character strings in the text of this manual:
when a string is being used as an atom it is written thus: user or ’user’; but in all other
circumstances double quotes are used (as in "hello").

When referring to keyboard characters, printing characters are written thus: @), while control
characters are written like this: (CA). Thus is the character you get by holding down the
key while you type (. Finally, the special control characters carriage-return, line-feed and
space are often abbreviated to RET), and respectively.

1.6.3 Predicate specs

Predicates are distinguished by their name and their arity. We will call name/arity a
predicate spec. The notation name/arity is therefore used when it is necessary to refer to a
predicate unambiguously. For example, concatenate/3 specifies the predicate which is named
“concatenate” and which takes 3 arguments.

(Note that different predicates may have the same name and different arity. Conversely, of
course, they may have the same arity and different name.)

1.6.4 Modes

When documenting a predicate, we will often describe its usage with a mode spec which
has the form name(Argl, ..., ArgN) where each Arg may be preceded by a mode. A mode
is a functor which is wrapped around an argument (or prepended if defined as an operator).
Such a mode allows documenting in a compact way the instantiation state on call and exit of
the argument to which it is applied. The set of modes which can be used in Ciao is not fixed.
Instead, arbitrary modes can be defined by in programs using the modedef/1 declarations of the
Ciao assertion language (Chapter 64 [The Ciao assertion package], page 379 for details). Modes
are identified in this manual by a keyword 'MODE’.

Herein, we will use the set of modes defined in the Ciao isomodes library, which is essentially
the same as those used in the ISO-Prolog standard (Chapter 68 [ISO-Prolog modes|, page 413).

1.6.5 Properties and types

Although Ciao is not a typed language, it allows writing (and using) types, as well as (more
general) properties. There may be properties of the states and of the computation. Properties
of the states allow expressing characteristics of the program variables during computation, like
in sorted(X) (X is a sorted list). Properties of the computation allow expressing characteristics
of a whole computation, like in is_det (p(X,Y)) (such calls yield only one solution). Properties
are just a special form of predicates (Chapter 66 [Declaring regular types|, page 395) and are
identified in this manual by a keyword 'PROPERTY".

Ciao types are regular types (Chapter 66 [Declaring regular types], page 395), which are a
special form of properties themselves. They are identified in this manual by a keyword 'REG-
TYPE’.

1.6.6 Declarations

A declaration provides information to one of the Ciao environment tools. Declarations are
interspersed in the code of a program. Usually the target tool is either the compiler (telling
it that a predicate is dynamic, or a meta-predicate, etc.), the preprocessor (which understands
declarations of properties and types, assertions, etc.), or the autodocumenter (which understands
the previous declarations and also certain “comment” declarations).

Chapter 1: Introduction 7

A declaration has the form :- D. where D is syntactically the same as a literal. Declarations
are identified in this manual by a keyword 'DECLARATION’.

In Ciao users can define (and document) new declarations. New declarations are typically
useful when defining extensions to the language (which in Ciao are called packages). Such exten-
sions are often implemented as expansions (see Chapter 34 [Extending the syntax], page 225).
There are many such extensions in Ciao. The functions library, which provides fuctional syn-
tax, is an example. The fact that in Ciao expansions are local to modules (as operators, see
below) makes it possible to use a certain language extension in one module without affecting
other modules.

1.6.7 Operators

An operator is a functor (or predicate name) which has been declared as such, thus allowing
its use in a prefix, infix, or suffix fashion, instead of the standard procedure-like fashion. E.g.,
declaring + as an infix operator allows writing X+Y instead of >+’ (X,Y) (which may still, of
course, be written).

Operators in Ciao are local to the module/file where they are declared. However, some opera-
tors are standard and allowed in every program (see Chapter 47 [Defining operators|, page 293).
This manual documents the operator declarations in each (library) module where they are in-
cluded. As with expansions, the fact that in Ciao operators are local to modules makes it
possible to use a certain language extension in one module without affecting other modules.

1.7 A tour of the manual

The rest of the introductory chapters after this one provide a first “getting started” intro-
duction for newcomers to the Ciao system. The rest of the chapters in the manual are organized
into a sequence of major parts as follows:

1.7.1 PART I - The program development environment

This part documents the components of the basic Ciao program development environment.
They include:

ciaoc: the standalone compiler, which creates executables without having to enter the
interactive top-level.

ciaosh: (also invoked simply as ciao) is an interactive top-level shell, similar to the one
found on most Prolog systems (with some enhancements).

debugger: a Byrd box-type debugger, similar to the one found on most Prolog systems (also
with some enhancements, such as source-level debugging). This is not a standalone
application, but is rather included in ciaosh, as is done in other systems supporting
the Prolog language. However, it is also embeddable, in the sense that it can be
included as a library in executables, and activated dynamically and conditionally
while such executables are running.

ciao-shell: an interpreter/compiler for Ciao scripts (i.e., files containing Ciao code which run
without needing explicit compilation).

Ciao emacs interface:
a complete program development enviroment, based on GNU emacs, with syntax
coloring, direct access to all the tools described above (as well as the preprocessor
and the documenter), atomatic location of errors, source-level debugging, context-
sensitive access to on-line help/manuals, etc. The use of this environment is very
highly recommended!

The Ciao program development environment also includes ciaopp, the preprocessor, and
lpdoc, the documentation generator, which are described in separate manuals.

8 The Ciao System

1.7.2 PART II - The Ciao basic language (engine)

This part documents the Ciao basic builtins. These predefined predicates and declarations are
available in every program, unless the pure package is used (by using a : - module(_, _, [pure]) .
declaration or : - use_package (pure) .). These predicates are contained in the engine directory
within the 1ib library. The rest of the library predicates, including the packages that provide
most of the ISO-Prolog builtins, are documented in subsequent parts.

1.7.3 PART III - ISO-Prolog library (iso)

This part documents the iso package which provides to Ciao programs (most of) the ISO-
Prolog functionality, including the ISO-Prolog builtins not covered by the basic library.

1.7.4 PART IV - Classic Prolog library (classic)

This part documents some Ciao libraries which provide additional predicates and function-
alities that, despite not being in the ISO standard, are present in many popular Prolog systems.
This includes definite clause grammars (DCGs), “Quintus-style” internal database, list pro-
cessing predicates, DEC-10 Prolog-style input/output, formatted output, dynamic loading of
modules, activation of operators at run-time, etc.

1.7.5 PART V - Assertions, Properties, Types, Modes, Comments
(assertions)

Ciao allows annotating the program code with assertions. Such assertions include type
and instantiation mode declarations, but also more general properties as well as comments for
autodocumentation in the literate programming style. These assertions document predicates
(and modules and whole applications) and can be used by the Ciao preprocessor/compiler while
debugging and optimizing the program or library, and by the Ciao documenter to build program
or library reference manuals.

1.7.6 PART VI - Ciao library miscellanea

This part documents several Ciao libraries which provide different useful additional func-
tionality. Such functionality includes performing operating system calls, gathering statistics
from the Ciao engine, file and filename manipulation, error and exception handling, fast reading
and writing of terms (marshalling and unmarshalling), file locking, issuing program and error
messages, pretty-printing programs and assertions, a browser of the system libraries, additional
expansion utilities, concurrent aggregates, graph visualization, etc.

1.7.7 PART VII - Ciao extensions

The libraries documented in this part extend the Ciao language in several different ways.
The extensions include:

e pure Prolog programming (well, this can be viewed more as a restriction than an extension);
e feature terms or records (i.e., structures with names for each field);

parallel programming (e.g., &-Prolog style);
functional syntax;
higher-order;

global variables;

setarg and undo;
e delaying predicate execution;

Chapter 1: Introduction 9

e active modules;

breadth-first execution;
iterative deepening-based execution;
constraint logic programming;

object oriented programming.

1.7.8 PART VIII - Interfaces to other languages and systems

The following interfaces to/from Ciao are documented in this part:
e External interface (e.g., to C).
e Socket interface.
e Tcl/tk interface.
e Web interface (http, html, xml, etc.);

e Persistent predicate databases (interface between the Ciao internal database and the exter-
nal file system).

e SQL-like database interface (interface between the Ciao internal database and external
SQL/ODBC systems).

e Java interface.
e (Calling emacs from Ciao.

1.7.9 PART IX - Abstract data types

This part includes libraries which implement some generic data structures (abstract data
types) that are used frequently in programs or in the Ciao system itself.

1.7.10 PART X - Contributed libraries

This part includes a number of libraries which have contributed by users of the Ciao system.
Over time, some of these libraries are moved to the main library directories of the system.

1.7.11 PART XI - Contributed standalone utilities

This is the documentation for a set of contributed standalone utilities contained in the etc_
contrib directory of the Ciao distribution.

1.7.12 PART XII - Appendices

These appendices describe the installation of the Ciao environment on different systems and
some other issues such as reporting bugs, signing up on the Ciao user’s mailing list, downloading
new versions, limitations, etc.

1.8 Acknowledgments

The Ciao system is a joint effort on one side of some present (Francisco Bueno, Manuel
Carro, Manuel Hermenegildo, Pedro Ldpez, and Germdn Puebla) and past (Daniel Cabeza,
Maria José Garcia de la Banda) members of the CLIP group at the School of Computer Science,
Technical University of Madrid and at the IMDEA Software Institute, and on the other side of
several colleagues and students that have collaborated with us over the years of its development.
The following is an (inevitably incomplete) list of those that have contributed most significantly
to the development of Ciao:

10 The Ciao System

e The (iao engine, compiler, preprocessor, libraries, and documentation, although completely
rewritten at this point, have their origins in the &-Prolog parallel Prolog engine and
parallelizing compiler, developed by Manuel Hermenegildo, Kevin Greene, Kalyan Muthuku-
mar, and Roger Nasr at MCC and later at UPM. The &-Prolog engine and low-level (WAM)
compilers in turn were derived from early versions (0.5 to 0.7) of SICStus Prolog [Car88|.
SICStus is an excellent, high performance Prolog system, developed by Mats Carlsson and
colleagues at the Swedish Institute of Computer Science (SICS), that every user of Prolog
should check out [Swe95,AAF91]. Very special thanks are due to Seif Haridi, Mats Carls-
son, and colleagues at SICS for allowing the SICStus 0.5-0.7 components in é-Prolog and
its successor, Ciao, to be distributed freely. Parts of the parallel abstract machine have
been developed in collaboration with Gopal Gupta and Enrico Pontelli (New Mexico State
University).

e Many aspects of the analyzers in the Ciao preprocessor (ciaopp) have been developed in
collaboration with Peter Stuckey (Melbourne U.), Kim Marriott (Monash U.), Maurice
Bruynooghe, Gerda Janssens, Anne Mulkers, and Veroniek Dumortier (K.U. Leuven), and
Saumya Debray (U. of Arizona). The assertion system has been developed in collaboration
with Jan Maluzynski and Wlodek Drabent (Linkoping U.) and Pierre Deransart (INRIA).
The core of type inference system derives from the system developed by John Gallagher
[GAW94] (Bristol University) and later adapted to CLP(FD) by Pawel Pietrzak (Linkoping
U.).

e The constraint solvers for R and @ are derived from the code developed by Christian
Holzbauer (Austrian Research Institute for AI in Vienna) [Hol94,Hol90,Hol92].

e The Ciao manuals include material from the DECsystem-10 Prolog User’s Manual by D.L.
Bowen (editor), L. Byrd, F.C.N. Pereira, L.M. Pereira, and D.H.D. Warren [BBP81]. They
also contain material from the SICStus Prolog user manuals for SICStus versions 0.5-0.7
by Mats Carlsson and Johan Widen [Car88], as well as from the Prolog ISO standard
documentation [DEDC96].

e (Ciao is designed to be highly extendable in a modular way. Many of the libraries distributed
with Ciao have been developed by other people all of which is impossible to mention here.
Individual author names are included in the documentation of each library and appear in
the indices.

e The development of the Ciao system has been supported in part by European research
projects PEPMA, ACCLAIM, PARFORCE, DISCIPL, AMOS, ASAP, MOBIUS, and
SCUBE; by MICYT projects IPL-D, ELLA, EDIPIA, CUBICO, MERIT, and DOVES;
and by CM projects PROMESAS and PROMETIDOS.

If you feel you have contributed to the development of Ciao and we have forgotten to add
your name to this list or to the acknowledgements given in the different chapters and indices,
please let us know and we will be glad to give proper credits.

1.9 Version/Change Log

Version 1.15 (2011/7/8, 11:48:1 CEST)
New development version (Jose Morales)

Version 1.14#2 (2011/8/12, 18:14:31 CEST)
Merging r13606 (trunk) into 1.14. This backports an optimization for DARWIN
platforms (Jose Morales)

Version 1.14#1 (2011/8/10, 18:17:10 CEST)
Merging r13583 through r13586 (trunk) into 1.14. This fixes problems in the Win-
dows version of Ciao (Edison Mera, Jose Morales)

Chapter 1: Introduction 11

Version 1.14 (2011/7/8, 10:51:55 CEST)
It has been a long while since declaring the last major version (basically since moving
to subversion after 1.10/1.12), so quite a bit is included in this release. Here is the
(longish) summary:

e Extensions to functional notation:

Introduced fsyntax package (just functional syntax). (Daniel Cabeza)

Added support to define on the fly a return argument different from the
default one (e.g. “functor(~,f,2)). (Daniel Cabeza)

Use of ’: - function(defined(true)) .’ so that the defined function does
not need to be preceded by ~ in the return expression of a functional clause.

(Daniel Cabeza)

Functional notation: added to documentation to reflect more of the FLOPS
paper text and explanations. Added new functional syntax examples: ar-
rays, combination with constraints, using func notation for properties, lazy
evaluation, etc. (Manuel Hermenegildo)

Added functional abstractions to fsyntax and correct handling of predi-
cate abstractions (the functions in the body where expanded outside the
abstraction). (Jose Morales)

Improved translation of functions. In particular, old translation could lose
last call optimization for functions with body or with conditional expres-
sions. Furthermore, the translation avoids now some superfluous interme-
diate unifications. To be studied more involved optimizations. (Daniel
Cabeza, Jose Morales).

More superfluous unifications taken out from translated code, in cases
where a goal “f (X) = /Term/ appears in the body. (Daniel Cabeza)

Added library/argnames_fsyntax.pl: Package to be able to use $7/2
as an operator. (Daniel Cabeza)

Added a new example for lazy evaluation, saving memory using lazy instead
of eager evaluation. (Amadeo Casas)

e Improvements to signals and exceptions:

Distinguished between exceptions and signals. Exceptions are thrown and
caught (using throw/1 and catch/3). Signals are sent and intercepted (us-
ing send_signal/1 and intercept/3). (Jose Morales, Remy Haemmerle)

Back-port of the (improved) low-level exception handling from optim_comp
branch. (Jose Morales)

Fixed intercept/3 bug, with caused the toplevel to not properly handle
exceptions after one was handled and displayed (bug reported by Samir
Genaim on 04 Dec 05, in ciao mailing list, subject “ciao top-level :
exception handling”). Updated documentation. (Daniel Cabeza)

intercept/3 does not leave pending choice points if the called goal is
deterministic (the same optimization that was done for catch/3). (Jose
Morales)

e New/improved libraries:

New assoc library to represent association tables. (Manuel Carro, Pablo
Chico)

New regexp library to handle regular expressions. (Manuel Carro, Pablo
Chico)

Fixed bug in string_to_number that affected ASCII to floating point number
conversions (number_codes/2 and bytecode read). (Jose Morales)

12

The Ciao System

system.pl: Added predicates copy_file/2 and copy_file/3. Added
predicates get_uid/1, get_gid/1, get_pwnam/1, get_grnam/1 imple-
mented natively to get default user and groups of the current process.
(Edison Mera)

Added library for mutable variables. (Remy Haemmerle)
Added package for block declarations (experimental). (Remy Haemmerle)
Ported CHR as a Ciao package (experimental). (Tom Schrijvers)

Debugged and improved performance of the CHR library port. (Remy
Haemmerle)

contrib/math: A library with several math functions that dependes on
the GNU Scientific Library (GSL). (Edison Mera)

io_aux.pl: Added messages/1 predicate. Required to facilitate printing
of compact messages (compatible with emacs). (Edison Mera)

Added library hrtimer.pl that allow us to measure the time using the
higest resolution timer available in the current system. (Edison Mera)

Global logical (backtrackable) variables (experimental). (Jose Morales)

New dynamic handling (dynamic_clauses package). Not yet documented.
(Daniel Cabeza)

Moved = from iso_misc to term_basic. (Daniel Cabeza)
lib/lists.pl: Added predicate sequence_to_list/2. (Daniel Cabeza)

1ib/lists.pl: Codification of subordlist/2 improved. Solutions are
given in other order. (Daniel Cabeza)

lib/filenames.pl: Added file_directory_base_name/3. (Daniel
Cabeza)

library/symlink_locks.pl: preliminary library to make locks a la emacs.
(Daniel Cabeza)

lib/between.pl: Bug in between/3 fixed: when the low bound was a
float, an smaller integer was generated. (Daniel Cabeza)

Fixed bug related to implication operator -> in Fuzzy Prolog (Claudio
Vaucheret)

contrib/gendot: Generator of dot files, for drawing graphs using the dot
tool. (Claudio Ochoa)

Addded zeromq library (bindings for the Zero Message Queue (ZeroMQ,
O0MQ) cross-platform messaging middleware) (Dragan Ivanovic)

Minor documentation changes in javall library (Jesus Correas)
Fix a bug in calculator pl2java example (Jesus Correas)

lib/aggregates.pl: Deleted duplicated clauses of findnsols/4, detected
by Pawel. (Daniel Cabeza)

Added library to transform between color spaces (HSL and HVS) (experi-
mental). (Jose Morales)

Added module qualification in DCGs. (Remy Haemmerle, Jose Morales)
prolog_sys:predicate_property/2 behaves similar to other Prolog sys-
tems (thanks to Paulo Moura for reporting this bug). (Jose Morales)
Added DHT library (implementation of distributed hash table) (Arsen
Kostenko)

Adding property intervals/2 in native_props.pl (for intervals informa-
tion) (Luthfi Darmawan)

Chapter 1: Introduction 13

Added code to call polynomial root finding of GSL (Luthfi Darmawan)

Some improvements (not total, but easy to complete) to error messages
given by errhandle.pl . Also, some of the errors in sockets_c.c are now
proper exceptions instead of faults. (Manuel Carro)

sockets library: added a library (nsl) needed for Solaris (Manuel Carro)

Driver, utilities, and benchmarking programs from the ECRC suite. These
are aimed at testing some well-defined characteristics of a Prolog system.
(Manuel Carro)

library/getopts.pl: A module to get command-line options and values.
Intended to be used by Ciao executables. (Manuel Carro)

e Improved ISO compliance:

Ported the Prolog ISO conformance testing.

Fixed read of files containing single “%” char (reported by Ulrich
Neumerkel). (Jose Morales)

Added exceptions in =../2. (Remy Haemmerle)
Added exceptions in arithmetic predicates. (Remy Haemmerle)

Arithmetics integer functions throw exceptions when used with floats.
(Remy Haemmerle)

Added exceptions for resource errors. (Remy Haemmerle)

e Improvements to constraint solvers:

Improved CLPQ documentation. (Manuel Hermenegildo)
Added clp_meta/1 and clp_entailed/1 to the clpq and clpr packages (Samir
Genaim):
e clp_meta/1: meta-programming with clp constraints, e.g, clp_
meta([A.>.B,B.>.1]).

e clp_entailed/1: checks if the store entails specific cnstraints, e.g,
clp_entailed([A.>.B]) succeeds if the current store entailes A.>.B,
otherwise fails.

Exported the simplex predicates from CLP(Q,R). (Samir Genaim)

e Other language extensions:

Added new bf/bfall package. It allows running all predicates in a given
module in breadth-first mode without changing the syntax of the clauses
(i.e., no <- needed). Meant basically for experimentation and, specially,
teaching pure logic programming. (Manuel Hermenegildo)

Added afall package in the same line as bf/bfall (very useful!). (Manuel
Hermenegildo)

Improved documentation of bf and af packages. (Manuel Hermenegildo)

Added partial commons-style dialect support, including dialect flag.
(Manuel Hermenegildo)

yap_compat and commons_compat compatibility packages (for Yap and
Prolog Commons dialects). (Jose Morales)

argnames package: enhanced to allow argument name resolution at run-
time. (Jose Morales)

A package for conditional compilation of code (:-
use_package (condcomp)). (Jose Morales)

e Extensions for parallelism (And-Prolog):

14

The Ciao System

Low-level support for andprolog library has been taken out of the engine
and moved to library/apll in a similar way as the sockets library. We
are planning to reduce the size of the actual engine further, by taking
some components out of engine, such as locks, in future releases. (Amadeo
Casas)

Improved support for deterministic parallel goals, including some bug fixes.
(Amadeo Casas)

Goal stack definition added to the engine. (Amadeo Casas)

And-parallel code and the definition of goal stacks in the engine are now
wrapped with conditionals (via AND_PARALLEL_EXECUTION variable), to
avoid the machinery necessary to run programs in parallel affects in any
case the sequential execution. (Amadeo Casas)

Stack expansion supported when more than one agent is present in the
execution of parallel deterministic programs. This feature is still in exper-
imental. Support for stack expansion in nondeterministic benchmarks will
be added in a future release. (Amadeo Casas)

Support for stack unwinding in deterministic parallel programs, via
metachoice/metacut. However, garbage collection in parallel programs
is still unsupported. We are planning to include support for it in a future
release. (Amadeo Casas)

Backward execution of nondeterministic parallel goals made via events,
without speculation and continuation join. (Amadeo Casas)

Improved agents support. New primitives included that aim at increasing
the flexibility of creation and management of agents. (Amadeo Casas)

Agents synchronization is done now by using locks, instead of using
assertz/retract, to improve efficiency in the execution of parallel pro-
grams. (Amadeo Casas)

Optimized version of call/1 to invoke deterministic goals in parallel has
been added (call_handler_det/1). (Amadeo Casas)

Optimization: locks/new_atom only created when the goal is stolen by
other process, and not when this is pushed on to the goal_stack. (Amadeo
Casas)

Integration with the new annotation algorithms supported by CiaoPP, both
with and without preservation of the order of the solutions. (Amadeo
Casas)

New set of examples added to the andprolog library. (Amadeo Casas)

Several bug fixes to remove some cases in execution of parallel code in
which races could appear. (Amadeo Casas)

andprolog_rt:& by par_rt:& have been moved to native_builtin
(Amadeo Casas)

indep/1 and indep/2 have been moved to native_props, as ground/1,
var/1, etc. (Amadeo Casas)

Added assertions to the library/apll and library/andprolog libraries.
(Amadeo Casas)

Removed clauses in pretty_print for the &>/2 and <&/1 operators.
(Amadeo Casas)

Shorter code for <& / 1 and <&! / 1 (Manuel Carro)

Trying to solve some problems when resetting WAM pointers (Manuel
Carro)

Chapter 1: Introduction 15

Better code to clean the stacks (Manuel Carro)

e Improvements to foreign (C language) interface:

Better support for cygwin and handling of dll libraries in Windows. Now
usage of external dll libraries are supported in Windows under cygwin.
(Edison Mera)

Improvements to documentation of foreign interface (examples). (Manuel
Hermenegildo)

Allow reentrant calls from Prolog to C and then from C to Prolog. (Jose
Morales)

Fix bug that prevented ciaoc -c MODULE from generating dynamic .so
libraries files. (Jose Morales)

Fix bug that prevented ciaoc MODULE && rm MODULE && ciaoc MODULE
from emitting correct executables (previously, dynamic .so libraries files
where ignored in executable recompilations when only the main file was
missing). (Jose Morales)

e Run-Time Checking and Unit Tests:

Added support to perfom run-time checking of assertions and predi-
cates outside ciaopp (see the documentation for more details). In
addition to those already available, the new properties that can be
run-time checked are: exception/1, exception/2, no_exception/1,
no_exception/2, user_output/2, solutions/2, num_solutions/2, no_
signal/1, no_signal/2, signal/1, signal/2, signals/2, throws/2. See
library assertions/native_props.pl (Edison Mera)

Added support for testing via the unittest library. Documentation avail-
able at library(unittest(unittest_doc)). (Edison Mera)

e Profiling:

Improved profiler, now it is cost center-based and works together with
the run-time checking machinery in order to also validate execution time-
related properties. (Edison Mera)

A tool for automatic bottleneck detection has been developed, which is able
to point at the predicates responsible of lack of performance in a program.
(Edison Mera)

Improved profiler documentation. (Manuel Hermenegildo)

e Debugger enhancements:

Added the flag check_cycles to control whether the debugger takes care
of cyclic terms while displaying goals. The rationale is that to check for
cyclic terms may lead to very high response times when having big terms.
By default the flag is in off, which implies that a cyclic term in the execu-
tion could cause infinite loops (but otherwise the debugger is much more
speedy). (Daniel Cabeza)

Show the variable names instead of underscores with numbers. Added
option v to show the variables list. Added v <N> option, where N is the
Name of the variable you like to watch (experimental). (Edison Mera)
Distinguish between program variables and compiler-introduced variables.
Show variables modified in the current goal. (Edison Mera)

debug_mode does not leave useless choicepoints (Jose Morales)

e Emacs mode:

Made ciao mode NOT ask by default if one wants to set up version control
when first saving a file. This makes more sense if using other version control

The Ciao System

systems and probably in any case (several users had asked for this). There
is a global customizable variable (which appears in the LPdoc area) which
can be set to revert to the old behaviour. Updated the manual accordingly.
(Manuel Hermenegildo)

e Added possibility of chosing which emacs Ciao should use during compila-
tion, by LPdoc, etc. Previously only a default emacs was used which is not
always the right thing, specially, e.g., in Mac OS X, where the latest/right
emacs may not even be in the paths. Other minor typos etc. (Manuel
Hermenegildo)

e Moved the version control menu entries to the LPdoc menu. (Manuel
Hermenegildo)

e Updated highlighting for new functional syntax, unit tests, and all other
new features. (Manuel Hermenegildo)

e Completed CiaoPP-java environment (menus, buttons, etc.) and auto-
mated loading when visiting Java files (still through hand modification of
.emacs). CiaoPP help (e.g., for properties) now also available in Java mode.
(Manuel Hermenegildo)

e Changes to graphical interface to adapt better to current functionality of
CiaoPP option browser. Also some minor aesthetic changes. (Manuel
Hermenegildo)

e Various changes and fixes to adapt to emacs-22/23 lisp. In particular, fixed
cursor error in emacs 23 in Ciao shell (from Emilio Gallego). Also fixed
prompt in ciaopp and LPdoc buffers for emacs 23. (Manuel Hermenegildo)

e Unified several versions of the Ciao emacs mode (including the one with
the experimental toolbar in xemacs) that had diverged. Sorely needed to
be able to make progress without duplication. (Manuel Hermenegildo)

e New version of ciao.el supporting tool bar in xemacs and also, and per-
haps more importantly, in newer emacsen (>= 22), where it previously did
not work either. New icons with opaque background for xemacs tool bar.
(Manuel Hermenegildo)

e Using key-description instead of a combination of text-char-
description and string-to-char. This fixes a bug in the Ciao Emacs
Mode when running in emacs 23, that shows wrong descriptions for M-. ..
key bindings. The new code runs correctly in emacs 21 and 22. (Jose
Morales)

e Coloring strings before functional calls and 0 characters (strings like "~ w"
were colored incorrectly) (Jose Morales)

e @begin{verbatim} and @include colored as LPdoc commands only inside
LPdoc comments. (Jose Morales)

e Fixed colors for dark backgrounds (workaround to avoid a bug in emacs)
(Jose Morales)

e Added an automatic indenter (contrib/plindent) and formatting tool, un-
der emacs you can invoque it using the keyword C-c I in the current buffer
containing your prolog source. (Edison Mera)

e Packaging and distribution:

e User-friendly, binary installers for several systems are now generated regu-
larly and automatically: Ubuntu/Debian, Fedora/RedHat, Windows (XP,
Vista, 7) and MacOSX. (Edison Mera, Remy Haemmerle)

e Improvements in Ciao toplevel:

Chapter 1: Introduction 17

Introduced check_cycles prolog_flag which controls whether the
toplevel handles or not cyclic terms. Flag is set to false by default (cy-
cles not detected and handled) in order to speed up responses. (Daniel
Cabeza)

Modified valid_solution/2 so that it asks no question when there are no
pending choice points and the prompt_alternatives_no_bindings prolog
flag is on. (Jose Morales)

Now Y’ can be used as well as 'y’ to accept a solution of a query. (Daniel
Cabeza)

Added newline before true when displaying empty solutions. (Jose
Morales)

Multifile declarations of packages used by the toplevel were not properly
handled. Fixed. (Daniel Cabeza)

Fixed bug in output of bindings when current output changed.
Changes so that including files in the toplevel (or loading packages) does
not invoke an expansion of the ending end_of_file. This makes sense be-

cause the toplevel code is never completed, and thus no cleanup code of
translations is invoked. (Daniel Cabeza)

e Compiler enhancements and bug fixes:

Added a command line option to ciaoc for generating code with runtime
checks. (Daniel Cabeza)

Now the compiler reads assertions by default (when using the assertion
package), and verifies their syntax. (Edison Mera)

Added option -w to ciaoc compiler to generate the WAM code of the
specified prolog files. (Edison Mera)

Fixed bug in exemaker: now when main/0 and main/1 exists, main/0 is
always the program entry (before in modules either could be). (Daniel
Cabeza)

Fixed bug: when compiling a file, if an imported file had no itf and it
used the redefining declaration, the declaration was forgotten between the
reading of the imported file (to get its interface) and its later compilation.
By now those declarations are never forgotten, but perhaps it could be
done better. (Daniel Cabeza)

The unloading of files kept some data related to them, which caused in

some cases errors or warnings regarding module redefinitions. Now this is
fixed. (Daniel Cabeza)

Undefined predicate warnings also for predicate calls qualified with current
module (bug detected by Pawel Pietrzak). (Daniel Cabeza)
Fixed bug debugger_include (that is, now a change in a file included from

a module which is debugged is detected when the module is reloaded).
(Daniel Cabeza)

e Fixed a(B) :- _=B, b, c(B) bug in compilation of unification. (Jose
Morales)
e Improving general support for language extensions:
e Every package starts with ':- package(...)’ declaration now. This al-

lows a clear distinction between packages, modules, and files that are just
included; all of them using the same .pl extension. (Jose Morales)
Added priority in syntax translations. Users are not required to know the
details of translations in order to use them (experimental: the the correct
order for all the Ciao packages is still not fixed) (Jose Morales)

18

The Ciao System

Now the initialization of sentence translations is done in the translation
package, when they are added. In this way, previous active translations
cannot affect the initialization of new translations, and initializations are
not started each time a new sentence translation is added. Additionally,
now the initialization of sentence translations in the toplevel is done (there
was a bug). (Daniel Cabeza)

Added addterm(Meta) meta-data specification for the implementation of
the changes to provide a correct clause/2 predicate. (Daniel Cabeza)

Generalized addmodule meta-data specification to addmodule(Meta),
addmodule is now an alias for addmodule(?). Needed for the implemen-
tation of the changes to provide a correct clause/2 predicate. (Daniel
Cabeza)

e Improvements to system assertions:

Added regtype basic_props:num_code/1 and more assertions to basic_
props.pl (German Puebla)

Added trust assertion for atomic_basic:number_codes/2 in order to have
more accurate analysis info (first argument a number and second argument
is a list of num_codes) (German Puebla)

Added some more binding insensitivity assertions in basic_props.pl (Ger-
man Puebla)

Added the basic_props:filter/2 property which is used at the global
control level in order to guarantee termination. (German Puebla)

Added equiv assertion for basiccontrol:fail/0 (German Puebla)
Modified eval assertion so that partial evaluation does not loop with ill-
typed, semi-instantiated calls to is/2 (this problem was reported some
time ago) (German Puebla)

Replaced true assertions for arithmetic predicates with trust assertions
(arithmetic.pl). (German Puebla)

Added assertions for term_basic:’=’/2 (the not unification) (German
Puebla)

Added assertions for 1ists:nth/3 predicate and lists:reverse/3. (Ger-
man Puebla)

Changed calls to atom/1 to atm/1 in c_itf_props:moddesc/1 (it is a
regular type) (Jesus Correas)

formulae:assert_body_type/1 switched to prop, it is not a regtype.
(Jesus Correas)

Added assertions to atom_concat/2. (Jesus Correas)

Added some assertions to dec10_io, lists, strings libraries. (Jesus Cor-
reas)

Removed check from pred and success froom many library assertions. (Je-
sus Correas)

Fixed a problem when reading multiple disjunction in assertions
(library/formulae.pl and lib/assertions/assrt_write.pl). (Pawel
Pietrzak)

Added/improved assertions in several modules under 1ib/ (Pawel
Pietrzak)

e Engine enhancements:

Added support for Ciao compilation in ppc64 architecture. (Manuel Carro)
sun4v added in ciao_get_arch. (Amadeo Casas)

Chapter 1: Introduction 19

Solved compilation issue in Sparc. (Manuel Carro, Amadeo Casas)

Support for 64 bits Intel processor (in 32-bit compatibility mode). (Manuel
Carro)

Switched the default memory manager from linear to the binary tree ver-
sion (which improves management of small memory blocks). (Remy Haem-
merle)

Using mmap in Linux/i86, Linux/Sparc and Mac OS X (Manuel Carro)

A rename of the macro REGISTER to CIAO_REGISTER. There have been
reports of the macro name clashing with an equally-named one in third-
party packages (namely, the PPL library). (Manuel Carro)

A set of macros CIAO_REG_n (n currently goes from 1 to 4, but it can
be enlarged) to force the GCC compiler to store a variable in a register.
This includes assignments of hardware registers for n = 1 to 3, in seemingly
ascending order of effectiveness. See coments in registers.h (Manuel Carro)

An assignement of (local) variables to be definitely stored in registers for
some (not all) functions in the engine — notably wam. c. These were decided
making profiling of C code to find out bottlenecks and many test runs with
different assignments of C variables to registers. (Manuel Carro)

Changed symbol name to avoid clashes with other third-party packages
(such as minisat). (Manuel Carro)

Fixed a memory alignment problem (for RISC architectures where words
must be word-aligned, like Sparc). (Jose Morales)

Unifying some internal names (towards merge with optim_comp experi-
mental branch). (Jose Morales)

o Attributed variables:

Attributes of variables are correctly displayed in the toplevel even if they
contain cyclic terms. Equations added in order to define cyclic terms in
attributes are output after the attributes, and do use always new variable
names (doing otherwise was very involved). (Daniel Cabeza)
lib/attrdump.pl: The library now works for infinite (cyclic) terms.
(Daniel Cabeza)

Changed multifile predicate dump/3 to dump_constraints/3. (Daniel
Cabeza)

Added copy_extract_attr_nc/3 which is a faster version of copy_
extract_attr/3 but does not handle cyclic terms properly. (Daniel
Cabeza)

Added term_basic:copy_term_nat/2 to copy a term taking out at-
tributes. (Daniel Cabeza)

e Documentation:

Added deprecated/1. (Manuel Hermenegildo)

Improvements to documentation of rtchecks and tests. (Manuel
Hermenegildo)

Many updates to manuals: dates, copyrights, etc. Some text updates also.
(Manuel Hermenegildo)

Fixed all manual generation errors reported by LPdoc (still a number of
warnings and notes left). (Manuel Hermenegildo)

Adding some structure (minor) to all manuals (Ciao, LPdoc, CiaoPP) using
new LPdoc doc_structure/1. (Jose Morales)

e (Ciao Website:

20 The Ciao System

e Redesigned the Ciao website. It is generated again through LPdoc, but
with new approach. (Jose Morales)

Version 1.13 (2005/7/3, 19:5:53 CEST)
New development version after 1.12. (Jose Morales)

Version 1.12 (2005/7/3, 18:50:50 CEST)
Temporary version before transition to SVN. (Jose Morales)

Version 1.11#1 (2003/4/4, 18:30:31 CEST)
New development version to begin the builtin modularization (Jose Morales)

Version 1.10#8 (2007/1/28, 18:1:27 CEST)
Backports and bug fixes to stable 1.10:
e Changes to make Ciao 1.10 compile with the latest GCC releases.

e Imported
from CiaoDE/branches/CiaoDE-memory_management-20051016, changes from
revisions 4909 to 4910: Changes to make Ciao issue a better message at startup
if the allocated memory does not fall within the limits precomputed at compile
time (plus some code tidying).

e Port of revisions 5415, 5426, 5431, 5438, 5546, 5547 applied to Ciao 1.13 to
Ciao 1.10 in order to make it use mmap() when possible and to make it compile

on newer Linux kernels. Tested in Ubuntu, Fedora (with older kernel) and
MacOSX.

e Configuration files for DARWIN (ppc) and 64-bit platforms (Intel and Sparc,
both in 32-bit compatibility mode).
e Force the creation of the module containing the foreign interface compilation
options before they are needed.
Version 1.10 (2004/7/29, 16:12:3 CEST)
e C(lassical prolog mode as default behavior.
e Emacs-based environment improved.
e Improved emacs inferior (interaction) mode for Ciao and CiaoPP.
e Xemacs compatibility improved (thanks to A. Rigo).

New icons and modifications in the environment for the preprocessor.
Icons now installed in a separate dir.
Compatibility with newer versions of Cygwin.

Changes to programming environment:
e Double-click startup of programming environment.

e Reorganized menus: help and customization grouped in separate
menus.

e Error location extended.

e Automatic/Manual location of errors produced when running Ciao
tools now customizable.

e Presentation of CiaoPP preprocessor output improved.
e Faces and coloring improved:
e Faces for syntax-based highlighting more customizable.

e Syntax-based coloring greatly improved. Literal-level assertions also
correctly colored now.

e Syntax-based coloring now also working on ASCII terminals (for newer
versions of emacs).

Chapter 1: Introduction 21

e Listing user-defined directives allowed to be colored in special face.

Syntax errors now colored also in inferior buffers.

Customizable faces now appear in the documentation.

Added new tool bar button (and binding) to refontify block/buffer.

Error marks now cleared automatically also when generating docs.
e Added some fixes to hooks in Ipdoc buffer.

e Bug fixes in compiler.

e Replication of clauses in some cases (thanks to S. Craig).
e Improvements related to supported platforms
e Compilation and installation in different palatforms have been improved.
e New Mac OS X kernels supported.
e Improvement and bugs fixes in the engine:
e Got rid of several segmentation violation problems.

e Number of significant decimal digits to be printed now computed accu-
rately.

e Added support to test conversion of a Ciao integer into a machine int.
e Unbound length atoms now always working.

o C interface .h files reachable through a more standard location (thanks to
R. Bagnara).

e Compatibility with newer versions of gcc.
e New libraries and utilities added to the system:

e Factsdb: facts defined in external files can now be automatically cached
on-demand.

e Symfnames: File aliasing to internal streams added.
e New libraries added (in beta state):
e fd: clp(FD)
e xml_path: XML querying and transformation to Prolog.
e xdr_handle: XDR schema to HTML forms utility.
e ddlist: Two-way traversal list library.
e gnuplot: Interface to GnuPlot.
e time_analyzer: Execution time profiling.
e Some libraries greatly improved:
e Interface to Tcl/Tk very improved.

e Corrected many bugs in both interaction Prolog to Tcl/Tk and vicev-
ersa.

e FExecution of Prolog goals from TclTk revamped.
e Treatment of Tcl events corrected.

e Predicate tcl_eval/3 now allows the execution of Tcl procedures run-
ning multiple Prolog goals.

e Documentation heavily reworked.
e Fixed unification of prolog goals run from the Tcl side.
e Pillow library improved in many senses.

e HTTP media type parameter values returned are always strings now,
not atoms.

22

The Ciao System

e Changed verbatim() pillow term so that newlines are translated to

.

e Changed management of cookies so that special characters in values
are correctly handled.

e Added predicate url_query_values/2, reversible. Predicate url_
query/2 now obsolete.

e Now attribute values in tags are escaped to handle values which have
double quotes.

e Improved get_form_input/1 and url_query/2 so that names of pa-
rameters having unusual characters are always correctly handled.

Fixed bug in tokenizer regarding non-terminated single or multiple-line
comments. When the last line of a file has a single-line comment and does
not end in a newline, it is accepted as correct. When an open-comment /*
sequence is not terminated in a file, a syntax error exception is thrown.

e Other libraries improved:

Added native_props to assertions package and included nonground/1.

In atom2terms, changed interpretation of double quoted strings so that
they are not parsed to terms.

Control on exceptions improved.
Added native/1,2 to basic_props.
Davinci error processing improved.

Foreign predicates are now automatically declared as implementation-
defined.

In lists, added cross_product/2 to compute the cartesian product of a list
of lists. Also added delete_non_ground/3, enabling deletion of nonground
terms from a list.

In llists added transpose/2 and changed append/2 implementation with
a much more efficient code.

The make library has been improved.

In persdb, added pretractall_fact/1 and retractall_fact/1 as persdb
native capabilities.

Improved behavior with user environment from persdb.

In persdb, added support for persistent_dir/4, which includes argu-
ments to specify permission modes for persistent directory and files.

Some minor updates in persdb_sql.

Added treatment of operators and module:pred calls to pretty-printer.
Updated report of read of syntax errors.

File locking capabilities included in open/3.

Several improvements in library system.

New input/output facilities added to sockets.

Added most_specific_generalization/3 and
most_general_instance/3 to terms_check.

Added sort_dict/2 to library vndict.
The xref library now treats also empty references.

e Miscellaneous updates:

Extended documentation in libraries actmods, arrays, foreign_interface,
javall, persdb_mysql, prolog_sys, old_database, and terms_vars.

Chapter 1: Introduction 23

Version 1.9 (2002/5/16, 23:17:34 CEST)
New development version after stable 1.8p0 (MCL, DCG)

Version 1.8 (2002/5/16, 21:20:27 CEST)
e Improvements related to supported platforms:

Support for Mac OS X 10.1, based on the Darwin kernel.

Initial support for compilation on Linux for Power PC (contributed by
Paulo Moura).

Workaround for incorrect C compilation while using newer (> 2.95) gcc
compilers.

.bat files generated in Windows.

e Changes in compiler behavior and user interface:

Corrected a bug which caused wrong code generation in some cases.

Changed execution of initialization directives. Now the initialization of a
module/file never runs before the initializations of the modules from which
the module/file imports (excluding circular dependences).

The engine is more intelligent when looking for an engine to execute byte-
code; this caters for a variety of situations when setting explicitly the
CIAOLIB environment variable.

Fixed bugs in the toplevel: behaviour of module:main calls and initializa-
tion of a module (now happens after related modules are loaded).

Layout char not needed any more to end Prolog files.

Syntax errors now disable .itf creation, so that they show next time the
code is used without change.

Redefinition warnings now issued only when an unqualified call is seen.
Context menu in Windows can now load a file into the toplevel.

Updated Windows installation in order to run CGI executables under Win-
dows: a new information item is added to the registry.

Added new directories found in recent Linux distributions to INFOPATH.
Emacs-based environment and debugger improved:
e Errors located immediataly after code loading.
e Improved ciao-check-types-modes (preprocessor progress now visible).
e Fixed loading regions repeatedly (no more predicate redefinition warn-
ings).
e Added entries in ciaopp menu to set verbosity of output.

e Fixed some additional xemacs compatibility issues (related to
searches).

e FKrrors reported by inferior processes are now explored in forward order
(i.e., the first error rewported is the first one highlighted). Improved
tracking of errors.

e Specific tool bar now available, with icons for main fuctions (works
from emacs 21.1 on). Also, other minor adaptations for working with
emacs 21.1 and later.

e Debugger faces are now locally defined (and better customization).
This also improves comtability with xemacs (which has different faces).

e Direct access to a common use of the preprocessor (checking
modes/types and locating errors) from toolbar.

e Inferior modes for Ciao and CiaoPP improved: contextual help turned
on by default.

24

The Ciao System

Fixes to set-query. Also, previous query now appears in prompt.
Improved behaviour of stored query.

Improved behaviour of recentering, finding errors, etc.

Wait for prompt has better termination characteristics.
e Added new interactive entry points (M-x): ciao, prolog, ciaopp.
e Better tracking of last inferior buffer used.

e Miscellanous bugs removed; some colors changed to adapt to different
Emacs versions.

e Fixed some remaining incompatibilities with xemacs.
e :- doc now also supported and highlighted.
e FEliminated need for calendar.el

e Added some missing library directives to fontlock list, organized this
better.

o New libraries added to the system:

hiord: new library which needs to be loaded in order to use higher-order
call/N and P(X) syntax. Improved model for predicate abstractions.

fuzzy: allows representing fuzzy information in the form or Prolog rules.

use_url: allows loading a module remotely by using a WWW address of
the module source code

andorra: alternative search method where goals which become determinis-
tic at run time are executed before others.

iterative deepening (id): alternative search method which makes a depth-
first search until a predetermined depth is reached. Complete but in general
cheaper than breadth first.

det_hook: allows making actions when a deterministic situation is reached.

ProVRML: read VRML code and translate it into Prolog terms, and the
other way around.

io_alias_redirection: change where stdin/stdout/stderr point to from within
Ciao programs.

tel_tk: an interface to Tcl/Tk programs.
tcl_tk_obj: object-based interface to Tcl/Tk graphical objects.
CiaoPP: options to interface with the CiaoPP Prolog preprocessor.

e Some libraries greatly improved:

WebDB: utilities to create WW W-based database interfaces.

Improved java interface implementation (this forced renaming some inter-
face primitives).

User-transparent persistent predicate database revamped:

e Implemented passerta_fact/1 (asserta_fact/1).

e Now it is never necessary to explicitly call init_persdb, a call to ini-
tialize_db is only needed after dynamically defining facts of persis-
tent_dir/2. Thus, pcurrent_fact/1 predicate eliminated.

e Facts of persistent predicates included in the program code are now in-
cluded in the persistent database when it is created. They are ignored
in successive executions.

e Files where persistent predicates reside are now created inside a direc-
tory named as the module where the persistent predicates are defined,
and are named as F_A* for predicate F/A.

Chapter 1: Introduction 25

e Now there are two packages: persdb and ’persdb/ll’ (for low level).
In the first, the standard builtins asserta_fact/1, assertz_fact/1, and
retract_fact/1 are replaced by new versions which handle persistent
data predicates, behaving as usual for normal data predicates. In the
second package, predicates with names starting with ’'p’ are defined,
so that there is not overhead in calling the standard builtins.

e Needed declarations for persistent_dir/2 are now included in the pack-
ages.

SQL now works with mysql.

system: expanded to contain more predicates which act as interface to the
underlying system / operating system.

e Other libraries improved:

xref: creates cross-references among Prolog files.

concurrency: new predicates to create new concurrent predicates on-the-fly.
sockets: bugs corrected.

objects: concurrent facts now properly recognized.

fast read/write: bugs corrected.

Added ’webbased’ protocol for active modules: publication of active mod-
ule address can now be made through WWW.

Predicates in library(dynmods) moved to library(compiler).
Expansion and meta predicates improved.

Pretty printing.

Assertion processing.

Module-qualified function calls expansion improved.
Module expansion calls goal expansion even at runtime.

e Updates to builtins (there are a few more; these are the most relevant):

Added a prolog_flag to retrieve the version and patch.

current_predicate/1 in library(dynamic) now enumerates non-engine mod-
ules, prolog_sys:current_predicate/2 no longer exists.

exec/* bug fixed.
srandom/1 bug fixed.

e Updates for C interface:

Fixed bugs in already existing code.

Added support for creation and traversing of Prolog data structures from
C predicates.

Added support for raising Prolog exceptions from C predicates.
Preliminary support for calling Prolog from C.

e Miscellaneous updates:

Installation made more robust.
Some pending documentation added.

‘ciao’ script now adds (locally) to path the place where it has been in-
stalled, so that other programs can be located without being explicitly in
the $PATH.

Loading programs is somewhat faster now.
Some improvement in printing path names in Windows.

26

The Ciao System

Version 1.7 (2000/7/12, 19:1:20 CEST)
Development version following even 1.6 distribution.

Version 1.6 (2000/7/12, 18:55:50 CEST)

Source-level debugger in emacs, breakpts.

Emacs environment improved, added menus for Ciaopp and LPDoc.
Debugger embeddable in executables.

Stand-alone executables available for UNIX-like operating systems.
Many improvements to emacs interface.

Menu-based interface to autodocumenter.

Threads now available in Win32.

Many improvements to threads.

Modular clp(R) / clp(Q).

Libraries implementing And-fair breadth-first and iterative deepening included.
Improved syntax for predicate abstractions.

Library of higher-order list predicates.

Better code expansion facilities (macros).

New delay predicates (when/2).

Compressed object code/executables on demand.

The size of atoms is now unbound.

Fast creation of new unique atoms.

Number of clauses/predicates essentially unbound.

Delayed goals with freeze restored.

Faster compilation and startup.

Much faster fast write/read.

Improved documentation.

Other new libraries.

Improved installation/deinstallation on all platforms.

Many improvements to autodocumenter.

Many bug fixes in libraries and engine.

Version 1.5 (1999/11/29, 16:16:23 MEST)
Development version following even 1.4 distribution.

Version 1.4 (1999/11/27, 19:0:0 MEST)

Documentation greatly improved.

Automatic (re)compilation of foreign files.

Concurrency primitives revamped; restored &Prolog-like multiengine capability.
Windows installation and overall operation greatly improved.

New version of O’Ciao class/object library, with improved performance.
Added support for "predicate abstractions" in call/N.

Implemented reexportation through reexport declarations.

Changed precedence of importations, last one is now higher.

Modules can now implicitly export all predicates.

Many minor bugs fixed.

Version 1.3 (1999/6/16, 17:5:58 MEST)
Development version following even 1.2 distribution.

Chapter 1: Introduction 27

Version 1.2 (1999/6/14, 16:54:55 MEST)
Temporary version distributed locally for extensive testing of reexportation and
other 1.3 features.

Version 1.1 (1999/6/4, 13:30:37 MEST)
Development version following even 1.0 distribution.

Version 1.0 (1999/6/4, 13:27:42 MEST)

Added Tcl/Tk interface library to distribution.

Added push_prolog_flag/2 and pop_prolog_flag/1 declarations/builtins.
Filename processing in Windows improved.

Added redefining/1 declaration to avoid redefining warnings.

Changed syntax/1 declaration to use_package/1.

Added add_clause_trans/1 declaration.

Changed format of .itf files such that a '+’ stands for all the standard im-
ports from engine, which are included in c.itf source internally (from en-
gine(builtin_exports)). Further changes in itf data handling, so that once an .itf
file is read in a session, the file is cached and next time it is needed no access
to the file system is required.

Many bugs fixed.

Version 0.9 (1999/3/10, 17:3:49 CET)

Test version before 1.0 release. Many bugs fixed.

Version 0.8 (1998/10/27, 13:12:36 MET)

Changed compiler so that only one pass is done, eliminated .dep files.
New concurrency primitives.

Changed assertion comment operator to #.

Implemented higher-order with call/N.

Integrated SQL-interface to external databases with persistent predicate con-
cept.

First implementation of object oriented programming package.
Some bugs fixed.

Version 0.7 (1998/9/15, 12:12:33 MEST)

Improved debugger capabilities and made easier to use.

Simplified assertion format.

New arithmetic functions added, which complete all ISO functions.
Some bugs fixed.

Version 0.6 (1998/7/16, 21:12:7 MET DST)

Defining other path aliases (in addition to ’library’) which can be loaded dy-
namically in executables is now possible.

Added the posibility to define multifile predicates in the shell.
Added the posibility to define dynamic predicates dynamically.
Added addmodule meta-argument type.

Implemented persistent data predicates.

New version of PILLoW WWW library (XML, templates, etc.).

Ported active modules from “distributed Ciao” (independent development ver-
sion of Ciao).

Implemented lazy loading in executables.

28 The Ciao System

e Modularized engine(builtin).
e Some bugs fixed.
Version 0.5 (1998/3/23)
e First Windows version.
e Integrated debugger in toplevel.
e Implemented DCG’s as (Ciao-style) expansions.
e Builtins renamed to match ISO-Prolog.
e Made ISO the default syntax/package.
Version 0.4 (1998/2/24)
e First version with the new Ciao emacs mode.
e Full integration of concurrent engine and compiler/library.
e Added new_declaration/1 directive.
e Added modular syntax enhancements.
e Shell script interpreter separated from toplevel shell.
e Added new compilation warnings.
Version 0.3 (1997/8/20)
e (Ciao builtins modularized.
e New prolog flags can be defined by libraries.
e Standalone comand-line compiler available, with automatic "make".
e Added assertions and regular types.
e First version using the automatic documentation generator.

Version 0.2 (1997/4/16)
e First module system implemented.

Implemented exceptions using catch/3 and throw/1.
Added functional & record syntax.
Added modular sentence, term, and goal translations.

Implemented attributed variables.
First CLPQ/CLPR implementation.
Added the posibility of linking external .so files.

Changes in syntax to allow P(X) and "string"||L.
Changed to be closer to ISO-Prolog.
e Implemented Prolog shell scripts.

e Implemented data predicates.

Version 0.1 (1997/2/13)
First fully integrated, standalone Ciao distribution. Based on integrating into
an evolution of the &-Prolog engine/libraries/preprocessor [Her86,HG91] many
functionalities from several previous independent development versions of Ciao

[HC93,HC94,HCC95,Bue95,CLI95, HBAIBPY5, HBC96,CHV96b, HBC99).

Chapter 2: Getting started on Un*x-like machines 29

2 Getting started on Un*x-like machines

Author(s): Manuel Hermenegildo.

This part guides you through some very basic first steps with Ciao on a Un*x-like system. It
assumes that Ciao is already installed correctly on your Un*x system. If this is not the case, then
follow the instructions in Chapter 234 [Installing Ciao from the source distribution], page 1129
first.

We start with by describing the basics of using Ciao from a normal command shell such
as sh/bash, csh/tcsh, etc. We strongly recommend reading also Section 2.4 [An introduction
to the Ciao emacs environment (Un*x)], page 32 for the basics on using Ciao under emacs,
which is a much simpler and much more powerful way of developing Ciao programs, and has
the advantage of offering an almost identical environment under Un*x and Windows.

2.1 Testing your Ciao Un*x installation

It is a good idea to start by performing some tests to check that Ciao is installed correctly on
your system (these are the same tests that you are instructed to do during installation, so you
can obviously skip them if you have done them already at that time). If any of these tests do
not succeed either your environment variables are not set properly (see Section 2.2 [Un*x user
setup], page 29 for how to fix this):

e Typing ciao (or ciaosh) should start the typical Prolog-style top-level shell.

e In the top-level shell, Ciao library modules should load correctly. Type for example use_
module(library(dec10_io)) —you should get back a prompt with no errors reported.

e To exit the top level shell, type halt. as usual, or D).
e Typing ciaoc should produce the help message from the Ciao standalone compiler.
e Typing ciao-shell should produce a message saying that no code was found. This is a

Ciao application which can be used to write scripts written in Ciao, i.e., files which do not
need any explicit compilation to be run.

Also, the following documentation-related actions should work:

e If the info program is installed, typing info should produce a list of manuals which should
include Ciao manual(s) in a separate area (you may need to log out and back in so that
your shell variables are reinitialized for this to work).

e Opening with a WWW browser (e.g., netscape) the directory or URL corresponding to the
DOCDIR setting should show a series of Ciao-related manuals. Note that style sheets should
be activated for correct formatting of the manual.

e Typing man ciao should produce a man page with some very basic general information on
Ciao (and pointing to the on-line manuals).

e The DOCDIR directory should contain the manual also in the other formats such as
postscript or pdf which specially useful for printing. See Section 2.3.7 [Printing man-
uals (Un*x)], page 32 for instructions.

2.2 Un*x user setup

If the tests above have succeeded, the system is probably installed correctly and your envi-
ronment variables have been set already. In that case you can skip to the next section.

Otherwise, if you have not already done so, make the following modifications in your startup
scripts, so that these files are used (<LIBROOT> must be replaced with the appropriate value,
i.e., where the Ciao library is installed):

e For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

30 The Ciao System

if (-e <v>libroot</v>/ciao/D0Tcshrc) then
source <v>libroot</v>/ciao/D0Tcshrc
endif

Note: while this is recognized by the terminal shell, and therefore by the text-mode Emacs
which comes with Mac OS X, the Aqua native Emacs 21 does not recognize that initial-
ization. It is thus necessary, at this moment, to set manually the Ciao shell (ciaosh) and
Ciao library location by hand. This can be done from the Ciao menu within Emacs after a
Ciao file has been loaded. We believe that the reason is that Mac OS X does not actually
consult the per-user initialization files on startup. It should also be possible to put the right
initializations in the .emacs file using the setenv function of Emacs-lisp, as in

(setenv "CIAOLIB" "<v>libroot</v>/ciao")

The same can be done for the rest of the wvariables initialized in
<v>libroot</v>/ciao/D0Tcshrc

e For users of an sh-compatible shell (sh, bash, ...), the installer will add to ~/.bashrc the
next lines:

if [-f <v>libroot</v>/ciao/D0Tprofile]; then
. <v>libroot</v>/ciao/D0Tprofile

fi
This will set up things so that the Ciao executables are found and you can access the Ciao
system manuals using the info command. Note that, depending on your shell, you may
have to log out and back in for the changes to take effect.

e Also, if you use emacs (highly recommended) the install will add the next line to your

~/ .emacs file:

(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")
(if (file-exists-p "<v>libroot</v>/ciao/ciao-mode-init.el")
(load-file "<v>libroot</v>/ciao/ciao-mode-init.el")

)

If after following these steps things do not work properly, then the installation was probably
not completed properly and you may want to try reinstalling the system.

2.3 Using Ciao from a Un*x command shell

2.3.1 Starting/exiting the top-level shell (Un*x)

The basic methods for starting/exiting the top-level shell have been discussed above. If upon
typing ciao you get a “command not found” error or you get a longer message from Ciao before
starting, it means that either Ciao was not installed correctly or you environment variables are
not set up properly. Follow the instructions on the message printed by Ciao or refer to the
installation instructions regarding user-setup for details.

2.3.2 Getting help (Un*x)

The basic methods for accessing the manual on-line have also been discussed above. Use
the table of contents and the indices of predicates, libraries, concepts, etc. to find what you are
looking for. Context-sensitive help is available within the emacs environment (see below).

2.3.3 Compiling and running programs (Un*x)

Once the shell is started, you can compile and execute modules inside the interactive top-
level shell in the standard way. E.g., type use_module(file) ., use_module (library(file)) . for

Chapter 2: Getting started on Un*x-like machines 31

library modules, ensure_loaded (file) . for files which are not modules, and use_package (file) .
for library packages (these are syntactic/semantic packages that extend the Ciao language in
many different ways). Note that the use of compile/1 and consult/1 is discouraged in Ciao.

For example, you may want to type use_package (iso) to ensure Ciao has loaded all the ISO
builtins (whether this is done by default or not depends on your .ciaorc file). Do not worry
about any “module already in executable” messages —these are normal and simply mean that a
certain module is already pre-loaded in the top-level shell. At this point, typing write (hello).
should work.

Note that some predicates that may be built-ins in typical Prolog implementations are avail-
able through libraries in Ciao. This facilitates making small executables.

To change the working directory to, say, the examples directory in the Ciao root directory,
first do:

7- use_module(library(system)) .
(loading the system library makes a number of system-related predicates such as cd/1 accessible)
and then:
?7- cd(’$/examples’).
(in Ciao the sequence $/ at the beginning of a path name is replaced by the path of the Ciao
root directory).
For more information see Chapter 5 [The interactive top-level shell], page 49.

2.3.4 Generating executables (Un*x)

Executables can be generated from the top-level shell (using make_exec/2) or using the
standalone compiler (ciaoc). To be able to make an executable, the file should define the
predicate main/1 (or main/0), which will be called upon startup (see the corresponding manual
section for details). In its simplest use, given a top-level foo.pl file for an application, the
compilation process produces an executable foo, automatically detecting which other files used
by foo.pl need recompilation.

For example, within the examples directory, you can type:

?- make_exec(hw,_).
which should produce an executable. Typing hw in a shell (or double-clicking on the icon from
a graphical window) should execute it.

For more information see Chapter 5 [The interactive top-level shell], page 49 and Chapter 4
[The stand-alone command-line compiler|, page 41.

2.3.5 Running Ciao scripts (Un*x)

Ciao allows writing scripts. These are files containing Ciao source but which get executed
without having to explicitly compile them (in the same way as, e.g., .bat files or programs in
scripting languages). As an example, you can run the file hw in the examples directory of the
Ciao distribution and look at the source with an editor. You can try changing the Hello world
message and running the program again (no need to recompile!).

As you can see, the file should define the predicate main/1 (not main/0), which will be called
upon startup. The two header lines are necessary in Un*x in. In Windows you can leave them
in or you can take them out, but you need to rename the script to hw.pls. Leaving the lines in
has the advantage that the script will also work in Un*x without any change.

For more information see Chapter 8 [The script interpreter|, page 71.

32 The Ciao System

2.3.6 The Ciao initialization file (Un*x)

The Ciao toplevel can be made to execute upon startup a number of commands (such as,
e.g., loading certain files or setting certain Ciao flags) contained in an initialization file. This
file should be called .ciaorc and placed in your home directory (e.g., ~, the same in which
the .emacs file is put). You may need to set the environment variable HOME to the path of this
directory for the Ciao toplevel shell to be able to locate this file on startup.

2.3.7 Printing manuals (Un*x)

As mentioned before, the manual is available in several formats in the reference directory
within the doc directory in the Ciao distribution, including postscript or pdf, which are
specially useful for printing. These files are also available in the DOCDIR directory specified during
installation. Printing can be done using an application such as ghostview (freely available from
http://www.cs.wisc.edu/ ghost/index.html) or acrobat reader (http://www.adobe.com,
only pdf).

2.4 An introduction to the Ciao emacs environment (Un*x)

While it is easy to use Ciao with any editor of your choice, using it within the emacs edi-
tor/program development system is highly recommended: Ciao includes an emacs mode which
provides a very complete application development environment which greatly simplifies many
program development tasks. See Chapter 18 [Using Ciao inside GNU emacs], page 95 for details
on the capabilities of ciao/ emacs combination.

If the (freely available) emacs editor/environment is not installed in your system, we highly
recommend that you also install it at this point (there are instructions for where to find emacs
and how to install it in the Ciao installation instructions). After having done this you can try
for example the following things:

e A few basic things:

e Typing @ (or in the menus Help->Manuals->Browse Manuals with Info) should
open a list of manuals in info format in which the Ciao manual(s) should appear.

e When opening a Ciao file, i.e., a file with .pl or .pls ending, using X)CF)filename
(or using the menus) the code should appear highlighted according to syntax (e.g.,
comments in red), and Ciao/Prolog menus should appear in the menu bar on top of
the emacs window.

e Loading the file using the Ciao/Prolog menu (or typing CC) (1)) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch
the the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not
very useful) key and the (very useful in emacs) key on the keyboard. How to
do this is explained in the emacs frequently asked questions FAQs (see the emacs download
instructions for their location).

(if these things do not work the system or emacs may not be installed properly).
e You can go to the location of most of the errors that may be reported during compilation

by typing 0.
e You can also, e.g., create executables from the Ciao/Prolog menu, as well as compile
individual files, or generate active modules.

e Loading a file for source-level debugging using the Ciao/Prolog menu (or typing @)
and then issuing a query should start the source-level debugger and move a marker on the
code in a window while execution is stepped through in the window running the Ciao top
level.

Chapter 2: Getting started on Un*x-like machines 33

e You can add the lines needed in Un*x for turning any file defining main/1 into a script from
the Ciao/Prolog menu or by typing @ .
e You can also work with the preprocessor and auto-documenter directly from emacs: see

their manuals or browse through the corresponding menus that appear when editing .pl
files.

We encourage you once more to read Chapter 18 [Using Ciao inside GNU emacs|, page 95 to
discover the many other functionalities of this environment.

2.5 Keeping up to date (Un*x)

You may want to read Chapter 236 [Beyond installation], page 1143 for instructions on how to
sign up on the Ciao user’s mailing list, receive announcements regarding new versions, download
new versions, report bugs, etc.

34

The Ciao System

Chapter 3: Getting started on Windows machines 35

3 Getting started on Windows machines

Author(s): Manuel Hermenegildo.

This part guides you through some very basic first steps with Ciao on an MSWindows
(“Win32”) system. It assumes that Ciao is already installed correctly on your Windows system.
If this is not the case, then follow the instructions in Chapter 235 [Installing Ciao from a Win32
binary distribution], page 1139 (or Chapter 234 [Installing Ciao from the source distribution],
page 1129) first.

We start with by describing the basics of using Ciao from the Windows explorer and/or a
DOS command shell. We strongly recommend reading also Section 3.3 [An introduction to the
Ciao emacs environment (Win32)], page 37 for the basics on using Ciao under emacs, which is a
much simpler and much more powerful way of developing Ciao programs, and has the advantage
of offering an almost identical environment under Windows and Un*x.

3.1 Testing your Ciao Win32 installation

It is a good idea to start by performing some tests to check that Ciao is installed correctly on
your system (these are the same tests that you are instructed to do during installation, so you
can obviously skip them if you have done them already at that time):

e Ciao-related file types (.pl source files, .cpx executables, .itf,.po, .asr interface files,
.pls scripts, etc.) should have specific icons associated with them (you can look at the files
in the folders in the Ciao distribution to check).

e Double-clicking on the shortcut to ciaosh(.cpx) on the desktop should start the typical
Prolog-style top-level shell in a window. If this shortcut has not been created on the
desktop, then double-clicking on the ciaosh(.cpx) icon inside the shell folder within the
Ciao source folder should have the same effect.

e In the top-level shell, Ciao library modules should load correctly. Type for example use_
module (library(dec10_io)) . at the Ciao top-level prompt —you should get back a prompt
with no errors reported.

e To exit the top level shell, type halt. as usual, or (D).

Also, the following documentation-related actions should work:

e Double-clicking on the shortcut to ciao(.html) which appears on the desktop should show
the Ciao manual in your default WWW browser. If this shortcut has not been created you
can double-click on the ciao(.html) file in the doc\reference\ciao_html folder inside the
Ciao source folder. Make sure you configure your browser to use style sheets for correct
formatting of the manual (note, however, that some older versions of Explorer did not
support style sheets well and will give better results turning them off).

e The doc\reference folder contains the manual also in the other formats present in the dis-
tribution, such as info (very convenient for users of the emacs editor/program development
system) and postscript or pdf, which are specially useful for printing. See Section 3.2.7
[Printing manuals (Win32)], page 37 for instructions.

3.2 Using Ciao from the Windows explorer and command shell

3.2.1 Starting/exiting the top-level shell (Win32)

The basic methods for starting/exiting the top-level shell have been discussed above. The
installation script also leaves a ciaosh(.bat) file inside the shell folder of the Ciao distribution
which can be used to start the top-level shell from the command line in Windows systems.

36 The Ciao System

3.2.2 Getting help (Win32)

The basic methods for accessing the manual on-line have also been discussed above. Use
the table of contents and the indices of predicates, libraries, concepts, etc. to find what you are
looking for. Context-sensitive help is available within the emacs environment (see below).

3.2.3 Compiling and running programs (Win32)

Once the shell is started, you can compile and execute Ciao modules inside the interactive
toplevel shell in the standard way. E.g., type use_module(file) ., use_module(library(file)) .
for library modules, ensure_loaded(file). for files which are not modules, and use_
package (file) . for library packages (these are syntactic/semantic packages that extend the Ciao
language in many different ways). Note that the use of compile/1 and consult/1 is discouraged
in Ciao.

For example, you may want to type use_package (iso) to ensure Ciao has loaded all the ISO
builtins (whether this is done by default or not depends on your .ciaorc file). Do not worry
about any “module already in executable” messages —these are normal and simply mean that a
certain module is already pre-loaded in the toplevel shell. At this point, typing write (hello).
should work.

Note that some predicates that may be built-ins in typical Prolog implementations are avail-
able through libraries in Ciao. This facilitates making small executables.

To change the working directory to, say, the examples directory in the Ciao source directory,
first do:

?7- use_module(library(system)).

loading the system library makes a number of system—related predicates such as cd/1 accessible
and then:

?7- cd(’$/examples’).

(in Ciao the sequence $/ at the beginning of a path name is replaced by the path of the Ciao
root directory).

For more information see Chapter 5 [The interactive top-level shell], page 49.

3.2.4 Generating executables (Win32)

Executables can be generated from the toplevel shell (using make_exec/2) or using the stan-
dalone compiler (ciaoc(.cpx), located in the ciaoc folder). To be able to make an executable,
the file should define the predicate main/1 (or main/0), which will be called upon startup (see
the corresponding manual section for details).

For example, within the examples directory, you can type:
7- make_exec(hw,_).
which should produce an executable. Double-clicking on this executable should execute it.

Another way of creating Ciao executables from source files is by right-clicking on .pl files
and choosing “make executable”. This uses the standalone compiler (this has the disadvantage,
however, that it is sometimes difficult to see the error messages).

For more information see Chapter 5 [The interactive top-level shell], page 49 and Chapter 4
[The stand-alone command-line compiler|, page 41.

Chapter 3: Getting started on Windows machines 37

3.2.5 Running Ciao scripts (Win32)

Double-clicking on files ending in .pls, Ciao scripts, will also execute them. These are files
containing Ciao source but which get executed without having to explicitly compile them (in
the same way as, e.g., .bat files or programs in scripting languages). As an example, you can
double-click on the file hw.pls in the examples folder and look at the source with an editor. You
can try changing the Hello world message and double-clicking again (no need to recompile!).

As you can see, the file should define the predicate main/1 (not main/0), which will be called
upon startup. The two header lines are only necessary in Un*x. In Windows you can leave
them in or you can take them out, but leaving them in has the advantage that the script will
also work in Un*x without any change.

For more information see Chapter 8 [The script interpreter], page 71.

3.2.6 The Ciao initialization file (Win32)

The Ciao toplevel can be made to execute upon startup a number of commands (such as,
e.g., loading certain files or setting certain Ciao flags) contained in an initialization file. This file
should be called .ciaorc and placed in your home folder (e.g., the same in which the .emacs
file is put). You may need to set the environment variable HOME to the path of this folder for
the Ciao toplevel shell to be able to locate this file on startup.

3.2.7 Printing manuals (Win32)

As mentioned before, the manual is available in several formats in the reference folder
within Ciao’s doc folder, including postscript or pdf, which are specially useful for print-
ing. This can be done using an application such as ghostview (freely available from
http://www.cs.wisc.edu/ ghost/index.html) or acrobat reader (http://www.adobe.com,
only pdf).

3.3 An introduction to the Ciao emacs environment (Win32)

While it is easy to use Ciao with any editor of your choice, using it within the emacs edi-
tor/program development system is highly recommended: Ciao includes an emacs mode which
provides a very complete application development environment which greatly simplifies many
program development tasks. See Chapter 18 [Using Ciao inside GNU emacs], page 95 for details
on the capabilities of ciao/ emacs combination.

If the (freely available) emacs editor/environment is not installed in your system, we highly
recommend that you also install it at this point (there are instructions for where to find emacs
and how to install it in the Ciao installation instructions). After having done this you can try
for example the following things:

e A few basic things:

o Typing @ (or in the menus Help->Manuals->Browse Manuals with Info) should
open a list of manuals in info format in which the Ciao manual(s) should appear.

e When opening a Ciao file, i.e., a file with .pl or .pls ending, using CX)CF)filename
(or using the menus) the code should appear highlighted according to syntax (e.g.,
comments in red), and Ciao/Prolog menus should appear in the menu bar on top of
the emacs window.

e Loading the file using the Ciao/Prolog menu (or typing (@) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch
the the toplevel shell and make queries from within emacs.

38

The Ciao System

Note: when using emacs it is very convenient to swap the locations of the (normally not
very useful) key and the (very useful in emacs) key on the keyboard. How to
do this is explained in the emacs frequently asked questions FAQs (see the emacs download
instructions for their location).

(if these things do not work the system or emacs may not be installed properly).
You can go to the location of most of the errors that may be reported during compilation

by typing 0.
You can also, e.g., create executables from the Ciao/Prolog menu, as well as compile
individual files, or generate active modules.

Loading a file for source-level debugging using the Ciao/Prolog menu (or typing @)
and then issuing a query should start the source-level debugger and move a marker on the
code in a window while execution is stepped through in the window running the Ciao top
level.

You can add the lines needed in Un*x for turning any file defining main/1 into a script from
the Ciao/Prolog menu or by typing o Q.

You can also work with the preprocessor and auto-documenter directly from emacs: see
their manuals or browse through the corresponding menus that appear when editing .pl
files.

We encourage you once more to read Chapter 18 [Using Ciao inside GNU emacs], page 95 to

discover the many other functionalities of this environment.

3.4 Keeping up to date (Win32)

You may want to read Chapter 236 [Beyond installation], page 1143 for instructions on how to

sign up on the Ciao user’s mailing list, receive announcements regarding new versions, download
new versions, report bugs, etc.

PART I - The program development environment 39

PART I - The program development environment

Author(s): The CLIP Group.

This part documents the components of the basic Ciao program development environment.
They include:

ciaoc:

ciaosh:

debugger:

ciao-shell:

Ciao emacs

the standalone compiler, which creates executables without having to enter the
interactive top-level.

(also invoked simply as ciao) is an interactive top-level shell, similar to the one
found on most Prolog systems (with some enhancements).

a Byrd box-type debugger, similar to the one found on most Prolog systems (also
with some enhancements, such as source-level debugging). This is not a standalone
application, but is rather included in ciaosh, as is done in other systems supporting
the Prolog language. However, it is also embeddable, in the sense that it can be
included as a library in executables, and activated dynamically and conditionally
while such executables are running.

an interpreter/compiler for Ciao scripts (i.e., files containing Ciao code which run
without needing explicit compilation).

interface:

a complete program development enviroment, based on GNU emacs, with syntax
coloring, direct access to all the tools described above (as well as the preprocessor
and the documenter), atomatic location of errors, source-level debugging, context-
sensitive access to on-line help/manuals, etc. The use of this environment is very
highly recommended!

The Ciao program development environment also includes ciaopp, the preprocessor, and
lpdoc, the documentation generator, which are described in separate manuals.

40

The Ciao System

Chapter 4: The stand-alone command-line compiler 41

4 The stand-alone command-line compiler

Author(s): Daniel Cabeza, Edison Mera, The CLIP Group.

ciaoc [CHOOb] is the Ciao stand-alone command-line compiler. ciaoc can be used to create
executables or to compile individual files to object code (to be later linked with other files).
ciaoc is specially useful when working from the command line. Also, it can be called to compile
Ciao programs from other tools such as, e.g., shell scripts, Makefiles, or project files. All the
capabilities of ciaoc are also available from the interactive top-level shell, which uses the ciaoc
modules as its components.

4.1 Introduction to building executables

An ezxecutable can be built from a single file or from a collection of inter-related files. In the
case of only one file, this file must define the predicate main/0 or main/1. This predicate is the
one which will be called when the executable is started. As an example, consider the following
file, called hello.pl:

main :-
write(’Hello world’),
nl.
To compile it from the command line using the ciaoc standalone compiler it suffices to type
“ciaoc hello” (in Win32 you may have to put the complete path to the ciaoc folder of the
Ciao distribution, where the installation process leaves a ciaoc.bat file):
$ ciaoc hello
This produces an executable called hello in Un*x-like systems and hello.cpx under Win32
systems. This executable can then be run in Win32 by double-clicking on it and on Un*x systems
by simply typing its name (see for Section 4.3 [Running executables from the command line],
page 42 for how to run executables from the command line in Win32):
$./hello
Hello world

If the application is composed of several files the process is identical. Assume hello.pl is
NOW:

:- use_module(aux, [p/1]1).

main :-
p(X),
write(X),
nl.
where the file aux.pl contains:

:- module(aux, [p/1]).

p(’Hello world’).
This can again be compiled using the ciaoc standalone compiler as before:

$ ciaoc hello
$./hello
Hello world

The invocation of ciaoc hello compiles the file hello.pl and all connected files that may
need recompilation — in this case the file aux.pl. Also, if any library files used had not been
compiled previously they would be compiled at this point (See Section 4.6 [Intermediate files
in the compilation process|, page 45). Also, if, say, hello.pl is changed and recompiled, the

42 The Ciao System

object code resulting from the previous compilation of aux.pl will be reused. This is all done
without any need for Makefiles, and considerably accelerates the development process for large
applications. This process can be observed by selecting the -v option when invoking ciaoc
(which is equivalent to setting the verbose_compilation Prolog flag to on in the top-level
interpreter).

If main/1 is defined instead of main/0 then when the executable is started the argument of
main/1 will be instantiated to a list of atoms, each one of them corresponding to a command
line option. Consider the file say.pl:

main(Argv) :-
write_list(Argv), nl.

write_list([]).
write_list([ArglArgs]) :-
write(Arg),
write(’),
write_list(Args).

Compiling this program and running it results in the following output:

$ ciaoc say
$./say hello dolly
hello dolly

The name of the generated executable can be controlled with the -o option (See Section 4.7
[Usage (ciaoc)|, page 45).

4.2 Paths used by the compiler during compilation

The compiler will look for files mentioned in commands such as use_module/1 or ensure_
loaded/1 in the current directory. Other paths can be added by including them in a file whose
name is given to ciaoc using the -u option. This file should contain facts of the predicates
file_search_path/2 and library_directory/1 (see the documentation for these predicates
and also Chapter 17 [Customizing library paths and path aliases], page 93 for details).

4.3 Running executables from the command line

As mentioned before, what the ciaoc compiler generates and how it is started varies some-
what from OS to OS. In general, the product of compiling an application with ciaoc is a file
that contains the bytecode (the product of the compilation) and invokes the Ciao engine on it.

e Un Un*x this is a script (see the first lines of the file) which invokes the ciao engine on this
file. To run the generated executable from a Un*x shell, or from the bash shell that comes
with the Cygwin libraries (see Section 234.6 [Installation and compilation under Windows],
page 1135) it suffices to type its name at the shell command line, as in the examples above.

e In a Win32 system, the compiler produces a similar file with a .cpx ending. The Ciao
installation process typically makes sure that the Windows registry contains the right entries
so that this executable will run upon double-cliking on it.

In you want to run the executable from the command line an additional .bat file is typically
needed. To help in doing this, the Win32 installation process creates a .bat skeleton
file called bat_skel in the Win32 folder of the distribution) which allows running Ciao
executables from the command line. If you want to run a Ciao executable file.cpx from
the command line, you normally copy the skeleton file to the folder were the executable is
and rename it to file.bat, then change its contents as explained in a comment inside the
file itself.

Chapter 4: The stand-alone command-line compiler 43

Note that this .bat file is usually not necessary in NT, as its command shell understands
file extension associations. L.e., in windows NT it is possible to run the file. cpx executable
directly. Due to limitations of .bat files in Windows 95/98, in those OSs no more than 9
command line arguments can be passed to the executable (in NT there is no such restriction).

Finally, in a system in which Cygnus Win32 is installed executables can also be used directly
from the bash shell command line, without any associated .bat files, by simply typing their
name at the bash shell command line, in the same way as in Un*x. This only requires that
the bash shell which comes with Cygnus Win32 be installed and accessible: simply, make
sure that /bin/sh.exe exists.

Except for a couple of header lines, the contents of executables are almost identical un-
der different OSs (except for self-contained ones). The bytecode they contain is architecture-
independent. In fact, it is possible to create an executable under Un*x and run it on Windows
or viceversa, by making only minor modifications (e.g., creating the .bat file and/or setting
environment variables or editing the start of the file to point to the correct engine location).

4.4 Types of executables generated

While the default options used by ciaoc are sufficient for normal use, by selecting other
options ciaoc can generate several different types of executables, which offer interesting tradeoffs
among size of the generated executable, portability, and startup time [CHOOb]:

Dynamic executables:

ciaoc produces by default dynamic executables. In this case the executable pro-
duced is a platform-independent file which includes in compiled form all the user de-
fined files. On the other hand, any system libraries used by the application are loaded
dynamically at startup. More precisely, any files that appear as 1ibrary(...) in
use_module/1 and ensure_loaded/1 declarations will not be included explicitly in
the executable and will instead be loaded dynamically. Is is also possible to mark
other path aliases (see the documentation for file_search_path/2) for dynamic
loading by using the -d option. Files accessed through such aliases will also be
loaded dynamically.

Dynamic loading allows making smaller executables. Such executables may be used
directly in the same machine in which they were compiled, since suitable paths to
the location of the libraries will be included as default in the executable by ciaoc
during compilation.

The executable can also be used in another machine, even if the architecture and
OS are different. The requirement is that the Ciao libraries (which will also include
the appropriate Ciao engine for that architecture and OS) be installed in the target
machine, and that the CIAOLIB and CIAQOENGINE environment variables are set ap-
propriately for the executable to be able to find them (see Section 4.5 [Environment
variables used by Ciao executables|, page 45). How to do this differs slightly from
OS to OS.

Static executables:
Selecting the -s option ciaoc produces a static executable. In this case the exe-
cutable produced (again a platform-independent file) will include in it all the aux-
iliary files and any system libraries needed by the application. Thus, such an exe-
cutable is almost complete, needing in order to run only the Ciao engine, which is
platform-specific.! Again, if the executable is run in the same machine in which it

I Currently there is an exception to this related to libraries which are written in languages
other than Prolog, as, e.g., C. C files are currently always compiled to dynamically loadable
object files (.so files), and they thus need to be included manually in a distribution of an
application. This will be automated in upcoming versions of the Ciao system.

44

The Ciao System

was compiled then the engine is found automatically. If the executable is moved to
another machine, the executable only needs access to a suitable engine (which can
be done by setting the CIAOENGINE environment variable to point to this engine).

This type of compilation produces larger executables, but has the advantage that
these executables can be installed and run in a different machine, with different
architecture and OS, even if Ciao is not installed on that machine. To install (or
distribute) such an executable, one only needs to copy the executable file itself
and the appropriate engine for the target platform (See Chapter 234 [Installing
Ciao from the source distribution], page 1129 or Chapter 235 [Installing Ciao from a
Win32 binary distribution], page 1139 and Section 234.5 [Multiarchitecture support],
page 1134), and to set things so that the executable can find the engine.?

Dynamic executables, with lazy loading:

Selecting the -1 option is very similar to the case of dynamic executables above,
except that the code in the library modules is not loaded when the program is
started but rather it is done during execution, the first time a predicate defined in
that file is called. This is advantageous if a large application is composed of many
parts but is such that typically only some of the parts are used in each invocation.
The Ciao preprocessor, ciaopp, is a good example of this: it has many capabilitites
but typically only some of them are used in a given session. An executable with
lazy load has the advantage that it starts fast, loading a minimal functionality on
startup, and then loads the different modules automatically as needed.

Self-contained executables:

Self-contained executables are static executables (i.e., this option also implies static
compilation) which include a Ciao engine along with the bytecode, so they do not
depend on an external one for their execution. This is useful to create executables
which run even if the machine where the program is to be executed does not have a
Ciao engine installed and/or libraries. The disadvantage is that such execuatbles are
platform-dependent (as well as larger than those that simply use an external library).
This type of compilation is selected with the -S option. Cross-compilation is also
possible with the =SS option, so you can specify the target OS and architecture (e.g.
LINUXi86). To be able to use the latter option, it is necessary to have installed a
ciaoengine for the target machine in the Ciao library (this requires compiling the
engine in that OS/architecture and installing it, so that it is available in the library).

Compressed executables:

In compressed executables the bytecode is compressed. This allows producing
smaller executables, at the cost of a slightly slower startup time. This is selected
with the -z option. You can also produce compressed libraries if you use -z1 along
with the -c option. If you select -z1 while generating an executable, any library
which is compiled to accomplish this will be also compressed.

Active modules:

The compiler can also compile (via the —a option) a given file into an active module
(see Chapter 120 [Active modules (high-level distributed execution)], page 607 for
a description of this).

2 Tt is also possible to produce real standalone executables, i.e., executables that do not need

to have an engine around. However, this is not automated yet, although it is planned for an
upcoming version of the compiler. In particular, the compiler can generate a .c file for each
.pl file. Then all the .c files can be compiled together into a real executable (the engine
is added one more element during link time) producing a complete executable for a given
architecture. The downside of course is that such an executable will not be portable to other
architectures without recompilation.

Chapter 4: The stand-alone command-line compiler 45

4.5 Environment variables used by Ciao executables

The executables generated by the Ciao compiler (including the ciao development tools them-
selves) locate automatically where the Ciao engine and libraries have been installed, since those
paths are stored as defaults in the engine and compiler at installation time. Thus, there is
no need for setting any environment variables in order to run Ciao executables (on a single
architecture — see Section 234.5 [Multiarchitecture support], page 1134 for running on multiple
architectures).

However, the default paths can be overridden by using the environment variables CTAOENGINE
and CIAOLIB. The first one will tell the Ciao executables where to look for an engine, and the
second will tell them where to look for the libraries. Thus, it is possible to actually use the Ciao
system without installing it by setting these variables to the following values:

e CIAOQENGINE: CTAOBUILDDIR/$(CIAOARCH)/ciaoengine

e CIAOLIB: CIAOSRC

where $(CIADARCH) is the string echoed by the command CIAOSRC/etc/ciao_get_arch (or
BINDIR/ciao_get_arch, after installation).

This allows using alternate engines or libraries, which can be very useful for system develop-
ment and experimentation.

4.6 Intermediate files in the compilation process

Compiling an individual source (i.e., .pl) file produces a .itf file and a .po file. The .itf
file contains information of the modular interface of the file, such as information on exported and
imported predicates and on the other modules used by this module. This information is used to
know if a given file should be recompiled at a given point in time and also to be able to detect
more errors statically including undefined predicates, mismatches on predicate charaterictics
across modules, etc. The .po file contains the platform-independent object code for a file, ready
for linking (statically or dynamically).

It is also possible to use ciaoc to explicitly generate the .po file for one or more .pl files by
using the -c option.

If you want to view the wam instructions of one or more .pl files you can use the -w option.
That will generate a .wam file with such instructions in a pretty format per each .pl file.

4.7 Usage (ciaoc)

The following provides details on the different command line options available when invoking
ciaoc:

ciaoc <MiscOpts> <ExecOpts> [-o <execname>] <file> ...

Make an executable from the listed files. If there is
more than one file, they must be non-module, and the
first one must include the main predicate. The -o
option allows generating an arbitrary executable name.

ciaoc <MiscOpts> <ExecOpts> -a <publishmod> <module>

Make an active module executable from <module> with
address publish module <publishmod>.

46

The Ciao System

ciaoc <MiscOpts> -c <file>
Compile listed files (make .po objects).
ciaoc <MiscOpts> -w <file>
Generate WAM code of listed files (in .wam files).
<MiscOpts> can be: [-v] [-ri] [-u <file>] [-rc] [-op <suffix>] [-L <LibDir>]J}

<ExecOpts> can be: [-s|-S|-SS <target>|-z|-zl|-e|-1]|(-11 <module>)*]
(-d <alias>)* [-x]

default extension for files is ’.pl’

-h, --help

Show this help.

-u use <file> for compilation, often used to include LibDir paths, etc.
-op use <suffix> as the suffix for optimized (or otherwise tuned) code
-L look for libraries also in the <LibDir> directory

-c Compile listed files (make .po objects)

-w Generate WAM code of listed files (in .wam files).

-S

make standalone executable for the current 0S and architecture, implies -s
-SS make standalone executable for <target> 0S and architecture

valid <target> values may be: LINUXi86, SolarisSparc..., implies -s
-11 force <module> to be loaded lazily, implies -1

—ac All the modules will be compiled using <Packages>

—acm <Modules> will be compiled using <Packages>

-d files using this path alias are dynamic (default: library)

-0 Make an executable from the listed files.

-a Make an active module

-v, —-verbose-compilation

verbose mode

-ri, ——-itf-format-r

Generate human readable .itf files

-x, ——check-libraries

extended recompilation: only useful for Ciao standard library developers
-s, ——executables-static

make a static executable (otherwise dynamic files are not included)

-z, ——compress-exec

Generate executables with compressed bytecode

-z1, --compress-1lib

generate libraries with compressed bytecode - any library (re)compiled as
consequence of normal executable compilation will also be affected

-1, --executables-lazyload

Idem with lazy load of dynamic files (except insecure cases)

-np, --use-compile-packages-no

Do not use compile packages

-na, —-read-assertions-no

Do not read the assertions in the code

Chapter 4: The stand-alone command-line compiler 47

4.8

-rc, —-runtime-checks

Generate code with runtime checks, requires to read assertions
--rtchecks-trust-no

Disable rtchecks for trust assertions

--rtchecks-entry-no

Disable rtchecks for entry assertions

--rtchecks-exit-no

Disable rtchecks for exit assertions

--rtchecks-test

enable rtchecks for test assertions. Used for debugging
purposes, but is better to use the unittest library
--rtchecks-level-exports

Use rtchecks only for external calls of the exported predicates
--rtchecks-inline

Expand library predicates inline as far as possible
--rtchecks-asrloc-no

Do not use assertion locators in the error messages
--rtchecks-predloc-no

Do not use predicate locators in the error messages
--rtchecks—namefmt-short

Show the name of predicates and properties in a reduced format
--rtchecks-callloc-no

Do not show the stack of predicates that caused the failure
--rtchecks-callloc-literal

Show the stack of predicates that caused the failure. Instrument it
in the literal. This mode provides more information, because reports
also the literal in the body of the predicate
--unused-pred-warnings

Show warnings about unused predicates. Note that a predicate is
being used if it is exported, it appears in clause body of a
predicate being used, in a multifile predicate, in a predicate
used in :- initialization(...) or :- on_abort(...)
declarations, or if it is the meta-argument of a metapredicate.

Known bugs and planned improvements (ciaoc)

Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Also if appears in the body of an assertion referred to a predicate being used, but that is
not implemented, because the assertion reader is not included in the compiler yet — EMM.

48

The Ciao System

Chapter 5: The interactive top-level shell 49

5 The interactive top-level shell

Author(s): Daniel Cabeza, The CLIP Group.

ciaosh is the Ciao interactive top-level shell. It provides the user with an interactive pro-
gramming environment with tools for incrementally building programs, debugging programs by
following their executions, and modifying parts of programs without having to start again from
scratch. If available, it is strongly recommended to use it with the emacs interface provided, as
it greatly simplifies the operation. This chapter documents general operation in the shell itself.

5.1 Shell invocation and startup

When invoked, the shell responds with a message of identification and the prompt ?7- as
soon as it is ready to accept input, thus:

Ciao-Prolog X.Y #PP: Thu Mar 25 17:20:55 MET 1999
?_

When the shell is initialized it looks for a file .ciaorc in the HOME directory and makes
an include of it, if it exists. This file is useful for including use_module/1 declarations for
the modules one wants to be loaded by default, changing prolog flags, etc. (Note that the
.ciaorc file can only contain directives, not actual code; to load some code at startup put it in
a separate file and load it using e.g. a use_module/1 declaration.) If the initialization file does
not exist, the default package default_for_ciaosh is included, to provide more or less what
other prologs define by default. Thus, if you want to have available all builtins you had before
adding the initialization file, you have to include :- use_package(default_for_ciaosh) in it.
Two command-line options control the loading of the initialization file:

-f Fast start, do not load any initialization file.

-1 File Look for initialization file File instead of ~/.ciaorc. If it does not exist, include
the default package.

5.2 Shell interaction

After the shell outputs the prompt, it is expecting either an internal command (see the
following sections) or a query (a goal or sequence of goals). When typing in the input, which
must be a valid prolog term, if the term does not end in the first line, subsequent lines are
indented. For example:

- X =
f(a,
b).

X =1f(a,b) 7

yes
'?_

The queries are executed by the shell as if they appeared in the user module. Thus, in
addition to builtin predicates, predicates available to be executed directly are all predicates
defined by loaded user files (files with no module declaration), and imported predicates from
modules by the use of use_module.

The possible answers of the shell, after executing an internal command or query, are:
e If the execution failed (or produced an error), the answer is no.

50 The Ciao System

e If the execution was successful and bindings where made (or constraints where imposed)
on answer variables, then the shell outputs the values of answer variables, as a sequence of
bindings (or constraints), and then prints a ? as a prompt. At this point it is expecting an
input line from the user. By entering a carriage-return (®RET)) or any line starting with y,
the query terminates and the shell answer yes. Entering a ¢,’ the shell enters a recursive
level (see below). Finally, any other answer forces the system to backtrack and look for the
next solution (answering as with the first solution).

e If the execution was successful, but no answer variable was bound or constrained, the
answer is simply yes. This behavior can be changed by setting the prolog flag prompt_
alternatives_no_bindings to on, so that if there are more solutions the user will be
consulted as explained in the previous point (useful if the solutions produce side effects).

To allow using connection variables in queries without having to report their results, variables
whose name starts with _ are not considered in answers, the rest being the answer variables.
This example illustrates the previous points:

?- member(a, [b, cl).

no
?- member(a, [a, bl).

yes
?- member (X, [alL]).

X=a7?,;
L=[X|_]7
yes

?- atom_codes(ciao, _C), member(L, _C).

L=97;
L =105 7 ;
L=977;
L=1117;
no
?-

5.3 Entering recursive (conjunctive) shell levels

As stated before, when the user answers with ‘,” after a solution is presented, the shell enters
a recursive level, changing its prompt to N ?- (where N is the recursion level) and keeping the
bindings or constraints of the solution (this is inspired by the LogIn language developed by H.
Ait-Kaci, P. Lincoln and Roger Nasr [AKNLS86]). Thus, the following queries will be executed
within that context, and all variables in the lower level solutions will be reported in subsequent
solutions at this level. To exit a recursive level, input an character or the command up.
The last solution after entering the level is repeated, to allow asking for more solutions. Use
command top to exit all recursive levels and return to the top level. Example interaction:

7- directory_files(’.’,_Fs), member(F,_Fs).

Chapter 5: The interactive top-level shell 51

F = ’file_utils.po’ 7 ,
1 7- file_property(F, mod_time(T)).

F = ’file_utils.po’,
T = 923497679 7

yes
1 7- up.

F = ’file_utils.po’ 7 ;
F = ’file_utils.pl’ 7 ;
F = ’file_utils.itf’ 7 ,

1 ?- file_property(F, mod_time(T)).

F = ’file_utils.itf’,
T = 923497679 7

yes

1 72- 7D

F = ’file_utils.itf’ 7

yes
?_

5.4 Usage and interface (toplevel_doc)

e Library usage:

The following predicates can be used at the top-level shell natively (but see also the com-
mands available in Chapter 6 [The interactive debugger|, page 57 which are also available
within the top-level shell).

e Exports:
— Predicates:

use_module/1, use_module/2, ensure_loaded/1, make_exec/2, include/1, use_
package/1, consult/1, compile/1, ./2, make_po/1, unload/1, set_debug_
mode/1, set_nodebug_mode/1, make_actmod/2, force_lazy/1, undo_force_lazy/1,
dynamic_search_path/1, multifile/1.

e Imports:
— System library modules:

toplevel/toplevel, 1libpaths, compiler/compiler, compiler/exemaker,
compiler/c_itf, debugger/debugger.

— Packages:
prelude, nonpure, assertions.

52 The Ciao System

5.5 Documentation on exports (toplevel_doc)

use_module/1: PREDICATE
(True) Usage: use_module (Module)
Load into the top-level the module defined in Module, importing all the predicates it

exports.
— The following properties should hold at call time:
Module is a source name. (streams_basic:sourcename/1)
use_module/2: PREDICATE

(True) Usage: use_module (Module, Imports)
Load into the top-level the module defined in Module, importing the predicates in Imports.
— The following properties should hold at call time:

Module is a source name. (streams_basic:sourcename/1)
Imports is a list of prednames. (basic_props:list/2)
ensure_loaded/1: PREDICATE

(True) Usage: ensure_loaded(File)
Load into the top-level the code residing in file (or files) File, which is user (i.e. non-
module) code.
— The following properties should hold at call time:
File is a source name or a list of source names. (toplevel_doc:sourcenames/1)

make_exec/2: PREDICATE
(True) Usage: make_exec(File,ExecName)
Make a Ciao executable from file (or files) File, giving it name ExecName. If ExecName is
a variable, the compiler will choose a default name for the executable and will bind the
variable ExecName to that name. The name is chosen as follows: if the main prolog file
has no .pl extension or we are in Windows, the executable will have extension .cpx; else
the executable will be named as the main prolog file without extension.

— The following properties should hold at call time:

File is a source name or a list of source names. (toplevel_doc:sourcenames/1)
— The following properties hold upon exit:
ExecName is an atom. (basic_props:atm/1)
include/1: PREDICATE

(True) Usage: include(File)
The contents of the file File are included in the top-level shell. For the moment, it only
works with some directives, which are interpreted by the shell, or with normal clauses
(which are asserted), if library(dynamic) is loaded beforehand.
— The following properties should hold at call time:
File is a source name. (streams_basic:sourcename/1)

Chapter 5: The interactive top-level shell 53

use_package/1: PREDICATE
(True) Usage: use_package (Package)

Include the package or packages specified in Package. Most package contents can be
handled in the top level, but there are currently still some limitations.

— The following properties should hold at call time:
Package is a source name or a list of source names. (toplevel_doc:sourcenames/1)

consult/1: PREDICATE
(True) Usage: consult(File)

Provided for backward compatibility. Similar to ensure_loaded/1, but ensuring each
listed file is loaded in consult mode (see Chapter 6 [The interactive debugger], page 57).

— The following properties should hold at call time:
File is a source name or a list of source names. (toplevel_doc:sourcenames/1)

compile/1: PREDICATE
(True) Usage: compile(File)

Provided for backward compatibility. Similar to ensure_loaded/1, but ensuring each
listed file is loaded in compile mode (see Chapter 6 [The interactive debugger|, page 57).

— The following properties should hold at call time:
File is a source name or a list of source names. (toplevel_doc:sourcenames/1)

./2: PREDICATE
(True) Usage: [File|Files]

Provided for backward compatibility, obsoleted by ensure_loaded/1.
— The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)
Files is a list of sourcenames. (basic_props:list/2)
make_po/1: PREDICATE

(True) Usage: make_po(Files)
Make object (.po) files from Files. Equivalent to executing "ciaoc -c" on the files.
— The following properties should hold at call time:
Files is a source name or a list of source names. (toplevel_doc:sourcenames/1)

unload/1: PREDICATE
(True) Usage: unload(File)

Unloads dynamically loaded file File.
— The following properties should hold at call time:
File is a source name. (streams_basic:sourcename/1)

54 The Ciao System

set_debug_mode/1: PREDICATE
(True) Usage: set_debug_mode (File)

Set the loading mode of File to consult. See Chapter 6 [The interactive debugger]|, page 57.
— The following properties should hold at call time:
File is a source name. (streams_basic:sourcename/1)

set_nodebug_mode/1: PREDICATE
(True) Usage: set_nodebug_mode(File)

Set the loading mode of File to compile. See Chapter 6 [The interactive debugger],

page 57.
— The following properties should hold at call time:
File is a source name. (streams_basic:sourcename/1)
make_actmod/2: PREDICATE

(True) Usage: make_actmod(ModuleFile,PublishMod)

Make an active module executable from the module residing in ModuleFile, using address
publish module of name PublishMod (which needs to be in the library paths).

— The following properties should hold at call time:

ModuleFile is a source name. (streams_basic:sourcename/1)
PublishMod is an atom. (basic_props:atm/1)
force_lazy/1: PREDICATE

(True) Usage: force_lazy(Module)
Force module of name Module to be loaded lazily in the subsequent created executables.
— The following properties should hold at call time:
Module is an atom. (basic_props:atm/1)

undo_force_lazy/1: PREDICATE
(True) Usage: undo_force_lazy(Module)

Disable a previous force_lazy/1 on module Module (or, if it is uninstantiated, all previous
force_lazy/1).

— Clalls should, and exit will be compatible with:
Module is an atom. (basic_props:atm/1)

dynamic_search_path/1: PREDICATE
(True) Usage: dynamic_search_path(Name)

Asserting a fact to this data predicate, files using path alias Name will be treated as
dynamic in the subsequent created executables.

— The following properties should hold at call time:
Name is an atom. (basic_props:atm/1)

Chapter 5: The interactive top-level shell 55

multifile/1: PREDICATE
(True) Usage: multifile Pred

Dynamically declare predicate Pred as multifile. This is useful at the top-level shell to be
able to call multifile predicates of loaded files.

— The following properties should hold at call time:
Pred is a Name/Arity structure denoting a predicate name:
predname (P/A) :-
atm(P),
nnegint (4).

(basic_props:predname/1)
5.6 Documentation on internals (toplevel_doc)

sourcenames/1: PROPERTY
Is defined as follows:

sourcenames (File) :-
sourcename (File) .
sourcenames (Files) :-
list(Files,sourcename) .

See sourcename/1 in Chapter 29 [Basic file/stream handling], page 191
(True) Usage: sourcenames(Files)
Files is a source name or a list of source names.

56

The Ciao System

Chapter 6: The interactive debugger 57

6 The interactive debugger

Author(s): Daniel Cabeza, Manuel C. Rodriguez, Edison Mera, A. Ciepielewski (first ver-
sion), Mats Carlsson (first version), T. Chikayama (first version), K. Shen (first version).

The Ciao program development environment includes a number of advanced debugging tools,
such as a source-level debugger, the ciaopp preprocessor, and some execution visualizers. Herein
we discuss the interactive debugger available in the standard top-level, which allows tracing the
control flow of programs, in a similar way to other popular Prolog systems. This is a classical
Byrd boz-type debugger [Byr80,BBP81], with some enhancements, most notably being able to
track the execution on the source program.

We also discuss the embedded debugger, which is a version of the debugger which can be
embedded into executables. It allows triggering an interactive debugging session at any time
while running an executable, without any need for the top-level shell.

Byrd’s Procedure Box model of debugging execution provides a simple way of visualising
control flow, including backtracking. Control flow is in principle viewed at the predicate level,
rather than at the level of individual clauses. The Ciao debugger has the ability to mark selected
modules and/or files for debugging (traditional and source debugging), rather than having to
exhaustively trace the program. It also allows to selectively set spy-points and breakpoints. Spy-
points allow the programmer to nominate interesting predicates at which program execution is
to pause so that the programmer can interact with the debugger. Breakpoints are similar to
spy-points, but allow pausing at a specific line in the code, corresponding to a particular literal.
There is a wide choice of control and information options available during debugging interaction.

Note: While the debugger described herein can be used in a standalone way (i.e., from
an operating system shell or terminal window) in the same way as other Prolog debuggers, the
most convenient way of debugging Ciao programs is by using the programming environment (see
Chapter 18 [Using Ciao inside GNU emacs], page 95). This environment has many debugging-
related facilities, including displaying the source code for the module(s) corresponding to the
procedure being executed, and higlighting dynamically the code segments corresponding to the
different execution steps.

6.1 Marking modules and files for debugging in the top-level
debugger

The Ciao debugger is module-based. This allows skipping during the debugging process all
files (including system library files) except those in which a bug is suspected. This saves having
to explictily and repetitively skip predicates in unrelated files during the debugging process.
Also, there is an efficieny advantage: in order to be able to run the debugger on a module, it
must be loaded in debug (interpreted) mode, which will execute slower than normal (compiled)
modules. Thus, it is interesting to compile in debug mode only those modules that need to be
traced. Instead of doing this (loading of modules in one mode or another) by hand each time,
in Ciao (re)loading of modules in the appropriate mode is handled automatically by the Ciao
compiler. However, this requires the user to mark explicitly the modules in which debugging is
to be performed. The simplest way of achieving this is by executing in the Ciao shell prompt,
for each suspicious module Module in the program, the command:

7- debug_module (Module) .
or, alternatively:

?7- debug_module_source (Module) .
which in addition instructs the debugger to keep track of the line numbers in the source file and
to report them during debugging. This is most useful when running the top-level inside the
emacs editor since in that case the Ciao emacs mode allows performing full source-level debug-

ging in each module marked as above, i.e., the source lines being executed will be highlighted
dynamically during debugging in a window showing the source code of the module.

58 The Ciao System

Note that, since all files with no module declaration belong to the pseudo-module user,
the command to be issued for debugging a user file, say foo.pl, is debug_module(user) or
debug_module_source(user), and not debug_module(foo).

The two ways of performing source-level debugging are fully compatible between them, i.e.,
Ciao allows having some modules loaded with debug_module/1 and others with debug_module_
source/1. To change from one interpreted mode to the other mode it suffices to select the
module with the new interpreted mode (debugger mode), using the appropiate command, and
reload the module.

The commands above perform in fact two related actions: first, they let the compiler know
that if a file containing a module with this name is loaded, it should be loaded in interpreted
mode (source or traditional). In addition, they instruct the debugger to actually prepare for
debugging the code belonging to that module. After that, the modules which are to be debugged
have to be (re)loaded so that they are compiled or loaded for interpretation in the appropriate
way. The nice thing is that, due to the modular behaviour of the compiler/top-level, if the
modules are part of a bigger application, it suffices to load the main module of the application,
since this will automatically force the dependent modules which have changed to be loaded in
the appropriate way, including those whose loading mode has changed (i.e., changing the loading
mode has the effect of forcing the required re-loading of the module at the appropriate time).

Later in the debugging process, as the bug location is isolated, typically one will want to
restrict more and more the modules where debugging takes place. To this end, and without
the need for reloading, one can tell the debugger to not consider a module for debugging issu-
ing a nodebug_module/1 command, which counteracts a debug_module/1 or debug_module_
source/1 command with the same module name, and reloading it (or the main file).

There are also two top-level commands set_debug_mode/1 and set_nodebug_mode/1, which
accept as argument a file spec (i.e., library(foo) or foo, even if it is a user file) to be able to
load a file in interpreted mode without changing the set of modules that the debugger will try

to spy.

6.2 The debugging process

Once modules or user files are marked for debugging and reloaded, the traditional debugging
shell commands can be used (the documentation of the debugger library following this chapter
contains all the commands and their description), with the same meaning as in other classical
Prolog systems. The differences in their behavior are:

e Debugging takes place only in the modules in which it was activated,
e nospy/1 and spy/1 accept sequences of predicate specs, and they will search for those
predicates only in the modules marked for debugging (traditional or source-level debugging).

e breakpt/6 and nobreakpt/6 allow setting breakpoints at selected clause literals and will
search for those literals only in the modules marked for source-level debugging (modules
marked with debug_module_source/1).

In particular, the system is initially in nodebug mode, in which no tracing is performed. The
system can be put in debug mode by a call to debug/0 in which execution of queries will proceed
until the first spy-point or breakpoint. Alternatively, the system can be put in trace mode by a
call to trace/0 in which all predicates will be trace.

6.3 Marking modules and files for debugging with the
embedded debugger
The embedded debugger, as the interpreted debugger, has three different modes of operation:

debug, trace or nodebug. These debugger modes can be set by adding one of the following
package declarations to the module:

Chapter 6: The interactive debugger 59

:- use_package(debug) .

:- use_package(trace).

:- use_package (nodebug) .
and recompiling the application. These declarations must appear the last ones of all use_
package declarations used. Also it is possible, as usual, to add the debugging package(s) in the
module declaration using the third argument of the module/3 declaration (and they should also
be the last ones in the list), i.e., using one of:

:- module(..., ..., [..., debugl).
:— module(..., ..., [..., tracel).
:- module(..., ..., [..., nodebugl).

The nodebug mode allows turning off any debugging (and also the corresponding overhead)
but keeping the spy-points and breakpoints in the code. The trace mode will start the debugger
for any predicate in the file.

The embedded debugger has limitations over the interpreted debugger. The most important
is that the “retry” option is not available. But it is possible to add, and remove, spy-points and
breakpoins using the predicates spy/1, nospy/1, breakpt/6 and nobreakpt/6, etc. These can
be used in a clause declaration or as declarations. Also it is possible to add in the code predicates
for issuing the debugger (i.e., use debug mode, and in a clause add the predicate trace/0).
Finally, if a spy declaration is placed on the entry point of an executable (:- spy(main/1)) the
debugger will not start the first time main/1 predicate is called, i.e., at the beginning of program
execution (however, it will if there are any subsequent calls to main/1). Starting the embedded
debugger at the beginning of the execution of a program can be done easily however by simply
adding the in trace mode.

Note that there is a particularly interesting way of using the embedded debugger: if an
application is run in a shell buffer which has been set with Ciao inferior mode ((M=x) ciao-
inferior-mode) and this application starts emitting output from the embedded debugger (i.e.,
which contains the embedded debugger and is debugging its code) then the Ciao emacs mode
will be able to follow these messages, for example tracking execution in the source level code.
This also works if the application is written in a combination of languages, provided the parts
written in Ciao are compiled with the embedded debugger package and is thus a covenient way of
debugging multi-language applications. The only thing needed is to make sure that the output
messages appear in a shell buffer that is in Ciao inferior mode.

See the following as a general example of use of the embedded debugger:

:- module(foo, [main/1], [assertions, debug]l).
:- entry main/1.

main(X) :-
display (X),
spy (foo) ,
foo(X),
notrace,
nl.

foo(ll).

foo([XI|T]) :-
trace,
bar (X),
foo(T).

bar(X) :-

60 The Ciao System

display(X).

6.4 The procedure box control flow model

During debugging the interpreter prints out a sequence of goals in various states of instan-
tiation in order to show the state that the program has reached in its execution. However, in
order to understand what is occurring it is necessary to understand when and why the inter-
preter prints out goals. As in other programming languages, key points of interest are procedure
entry and return, but in Prolog there is the additional complexity of backtracking. One of the
major confusions that novice Prolog programmers have to face is the question of what actually
happens when a goal fails and the system suddenly starts backtracking. The Procedure Box
model of Prolog execution views program control flow in terms of movement about the program
text. This model provides a basis for the debugging mechanism in the interpreter, and enables
the user to view the behaviour of the program in a consistent way. It also provides the basis
for the visualization performed on the source level program when source level program when
source-level debugging is activated within emacs.

Let us look at an example Prolog procedure:

Call Exit
—*| descendant(X,Y):- offspring(X,Y). —————*
Fail descendant(X,Y):- offspring(X,Z), Redo

- descendant(Z,Y). [~

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Y is a descendant of X if Z is an offspring of X and Y is a descendant of Z. In
the diagram a box has been drawn around the whole procedure and labelled arrows indicate the
control flow in and out of this box. There are four such arrows which we shall look at in turn.

e Call

This arrow represents initial invocation of the procedure. When a goal of the form
descendant (X,Y) is required to be satisfied, control passes through the Call port of the
descendant box with the intention of matching a component clause and then satisfying any
subgoals in the body of that clause. Note that this is independent of whether such a match
is possible; i.e. first the box is called, and then the attempt to match takes place. Textually
we can imagine moving to the code for descendant when meeting a call to descendant in
some other part of the code.

o Exit
This arrow represents a successful return from the procedure. This occurs when the initial
goal has been unified with one of the component clauses and any subgoals have been satisfied.
Control now passes out of the Exit port of the descendant box. Textually we stop following
the code for descendant and go back to the place we came from.

e Redo

This arrow indicates that a subsequent goal has failed and that the system is backtracking
in an attempt to find alternatives to previous solutions. Control passes through the Redo
port of the descendant box. An attempt will now be made to resatisfy one of the component
subgoals in the body of the clause that last succeeded; or, if that fails, to completely rematch
the original goal with an alternative clause and then try to satisfy any subgoals in the body
of this new clause. Textually we follow the code backwards up the way we came looking for
new ways of succeeding, possibly dropping down on to another clause and following that if
necessary.

o Fail

This arrow represents a failure of the initial goal, which might occur if no clause is matched,
or if subgoals are never satisfied, or if any solution produced is always rejected by later

Chapter 6: The interactive debugger 61

processing. Control now passes out of the Fail port of the descendant box and the system
continues to backtrack. Textually we move back to the code which called this procedure
and keep moving backwards up the code looking for choice points.

In terms of this model, the information we get about the procedure box is only the control
flow through these four ports. This means that at this level we are not concerned with which
clause matches, and how any subgoals are satisfied, but rather we only wish to know the initial
goal and the final outcome. However, it can be seen that whenever we are trying to satisfy
subgoals, what we are actually doing is passing through the ports of their respective boxes. If
we were following this (e.g., activating source-level debugging), then we would have complete
information about the control flow inside the procedure box.

Note that the box we have drawn around the procedure should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the procedure. Obvi-
ously, with something like a recursive procedure, there will be many different Calls and Exits in
the control flow, but these will be for different invocations. Since this might get confusing each
invocation box is given a unique integer identifier in the messages, as described below.

Note that not all procedure calls are traced; there are a few basic predicates which have been
made invisible since it is more convenient not to trace them. These include debugging directives,
basic control structures, and some builtins. This means that messages will never be printed for
these predicates during debugging.

6.5 Format of debugging messages

This section explains the two formats of the message output by the debugger at a port.
All trace messages are output to the terminal regardless of where the current output stream is
directed (which allows tracing programs while they are performing file I/O). The basic format,
which will be shown in traditional debug and in source-level debugging within Ciao emacs mode,
is as follows:

S 13 7 Call: T user:descendant(dani,_123) 7

S is a spy-point or breakpoint indicator. It is printed as ’+’, indicating that there is a spy-
point on descendant/2 in module user, as B’ denoting a breakpoint, or as ’ ’, denoting no
spy-point or breakpoint. If there is a spy-point and a breakpoint in the same predicate the
spy-point indicator takes preference over breakpoint indicator.

T is a subterm trace. This is used in conjunction with the ~ command (set subterm), described
below. If a subterm has been selected, T is printed as the sequence of commands used to select
the subterm. Normally, however, T is printed as ’ ’, indicating that no subterm has been selected.

The first number is the unique invocation identifier. It is always nondecreasing (provided
that the debugger is switched on) regardless of whether or not the invocations are being actually
seen. This number can be used to cross correlate the trace messages for the various ports, since
it is unique for every invocation. It will also give an indication of the number of procedure
calls made since the start of the execution. The invocation counter starts again for every fresh
execution of a command, and it is also reset when retries (see later) are performed.

The number following this is the current depth; i.e., the number of direct ancestors this
goal has. The next word specifies the particular port (Call, Exit, Redo or Fail). The goal is
then printed so that its current instantiation state can be inspected. The final ? is the prompt
indicating that the debugger is waiting for user interaction. One of the option codes allowed
(see below) can be input at this point.

The second format, quite similar to the format explained above, is shown when using source-
level debugging outside the Ciao emacs mode, and it is as follows:

In /home/mcarlos/ciao/foo.pl (5-9) descendant-1
S 13 7 Call: T user:descendant(dani,_123) ?

62 The Ciao System

This format is identical to the format above except for the first line, which contains the
information for location of the point in the source program text where execution is currently
at. The first line contains the name of the source file, the start and end lines where the literal
can be found, the substring to search for between those lines and the number of substrings to
locate. This information for locating the point on the source file is not shown when executing
the source-level debugger from the Ciao emacs mode.

Ports can be “unleashed” by calling the leash/1 predicate omiting that port in the argument.
This means that the debugger will stop but user interaction is not possible for an unleashed port.
Obviously, the ? prompt will not be shown in such messages, since the user has specified that
no interaction is desired at this point.

6.6 Options available during debugging

This section describes the particular options that are available when the debugger prompts
after printing out a debugging message. All the options are one letter mnemonics, some of
which can be optionally followed by a decimal integer. They are read from the terminal with
any blanks being completely ignored up to the next terminator (carriage-return, line-feed, or
escape). Some options only actually require the terminator; e.g., the creep option, only requires
RET).

The only option which really needs to be remembered is 'h’ (followed by ®ET)). This provides
help in the form of the following list of available options.

<cr> creep C creep

1 leap s skip

r retry r <i> retry i

f fail f <i> fail i

d display P print

W write v <I> variable(s)
g ancestors g <n> ancestors n
n nodebug = debugging

+ spy this - nospy this
a abort

C] command u unify

< reset printdepth < <n> set printdepth
- reset subterm ~ <n> set subterm
7 help h help

e c (creep)
causes the debugger to single-step to the very next port and print a message. Then if the
port is leashed the user is prompted for further interaction. Otherwise it continues creeping.
If leashing is off, creep is the same as leap (see below) except that a complete trace is printed
on the terminal.

o 1 (leap)
causes the interpreter to resume running the program, only stopping when a spy-point or
breakpoint is reached (or when the program terminates). Leaping can thus be used to follow
the execution at a higher level than exhaustive tracing. All that is needed to do is to set
spy-points and breakpoints on an evenly spread set of pertinent predicates or lines, and
then follow the control flow through these by leaping from one to the other.

o s (skip)
is only valid for Call and Redo ports, if it is issued in Exit or Fail ports it is equivalent to
creep. It skips over the entire execution of the predicate. That is, no message will be seen

until control comes back to this predicate (at either the Exit port or the Fail port). Skip
is particularly useful while creeping since it guarantees that control will be returned after

Chapter 6: The interactive debugger 63

the (possibly complex) execution within the box. With skip then no message at all will
appear until control returns to the Exit port or Fail port corresponding to this Call port
or Redo port. This includes calls to predicates with spy-points and breakpoints set: they
will be masked out during the skip. There is a way of overriding this: the t option after
a (CC) interrupt will disable the masking. Normally, however, this masking is just what is
required!

o r (retry)

can be used at any of the four ports (although at the Call port it has no effect). It transfers
control back to the Call port of the box. This allows restarting an invocation when, for
example, it has left the programmer with some weird result. The state of execution is
exactly the same as in the original call (unless the invocation has performed side effects,
which will not be undone). When a retry is performed the invocation counter is reset so
that counting will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that execution has, in operational terms,
returned to the state before anything else was called.

If an integer is supplied after the retry command, then this is taken as specifying an invoca-
tion number and the system tries to get to the Call port, not of the current box, but of the
invocation box specified. It does this by continuously failing until it reaches the right place.
Unfortunately this process cannot be guaranteed: it may be the case that the invocation
the programmer is looking for has been cut out of the search space by cuts in the program.
In this case the system fails to the latest surviving Call port before the correct one.

o f (fail)
can be used at any of the four ports (although at the Fail port it has no effect). It transfers
control to the Fail port of the box, forcing the invocation to fail prematurely. If an integer
is supplied after the command, then this is taken as specifying an invocation number and
the system tries to get to the Fail port of the invocation box specified. It does this by
continuously failing until it reaches the right place. Unfortunately, as before, this process
cannot be guaranteed.

e d (display)
displays the current goal using display/1. See w below.

e p (print)
re-prints the current goal using print/1. Nested structures will be printed to the specified
printdepth (see below).

o w (write)
writes the current goal on the terminal using write/1.

e v (variables)
writes the list of the modified variables and their values. If a variable name (identifier) N is
supplied, then the value of variable N is shown.

e g (ancestors)
provides a list of ancestors to the current goal, i.e., all goals that are hierarchically above
the current goal in the calling sequence. It is always possible to jump to any goal in the
ancestor list (by using retry, etc.). If an integer n is supplied, then only n ancestors will be
printed. That is to say, the last n ancestors will be printed counting back from the current
goal. Each entry in the list is preceded by the invocation number followed by the depth
number (as would be given in a trace message).

e 1n (nodebug)
switches the debugger off. Note that this is the correct way to switch debugging off at a
trace point. The @ option cannot be used because it always returns to the debugger.

e = (debugging)
outputs information concerning the status of the current debugging session.

64 The Ciao System

sets a spy-point on the current goal.

o - (nospy)
removes the spy-point from the current goal.
e a (abort)

causes an abort of the current execution. All the execution states built so far are destroyed
and the system is put right back at the top-level of the interpreter. (This is the same as
the built-in predicate abort/0.)

e @ (command)

allows calling arbitrary goals. The initial message | 7- will be output on the terminal, and
a command is then read from the terminal and executed as if it was at top-level.

o u (unify)
is available at the Call port and gives the option of providing a solution to the goal from
the terminal rather than executing the goal. This is convenient, e.g., for providing a “stub”
for a predicate that has not yet been written. A prompt |: will be output on the terminal,
and the solution is then read from the terminal and unified with the goal.

o < (printdepth)
sets a limit for the subterm nesting level that is printed in messages. While in the debugger,
a printdepth is in effect for limiting the subterm nesting level when printing the current
goal. When displaying or writing the current goal, all nesting levels are shown. The limit is
initially 10. This command, without arguments, resets the limit to 10. With an argument
of n the limit is set to n.

o " (subterm)

sets the subterm to be printed in messages. While at a particular port, a current subterm
of the current goal is maintained. It is the current subterm which is displayed, printed, or
written when prompting for a debugger command. Used in combination with the printdepth,
this provides a means for navigating in the current goal for focusing on the part which is
of interest. The current subterm is set to the current goal when arriving at a new port.
This command, without arguments, resets the current subterm to the current goal. With
an argument of n (greater than 0 and less or equal to the number of subterms of the current
subterm), the current subterm is replaced by its n’th subterm. With an argument of 0, the
current subterm is replaced by its parent term.

e ?orh (help)
displays the table of options given above.

6.7 Calling predicates that are not exported by a module

The Ciao module system does not allow calling predicates which are not exported during
debugging. However, as an aid during debugging, this is allowed (only from the top-level and
for modules which are in debug mode or source-level debug mode) using the call_in_module/2
predicate.

Note that this does not affect analysis or optimization issues, since it only works on modules
which are loaded in debug mode or source-level debug mode, i.e. unoptimized.

6.8 Acknowledgements (debugger)

Originally written by Andrzej Ciepielewski. Minor modifications by Mats Carlsson. Later
modifications (17 Dec 87) by Takashi Chikayama (making tracer to use print/1 rather than
write/1, temporarily switching debugging flag off while writing trace message and within

Chapter 6: The interactive debugger 65

“break” level). Additional modifications by Kish Shen (May 88): subterm navigation, han-
dle unbound args in spy/1 and nospy/1, trapping arithmetics errors in debug mode. Adapted
then to &-Prolog and Ciao by Daniel Cabeza and included in the Ciao version control sys-
tem. Extended for source-level debugging by Manuel C. Rodriguez. Option that shows variable
names and values (v <N>) implemented by Edison Mera (2009). (See changelog if included in the
document or in the version maintenance system for more detailed documentation on changes.)

66

The Ciao System

Chapter 7: Predicates controlling the interactive debugger 67

7 Predicates controlling the interactive debugger

Author(s): A. Ciepielewski, Mats Carlsson, T. Chikayama, K. Shen, Daniel Cabeza, Manuel
C. Rodriguez, Edison Mera.

This library implements predicates which are normally used in the interactive top-level shell
to debug programs. A subset of them are available in the embeddable debugger.

7.1 Usage and interface (debugger)

e Library usage:
:- use_module (1ibrary(debugger)) .
o Exports:
— Predicates:
call_in_module/2.
— Multifiles:
define_flag/3.
e Imports:
— System library modules:
debugger/debugger_lib, format, ttyout.
— Packages:
prelude, nonpure, dcg, assertions, hiord, define_flag.

7.2 Documentation on exports (debugger)

call_in_module/2:
Usage: call_in_module(Module,Predicate)

Calls predicate Predicate belonging to module Module, even if that module does not
export the predicate. This only works for modules which are in debug (interpreted) mode
(i.e., they are not optimized).
— The following properties should hold at call time:
Module is an atom. (basic_props:atm/1)
Predicate is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

breakpt /6: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

debug/0: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

PREDICATE

68

debug_module/1:

Imported from debugger_

debug_module_source/1:

Imported from debugger_

debugging/0:

Imported from debugger_

debugrtc/0:

Imported from debugger_

get_debugger _state/1:

Imported from debugger_

get_debugger_state/1:

Imported from debugger_

leash/1:

Imported from debugger_

list_breakpt/0:

Imported from debugger_

maxdepth/1:

Imported from debugger_

nobreakall /0:

Imported from debugger_

nobreakpt /6:

Imported from debugger_

nodebug/0:

Imported from debugger_

The Ciao System

(UNDOC_REEXPORT)
1ib (see the corresponding documentation for details).

(UNDOC_REEXPORT)

1lib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1ib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1lib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1ib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1lib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1ib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1lib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1ib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1lib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1ib (see the corresponding documentation for details).

(UNDOC_REEXPORT)
1lib (see the corresponding documentation for details).

Chapter 7: Predicates controlling the interactive debugger 69

nodebug_module/1: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

nodebugrtc/0: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

nospy/1: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

nospyall/0: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

notrace/0: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

spy/1: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

trace/0: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

tracertc/0: (UNDOC_REEXPORT)
Imported from debugger_1ib (see the corresponding documentation for details).

7.3 Documentation on multifiles (debugger)

define_flag/3: PREDICATE
(Trust) Usage: define_flag(Flag,FlagValues,Default)

— The following properties hold upon exit:
Flag is an atom. (basic_props:atm/1)
Define the valid flag values (basic_props:flag_values/1)

The predicate is multifile.

7.4 Known bugs and planned improvements (debugger)

e Add an option to the emacs menu to automatically select all modules in a project.

e Consider the possibility to show debugging messages directly in the source code emacs
buffer.

70

The Ciao System

Chapter 8: The script interpreter 71

8 The script interpreter

Author(s): Daniel Cabeza, Manuel Hermenegildo.

ciao-shell is the Ciao script interpreter. It can be used to write Prolog shell scripts (see
[Her96,CHV96b]), that is, executable files containing source code, which are compiled on de-
mand.

Writing Prolog scripts can sometimes be advantageous with respect to creating binary ex-
ecutables for small- to medium-sized programs that are modified often and perform relatively
simple tasks. The advantage is that no explicit compilation is necessary, and thus changes and
updates to the program imply only editing the source file. The disadvantage is that startup of
the script (the first time after it is modified) is slower than for an application that has been
compiled previously.

An area of application is, for example, writing CGI executables: the slow speed of the network
connection in comparison with that of executing a program makes program execution speed less
important and has made scripting languages very popular for writing these applications. Logic
languages are, a priori, excellent candidates to be used as scripting languages. For example,
the built-in grammars and databases can sometimes greatly simplify many typical script-based
applications.

8.1 How it works

Essentially, ciao-shell is a smaller version of the Ciao top-level, which starts by loading
the file given to it as the first argument and then starts execution at main/1 (the argument is
instantiated to a list containing the command line options, in the usual way). Note that the
Prolog script cannot have a module declaration for this to work. While loading the file, ciao-
shell changes the prolog flag quiet so that no informational or warning messages are printed
(error messages will be reported to user_error, however). The operation of ciao-shell in
Unix-like systems is based in a special compiler feature: when the first character of a file is "#,
the compiler skips the first lines until an empty line is found. In Windows, its use is as easy as
naming the file with a .pls extension, which will launch ciao-shell appropriately.

For example, in a Linux/Unix system, assume a file called hello contains the following
program:
#!/usr/bin/env ciao-shell
% —-*— mode: ciao; —*-

main(_) :-
write(’Hello world’), nl.

Then, the file hello can be run by simply making it executable and invoking it from the
command line:

$ chmod +x hello
$./hello
Hello world

The lines:

#!/usr/bin/env ciao-shell

% —-*— mode: ciao; —*-
invokes ciao-shell through /usr/bin/env (POSIX.2 compliant), instructing it to read this
same file, and passing it the rest of the arguments to hello as arguments to the Prolog pro-
gram. The second line %, —*- mode: ciao; —*- is simply a comment which is seen by emacs and
instructs it to edit this file in Ciao mode (this is needed because these script files typically do
not have a .pl ending). When ciao-shell starts, if it is the first time, it compiles the program

72 The Ciao System

(skipping the first lines, as explained above), or else at successive runs loads the .po object file,
and then calls main/1.

Note that the process of creating Prolog scripts is made very simple by the Ciao emacs mode,
which automatically inserts the header and makes the file executable (See Chapter 18 [Using
Ciao inside GNU emacs], page 95).

8.2 Command line arguments in scripts

The following example illustrates the use of command-line arguments in scripts. Assume that a
file called say contains the following lines:

#!/usr/bin/env ciao-shell
% —*- mode: ciao; —*-

main(Argv) :-
write_list(Argv), nl.

write_list([]).
write_list([ArglArgs]) :-
write(Arg),
write(’),
write_list(Args).
An example of use is:

$ say hello dolly
hello dolly

Other miscellaneous standalone utilities 73

Other miscellaneous standalone utilities

This is the documentation for a set of other miscellaneous standalone utilities that can be
used as part of the development environment.

These utilities are contained in the etc directory of the Ciao distribution.

74

The Ciao System

Chapter 9: Printing the declarations and code in a file 75

9 Printing the declarations and code in a file

Author(s): Manuel Hermenegildo.

A simple program for printing assertion information (predicate declarations, property dec-
larations, type declarations, etc.) and printing code-related information (imports, exports,
libraries used, etc.) on a file. The file should be a single Ciao or Prolog source file. It uses
the Ciao compiler’s pass one to do it. This program is specially useful for example for checking
what assertions the assertion normalizer is producing from the original assertions in the file or
to check what the compiler is actually seeing after some of the syntactic expansions (but before
goal translations).

9.1 Usage (fileinfo)

fileinfo -asr <filename.asr>
: pretty prints the contents of <filename.asr>

fileinfo [-v] [-m] <-al|-f|l-cl-e> <filename> [libdiril] ... [libdirN]
-v : verbose output (e.g., lists all files read)

-m : restrict info to current module

-a : print assertions

-f : print code and interface (imports/exports, etc.)

-c : print code only

-e : print only errors - useful to check syntax of assertions in file

fileinfo -h
: print this information

Note that system 1lib paths *must* be given explicitly, e.g.

fileinfo -m -c foo.pl \
/home/clip/System/ciao/1ib \
/home/clip/System/ciao/library \

9.2 More detailed explanation of options (fileinfo)

e If the -a option is selected, fileinfo prints the assertions (only code-oriented assertions —
not comment-oriented assertions) in the file after normalization. If the —-f option is selected
fileinfo prints the file interface, the declarations contained in the file, and the actual code.
The -c option prints only the code. If the —e option is selected fileinfo prints only any
sintactic and import-export errors found in the file, including the assertions.

e filename must be the name of a Prolog or Ciao source file.

e This filename can be followed by other arguments which will be taken to be library directory
paths in which to look for files used by the file being analyzed.

e If the -m option is selected, only the information related to the current module is printed.

e The -v option produces verbose output. This is very useful for debugging, since all the files
accessed during assertion normalization are listed.

e In the -asr usage, fileinfo can be used to print the contents of a .asr file in human-
readable form.

76

The Ciao System

Chapter 10: Printing the contents of a bytecode file 77

10 Printing the contents of a bytecode file

Author(s): Daniel Cabeza.

This simple program takes as an argument a bytecode (.po) file and prints out in symbolic
form the information contained in the file. It uses compiler and engine builtins to do so, so that
it keeps track with changes in bytecode format.

10.1 Usage (viewpo)
viewpo <filel>.po
: print .po contents in symbolic form

viewpo -h
: print this information

78

The Ciao System

Chapter 11: callgraph (library) 79

11 callgraph (library)

11.1 Usage and interface (callgraph)

N
e Library usage:
:- use_module (library(callgraph)).
e Exports:
— Predicates:
call_graph/2, reachability/4.
e Imports:
— System library modules:
assertions/c_itf_props, sets, terms, graphs/ugraphs, xrefs/xrefsread.
— Packages:
prelude, nonpure, assertions, regtypes.
N
11.2 Documentation on exports (callgraph)
PREDICATE

call_graph/2:
(True) Usage: call_graph(File,Graph)
Graph is the call-graph of the code in File.
— The following properties should hold at call time:
File is an atom describing the name of a file. (c-itf_props:filename/1)
Graph is a free variable. (term_typing:var/1)
— The following properties hold upon exit:

Graph is an ugraph. (ugraphs:ugraph/1)

reachability /4: PREDICATE
(True) Usage: reachability(Graph,Sources,Reached,UnReached)
Reached are the vertices in Graph reachable from Sources, UnReached are the rest.
— The following properties should hold at call time:
Graph is an ugraph.
Sources is a list.
Reached is a free variable.

UnReached is a free variable.

(ugraphs:ugraph/1)
(basic_props:list/1)
(term_typing:var/1)
(term_typing:var/1)

80

The Ciao System

Chapter 12: Gathering the dependent files for a file 81

12 Gathering the dependent files for a file

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This simple program takes a single Ciao or Prolog source filename (which is typically the
main file of an application). It prints out the list of all the dependent files, i.e., all files needed
in order to build the application, including those which reside in libraries. This is particularly
useful in Makefiles, for building standalone distributions (e.g., .tar files) automatically.

The filename should be followed by other arguments which will be taken to be library directory
paths in which to look for files used by the file being analyzed.

12.1 Usage (get_deps)

get_deps [u <filename>] <filename> [lib_dir1] ... [lib_dirN]
: return dependent files for <filename>
found in [1ib_dirl] ... [1ib_dirN]
get_deps -h

: print this information

82

The Ciao System

Chapter 13: Finding differences between two Prolog files 83

13 Finding differences between two Prolog files

Author(s): Francisco Bueno.

This simple program works like the good old diff but for files that contain Prolog code. It
prints out the clauses that it finds are different in the files. Its use avoids textual differences
such as different variable names and different formatting of the code in the files.

13.1 Usage (pldiff)

pldiff <filel> <file2>
: find differences

pldiff -h
: print this information

but you can also use the program as a library and invoke the predicate:
pldiff(<filename> , <filename>)

13.2 Known bugs and planned improvements (pldiff)

e Currently uses variant/2 to compare clauses. This is useful, but there should be an option
to select the way clauses are compared, e.g., some form of equivalence defined by the user.

84

The Ciao System

Chapter 14: The Ciao lpmake scripting facility 85

14 The Ciao Ipmake scripting facility

Author(s): Manuel Hermenegildo, The CLIP Group.

Note: 1lpmake and the make library are still under development, and they may change in
future releases.

lpmake is a Ciao application which uses the Ciao make library to implement a dependency-
driven scripts in a similar way to the Un*x make facility.

The original purpose of the Un*x make utility is to determine automatically which pieces of a
large program needed to be recompiled, and issue the commands to recompile them. In practice,
make is often used for many other purposes: it can be used to describe any task where some
files must be updated automatically from others whenever these change. 1pmake can be used for
the same types of applications as make, and also for some new ones, and, while being simpler,
it offers a number of advantages over make. The first one is portability. When compiled to a
bytecode executable 1pmake runs on any platform where a Ciao engine is available. Also, the
fact that typically many of the operations are programmed in Prolog within the makefile, not
needing external applications, improves portability further. The second advantage of 1pmake
is tmproved programming capabilities. While 1pmake is simpler than make, 1pmake allows using
the Ciao Prolog language within the scripts. This allows establising more complex dependencies
and programming powerful operations within the make file, and without resorting to external
packages (e.g., operating system commands), which also helps portability. A final advantage of
lpmake is that it supports a form of autodocumentation: comments associated to targets can be
included in the configuration files. Calling 1pmake in a directory which has such a configuration
file explains what commands the configuration file support and what these commands will do.

14.1 General operation

To prepare to use lpmake, and in a similar way to make, you must write a configuration
file: a module (typically called Makefile.pl) that describes the relationships among files in
your program or application, and states the commands for updating each file. In the case of
compiling a program, typically the executable file is obtained from object files, which are in turn
obtained by compiling source files. Another example is running latex and dvips on a set of
source .tex files to generate a document in dvi and postscript formats.

Once a suitable make file exists, each time you change some source files, simply typing
lpmake suffices to perform all necessary operations (recompilations, processing text files, etc.).
The 1pmake program uses the dependency rules in the makefile and the last modification times
of the files to decide which of the files need to be updated. For each of those files, it issues the
commands recorded in the makefile. For example, in the latex/ dvips case one rule states that
the .dvi file whould be updated from the .tex files whenever one of them changes and another
rule states that the .ps file needs to be updated from a .dvi file every time it changes. The
rules also describe the commands to be issued to update the files.

So, the general process is as follows: 1pmake executes commands in the configuration file to
update one or more target names, where name is often a program, but can also be a file to be
generated or even a “virtual” target. 1pmake updates a target if it depends on prerequisite files
that have been modified since the target was last modified, or if the target does not exist. You
can provide command line arguments to 1pmake to control which files should be regenerated, or
how.

14.2 Format of the Configuration File

lpmake uses as default configuration file the file Makefile.pl, if it is present in the current
directory. This can be overridden and another file used by means of the -m option. The configu-
ration file must be a module and this module must make use of the make package. This package

86 The Ciao System

provides syntax for defining the dependency rules and functionality for correctly interpreting
these rules.

The configuration file can contain such rules and also arbitrary Ciao Prolog predicates, and
can also import other Ciao modules, packages, or make file. This is useful to implement in-
herintance across diferent configuration files, i.e., the values declared in a configuration file can
be easily made to override those defined in another, using the standard Ciao rules for module
overriding, reexport, etc. The syntax of the rules is described in Chapter 102 [The Ciao Make
Package|, page 525, together with some examples.

14.3 Ipmake usage

Supported command line options:

lpmake [-v] [-d Namel=Valuel] ... [-d Namen=Valuen] \
<commandl> ... <commandn>
Process commands <commandl> ... <commandn>, using file ’Makefile.pl’

or directory ’installer’ in the current directory as configuration
file. The configuration file must be a module.

The optional argument ’-v’ produces verbose output, reporting on the
processing of the dependency rules. Very useful for debugging
makefiles.

The argument ’-d’ indicates that a variable definition Name=Value

follows. The effect of this is adding the fact ’name_value(Name, Value).’
(i.e., ’name_value(Name) := Value.’), defined in the module
library (make (make_rt)) .

lpmake [-v] [-d Namel=Valuel] ... [-d Namen=Valuen] \
[[-m|-1] <.../Configfilel.pl>] [[-m|-1] <.../Configfilen.pl>] \
<commandl1> ... <commandn>

Same as above, but using files <.../Configfilex.pl> as configuration
file. One or more configuration files can be used. When using more
than one configuration file, the additional configuration files are
loaded dynamically into the first one with the predicate
register_config _file/1. Using -1 instead of -m indicates that this
configuration file is a library module (i.e., it will be looked for
in the libraries).

lpmake -h [[-m|-1] <.../Configfile.pl>]
lpmake -help [[-m|-1] <.../Configfile.pl>]
lpmake --help [[-m|-1] <.../Configfile.pl>]

Print this help message. If a configuration file is available in the
current directory or is given as an option, and the commands in it
are commented, then information on these commands is also printed.

Chapter 14: The Ciao lpmake scripting facility 87

14.4 Acknowledgments (lpmake)

Some parts of the documentation are taken from the documentation of GNU’s gmake.

14.5 Known bugs and planned improvements (lpmake)

e Rename or add a default directory makedir/Makedir, instead of installer directory, as rec-
ommended by Manuel Herme. — EMM

88

The Ciao System

Chapter 15: Find out which architecture we are running on 89

15 Find out which architecture we are running on

Author(s): Manuel Carro, Robert Manchek.

The architecure and operating system the engine is compiled for determines whether we can
use or not certain libraries. This script, taken from a PVM distribution, uses a heuristic (which
may need to be tuned from time to time) to find out the platform. It returns a string which is
used throughout the engine (in #ifdefs) to enable/disable certain characteristics.

15.1 Usage (ciao_get_arch)

Usage: ciao_get_arch

15.2 More details (ciao_get_arch)

Look at the script itself...

90

The Ciao System

Chapter 16: Print out WAM code 91

16 Print out WAM code
Author(s): Manuel Carro.

This program prints to standard output a symbolic form of the Wam code the compiler
generates for a given source file.

16.1 Usage (compiler_output)

Print WAM code for a .pl file

Usage: compiler_output <file.pl>

92

The Ciao System

Chapter 17: Customizing library paths and path aliases

17 Customizing library paths and path aliases

Author(s): Daniel Cabeza.

This library provides means for customizing, from environment variables, the libraries and
path aliases known by an executable. Many applications of Ciao, including ciaoc, ciaosh, and
ciao-shell make use of this library. Note that if an executable is created dynamic, it will try
to load its components at startup, before the procedures of this module can be invoked, so in
this case all the components should be in standard locations.

17.1 Usage and interface (1libpaths)

P
e Library usage:
:- use_module(library(libpaths)).
e Exports:
— Predicates:
get_alias_path/O0.
— Multifiles:
file_search_path/2, library_directory/1.
e Imports:
— System library modules:
system, lists.
— Packages:
prelude, nonpure, assertions.

17.2 Documentation on exports (libpaths)

get_alias_path/0:
get_alias_path

PREDICATE

Consult the environment variable 'CTAOALIASPATH’ and add facts to predicates
library_directory/1 and file_search_path/2 to define new library paths and path
aliases. The format of 'CIAOALIASPATH’ is a sequence of paths or alias assignments
separated by colons, an alias assignment is the name of the alias, an =’ and the path
represented by that alias (no blanks allowed). For example, given

CIAOALIASPATH=/home/bardo/ciao:contrib=/usr/local/lib/ciao
the predicate will define /home/bardo/ciao as a library path and /usr/local/lib/ciao as

the path represented by ’contrib’.

17.3 Documentation on multifiles (1ibpaths)

file_search_path/2:

PREDICATE

See Chapter 29 [Basic file/stream handling], page 191. The predicate is multifile.

The predicate is of type dynamic.
Trust: file_search_path(X,Y)

94 The Ciao System

— The following properties hold upon exit:

X is ground. (basic_props:gnd/1)
Y is ground. (basic_props:gnd/1)
library_directory/1: PREDICATE

See Chapter 29 [Basic file/stream handling], page 191. The predicate is multifile.
The predicate is of type dynamic.
Trust: library_directory(X)
— The following properties hold upon exit:
X is ground. (basic_props:gnd/1)

Chapter 18: Using Ciao inside GNU emacs 95

18 Using Ciao inside GNU emacs

Author(s): Manuel Hermenegildo, Manuel C. Rodriguez, Daniel Cabeza.

The Ciao emacs interface (or mode in emacs terms) provides a rich, integrated user interface
to the Ciao program development environment components, including the ciaosh interactive
top level, the 1pdoc documentation generator, the testing system, and the ciaopp preprocessor.
Most features of these Ciao development environment components are available from the com-
mand line of the top-level shell and the preprocessor and as standalone tools. However, using
Ciao from inside emacs is highly recommended. The facilities that this mode provides include:

o Syntax-based highlighting (coloring), auto-indentation, auto-fill, etc. of code. This includes
the assertions used by the preprocessor and the documentation strings used by the Ciao
auto-documenter, lpdoc.

e Providing automatic access to on-line help for all predicates by accessing the Ciao system
manuals in info format.

e Starting and communicating with the Ciao top-level, running in its own sub-shell. This
facilitates loading programs, checking the syntaz of programs (and of assertions within
programs), marking and unmarking modules for interactive debugging, tracing the source
code during debugging, making stand-alone executables, compiling modules to dynamically
linkable Ciao objects, compiling modules to active objects, etc.

e Starting and communicating with 1pdoc, the Ciao auto-documenter, running in its own
sub-shell. This allows generating in a very convenient way manuals for any file(s) being
edited, in a variety of output formats, and is very useful for quickly checking how the
auto-generated documentation will look.

e Running unit tests on files or applications.

e Starting and communicating with ciaopp, the Ciao preprocessor, running in its own sub-
shell. This allows easily performing certain kinds of static checks (useful for finding errors
in programs before running them), program analysis tasks, and program transformations
on source programs.

e Syntax highlighting and coloring of the error and warning messages produced by the top
level, unit testing, preprocessor, or any other tool using the same message format (such as
the 1pdoc auto-documenter), and locating automatically the points in the source files where
such errors occur.

e This mode also includes a very simple automatic version control system which allows keeping
a changelog for individual files or for whole applications. This is done by automatically
including changelog entries in source files, which can then be processed by the 1lpdoc auto-
documenter. This is useful for smaller projects that are not stored in a repository and can
also be used for maintaining changelogs even for projects that are repository-based.

This chapter explains how to use the Ciao emacs interface (and how to set up your emacs
environment for correct operation, even though this is normally done automatically by the
installation process). The Ciao emacs interface can also be used to work with traditional Prolog
or CLP systems.

18.1 Conventions for writing Ciao programs under Emacs

There are currently a number of syntactic conventions for Ciao programs which greatly help
operation of the Emacs development environment. These conventions are particularly important
for the source-level debugger and the syntax-based coloring capabilities. The need for such
conventions comes from the fact that it would be unrealistic to write a complete Ciao parser in
Emacs lisp. These conventions are the following, more or less in order of importance:

e Clauses should begin on the first column (this is used to recognize the beginning of a clause).

96 The Ciao System

e (style comments should not be used in a clause, but can be used outside any clause.

The following suggestions are not strictly necessary but can improve operation. In particular,
they allow much greater precision in the location of program points during source-level debugging
(for line by line tracing, when marking breakpoints, etc.):

e Body literals should be indented.
e There should be no more than one literal per line.

Other issues:
e Comments which start with %s are indented to the right if indentation is requested.

e For syntax-based highlighting to be performed, font-lock must be available and not disabled
(the Ciao mode enables it but it may be disabled elsewhere in, e.g., the .emacs file).

18.2 Checking the installation

Typically, a complete pre-installation of the Ciao emacs interface is performed during Ciao
installation. To check that installation was completed sucessfully, open a file with a .pl ending.
You should see that emacs enters Ciao mode: the mode is identified in the status bar below the
buffer and, if the emacs menu bar is enabled, you should see the Ciao menus. You should be
able from the menu-bar, for example, to go to the Ciao manuals in the info or load the .pl file
that you just opened into a Ciao top level.

If things don’t work properly, see the section Section 18.22 [Installation of the Ciao emacs
interface|, page 114 later in this chapter.

18.3 Functionality and associated key sequences (bindings)

The following sections summarize the capabilities of the Ciao emacs interface and the (default)
key sequences used to access those capabilities. Note however that most of these functions are
also accessible from the menu bar, so learning these key combinations is not necessary: the
list is provided mainly for illustration of the capabilities available, as well as completeness and
documentation.

18.4 Syntax coloring and syntax-based editing

Syntax-based highlighting (coloring) of code is provided automatically when opening Ciao
files. This includes also the assertions used by the preprocessor and the documentation strings
used by the Ciao auto-documenter, 1pdoc. The mode should be set to Ciao and the Ciao mode
menus should appear on the menu bar. The colors and fonts used can be changed through the
customize options in the help menu (see Section 18.21 [Customization], page 108).

During editing this coloring may be refreshed by calling the appropriate function (see below).

Limited syntax-based auto-indentation and auto-fill of code and comments is also provided.
Syntax highlighting and coloring is also available for the error and warning messages produced
by the top level, preprocessor, and auto-documenter, and, in general, for the output produced
by these tools.

Commands:
@ Undate (recompute) syntax-based highlighting (coloring).

TAB Indent current line as Ciao code. With argument, indent any additional lines of the
same clause rigidly along with this one.

Chapter 18: Using Ciao inside GNU emacs 97

18.5 Getting on-line help

The following commands are useful for getting on-line help. This is done by accessing the
info version of the Ciao manuals or the emacs built-in help strings. Note also that the info
standard search command (generally bound to §)) can be used inside info buffers to search for
a given string.

Find help for the symbol (e.g., predicate, directive, declaration, property, type, etc.)
that is currently under the cursor. Opens a (hopefully) relevant part of the Ciao
manuals in info mode. Requires that the Ciao manuals in info format be installed
and accessible to emacs (i.e., they should appear somewhere in the info directory
when typing M-x info). It also requires word-help.el, which is provided with Ciao.
Refer to the installation instructions if this is not the case.

) Find a completion for the symbol (e.g., predicate, directive, declaration, type, etc.)
that is currently under the cursor. Uses for completion the contents of the indices
of the Ciao manuals. Same requirements as for finding help for the symbol.

Go to the part of the info directory containing the Ciao manuals.
() Show a short description of the Ciao emacs mode, including all key bindings.

18.6 Loading and compiling programs

These commands allow loading programs, creating executables, etc. by issuing the appropriate
commands to a Ciao top level shell, running in its own buffer as a subprocess. See Chapter 5
[The interactive top-level shell], page 49 for details. The following commands implement the
communication with the Ciao top level:

® Ensure that an inferior Ciao top-level process is running.

This opens a top-level window (if one did not exist already) where queries can be in-
put directly. Programs can be loaded into this top level by typing the corresponding
commands in this window (such as use_module, etc.), or, more typically, by opening
the file to be loaded in an emacs window (where it can be edited) and issuing a load
command (such as C-c | or C-c L) directly from there (see the loading commands
of this mode and their bindings).

Note that many useful commands (e.g., to repeat and edit previous commands,
interrupt jobs, locate errors, automatic completions, etc.) are available in this top-
level window (see Section 18.7 [Commands available in toplevel and preprocessor
buffers], page 98).

Often, it is not necessary to use this function since execution of any of the other
functions related to the top level (e.g., loading buffers into the top level) ensures
that a top level is started (starting one if required).

o Load the current buffer (and any auxiliary files it may use) into the top level.

The type of compilation performed (compiling or interpreting) is selected automat-
ically depending on whether the buffer has been marked for debugging or not — see
below. In case you try to load a file while in the middle of the debugging process
the debugger is first aborted and then the buffer is loaded. Also, if there is a defined
query, the user is asked whether it should be called.

® Load CiaoPP and then the current buffer (and any auxiliary files it may use) into the
top level. Use CiaoPP auto_check_assrt predicate to check current buffer assertions
and then load the buffer if there was no error.

&) Make an executable from the code in the current buffer. The buffer must contain
a main/0 or main/1 predicate. Note that compiler options can be set to determine

98

Co ©

Co @

C9 @

Co @

The Ciao System

whether the libraries and auxiliary files used by the executable will be statically
linked, dynamically linked, auto-loaded, etc.

Make a Ciao object (.po) file from the code in the current buffer. This is useful
for example while debugging during development of a very large application which
is compiled into an excutable, and only one or a few files are modified. If the
application executable is dynamically linked, i.e., the component .po files are loaded
dynamically during startup of the application, then this command can be used to
recompile only the file or files which have changed, and the correct version will be
loaded dynamically the next time the application is started. However, note that this
must be done with care since it only works if the inter-module interfaces have not
changed. The recommended, much safer way is to generate the executable again,
letting the Ciao compiler, which is inherently incremental, determine what needs to
be recompiled.

Make an active module executable from the code in the current buffer. An active
module is a remote procedure call server (see the activemod library documentation
for details).

Set the current buffer as the principal file in a multiple module programming envi-
ronment.

Load the module designated as main module (and all related files that it uses) into
the top level. If no main module is defined it will load the current buffer.

The type of compilation performed (compiling or interpreting) is selected automat-
ically depending on whether the buffer has been marked for debugging or not — see
below. In case you try to load a file while in the middle of the debugging process
the debugger is first aborted and then the buffer is loaded. Also, if there is a defined
query, the user is asked whether it should be called.

18.7 Commands available in toplevel and preprocessor buffers

The interactive top level and the preprocessor both are typically run in an iteractive buffer,
in which it is possible to communicate with them in the same way as if they had been started
from a standard shell. These interactive buffers run in the so-called Ciao inferior mode. This
is a particular version of the standard emacs shell package (comint) and thus all the commands
typically available when running shells inside emacs also work in these buffers. In addition,
many of the commands and key bindings available in buffers containing Ciao source code are
also available in these interactive buffers, when applicable. The Ciao-specific commands available

include:

Co O

Co O

(CRORE);

Find help for the symbol (e.g., predicate, directive, declaration, property, type, etc.)
that is currently under the cursor. Opens a (hopefully) relevant part of the Ciao
manuals in info mode. Requires that the Ciao manuals in info format be installed
and accessible to emacs (i.e., they should appear somewhere in the info directory
when typing M-x info). It also requires word-help.el, which is provided with Ciao.
Refer to the installation instructions if this is not the case.

Find a completion for the symbol (e.g., predicate, directive, declaration, type, etc.)
that is currently under the cursor. Uses for completion the contents of the indices
of the Ciao manuals. Same requirements as for finding help for the symbol.

Go to the location in the source file containing the next error reported by the last
Ciao subprocess (preprocessor or toplevel) which was run.

Remove error marks from last run (and also debugging marks if present). This finish
the error finding session.

Chapter 18: Using Ciao inside GNU emacs 99

Co @

Co @

C9 @

Set a default query. This may be useful specially during debugging sessions. How-
ever, as mentioned elsewhere, note that commands that repeat previous queries are
also available.

This query can be recalled at any time using C-c Q. It is also possible to set things
up so that this query will be issued automatically any time a program is (re)loaded.
The functionality is available in the major mode (i.e., from a buffer containing a
source file) and in the inferior mode (i.e., from the buffer running the top-level shell).
When called from the major mode (i.e., from window containing a source file) then
the user is prompted in the minibuffer for the query. When called from the inferior
mode (i.e., from a top-level window) then the query on the current line, following
the Ciao prompt, is taken as the default query.

To clear the default query use M-x ciao-clear-query or simply set it to an empty
query: i.e., in a source buffer select C-c q and enter an empty query. In an inferior
mode simply select C-c q on a line that contains only the system prompt.

Issue predefined query.

Show last output file produced by Ciao preprocessor. The preprocessor works by
producing a file which is a transformed and/or adorned (with assertions) version of
the input file. This command is often used after running the preprocessor in order
to visit the output file and see the results from running the preprocessor.

Report the version of the emacs Ciao mode.

The following are some of the commands from the comint shell package which may be specially
useful (type <£1> m while in a Ciao interactive buffer for a complete list of commands):

Cycle backwards through input history, saving input.
Cycle forwards through input history.
Search for a regular expression backward in input history using Isearch.

Dynamically find completion of the item at point. Note that this completion com-
mand refers generally to filenames (rather than, e.g., predicate names, as in the
previous functions).

List all (filename) completions of the item at point.

Return at any point of the a line at the end of a buffer sends that line as input.
Return not at end copies the rest of the current line to the end of the buffer and
sends it as input.

Delete ARG characters forward or send an EOF to subprocess. Sends an EOF only
if point is at the end of the buffer and there is no input.

Kill all text from last stuff output by interpreter to point.

Kill characters backward until encountering the beginning of a word. With argument
ARG, do this that many times.

Interrupt the current subjob. This command also kills the pending input between
the process mark and point.

Stop the current subjob. This command also kills the pending input between the
process mark and point.

WARNING: if there is no current subjob, you can end up suspending the top-level
process running in the buffer. If you accidentally do this, use M-x comint-continue-
subjob to resume the process. (This is not a problem with most shells, since they
ignore this signal.)

Send quit signal to the current subjob. This command also kills the pending input
between the process mark and point.

100 The Ciao System

18.8 Locating errors and checking the syntax of assertions

These commands allow locating quickly the point in the source code corresponding to er-
rors flagged by the compiler or preprocessor as well as performing several syntactic checks of
assertions:

O Go to the location in the source file containing the next error reported by the last
Ciao subprocess (preprocessor or toplevel) which was run.

@© Remove error marks from last run (and also debugging marks if present). This finish
the error finding session.

®) Check the syntazx of the code and assertions in the current buffer, as well as imports
and exports. This uses the standard top level (i.e., does not call the preprocessor
and thus does not require the preprocessor to be installed). Note that full (semantic)
assertion checking must be done with the preprocessor.

18.9 Commands which help typing in programs

The following commands are intended to help in the process of writing programs:

©® © Insert a (Unix) header at the top of the current buffer so that the Ciao script
interpreter will be called on this file if run from the command line. It also makes
the file “executable” (e.g., ’chmod +x <file>’ in Unix). See Chapter 8 [The script
interpreter|, page 71 for details.

® Indent a Ciao or Prolog file using ‘plindent’.

18.10 Debugging programs

These commands allow marking modules for debugging by issuing the appropiate commands
to a Ciao top level shell, running in its own buffer as a subprocess. There are two differents types
of debugging: traditional debugging (using the byrd-box model and spy-points) and source-level
debugging (same as traditional debugging plus source tracing and breakpoints). In order to use
breakpoints, source debugging must be on. The following commands implement comunication
with the Ciao top level:

@ Debug (or stop debugging) buffer source. This is a shortcut which is particularly
useful when using the source debugger on a single module. It corresponds to several
lower-level actions. Those lower-level actions depend on how the module was selected
for debugging. In case the module was not marked for source-level debugging, it
marks the module corresponding to the current buffer for source-level debugging,
reloads it to make sure that it is loaded in the correct way for debugging (same as
C-c 1), and sets the debugger in trace mode (i.e., issues the trace. command to
the top-level shell). Conversely, if the module was already marked for source-level
debugging then it will take the opposite actions, i.e., it unmarks the module for
source-level debugging, reloads it, and sets the debugger to non-debug mode.

() Mark, or unmark, the current buffer for debugging (traditional debugging or source
debugging). Note that if the buffer has already been loaded while it was unmarked
for debugging (and has therefore been loaded in “compile” mode) it has to be loaded
again. The minibuffer shows how the module is loaded now and allows selecting
another mode for it. There are three posibilities: N for no debug, S for source
debug and D for traditional debug.

C-o (M-m) Visits all Ciao files which are currently open in a buffer allowing selecting for each
of them whether to debug them or not and the type of debugging performed. When

Chapter 18: Using Ciao inside GNU emacs 101

C9 6 ®

Co &

C9 O W
Co ® 0

Co ® O
Co ©® @®

Co ® @

Co) @©

C-c) {p)

working on a multiple module program, it is possible to have many modules open
at a time. In this case, you will navigate through all open Ciao files and select the
debug mode for each of them (same as doing C-c m for each).

Set a breakpoint on the current literal (goal). This can be done at any time (while
debugging or not). The cursor must be on the predicate symbol of the literal. Break-
points are only useful when using source-level debugging.

Remove a breakpoint from the current literal (goal). This can be done at any time
(while debugging or not). The cursor must be on the predicate symbol of the literal.

Remove all breakpoints. This can be done at any time (while debugging or not).

Redisplay breakpoints in all Ciao buffers. This ensures that the marks in the source
files and the Ciao toplevel are synchronized.

Remove breakpoint coloring in all Ciao files.

Set the debugger to the trace state. In this state, the program is executed step by
step.

Set the debugger to the debug state. In this state, the program will only stop in
breakpoints and spypoints. Breakpoints are specially supported in emacs and using
source debug.

Load the current region (between the cursor and a previous mark) into the top
level. Since loading a region of a file is typically done for debugging and/or testing
purposes, this command always loads the region in debugging mode (interpreted).

Load the predicate around the cursor into the top level. Since loading a single
predicate is typically done for debugging and/or testing purposes, this command
always loads the predicate in debugging mode (interpreted).

18.11 Testing programs

These commands allow testing predicates and modules, based on interactively defined
queryies or more sophisticated tests specified within the source code.

C9 @

Co @
Co W

C9 ©

Set a default query. This may be useful specially during debugging sessions. How-
ever, as mentioned elsewhere, note that commands that repeat previous queries are
also available.

This query can be recalled at any time using C-c Q. It is also possible to set things
up so that this query will be issued automatically any time a program is (re)loaded.
The functionality is available in the major mode (i.e., from a buffer containing a
source file) and in the inferior mode (i.e., from the buffer running the top-level shell).
When called from the major mode (i.e., from window containing a source file) then
the user is prompted in the minibuffer for the query. When called from the inferior
mode (i.e., from a top-level window) then the query on the current line, following
the Ciao prompt, is taken as the default query.

To clear the default query use M-x ciao-clear-query or simply set it to an empty
query: i.e., in a source buffer select C-c q and enter an empty query. In an inferior
mode simply select C-c q on a line that contains only the system prompt.

Issue predefined query.

Run the test over the current buffer.
The test should be specified using a test assertion in the module.

Run the test over the current buffer and the assertions of exported predicates.
The test should be specified using a test assertion in the module.

102 The Ciao System

18.12 Preprocessing programs

These commands allow preprocessing programs with ciaopp, the Ciao preprocessor.

CiaoPP is the abstract interpretation-based preprocessor of the Ciao multi-paradigm program
development environment. CiaoPP can perform a number of program debugging, analysis, and
source-to-source transformation tasks on (Ciao) Prolog programs. These tasks include:

e Inference of properties of the predicates and literals of the program, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

e Certain kinds of static debugging and verification, finding errors before running the program.
This includes checking how programs call system library predicates and also checking the
assertions present in the program or in other modules used by the program. Such assertions
represent essentially partial specifications of the program.

e Several kinds of source to source program transformations such as program specialization,
slicing, partial evaluation of a program, program parallelization (taking granularity control
into account), inclusion of run-time tests for assertions which cannot be checked completely
at compile-time, etc.

e The abstract model of the program inferred by the analyzers is used in the system to certify
that an untrusted mobile code is safe w.r.t. the given policy (i.e., an abstraction-carrying
code approach to mobile code safety).

The information generated by analysis, the assertions in the system specifications are all writ-
ten in the same assertion language, which is in turn also used by the Ciao system documentation
generator, 1pdoc.

CiaoPP is distributed under the GNU general public license.

See the preprocessor manual for details. The following commands implement the communi-
cation with the Ciao preprocessor:

@A) Call the preprocessor to perform a number of pre-selected analyses on the current
buffer (and related modules).

T Call the preprocessor to perform compile-time checking of the assertions (types,
modes, determinacy, nonfailure, cost, ...) in the current buffer (and against those
in related modules).

©) Uses the preprocessor to perform optimizations (partial evaluation, abstract spe-
cialization, parallelization, ...) on the current buffer (and related modules).

M) Browse and select (using the preprocessor menus) the actions to be performed by
the preprocessor when performing analisys used by M-x ciao- C-¢c A, C-¢c T, C-c O,
and the corresponding toolbar buttons.

Show last output file produced by Ciao preprocessor. The preprocessor works by
producing a file which is a transformed and/or adorned (with assertions) version of
the input file. This command is often used after running the preprocessor in order
to visit the output file and see the results from running the preprocessor.

Ensure that an inferior Ciao preprocessor process is running.

This opens a preprocessor top-level window (if one did not exist already) where
preprocessing commands and preprocessing menu options can be input directly.
Programs can be preprocessed by typing commands in this window, or, more typi-
cally, by opening the file to be preprocessed in an emacs window (where it can be
edited) and issuing a command (such as C-c A, C-¢c T, C-c O, or C-c M) directly
from there (see the preprocessing commands of this mode and their bindings).

Chapter 18: Using Ciao inside GNU emacs 103

Note that many useful commands (e.g., to repeat and edit previous commands,
interrupt jobs, locate errors, automatic completions, etc.) are available in this top-
level window (see Section 18.7 [Commands available in toplevel and preprocessor
buffers], page 98).

Often, it is not necessary to use this function since execution of any of the other
functions related to the top level (e.g., loading buffers into the top level) ensures
that a top level is started (starting one if required).

18.13 Version control

The following commands can be used to carry out a simple but effective form of version
control by keeping a log of changes on a file or a group of related files. Interestingly, this log is
kept in a format that is understood by 1pdoc, the Ciao documenter [Her99]. As a result, if these
version comments are present, then 1pdoc will be able to automatically assign up to date version
numbers to the manuals that it generates. This way it is always possible to identify to which
version of the software a manual corresponds. Also, lpdoc can create automatically sections
describing the changes made since previous versions, which are extracted from the comments in
the changelog entries.

The main effect of these commands is to automatically associate the following information
to a set of changes performed in the file and/or in a set of related files:

e a version number (such as, e.g., 1.2, where 1 is the major version number and 2 is the
minor version number),

a patch number (such as, e.g., the 4 in 1.2#4),
a time stamp (such as, e.g., 1998/12/14,17:20%x28+MET),
the author of the change, and

a comment explaining the change.

The version numbering used can be local to a single file or common to a number of related
files. A simple version numbering policy is implemented: when a relevant change is made, the
user typically inserts a changelog entry for it, using the appropriate command (or selecting the
corresponding option when prompted while saving a file). This will cause the patch number for
the file (or for the whole system that the file is part of) to be incremented automatically and the
corresponding machine-readable comment to be inserted in the file. Major and minor version
numbers can also be changed, but this is always invoked by hand (see below).

The changelog entry is written in the form of a comment/2 declaration. As mentioned before,
the advantage of using this kind of changelog entries is that these declarations can be processed
by the 1pdoc automatic documenter (see the 1pdoc reference manual [Her99] or the assertions
library documentation for more details on these declarations).

Whether the user is asked or not to introduce such changelog entries, and how the patch and
version numbers should be increased is controlled by the presence in the file of a comment/2
declaration of the type:

:- doc(version_maintenance,<type>) .

(note that this requires including the assertions library in the source file). These declarations
themselves are also typically introduced automatically when using this mode (see below).

The version maintenance mode can also be set alternatively by inserting a comment such as:

%% Local Variables:
%% mode: ciao
%% update-version-comments: "off"
%% End:
The lines above instruct emacs to put the buffer visiting the file in emacs Ciao mode and
to turn version maintenance off. Setting the version maintenance mode in this way has the

104

The Ciao System

disadvantage that 1pdoc, the auto-documenter, and other related tools will not be aware of the
type of version maintenance being performed (the lines above are comments for Ciao). However,
this can be useful in fact for setting the version maintenance mode for packages and other files
meant for inclusion in other files, since that way the settings will not affect the file in which the
package is included.

The following commands implement the version control support:

Used to turn on or off version control for the file being visited in the current buffer.
The user will be prompted to choose among the following options:

®
@

Turn version control on for this file.

Turn version control off for this file. A version control comment such
as:

:— doc(version_maintenance,off).
will be added to the buffer and the file saved. No version control will be

performed on this file until the line above is removed or modified (i.e.,
from now on C-x C-s simply saves the buffer).

Turn off prompting for the introduction of changelog entries for now.
emacs will not ask again while the buffer is loaded, but it may ask again
when saving after the next time you load the buffer (if ciao-ask-for-
version-maintenance-type is set to yes).

If () is selected, then the system prompts again regarding how and where the ver-
sion and patch number information is to be maintained. The following options are

available:

on

All version control information will be contained within this file. When
saving a buffer (C-x C-s) emacs will ask if a changelog entry should
be added to the file before saving. If a comment is entered by the
user, a new patch number is assigned to it and the comment is added
to the file. This patch number will be the one that follows the most
recent changelog entry already in the file. This is obviously useful when
maintaining version numbers individually for each file.

<directory_name>

off

Global version control will be performed coherently on several files.
When saving a buffer (C-x C-s) emacs will ask if a changelog entry
should be added to the file before saving. If a comment is given,
the global patch number (which will be kept in the file: <directory_
name>/GlobalPatch) is atomically incremented and the changelog en-
try is added to the current file, associated to that patch number. Also,
a small entry is added to a file <directory_name>/GlobalChangelog
which points to the current file. This allows inspecting all changes se-
quentially by visiting all the files where the changes were made (see
C-c¢ C-n). This is obviously useful when maintaining a single thread of
version and patch numbers for a set of files.

Turns off version control: C-x C-s then simply saves the file as usual.

Some useful tips:

e If a changelog entry is in fact introduced, the cursor is left at the point in the
file where the comment was inserted and the mark is left at the original file
point. This allows inspecting (and possibly modifying) the changelog entry,
and then returning to the original point in the file by simply typing C-x C-x.

Chapter 18: Using Ciao inside GNU emacs 105

e The first changelog entry is entered by default at the end of the buffer. Later,
the changelog entries can be moved anywhere else in the file. New changelog
entries are always inserted just above the first changelog entry which appears
in the file.

e The comments in changelog entries can be edited at any time.

e If a changelog entry is moved to another file, and version numbers are shared
by several files through a directory, the corresponding file pointer in the
<directory_name>/GlobalChangelog file needs to be changed also, for the
entry to be locatable later using C-c C-n.

This is the standard emacs command that saves a buffer by writing the contents into
the associated .pl file. However, in the Ciao mode, if version control is set to on
for ths file, then this command will ask the user before saving whether to introduce
a changelog entry documenting the changes performed.

In addition, if:

e the buffer does not already contain a comment specifying the type of version
control to be performed,

e and the customizable variable ciao-ask-for-version-maintenance-type is
set to yes (go to the Ciao options menu, LPdoc area to change this, which is
by default set to no),

then, before saving a buffer, the user will be also automatically asked to choose
which kind of version control is desired for the file, as in C-c C-a.

Same as C-x C-s except that it forces prompting for inclusion of a changelog entry
even if the buffer is unmodified.

o) Force a move to a new major/minor version number (the user will be prompted for
the new numbers). Only applicable if using directory-based version maintenance.
Note that otherwise it suffices with introducing a changelog entry in the file and
changing its version number by hand.

C—c When a unique version numbering is being maintained across several files, this
command allows inspecting all changes sequentially by visiting all the files in which
the changes were made:

e Ifin a source file, find the next changelog entry in the source file, open in another
window the corresponding GlobalChangeLog file, and position the cursor at the
corresponding entry. This allows browsing the previous and following changes
made, which may perhaps reside in other files in the system.

e If in a GlobalChangeLog file, look for the next entry in the file, and open in
another window the source file in which the corresponding comment resides, po-
sitioning the corresponding comment at the top of the screen. This allows going
through a section of the GlobalChangelog file checking all the corresponding
comments in the different files in which they occur.

18.14 Generating program documentation

These commands provide some bindings and facilities for generating and viewing the docu-
mentation corresponding to the current buffer. The documentation is generated in a temporary
directory, which is created automatically. This is quite useful while modifying the documenta-
tion for a file, in order to check the output that will be produced, whithout having to set up
a documentation directory by hand or to regenerate a large manual of which the file may be a
part.

106 The Ciao System

D) Generate the documentation for the current buffer in the default format. This allows
generating a simple document for the current buffer. Basically, it creates a simple,
default SETTINGS.pl file, sets mainfile in SETTINGS.pl to the current buffer file
and then generates the documentation in a temporary directory. This is useful
for seeing how the documentation of a file will format. Note that for generating
manuals the best approach is to set up a permanent documentation directory with
the appropriate SETTINGS.pl file (see the LPdoc manual).

®) F Change the default output format used by the LPdoc auto-documenter. It is set by
default to html or to the environment variable LPDOCFORMAT if it is defined.

O () Visit, or create, the SETTINGS.pl file (which controls all auto-documenter options)
for the current buffer.

© ©
Generate the documentation according to SETTINGS.pl in the default format. This
allows generating complex documents but it assumes that SETTINGS.pl exists and
that the options that it contains (main file, component files, paths, etc.) have
been set properly. Documentation is generated in a temporary directory. Note
however that for generating complex manuals the best approach is to set up a
permanent documentation directory with the appropriate SETTINGS.pl (see the
LPdoc manual).

O @
Start a viewer on the documentation for the current buffer in the default format.

©

Change the root directory of the scratchpad for temporal source files. This is used,
e.g., by the LPdoc auto-documenter when generating temporal configuration files
and documentation for buffers. It is set by default to a new dir under /tmp or to
the environment variable CIAOSCRATCHDIR if it is defined.

18.15 Setting top level preprocessor and documenter
executables

These commands allow changing the executables used when starting the top-level, the prepro-
cessor, or the auto-documenter. They also allow changing the arguments that these executables
take, and changing the path where the libraries reside. In the case of the top-level and prepro-
cessor, this should be done only by users which understand the implications, but it is very useful
if several versions of Ciao or the preprocessor are available in the system. All these settings can
be changed through the customize options in the help menu (see Section 18.21 [Customization],
page 108).

© @
® (© Change the Ciao executable used to run the top level. It is set by default to ciao

or, to the environment variable CIAQ if it is defined.

©®
Change the arguments passed to the Ciao executable. They are set by default to
none or, to the environment variable CIAOARGS if it is defined.

® (@ Change the executable used to run the Ciao Preprocessor toplevel. It is set by
default to ciaopp or, to the environment variable CIAQOPP if it is defined.

)
Change the arguments passed to the Ciao preprocessor executable. They are set by
default to none or to the environment variable CTAOPPARGS if it is defined.

Chapter 18: Using Ciao inside GNU emacs 107

® @© Change the location of the Ciao library paths (changes the environment variable
CIAOLIB).

® @) Change the executable used to run the LPdoc auto-documenter. It is set by default
to 1lpdoc or to the environment variable LPDOC if it is defined.

©
Change the arguments passed to the LPdoc auto-documenter. They are set by
default to none or to the environment variable LPDOCARGS if it is defined.

® €1
Change the path in which the LPdoc library is installed. It is set by default to
/home/clip/1ib or to the environment variable LPDOCLIB if it is defined.

18.16 Other commands

Some other commands which are active in the Ciao mode:

Recenter the most recently used Ciao inferior process buffer (e.g., top level, prepro-
cessor, etc.).

18.17 Traditional Prolog Mode Commands

These commands provide some bindings and facilities for loading programs, which are present
in emacs Prolog modes of traditional Prolog systems (e.g., SICStus). This is useful mainly if the
Ciao emacs mode is used with such Prolog systems. Note that these commands (compile/1
and consult/1) are deprecated in Ciao (due to the more advanced, separate compilation model
in Ciao) and their use in the Ciao top-level is not recommended.

K) Compile the entire buffer.

® Compile a given region.

Compile the predicate around point.
©) Consult the entire buffer.

© Consult a given region.

Consult the predicate around point.

18.18 Coexistence with other Prolog-like interfaces

As mentioned previously, the Ciao emacs interface can also be used to work with traditional
Prolog or CLP systems. Also, the Ciao emacs interface (mode) can coexist with other Prolog-
related emacs interfaces (modes) (such as, e.g., the SICStus Prolog interface). Only one of the
interfaces can be active at a time for a given buffer (i.e., for each given file opened inside emacs).
In order the change a buffer to a given interface, move the cursor to that buffer and type M-x
...~mode (e.g., for the Ciao mode, M-x ciao-mode).

If several Prolog-related emacs interfaces are loaded, then typically the last one to be loaded
takes precedence, in the sense that this will be the interface in which emacs will be set when
opening files which have a .pl ending (this depends a bit on how things are set up in your
.emacs file).

18.19 Getting the Ciao mode version

) Report the version of the emacs Ciao mode.

108 The Ciao System

18.20 Using Ciao mode capabilities in standard shells

The capabilities (commands, coloring, error location, ...) which are active in the Ciao inferior
mode can also be made available in any standard command line shell which is being run within
emacs. This can be enabled by going to the buffer in which the shell is running and typing “M-x)
ciao-inferior-mode”. This is very useful for example when running the stand-alone compiler,
the 1pdoc auto-documenter, or even certain user applications (those that use the standard error
message library) in an emacs sub-shell. Turning the Ciao inferior mode on on that sub-shell will
highlight and color the error messages, and automatically find and visit the locations in the files
in which the errors are reported.

Finally, one the most useful applications of this is when using the embedded debugger (a
version of the debugger which can be embedded into executables so that an interactive debugging
session can be triggered at any time while running that executable without needing the top-level
shell). If an application is run in a shell buffer which has been set with Ciao inferior mode (M=)
ciao-inferior-mode) and this application starts emitting output from the embedded debugger
(i.e., which contains the embedded debugger and is debugging its code) then the Ciao emacs
mode will be able to follow these messages, for example tracking execution in the source level
code. This also works if the application is written in a combination of languages, provided the
parts written in Ciao are compiled with the embedded debugger package and is thus a covenient
way of debugging multi-language applications. The only thing needed is to make sure that the
output messages appear in a shell buffer that is in Ciao inferior mode.

18.21 Customization

This section explains all variables used in the Ciao emacs mode which can be customized by
users. Such customization can be performed (in later versions of emacs) from the emacs menus
(Help -> Customize -> Top-level Customization Group), or also by adding a setq expression
in the .emacs file. Such setq expression should be similar to:

(setq <variable> <new_value>)

The following sections list the different variables which can be customized for ciao, ciaopp and
lpdoc.

18.21.1 Ciao general variables

ciao-ask-for-version-maintenance-type (string)
If turned to yes the system asks prompts to set version control when saving files
that do not set a version control system explicitly within the file.

ciao-create-sample-file-on-startup (boolean)
When starting the Ciao environment using ciao-startup two buffers are opened: one
with a toplevel and another with a sample file. This toggle controls whether the
sample file, meant for novice users, is created or not. Set by default, non-novice
users will probably want to turn it off.

ciao-first-indent-width (integer)
First level indentation for a new goal.
ciao-indent-width (integer)
Indentation for a new goal.
ciao-inhibit-toolbar (boolean)
*Non-nil means don’t use the specialized Ciao toolbar.
ciao-library-path (string)
Path to the Ciao System libraries (reads/sets the CIAOLIB environment variable).
Typically left empty, since ciao executables know which library to use.

Chapter 18: Using Ciao inside GNU emacs 109

ciao-locate-also-note-messages (boolean)
If set, also when errors of type NOTE are detected the corresponding file is visited
and the location marked. It is set to nil by default because sometimes the user prefers
not to take any action with respect to these messages (for example, many come
from the documenter, indicating that adding certain declarations the documentation
would be improved).

ciao-locate-errors-after-run (boolean)
If set, location of any errors produced when running Ciao tools (loading or prepro-
cessing code, running the documenter, etc.) will be initiated automatically. ILe.,
after running a command, the system will automatically highlight any error mes-
sages and the corresponding areas in source files if possible. If set to nil this location
will only happen after typing C-c ¢ or accessing the corresponding menu or tool bar
button.

ciao-os-shell-prompt-pattern (string)
Regular expression used to describe typical shell prompt patterns (csh and bash), so
that error location works in inferior shells. This is useful for example so that errors
are located when generating documentation, and also when using the embedded
debugger or any other application in a shell. It is best to be as precise as possible
when defining this so that the standard Ciao error location does not get confused.

ciao-scratchpad-root (directory)
Name of root directory of the scratchpad for temporal source files and directories.

ciao-system (string)
Name of Ciao executable which runs the classical top level.
ciao-system-args (string)
Arguments passed to Ciao toplevel executable.
ciao-toplevel-buffer-name (string)
Basic name of the buffer running the Ciao toplevel inferior process.
ciao-user-directives (list)
List of identifiers of any directives defined by users which you would like highlighted
(colored). Be careful, since wrong entries may affect other syntax highlighting.

18.21.2 CiaoPP variables

ciao-ciaopp-buffer-name (string)
Basic name of the buffer running the Ciao preprocessor inferior process.

ciao-ciaopp-gmenu-buffer-name (string)
Name of the buffer running the Ciao preprocessor graphical menu interface.
ciao-ciaopp-system (string)
Name of Ciao preprocessor executable.
ciao-ciaopp-system-args (string)
Arguments passed to Ciao preprocessor executable.
ciao-ciaopp-use-graphical-menu (boolean)
If set, an interactive graphical menu is used for controlling CiaoPP, instead of asking
ascii questions in the CiaoPP buffer.

110 The Ciao System

18.21.3 LPdoc variables

ciao-lpdoc-buffer-name (string)
Basic name of the buffer running the auto-documenter inferior process.

ciao-lpdoc-docformat (symbol)
Name of default output format used by LPdoc.

ciao-lpdoc-libpath (directory)
Path in which the LPdoc library is installed.

ciao-lpdoc-system (string)

Name of LPdoc auto-documenter executable.
ciao-lpdoc-system-args (string)

Arguments passed to LPdoc executable.

18.21.4 Faces used in syntax-based highlighting (coloring)

ciao-button-pressed-widget-face (face)
Face used for documentation text.

ciao-button-widget-face (face)

Face used for documentation text.
ciao-edit-widget-face (face)

Face used for documentation text.

ciao-face-answer-val (face)
Face to use for answer values in top level.

ciao-face-answer-var (face)

Face to use for answer variables in top level.
ciao-face-builtin-directive (face)

Face to use for the standard directives.

ciao-face-check-assrt (face)
Face to use for check assertions.

ciao-face-checked-assrt (face)

Face to use for checked assertions.
ciao-face-ciaopp-option (face)

Face to use for CiaoPP option menus.

ciao-face-clauseheadname (face)
Face to use for clause head functors.

ciao-face-comment (face)
Face to use for code comments using fixed pitch (double %).

ciao-face-comment-variable-pitch (face)
Face to use for code comments using variable pitch (single %).

ciao-face-concurrency-op (face)
Face to use for concurrency operators.

ciao-face-condcode-directive (face)
Face to use for the conditional code directives.

ciao-face-cut (face)
Face to use for cuts.

Chapter 18: Using Ciao inside GNU emacs 111

ciao-face-debug-breakpoint (face)
Face to use with breakpoints in source debugger.

ciao-face-debug-call (face)
Face to use when at call port in source debugger.

ciao-face-debug-exit (face)
Face to use when at exit port in source debugger.

ciao-face-debug-expansion (face)
Face to use in source debugger when source literal not located.

ciao-face-debug-fail (face)
Face to use when at fail port in source debugger.

ciao-face-debug-mess (face)
Face to use for debug messages.

ciao-face-debug-redo (face)
Face to use when at redo port in source debugger.

ciao-face-entry-assrt (face)
Face to use for entry assertions.

ciao-face-error-mess (face)
Face to use for error messages.

ciao-face-false-assrt (face)
Face to use for false assertions.

ciao-face-fontify-sectioning (symbol)
Whether to fontify sectioning macros with varying height or a color face.
If it is a number, use varying height faces. The number is used for scaling starting
from ‘ciao-face-sectioning-5-face’. Typically values from 1.05 to 1.3 give best results,
depending on your font setup. If it is the symbol ‘color’, use ‘font-lock-type-face’.

Caveats: Customizing the scaling factor applies to all sectioning faces unless those
face have been saved by customize. Setting this variable directly does not take effect
unless you call ‘ciao-face-update-sectioning-faces’ or restart Emacs.

Switching from ‘color’ to a number or vice versa does not take effect unless you call
M-x font-lock-fontify-buffer or restart Emacs.

ciao-face-funexp-atom (face)
Face to use for atoms in functional notation.

ciao-face-highlight-code (face)
Face to use for highlighting code areas (e.g., when locating the code area that an
error message refers to).

ciao-face-library-directive (face)
Face to use for directives defined in the library.

ciao-face-lpdoc-bug-comment (face)
Face to use for LPdoc bug comments.

ciao-face-lpdoc-command (face)
Face to use LPdoc commands inserted in documentation text.

ciao-face-lpdoc-comment (face)
Face to use for LPdoc textual comments.

ciao-face-lpdoc-comment-variable-pitch (face)
Face to use for LPdoc textual comments in variable pitch.

112

ciao-face-1lpdoc-crossref (face)
Face to use for LPdoc cross-references.

ciao-face-1lpdoc-include (face)
Face to use for LPdoc include commands.

ciao-face-1lpdoc-verbatim (face)
Face to use for LPdoc verbatim text.

ciao-face-lpdoc-version-comment (face)
Face to use for LPdoc version comments.

ciao-face-modedef-assrt (face)
Face to use for modedef definitions.

ciao-face-module-directive (face)
Face to use for the module-related directives.

ciao-face-no-answer (face)
Face to use for no answer in top level.

ciao-face-note-mess (face)
Face to use for note messages.

ciao-face-other-mess (face)
Face to use for other messages.

ciao-face-predicate-directive (face)

Face to use for the predicate-related directives.

ciao-face-prompt (face)

Face to use for prompts in top-level and shells.

ciao-face-prop-assrt (face)
Face to use for property definitions.

ciao-face-quoted-atom (face)
Face to use for quoted atoms.

ciao-face-script-header (face)

Face to use for script headers.
ciao-face-sectioning-0O-face (face)

Face for sectioning commands at level 0.

The Ciao System

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-1-face (face)
Face for sectioning commands at level 1.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-2-face (face)
Face for sectioning commands at level 2.

Probably you don’t want to customize this face directly. Better change the base face
‘clao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-3-face (face)
Face for sectioning commands at level 3.

Probably you don’t want to customize this face directly. Better change the base face
‘ciao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

Chapter 18: Using Ciao inside GNU emacs 113

ciao-face-sectioning-4-face (face)
Face for sectioning commands at level 4.

Probably you don’t want to customize this face directly. Better change the base face
‘clao-face-sectioning-5-face’ or customize the variable ‘ciao-face-fontify-sectioning’.

ciao-face-sectioning-5-face (face)
Face for sectioning commands at level 5.

ciao-face-startup-message (face)
Face to use for system splash message.

ciao-face-string (face)
Face to use for strings.

ciao-face-test-assrt (face)
Face to use for test assertions.

ciao-face-texec—-assrt (face)
Face to use for texec assertions.

ciao-face-true-assrt (face)
Face to use for true assertions.

ciao-face-trust-assrt (face)
Face to use for trust assertions.

ciao-face-type-assrt (face)
Face to use for type definitions.

ciao-face-user-directive (face)
Face to use for directives defined by the user (see ciao-user-directives custom variable
to add new ones).

ciao-face-variable (face)
Face to use for variables.

ciao-face-warning-mess (face)
Face to use for warning messages.

ciao-face-yes-answer (face)
Face to use for yes answer in top level.

ciao-faces-use-variable-pitch-in-comments (boolean)
Controls whether variable pitch fonts are used when highlighting comments. Unset
by default. After changing this you must exit and reinitialize for the change to take
effect.

ciao-menu-error-widget-face (face)

Face used for menu error representation in graphical interface.
ciao-menu-note-widget-face (face)

Face used for menu note representation in graphical interface.
ciao-mouse-widget-face (face)

Face used for documentation text.
ciao-text-widget-face (face)

Face used for documentation text.
ciao-title-widget-face (face)

Face to use for interactive menu title.

114 The Ciao System

18.22 Installation of the Ciao emacs interface

If opening a file ending with .pl puts emacs in another mode (such as perl mode, which
is the —arguably incorrect— default setting in some emacs distributions), then either the emacs
mode was not installed or the installation settings are being overwritten by other settings in
your .emacs file or in some library. In any case, you can set things manually so that the Ciao
mode is loaded by default in your system. This can be done by including in your .emacs file a
line such as:

(load <CIAOLIBDIR>/ciao-mode-init)

This loads the above mentioned file from the Ciao library, which contains the following lines
(except that the paths are changed during installation to appropriate values for your system):
; —*%— mode: emacs-lisp; —*-—
;55 clao-config.el --- Configuration parameters for this installation

;; Copyright (C) 1986-2012 Free Software Foundation, Inc. and
;5 M. Hermenegildo and others (herme@fi.upm.es, UPM-CLIP, Spain).

;3 This file is not part of GNU Emacs.

;5 This file is free software; you can redistribute it and/or modify

;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3, or (at your option)
;; any later version.

;3 This file is distributed in the hope that it will be useful,
;3 but WITHOUT ANY WARRANTY; without even the implied warranty of
;3 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;3 GNU General Public License for more details.

;5 You should have received a copy of the GNU General Public License
;; along with GNU Emacs; see the file COPYING. If not, write to the
;3 Free Software Foundation, Inc., 59 Temple Place - Suite 330,

;; Boston, MA 02111-1307, USA.

;5 In emacs this is done most reliably by setting INFOPATH (done in
;; Ciao installation). =xemacs does need it for finding the Ciao
;; manuals (does not seem to read INFOPATH).

(defvar ciao-bin-dir <v>CIAOBINDIR</v>
"Where the actual Ciao binaries are.")

(defvar ciao-config
‘(:version "<v>CIAODE_VERSION</v>"

;; Paths
:bin-dir <v>CIAOBINDIR</v>
:real-1ib-dir <v>CIAOREALLIBDIR</v>
:1pdoc-1lib-dir <v>LPDOCLIBDIR</v>
:1pdoc-dir <v>LPDOCDIR</v>
;3 Manuals
:ciao-manual-base "<v>CIAO_MANUAL_BASE</v>"
:ciaopp-manual-base "<v>CIAOPP_MANUAL_BASE</v>"
:1pdoc-manual-base "<v>LPDOC_MANUAL_BASE</v>"

Chapter 18: Using Ciao inside GNU emacs 115

;; Binaries

:ciaosh-bin ,<v>CIAOSHELL</v>
:ciaopp-bin ,<v>CIAOPPSHELL</v>
:1lpdoc-bin ,<v>LPDOCEXEC</v>
:plindent-bin ,<v>PLINDENT</v>
))

(defun ciao-get-config (prop)
"Obtain configuration property ‘prop’"
(plist-get ciao-config prop))

;3 Provide ourselves:
(provide ’ciao-config)

;33 clao—config.el ends here

If you would like to configure things in a different way, you can also copy the contents of this
file to your .emacs file and make the appropriate changes. For example, if you do not want .pl
files to be put automatically in Ciao mode, then comment out (or remove) the line:

(setq auto-mode-alist ...)

You will then need to switch manually to Ciao mode by typing M-x ciao-mode after opening a
Ciao file.

If you are able to open the Ciao menu but the Ciao manuals are not found or the ciao
command (the top-level) is not found when loading .pl files, the probable cause is that you do
not have the Ciao paths in the INFOPATH and MANPATH environment variables (whether these
variables are set automatically or not for users depends on how the Ciao system was installed).
Under Un*x, you can add these paths easily by including the line:

source <CIAOLIBDIR>/D0Tcshrc
in your .login or .cshrec files if you are using csh (or tcsh, etc.), or, alternatively, the line:

. <CIAOLIBDIR>/DOTprofile
in your .login or .profile files if you are using sh (or bash, etc.). See the Ciao installation in-
structions (Chapter 234 [Installing Ciao from the source distribution], page 1129 or Chapter 235
[Installing Ciao from a Win32 binary distribution|, page 1139) for details.

18.23 Emacs version compatibility

This mode is currently being developed within GNU emacs version 24.1. It should also (hope-
fully) work with all other 23.XX, 22.XX, 21.XX, 20.XX, and later 19.XX versions. We also try
our best to keep things working under xemacs and under some emacs native ports for the mac.

18.24 Acknowledgments (ciao.el)

This code is derived from the 1993 version of the emacs interface for &-Prolog by Manuel
Hermenegildo, itself derived from the original prolog.el by Masanobu Umeda with changes
by Johan Andersson, Peter Olin, Mats Carlsson, and Johan Bevemyr of SICS, Sweden. Other
changes also by Daniel Cabeza, Manuel C. Rodriguez, David Trallero, and Jose Morales. See
the changelogs for details.

116 The Ciao System

PART II - The Ciao basic language (engine) 117

PART II - The Ciao basic language (engine)

Author(s): The CLIP Group.

This part documents the Ciao basic builtins. These predefined predicates and declarations are
available in every program, unless the pure package is used (by using a : - module(_, _, [pure]) .
declaration or : - use_package (pure) .). These predicates are contained in the engine directory
within the 1ib library. The rest of the library predicates, including the packages that provide
most of the ISO-Prolog builtins, are documented in subsequent parts.

- J

118 The Ciao System

Chapter 19: The module system 119

19 The module system

Author(s): Daniel Cabeza, The CLIP Group.

Modularity is a basic notion in a modern computer language. Modules allow dividing pro-
grams in several parts, which have its own independent name spaces. The module system in
Ciao [CHO00a], as in many other Prolog implementations, is procedure based. This means that
predicate names are local to a module, but functor/atom names in data are shared (at least by
default).

The predicates visible in a module are the predicates defined in that module, plus the pred-
icates imported from other modules. Only predicates exported by a module can be imported
from other modules. The default module of a given predicate name is the local one if the predi-
cate is defined locally, else the last module from which the predicate is imported, where explicit
imports have priority over implicit ones (that is, a predicate imported through a use_module/2
declaration is always preferred over a predicate imported through a use_module/1 declaration).
To refer to a predicate from a module which is not the default module for that predicate the name
has to be module qualified. A module qualified predicate name has the form Module:Predicate
as in the call debugger:debug_module (M). Note that in Ciao this module qualification cannot
be used for gaining access to predicates that have not been imported, nor for defining clauses of
other modules.

All predicates defined in files with no module declaration belong to a special module called
user, from which they are all implicitly exported. This provides backward compatibility for
programs written for implementations with no module system and allows dividing programs
into several files without being aware of the module system at all. Note that this feature is
only supported for the above-mentioned backward-compatibility reasons, and the use of user
files is discouraged. Many attractive compilation features of Ciao cannot be supported for user
modules.

The case of multifile predicates (defined with the declaration multifile/1) is also special.
Multifile predicates can be defined by clauses distributed in several modules, and all modules
which define a predicate as multifile can use that predicate. The name space of multifile predi-
cates is independent, as if they belonged to the special module multifile.

Every user or module file imports implicitly a number of modules called builtin modules.
They are imported before all other importations of the module, thus allowing the redefinition
of any of their predicates (with the exception of true/0) by defining local versions or importing
them from other modules. Importing explicitly from a builtin module, however, disables the
implicit importation of the rest (this feature is used by package library(pure) to define pure
Prolog code).

19.1 Usage and interface (modules)

e Library usage:
Modules are an intrinsic feature of Ciao, so nothing special has to be done to use them.
e Imports:
— Packages:
prelude, nonpure, assertions.

19.2 Documentation on internals (modules)

120 The Ciao System

module/3: DECLARATION
(True) Usage: :- module (Name,Exports,Packages).
Declares a module of name Name which exports the predicates in Exports, and uses the
packages in Packages. Name must match with the name of the file where the module
resides, without extension. For each source in Packages, a package file is used. If the
source is specified with a path alias, this is the file included, if it is an atom, the library
paths are searched. See package/1 for a brief description of package files.

This directive must appear the first in the file.

Also, if the compiler finds an unknown declaration as the first term in a file, the name of
the declaration is regarded as a package library to be included, and the arguments of the
declaration (if present) are interpreted like the arguments of module/3.

— The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)

Exports is a list of prednames. (basic_props:list/2)

Packages is a list of sourcenames. (basic_props:list/2)
module/2: DECLARATION

(True) Usage: :- module (Name,Exports).

Same as directive module/3, with an implicit package default. This default package pro-
vides all the standard features provided by most Prolog systems so that Prolog programs
with traditional module/2 declarations can run without any change.

— The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)
Exports is a list of prednames. (basic_props:list/2)
package/1: DECLARATION

(True) Usage: :- package (Name).

Declares a package of name Name. Like in modules, Name must match with the name of
the file where the package resides, without extension. This directive must appear the first
in the file.

Package files provide syntactic extensions and their related functionalities by defining
operators, new declarations, code translations, etc., as well as declaring imports from
other modules and defining additional code. Most Ciao syntactic and semantic extensions,
such as functional syntax, constraint solving, or breadth-first search are implemented as

packages.
— The following properties hold at call time:
Name is a module name (an atom). (modules:modulename/1)
export/1: DECLARATION

(True) Usage 1: :- export (Pred).
Adds Pred to the set of exported predicates.
— The following properties hold at call time:
Pred is a Name/Arity structure denoting a predicate name:

Chapter 19: The module system 121

predname (P/A) :-
atm(P),
nnegint (4) .
(basic_props:predname/1)
(True) Usage 2: :- export (Exports).
Adds Exports to the set of exported predicates.
— The following properties hold at call time:
Exports is a list of prednames. (basic_props:list/2)

use_module/2: DECLARATION
(True) Usage: :- use_module(Module, Imports).

Specifies that this code imports from the module defined in Module the predicates in
Imports. The imported predicates must be exported by the other module.

— The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)
Imports is a list of prednames. (basic_props:list/2)
use_module/1: DECLARATION

(True) Usage: :- use_module (Module).
Specifies that this code imports from the module defined in Module all the predicates
exported by it. The previous version with the explicit import list is preferred to this as it
minimizes the chances to have to recompile this code if the other module changes.
— The following properties hold at call time:
Module is a source name. (streams_basic:sourcename/1)

import/2: DECLARATION
(True) Usage: :- import(Module, Imports).
Declares that this code imports from the module with name Module the predicates in
Imports.
Important note: this declaration is intended to be used when the current module or the
imported module is going to be dynamically loaded, and so the compiler does not include
the code of the imported module in the current executable (if only because the compiler
cannot know the location of the module file at the time of compilation). For the same
reason the predicates imported are not checked to be exported by Module. Its use in other
cases is strongly discouraged, as it disallows many compiler optimizations.

— The following properties hold at call time:

Module is a module name (an atom). (modules:modulename/1)
Imports is a list of prednames. (basic_props:list/2)
reexport/2: DECLARATION

(True) Usage: :- reexport (Module,Preds).

Specifies that this code reexports from the module defined in Module the predicates in
Preds. This implies that this module imports from the module defined in Module the
predicates in Preds, an also that this module exports the predicates in Preds .

122 The Ciao System

— The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)
Preds is a list of prednames. (basic_props:list/2)
reexport/1: DECLARATION

(True) Usage: :- reexport (Module).

Specifies that this code reexports from the module defined in Module all the predicates
exported by it. This implies that this module imports from the module defined in Module
all the predicates exported by it, an also that this module exports all such predicates .

— The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)

meta_predicate/1: DECLARATION
(True) Usage: :- meta_predicate MetaSpecs.

Specifies that the predicates in MetaSpecs have arguments which has to be module ex-
panded (predicates, goals, etc). The directive is only mandatory for exported predicates
(in modules). This directive is defined as a prefix operator in the compiler.

— The following properties hold at call time:
MetaSpecs is a sequence of metaspecs. (basic_props:sequence/2)

modulename/1: REGTYPE
A module name is an atom, not containing characters ‘:” or ‘$’. Also, user and multifile
are reserved, as well as the module names of all builtin modules (because in an executable
all modules must have distinct names).
Usage: modulename (M)

M is a module name (an atom).

metaspec/1: REGTYPE
A meta-predicate specification for a predicate is the functor of that predicate applied
to terms which represent the kind of module expansion that should be applied to each
argument. Possible contents are represented as:

?,+,-,_ These values denote that this argument is not module expanded.

goal This argument will be a term denoting a goal (either a simple or complex one)
which will be called. For commpatibility reasons it can be named as : as well.

clause This argument will be a term denoting a clause.

fact This argument should be instantiated to a term denoting a fact (head-only
clause).

spec This argument should be instantiated to a predicate name, as Functor/Arity.

pred(N) This argument should be instantiated to a predicate construct to be called by
means of a call/N predicate call (see call/2).

Chapter 19: The module system 123

list (Meta)
This argument should be instantiated to a list of terms as described by Meta
(e.g. list(goal)).

addterm(Meta)
This argument should be instantiated to the meta-data specified by Meta, and
an argument added after this one will carry the original data without module
expansion. Not intended to be used by normal users.

addmodule (Meta)
This argument should be instantiated to the meta-data specified by Meta,
and in an argument added after this one will be passed the calling module,
for example to allow handling more involved meta-data by using conversion
builtins. addmodule is an alias of addmodule (7). Not intended to be used by
normal users.

Usage: metaspec (M)
M is a meta-predicate specification.

124 The Ciao System

Chapter 20: Directives for using code in other files 125

20 Directives for using code in other files
Author(s): Daniel Cabeza.

Documentation for the directives used to load code into Ciao Prolog (both from the toplevel
shell and by other modules).

20.1 Usage and interface (loading_code)

~
e Library usage:
These directives are builtin in Ciao, so nothing special has to be done to use them.
e Imports:
— Packages:
prelude, nonpure, assertions.
-
20.2 Documentation on internals (loading_code)
ensure_loaded/1: DECLARATION
Usage: :- ensure_loaded(File).
Specifies that the code present in File will be included in the executable being prepared,
in the user module. The file File cannot have a module declaration. This directive is
intended to be used by programs not divided in modules. Dividing programs into modules
is however strongly encouraged, since most of the attractive features of Ciao (such as static
debugging and global optimization) are only partially available for user modules.
— The following properties should hold at call time:
File is a source name. (streams_basic:sourcename/1)
include/1: DECLARATION
Usage: :- include(File).
The contents of the file File are included in the current program text exactly as if they
had been written in place of this directive.
— The following properties should hold at call time:
File is a source name. (streams_basic:sourcename/1)
use_package/1: DECLARATION

:- use_package (Package).

Specifies the use in this file of the packages defined in Package. See the description of the
third argument of module/3 for an explanation of package files.

This directive must appear the first in the file, or just after a module/3 declaration. A
file with no module declaration, in the absence of this directive, uses an implicit package
default (see Chapter 41 [Other predicates and features defined by default], page 247).

Usage 1: :- use_package (Package).

126 The Ciao System

— The following properties should hold at call time:
Package is a source name. (streams_basic:sourcename/1)

Usage 2: :- use_package (Package).
— The following properties should hold at call time:
Package is a list of sourcenames. (basic_props:list/2)

Chapter 21: Control constructs/predicates 127

21 Control constructs/predicates
Author(s): Daniel Cabeza, Manuel Hermenegildo.

This module contains the set of basic control predicates, except the predicates dealing with
exceptions, which are in Chapter 31 [Exception and Signal handling], page 209.

21.1 Usage and interface (basiccontrol)

N
e Library usage:

These predicates/constructs are builtin in Ciao, so nothing special has to be done to use
them. In fact, as they are hardwired in some parts of the system, most of them cannot be

redefined.
e Exports:
— Predicates:
/2, 3/2,->/2, 1/0, \+/1, if/3, true/0, £ail/0, repeat/0, false/0, otherwise/0.
e Imports:
— System library modules:
assertions/native_props, debugger/debugger.

— Packages:
prelude, nonpure, assertions, nortchecks, isomodes, nativeprops.
J
21.2 Documentation on exports (basiccontrol)
,/2: PREDICATE
P,Q
Conjunction (P and Q).
(Trust) Usage:
— The following properties should hold at call time:
P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)
Q is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)
Meta-predicate with arguments: goal,goal.
3/2: PREDICATE
P;Q
Disjunction (P or Q). Note that in Ciao |/2 is not equivalent to ;/2.
(Trust) Usage:
— The following properties should hold at call time:
P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)
Q is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)

128

->/2:

The Ciao System

Meta-predicate with arguments: goal;goal.

PREDICATE

P->(Q
If P then Q else fail, using first solution of P only. Also, (P => Q ; R), if P then Q else R,
using first solution of P only. No cuts are allowed in P.

(Trust) Usage:
— The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

Q is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

Meta-predicate with arguments: goal->goal.

1/0: PREDICATE
(Trust) Usage:
Commit to any choices taken in the current predicate.

— The following properties hold globally:
All calls of the form ! are deterministic. (native_props:is_det/1)
All the calls of the form ! do not fail. (native_props:not_fails/1)
Goal ! produces 1 solutions. (native_props:relations/2)

\+/1: PREDICATE
\+P

if/3:

Goal P is not provable (negation by failure). Fails if P has a solution, and succeeds
otherwise. No cuts are allowed in P.

(Trust) Usage:
— The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

— The following properties hold globally:
This predicate is understood natively by CiaoPP as not(X). (basic_props:native/2)
All calls of the form \+P are deterministic. (native_props:is_det /1)

Meta-predicate with arguments: \+goal.

PREDICATE

if (P,Q,R)
If P then Q else R, exploring all solutions of P. No cuts are allowed in P.
(Trust) Usage: if (A,B,C)

Chapter 21: Control constructs/predicates

— The following properties should hold at call time:
A is currently a term which is not a free variable.
B is currently a term which is not a free variable.
C is currently a term which is not a free variable.

129

(term_typing:nonvar/1)
(term_typing:nonvar/1)
(term_typing:nonvar/1)

A is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)

B is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)

C is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)
— The following properties hold upon exit:

A is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)

B is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)

C is a term which represents a goal, i.e., an atom or a structure. (ba-

sic_props:callable/1)
Meta-predicate with arguments: if (goal,goal,goal).

true/0:
(Trust) Usage:

Succeed (noop).
— The following properties hold globally:
This predicate is understood natively by CiaoPP.
true is side-effect free.
All calls of the form true are deterministic.
All the calls of the form true do not fail.
Goal true produces 1 solutions.

General properties:
True:
— The following properties hold globally:
true is evaluable at compile-time.

fail/0:
(Trust) Usage:
Fail, backtrack immediately.
— The following properties hold globally:

This predicate is understood natively by CiaoPP.
fail is side-effect free.
All calls of the form fail are deterministic.
Calls of the form fail fail.
Goal fail produces O solutions.

PREDICATE

(basic_props:native/1
(basic_props:sideff/2

)
)
(native_props:is_det /1)
(native_props:mot_fails/1)

)

(native_props:relations,/2

(basic_props:eval/1)

PREDICATE

(basic_props:native/1
(basic_props:sideff/2

)

)

(native_props:is_det /1)
(native_props:fails/1)

)

(native_props:relations,/2

130

General properties:
True:
— The following properties hold globally:
fail is evaluable at compile-time.
True:
— The following properties hold globally:
fail is equivalent to fail.

repeat/0:
(Trust) Usage:

Generates an infinite sequence of backtracking choices.

— The following properties hold globally:
This predicate is understood natively by CiaoPP.
repeat is side-effect free.

false/0:

General properties:
True:
— The following properties hold globally:
false is side-effect free.
false is evaluable at compile-time.

otherwise/0:
General properties:

True:
— The following properties hold globally:
otherwise is side-effect free.

otherwise is evaluable at compile-time.

The Ciao System

(basic_props:eval/1)

(basic_props:equiv/2)

PREDICATE

(basic_props:native/1)
(basic_props:sideff/2)

PREDICATE

(basic_props:sideff/2)
(basic_props:eval/1)

PREDICATE

(basic_props:sideff/2)
(basic_props:eval/1)

21.3 Known bugs and planned improvements (basiccontrol)

e Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 22: Basic builtin directives 131

22 Basic builtin directives

Author(s): Daniel Cabeza.

This chapter documents the basic builtin directives in Ciao, additional to the documented in
other chapters. These directives are natively interpreted by the Ciao compiler (ciaoc).

Unlike in other Prolog systems, directives in Ciao are not goals to be executed by the compiler
or top level. Instead, they are read and acted upon by these programs. The advantage of this is
that the effect of the directives is consistent for executables, code loaded in the top level, code
analyzed by the preprocessor, etc.

As a result, by default only the builtin directives or declarations defined in this manual can
be used in user programs. However, it is possible to define new declarations using the new_
declaration/1 and new_declaration/2 directives (or using packages including them). Also,
packages may define new directives via code translations.

22.1 Usage and interface (builtin_directives)

e Library usage:
These directives are builtin in Ciao, so nothing special has to be done to use them.
e Imports:
— Packages:

prelude, nonpure, assertions.

22.2 Documentation on internals (builtin_directives)

multifile/1: DECLARATION
Usage: :- multifile Predicates.
Specifies that each predicate in Predicates may have clauses in more than one file. Each
file that contains clauses for a multifile predicate must contain a directive multifile for
the predicate. The directive should precede all clauses of the affected predicates, and also
dynamic/data declarations for the predicate. This directive is defined as a prefix operator
in the compiler.

— The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic_props:sequence_or_list /2)
discontiguous/1: DECLARATION
Usage: :- discontiguous Predicates.

Specifies that each predicate in Predicates may be defined in this file by clauses which
are not in consecutive order. Otherwise, a warning is signaled by the compiler when
clauses of a predicate are not consecutive (this behavior is controllable by the prolog
flag discontiguous_-warnings). The directive should precede all clauses of the affected
predicates. This directive is defined as a prefix operator in the compiler.

— The following properties should hold at call time:
Predicates is a sequence or list of prednames. (basic_props:sequence_or_list /2)

132 The Ciao System

impl_defined /1: DECLARATION
Usage: :- impl_defined(Predicates).

Specifies that each predicate in Predicates is implicitly defined in the current prolog
source, either because it is a builtin predicate or because it is defined in a C file. Otherwise,
a warning is signaled by the compiler when an exported predicate is not defined in the
module or imported from other module.

— The following properties should hold at call time:
Predicates is a sequence or list of prednames. (basic_props:sequence_or_list/2)

redefining/1: DECLARATION
Usage: :- redefining(Predicate).
Specifies that this module redefines predicate Predicate, also imported from other mod-
ule, or imports it from more than one module. This prevents the compiler giving warnings
about redefinitions of that predicate. Predicate can be partially (or totally) uninstanti-
ated, to allow disabling those warnings for several (or all) predicates at once.

— The following properties should hold at call time:

Predicate is compatible with predname (basic_props:compat /2)
initialization/1: DECLARATION
Usage: :- initialization(Goal).

Goal will be executed at the start of the execution of any program containing the current
code. The initialization of a module/file never runs before the initializations of the modules
from which the module/file imports (excluding circular dependences).

— The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

on_abort/1: DECLARATION
Usage: :- on_abort(Goal).

Goal will be executed after an abort of the execution of any program containing the current
code.

— The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

Chapter 23: Basic data types and properties 133

23 Basic data types and properties

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This library contains the set of basic properties used by the builtin predicates, and which
constitute the basic data types and properties of the language. They can be used both as type
testing builtins within programs (by calling them explicitly) and as properties in assertions.

23.1 Usage and interface (basic_props)

e ™
e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
e Exports:
— Properties:

member/2, compat/2, inst/2, iso/1, deprecated/1, not_further_inst/2, sideff/2,
regtype/1, native/1, native/2, rtcheck/1, rtcheck/2, no_rtcheck/1, eval/1,
equiv/2, bind_ins/1, error_free/1, memo/1, filter/2, pe_type/1.

— Regular Types:

term/1, int/1, nnegint/1, f1t/1, num/1, atm/1, struct/1, gnd/1, gndstr/1,
constant/1, callable/1, operator_specifier/1, list/1, list/2, nlist/2,
sequence/2, sequence_or_list/2, character_code/1, string/1, num_code/1,
predname/1, atm_or_atm_list/1, flag _values/1.

e Imports:
— System library modules:
assertions/native_props, terms_check.
— Packages:
prelude, nonpure, assertions, nortchecks, nativeprops.

23.2 Documentation on exports (basic_props)

term/1: REGTYPE
The most general type (includes all possible terms).

(True) Usage: term(X)
X is any term.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)
General properties:
True: term(X)
— The following properties hold globally:
term(X) is side-effect free. (basic_props:sideff/2)
True: term(X)
— The following properties hold globally:

term(X) is evaluable at compile-time. (basic_props:eval /1)

True: term(X)

The Ciao System

REGTYPE

134
— The following properties hold globally:
term(X) is equivalent to true. (basic_props:equiv/2)
int/1:
The type of integers. The range of integers is [-272147483616, 2°2147483616). Thus
for all practical purposes, the range of integers can be considered infinite.
(True) Usage: int(T)
T is an integer.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:native/1)
General properties:
True: int(T)
— The following properties hold globally:
int (T) is side-effect free. (basic_props:sideff/2)
True: int (T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
int (T) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form int (T) are deterministic. (native_props:is_det/1)
Trust: int (T)
— The following properties hold upon exit:
T is an integer. (basic_props:int/1)
Trust:
— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)
nnegint /1:

The type of non-negative integers, i.e., natural numbers.
(True) Usage: nnegint (T)
T is a non-negative integer.

— The following properties hold globally:

This predicate is understood natively by CiaoPP.

General properties:
True: nnegint (T)

— The following properties hold globally:

nnegint (T) is side-effect free.

True: nnegint (T)

REGTYPE

(basic_props:native/1)

(basic_props:sideff/2)

Chapter 23: Basic data types and properties 135

— If the following properties hold at call time:
T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
nnegint (T) is evaluable at compile-time. (basic_props:eval/1)

Trust: nnegint (T)
— The following properties hold upon exit:
T is a non-negative integer. (basic_props:nnegint/1)
Trust:
— The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

fit/1: REGTYPE
The type of floating-point numbers. The range of floats is the one provided by the C
double type, typically [4.9e-324, 1.8e+308] (plus or minus). There are also three spe-
cial values: Infinity, either positive or negative, represented as 1.0e1000 and -1.0e1000;
and Not-a-number, which arises as the result of indeterminate operations, represented as
0.Nan

(True) Usage: £1t(T)
T is a float.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)

General properties:
True: £1t(T)
— The following properties hold globally:
£1t(T) is side-effect free. (basic_props:sideff/2)

True: £1t(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
f1t(T) is evaluable at compile-time. (basic_props:eval /1)
All calls of the form £1t(T) are deterministic. (native_props:is_det/1)
Trust: £1t(T)
— The following properties hold upon exit:
T is a float. (basic_props:flt/1)
Trust:

— The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

136 The Ciao System
num/1: REGTYPE
The type of numbers, that is, integer or floating-point.
(True) Usage: num(T)
T is a number.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)
General properties:
True: num(T)
— The following properties hold globally:
num(T) is side-effect free. (basic_props:sideff/2)
num(T) is binding insensitive. (basic_props:bind_ins/1)
True: num(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
num(T) is evaluable at compile-time. (basic_props:eval /1)
All calls of the form num(T) are deterministic. (native_props:is_det /1)
Trust: num(T)
— The following properties hold upon exit:
T is a number. (basic_props:num/1)
Trust:
— The following properties hold globally:
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)
atm/1: REGTYPE

The type of atoms, or non-numeric constants. The size of atoms is unbound.

(True) Usage: atm(T)
T is an atom.
— The following properties hold globally:
This predicate is understood natively by CiaoPP.

General properties:
True: atm(T)
— The following properties hold globally:
atm(T) is side-effect free.

True: atm(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
atm(T) is evaluable at compile-time.
All calls of the form atm(T) are deterministic.

Trust: atm(T)

(basic_props:native/1)

(basic_props:sideff/2)

(term_typing:nonvar/1)

(basic_props:eval/1)
(native_props:is_det /1)

Chapter 23: Basic data types and properties 137

— The following properties hold upon exit:
T is an atom. (basic_props:atm/1)

Trust:
— The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

struct/1: REGTYPE
The type of compound terms, or terms with non-zeroary functors. By now there is a limit
of 255 arguments.

(True) Usage: struct(T)
T is a compound term.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:native/1)
General properties:
True: struct(T)
— The following properties hold globally:
struct(T) is side-effect free. (basic_props:sideff/2)
True: struct(T)
— If the following properties hold at call time:

T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
struct(T) is evaluable at compile-time. (basic_props:eval/1)

Trust: struct(T)
— The following properties hold upon exit:
T is a compound term. (basic_props:struct/1)

gnd/1: REGTYPE
The type of all terms without variables.

(True) Usage: gnd(T)
T is ground.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)

General properties:
True: gnd(T)
— The following properties hold globally:
gnd (T) is side-effect free. (basic_props:sideff/2)
True: gnd(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
gnd (T) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form gnd(T) are deterministic. (native_props:is_det /1)

138 The Ciao System

Trust: gnd(T)
— The following properties hold upon exit:
T is ground. (basic_props:gnd/1)
Trust:
— The following properties hold globally:

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

gndstr/1: REGTYPE
(True) Usage: gndstr(T)

T is a ground compound term.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)
General properties:
True: gndstr(T)
— The following properties hold globally:
gndstr (T) is side-effect free. (basic_props:sideff/2)
True: gndstr(T)
— If the following properties hold at call time:

T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:

gndstr (T) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form gndstr(T) are deterministic. (native_props:is_det /1)

Trust: gndstr(T)
— The following properties hold upon exit:
T is a ground compound term. (basic_props:gndstr/1)

constant/1: REGTYPE
(True) Usage: constant (T)

T is an atomic term (an atom or a number).
General properties:
True: constant (T)
— The following properties hold globally:
constant (T) is side-effect free. (basic_props:sideff/2)
True: constant (T)
— If the following properties hold at call time:

T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:

constant (T) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form constant(T) are deterministic. (native_props:is_det /1)

Trust: constant (T)
— The following properties hold upon exit:
T is an atomic term (an atom or a number). (basic_props:constant/1)

Chapter 23: Basic data types and properties 139

callable/1: REGTYPE
(True) Usage: callable(T)

T is a term which represents a goal, i.e., an atom or a structure.

General properties:
True: callable(T)
— The following properties hold globally:
callable(T) is side-effect free. (basic_props:sideff/2)
True: callable(T)
— If the following properties hold at call time:

T is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:

callable(T) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form callable(T) are deterministic. (native_props:is_det/1)

Trust: callable(T)
— The following properties hold upon exit:
T is currently a term which is not a free variable. (term_typing:nonvar/1)

operator_specifier/1: REGTYPE
The type and associativity of an operator is described by the following mnemonic atoms:

xfx Infix, non-associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than
the operator itself.

xfy Infix, right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence
as the main operator.

yfx Infix, left-associative: same as above, but the other way around.

fx Prefix, non-associative: the subexpression must be of lower precedence than
the operator.

fy Prefix, associative: the subexpression can be of the same precedence as the
operator.

xf Postfix, non-associative: the subexpression must be of lower precedence than
the operator.

yf Postfix, associative: the subexpression can be of the same precedence as the
operator.

(True) Usage: operator_specifier(X)
X specifies the type and associativity of an operator.
General properties:
True: operator_specifier (X)
— The following properties hold globally:
operator_specifier (X) is side-effect free. (basic_props:sideff/2)

True: operator_specifier(X)

140 The Ciao System
— If the following properties hold at call time:
X is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
operator_specifier (X) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form operator_specifier(X) are deterministic. (na-
tive_props:is_det /1)
Goal operator_specifier(X) produces 7 solutions. (native_props:relations/2)
Trust: operator_specifier(T)
— The following properties hold upon exit:
T specifies the type and associativity of an operator. (ba-
sic_props:operator_specifier/1)
list /1: REGTYPE
A list is formed with successive applications of the functor ’.’/2, and its end is the atom
[1. Defined as
list([1).
list([_1IL]) :-
list(L).
(True) Usage: 1ist (L)
L is a list.
General properties:
True: list (L)
— The following properties hold globally:
list (L) is side-effect free. (basic_props:sideff/2)
True: list(L)
— If the following properties hold at call time:
L is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
list (L) is evaluable at compile-time. (basic_props:eval/1)
All calls of the form 1ist (L) are deterministic. (native_props:is_det /1)
Trust: 1ist(T)
— The following properties hold upon exit:
T is a list. (basic_props:list/1)
list /2: REGTYPE
list(L,T)

L is a list, and for all its elements, T holds.
(True) Usage: 1ist(L,T)
L is a list of Ts.

Meta-predicate with arguments: 1ist (7, (pred 1)).

General properties:
True: list(L,T)

Chapter 23: Basic data types and properties 141

— The following properties hold globally:
list(L,T) is side-effect free. (basic_props:sideff/2)

True: list(L,T)
— If the following properties hold at call time:
L is currently ground (it contains no variables). (term_typing:ground/1)
T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
list(L,T) is evaluable at compile-time. (basic_props:eval/1)

Trust: 1ist(X,T)
— The following properties hold upon exit:
X is a list. (basic_props:list/1)

nlist /2: REGTYPE
(True) Usage: nlist(L,T)

L is T or a nested list of Ts. Note that if T is term, this type is equivalent to term, this
fact explain why we do not have a nlist/1 type
Meta-predicate with arguments: nlist(?, (pred 1)).
General properties:
True: nlist(L,T)
— The following properties hold globally:
nlist(L,T) is side-effect free. (basic_props:sideff/2)

True: nlist(L,T)
— If the following properties hold at call time:
L is currently ground (it contains no variables). (term_typing:ground/1)
T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
nlist(L,T) is evaluable at compile-time. (basic_props:eval/1)

Trust: nlist (X, T)
— The following properties hold upon exit:
X is any term. (basic_props:term/1)

member/2: PROPERTY
(True) Usage: member (X,L)

X is an element of L.
General properties:
True: member (X,L)
— The following properties hold globally:
member (X,L) is side-effect free. (basic_props:sideff/2)
member (X,L) is binding insensitive. (basic_props:bind_ins/1)

True: member (X,L)

142 The Ciao System

— If the following properties hold at call time:
L is a list. (basic_props:list/1)
then the following properties hold globally:
member (X,L) is evaluable at compile-time. (basic_props:eval/1)

Trust: member (_X,L)
— The following properties hold upon exit:
L is a list. (basic_props:list /1)
Trust: member (X,L)
— If the following properties hold at call time:

L is currently ground (it contains no variables). (term_typing:ground/1)

then the following properties hold upon exit:

X is currently ground (it contains no variables). (term_typing:ground/1)
sequence/2: REGTYPE

A sequence is formed with zero, one or more occurrences of the operator ’,’/2. For
example, a, b, c is a sequence of three atoms, a is a sequence of one atom.

(True) Usage: sequence(S,T)
S is a sequence of Ts.

Meta-predicate with arguments: sequence(?, (pred 1)).
General properties:
True: sequence(S,T)
— The following properties hold globally:
sequence(S,T) is side-effect free. (basic_props:sideff/2)

True: sequence(S,T)
— If the following properties hold at call time:
S is currently ground (it contains no variables). (term_typing:ground/1)
T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
sequence (S, T) is evaluable at compile-time. (basic_props:eval/1)

Trust: sequence(E,T)
— The following properties hold upon exit:

E is currently a term which is not a free variable. (term_typing:nonvar/1)
T is currently ground (it contains no variables). (term_typing:ground/1)
sequence_or _list /2: REGTYPE

(True) Usage: sequence_or_list(S,T)

S is a sequence or list of Ts.

Meta-predicate with arguments: sequence_or_list (7, (pred 1)).
General properties:

True: sequence_or_list(S,T)

Chapter 23: Basic data types and properties

— The following properties hold globally:
sequence_or_1ist(S,T) is side-effect free.

True: sequence_or_list(S,T)
— If the following properties hold at call time:
S is currently ground (it contains no variables).
T is currently ground (it contains no variables).
then the following properties hold globally:

sequence_or_list(S,T) is evaluable at compile-time.

Trust: sequence_or_list(E,T)
— The following properties hold upon exit:
E is currently a term which is not a free variable.
T is currently ground (it contains no variables).

character_code/1:
(True) Usage: character_code(T)

T is an integer which is a character code.

General properties:
True: character_code(T)
— The following properties hold globally:
character_code(T) is side-effect free.

True: character_code(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.
then the following properties hold globally:
character_code(T) is evaluable at compile-time.

Trust: character_code(I)
— The following properties hold upon exit:
I is an integer which is a character code.

string/1:

143

(basic_props:sideff/2)
(term_typing:ground/1)
(term_typing:ground/1)

(basic_props:eval/1)

(term_typing:nonvar/1)
(term_typing:ground/1)

REGTYPE

(basic_props:sideff/2)

(term_typing:nonvar/1)

(basic_props:eval/1)

(basic_props:character_code/1)

REGTYPE

A string is a list of character codes. The usual syntax for strings "string" is allowed, which
is equivalent to [0°s,0°t,0°r,0°i,0’n,0’g] or [115,116,114,105,110,103]. There

is also a special Ciao syntax when the list is not complete:

[0°s,0°t|R].
(True) Usage: string(T)
T is a string (a list of character codes).
General properties:
True: string(T)
— The following properties hold globally:
string(T) is side-effect free.

True: string(T)

"st"| IR is equivalent to

(basic_props:sideff/2)

144 The Ciao System

— If the following properties hold at call time:
T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
string(T) is evaluable at compile-time. (basic_props:eval/1)

Trust: string(T)
— The following properties hold upon exit:
T is a string (a list of character codes). (basic_props:string/1)

num_code/1: REGTYPE
These are the ASCII codes which can appear in decimal representation of floating point
and integer numbers, including scientific notation and fractionary part.

predname/1: REGTYPE
(True) Usage: predname (P)

P is a Name/Arity structure denoting a predicate name:
predname (P/A) :-

atm(P),
nnegint (4).

General properties:

True: predname (P)

— The following properties hold globally:
predname (P) is side-effect free. (basic_props:sideff/2)

True: predname (P)
— If the following properties hold at call time:
P is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
predname (P) is evaluable at compile-time. (basic_props:eval/1)

Trust: predname (P)
— The following properties hold upon exit:
P is a Name/Arity structure denoting a predicate name:

predname (P/A) :-
atm(P),
nnegint (4).
(basic_props:predname/1)
atm_or_atm_list/1: REGTYPE

(True) Usage: atm_or_atm_list(T)
T is an atom or a list of atoms.

General properties:
True: atm_or_atm_1ist(T)

Chapter 23: Basic data types and properties 145

— The following properties hold globally:
atm_or_atm_list(T) is side-effect free. (basic_props:sideff/2)

True: atm_or_atm_list(T)
— If the following properties hold at call time:
T is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
atm_or_atm_list(T) is evaluable at compile-time. (basic_props:eval/1)

Trust: atm_or_atm_list(T)
— The following properties hold upon exit:
T is an atom or a list of atoms. (basic_props:atm_or_atm_list /1)

compat /2: PROPERTY
This property captures the notion of type or property compatibility. The instantiation
or constraint state of the term is compatible with the given property, in the sense that
assuming that imposing that property on the term does not render the store inconsistent.
For example, terms X (i.e., a free variable), [Y|Z], and [Y,Z] are all compatible with the
regular type list/1, whereas the terms f(a) and [1]2] are not.

(True) Usage: compat (Term,Prop)
Term is compatible with Prop

Meta-predicate with arguments: compat(?, (pred 1)).
General properties:
True: compat(Term,Prop)

— If the following properties hold at call time:

Term is currently ground (it contains no variables). (term_typing:ground/1)

Prop is currently ground (it contains no variables). (term_typing:ground/1)

then the following properties hold globally:

compat (Term,Prop) is evaluable at compile-time. (basic_props:eval/1)
inSt/2: PROPERTY

(True) Usage: inst(Term,Prop)
Term is instantiated enough to satisfy Prop.

Meta-predicate with arguments: inst (7, (pred 1)).
General properties:
True: inst(Term,Prop)
— The following properties hold globally:
inst(Term,Prop) is side-effect free. (basic_props:sideff/2)

True: inst(Term,Prop)
— If the following properties hold at call time:
Term is currently ground (it contains no variables). (term_typing:ground/1)
Prop is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
inst (Term,Prop) is evaluable at compile-time. (basic_props:eval/1)

146 The Ciao System

iso/1: PROPERTY
(True) Usage: iso(G)
Complies with the ISO-Prolog standard.

Meta-predicate with arguments: iso(goal).
General properties:

True: iso(G)
— The following properties hold globally:
iso(G) is side-effect free. (basic_props:sideff/2)
deprecated/1: PROPERTY

Specifies that the predicate marked with this global property has been deprecated, i.e.,
its use is not recommended any more since it will be deleted at a future date. Typically
this is done because its functionality has been superseded by another predicate.

(True) Usage: deprecated(G)
DEPRECATED.

Meta-predicate with arguments: deprecated(goal).
General properties:
True: deprecated(G)
— The following properties hold globally:
deprecated(G) is side-effect free. (basic_props:sideff/2)

not_further_inst /2: PROPERTY
(True) Usage: not_further_inst(G,V)

V is not further instantiated.
Meta-predicate with arguments: not_further_inst(goal,?).
General properties:
True: not_further_inst(G,V)
— The following properties hold globally:

not_further_inst(G,V) is side-effect free. (basic_props:sideff/2)
Declares that the assertion in which this comp property appears must not be checked
at run-time. Equivalent to rtcheck(G, impossible). (basic_props:no_rtcheck/1)
sideff/2: PROPERTY
sideff (G,X)

Declares that G is side-effect free (if its execution has no observable result other than its
success, its failure, or its abortion), soft (if its execution may have other observable results
which, however, do not affect subsequent execution, e.g., input/output), or hard (e.g.,
assert/retract).

(True) Usage: sideff (G,X)

G is side-effect X.

Chapter 23: Basic data types and properties 147

— If the following properties hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)
X is an element of [free,soft,hard]. (basic_props:member/2)

Meta-predicate with arguments: sideff (goal,?).
General properties:
True: sideff (G,X)

— The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:mative/1)

sideff (G,X) is side-effect free. (basic_props:sideff/2)

Declares that the assertion in which this comp property appears must not be checked

at run-time. Equivalent to rtcheck(G, impossible). (basic_props:no_rtcheck/1)
regtype/1: PROPERTY

(True) Usage: regtype G
Defines a regular type.
Meta-predicate with arguments: regtype goal.
General properties:
True: regtype G
— The following properties hold globally:
regtype G is side-effect free. (basic_props:sideff/2)

native/1: PROPERTY
(True) Usage: native(Pred)

This predicate is understood natively by CiaoPP.

Meta-predicate with arguments: native(goal).
General properties:
True: native(P)
— The following properties hold globally:
native (P) is side-effect free. (basic_props:sideff/2)

native/2: PROPERTY
(True) Usage: native(Pred,Key)
This predicate is understood natively by CiaoPP as Key.
Meta-predicate with arguments: native(goal,?).
General properties:
True: native (P,K)
— The following properties hold globally:
native(P,K) is side-effect free. (basic_props:sideff/2)

148 The Ciao System

rtcheck/1: PROPERTY
(True) Usage: rtcheck(G)

Equivalent to rtcheck(G, complete).
— If the following properties hold at call time:
G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)
Meta-predicate with arguments: rtcheck(goal).
General properties:
True: rtcheck(G)
— The following properties hold globally:
rtcheck(G) is side-effect free. (basic_props:sideff/2)

rtcheck/2: PROPERTY
(True) Usage: rtcheck(G,Status)

The runtime check of the property have the status Status.
— If the following properties hold at call time:
G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)
Status of the runtime-check implementation for a given property. Valid values are:

e unimplemented: No run-time checker has been implemented for the property.
Althought it can be implemented further.

e incomplete: The current run-time checker is incomplete, which means, under
certain circunstances, no error is reported if the property is violated.

e unknown: We do not know if current implementation of run-time checker is
complete or not.

e complete: The opposite of incomplete, error is reported always that the property
is violated. Default.

e impossible: The property must not be run-time checked (for theoretical or prac-
tical reasons).
(basic_props:rtc_status/1)

Meta-predicate with arguments: rtcheck(goal,?).
General properties:
True: rtcheck(G,Status)
— The following properties hold globally:
rtcheck(G,Status) is side-effect free. (basic_props:sideff/2)

no_rtcheck/1: PROPERTY
(True) Usage: no_rtcheck(G)

Declares that the assertion in which this comp property appears must not be checked at
run-time. Equivalent to rtcheck(G, impossible).

— If the following properties hold at call time:

G is a term which represents a goal, i.e., an atom or a structure. (ba-
sic_props:callable/1)

Chapter 23: Basic data types and properties

Meta-predicate with arguments: no_rtcheck(goal).

General properties:
True: no_rtcheck(G)
— The following properties hold globally:
no_rtcheck(G) is side-effect free.

eval/1:
(True) Usage: eval(Goal)

Goal is evaluable at compile-time.

Meta-predicate with arguments: eval(goal).

equiv/2:
(True) Usage: equiv(Goall,Goal2)
Goall is equivalent to Goal2.

Meta-predicate with arguments: equiv(goal,goal).

bind_ins/1:
(True) Usage: bind_ins(Goal)
Goal is binding insensitive.

Meta-predicate with arguments: bind_ins(goal).

error_free/1:
(True) Usage: error_free(Goal)

Goal is error free.

Meta-predicate with arguments: error_free(goal).

memo/1:
(True) Usage: memo (Goal)

Goal should be memoized (not unfolded).

Meta-predicate with arguments: memo(goal).

filter/2:
(True) Usage: filter(Vars,Goal)

Vars should be filtered during global control).

flag_values/1:
(True) Usage: flag_values(X)

Define the valid flag values

149

(basic_props:sideff/2)

PROPERTY

PROPERTY

PROPERTY

PROPERTY

PROPERTY

PROPERTY

REGTYPE

150 The Ciao System

pe_type/1: PROPERTY
(True) Usage: pe_type(Goal)

Goal will be filtered in partial evaluation time according to the PE types defined in the
assertion.

Meta-predicate with arguments: pe_type(goal).

23.3 Known bugs and planned improvements (basic_props)

e Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 24: Extra-logical properties for typing 151

24 Extra-logical properties for typing

Author(s): Daniel Cabeza, Manuel Hermenegildo.

This library contains traditional Prolog predicates for testing types. They depend on the
state of instantiation of their arguments, thus being of extra-logical nature.

24.1 Usage and interface (term_typing)

N
e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
o Exports:
— Properties:
var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, ground/1,
type/2.
e Imports:
— System library modules:
assertions/native_props.
— Packages:
prelude, nonpure, assertions, nortchecks, nativeprops, isomodes.
-
24.2 Documentation on exports (term_typing)
var/1: PROPERTY
(True) Usage: var (X)
X is a free variable.
— The following properties hold globally:
This predicate is understood natively by CiaoPP as free(X). (basic_props:native/2)
General properties:
Trust:
— The following properties hold globally:
All calls of the form var (Argl) are deterministic. (native_props:is_det /1)
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)
True: var (X)
— The following properties hold globally:
X is not further instantiated. (basic_props:mot_further_inst/2)
This predicate is understood natively by CiaoPP. (basic_props:mative/1)
var (X) is side-effect free. (basic_props:sideff/2)
True: var (X)
— If the following properties hold at call time:
X is currently a term which is not a free variable. (term_typing:nonvar/1)

then the following properties hold globally:
var (X) is evaluable at compile-time. (basic_props:eval/1)

152

True: var (X)
— If the following properties hold at call time:

X is currently a term which is not a free variable.
then the following properties hold globally:
var (X) is equivalent to fail.

True: var (X)
— If the following properties hold at call time:

X is a free variable.
then the following properties hold globally:
var (X) is equivalent to true.

nonvar/1:

(True) Usage: nonvar (X)
X is currently a term which is not a free variable.

The following properties hold globally:

The Ciao System

(term_typing:nonvar/1)

(basic_props:equiv/2)

(term_typing:var/1)

(basic_props:equiv/2)

PROPERTY

This predicate is understood natively by CiaoPP as not_free(X). (ba-

sic_props:native/2)

General properties:
Trust:

The following properties hold globally:

All calls of the form nonvar (Argl) are deterministic. (native_props:is_det/1)

True: nonvar (X)
— The following properties hold globally:

X is not further instantiated.
nonvar (X) is side-effect free.

This predicate is understood natively by CiaoPP.

True: nonvar (X)
— If the following properties hold at call time:
X is currently a term which is not a free variable.

then the following properties hold globally:
nonvar (X) is evaluable at compile-time.

True: nonvar (T)
— If the following properties hold at call time:

T is a free variable.
then the following properties hold globally:
nonvar (T) is equivalent to fail.

True: nonvar(T)
— If the following properties hold at call time:
T is currently a term which is not a free variable.

then the following properties hold globally:
nonvar (T) is equivalent to true.

(basic_props:not_further_inst/2)
(basic_props:sideff/2)
(basic_props:native/1)

(term_typing:nonvar/1)

(basic_props:eval/1)

(term_typing:var/1)

(basic_props:equiv/2)

(term_typing:nonvar/1)

(basic_props:equiv/2)

Chapter 24: Extra-logical properties for typing 153

atom/1: PROPERTY
(True) Usage: atom(X)

X is currently instantiated to an atom.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
Trust: atom(X)
— The following properties hold upon exit:

X is an atom. (basic_props:atm/1)
Trust:
— The following properties hold globally:
All calls of the form atom(Argl) are deterministic. (native_props:is_det/1)
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

True: atom(X)
— The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)
atom(X) is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:mative/1)

True: atom(X)
— If the following properties hold at call time:
X is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
atom(X) is evaluable at compile-time. (basic_props:eval/1)

True: atom(T)
— If the following properties hold at call time:

T is a free variable. (term_typing:var/1)

then the following properties hold globally:

atom(T) is equivalent to fail. (basic_props:equiv/2)
integer/1: PROPERTY

(True) Usage: integer (X)
X is currently instantiated to an integer.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)
General properties:
Trust: integer (X)
— The following properties hold upon exit:
X is an integer. (basic_props:int/1)

Trust:

154

— The following properties hold globally:
All calls of the form integer (Argl) are deterministic.
Indicates the type of test that a predicate performs.
analyisis.
True: integer (X)
— The following properties hold globally:

The Ciao System

native_props:is_det
' is_det/1

Required by the nonfailure

(native_props:test_type/2)

X is not further instantiated. (basic_props:mot_further_inst/2)

integer (X) is side-effect free.
This predicate is understood natively by CiaoPP.

True: integer (X)
— If the following properties hold at call time:
X is currently a term which is not a free variable.
then the following properties hold globally:
integer (X) is evaluable at compile-time.

True: integer(T)
— If the following properties hold at call time:
T is a free variable.
then the following properties hold globally:
integer(T) is equivalent to fail.

float/1:
(True) Usage: float (X)

X is currently instantiated to a float.
— The following properties hold globally:
This predicate is understood natively by CiaoPP.

General properties:
Trust: float (X)
— The following properties hold upon exit:
X is a float.

Trust:
— The following properties hold globally:
All calls of the form float (Argl) are deterministic.
Indicates the type of test that a predicate performs.
analyisis.
True: float(X)
— The following properties hold globally:

(basic_props:sideff/2)
(basic_props:mative/1)

(term_typing:nonvar/1)

(basic_props:eval/1)

(term_typing:var/1)

(basic_props:equiv/2)

PROPERTY

(basic_props:mative/1)

(basic_props:flt/1)

native_props:1s_det
i is_det /1

Required by the nonfailure

(native_props:test_type/2)

X is not further instantiated. (basic_props:not_further_inst /2)

float (X) is side-effect free.
This predicate is understood natively by CiaoPP.

True: float (X)

(basic_props:sideff/2)
(basic_props:native/1)

Chapter 24: Extra-logical properties for typing

— If the following properties hold at call time:
X is currently a term which is not a free variable.
then the following properties hold globally:
float (X) is evaluable at compile-time.

True: float(T)
— If the following properties hold at call time:
T is a free variable.
then the following properties hold globally:
float(T) is equivalent to fail.

number/1:
(True) Usage: number (X)

X is currently instantiated to a number.
— The following properties hold globally:

This predicate is understood natively by CiaoPP.

General properties:
Trust: number (X)
— The following properties hold upon exit:

X is a number.

Trust:
— The following properties hold globally:

155

(term_typing:nonvar/1)

(basic_props:eval/1)

(term_typing:var/1)

(basic_props:equiv/2)

PROPERTY

(basic_props:mative/1)

(basic_props:num/1)

All calls of the form number (Argl) are deterministic. (native_props:is_det/1)
Indicates the type of test that a predicate performs. Required by the nonfailure

analyisis.
True: number (X)
— The following properties hold globally:
X is not further instantiated.
number (X) is side-effect free.

This predicate is understood natively by CiaoPP.

True: number (X)
— If the following properties hold at call time:

X is currently a term which is not a free variable.

then the following properties hold globally:
number (X) is evaluable at compile-time.

True: number (T)
— If the following properties hold at call time:
T is a free variable.
then the following properties hold globally:
number (T) is equivalent to fail.

(native_props:test_type/2)

(basic_props:not_further_inst /2)
(basic_props:sideff/2)
(basic_props:mative/1)

(term_typing:nonvar/1)

(basic_props:eval/1)

(term_typing:var/1)

(basic_props:equiv/2)

156 The Ciao System

atomic/1: PROPERTY
(True) Usage: atomic(X)

X is currently instantiated to an atom or a number.
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
Trust: atomic(T)
— The following properties hold upon exit:

T is an atomic term (an atom or a number). (basic_props:constant /1)
Trust:
— The following properties hold globally:
All calls of the form atomic(Argl) are deterministic. (native_props:is_det/1)
Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

True: atomic(X)
— The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)
atomic(X) is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:mative/1)

True: atomic (X)
— If the following properties hold at call time:
X is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
atomic(X) is evaluable at compile-time. (basic_props:eval/1)

True: atomic(T)
— If the following properties hold at call time:

T is a free variable. (term_typing:var/1)

then the following properties hold globally:

atomic(T) is equivalent to fail. (basic_props:equiv/2)
ground/1: PROPERTY

(True) Usage: ground (X)
X is currently ground (it contains no variables).
— The following properties hold globally:
This predicate is understood natively by CiaoPP. (basic_props:mative/1)

General properties:
Trust: ground(X)
— The following properties hold upon exit:
X is ground. (basic_props:gnd/1)
Trust:

Chapter 24: Extra-logical properties for typing

— The following properties hold globally:
All calls of the form ground(Argl) are deterministic.
Indicates the type of test that a predicate performs.
analyisis.
True: ground (X)
— The following properties hold globally:

157

native_props:is_det
' is_det/1

Required by the nonfailure
(native_props:test_type/2)

X is not further instantiated. (basic_props:mot_further_inst/2)

ground (X) is side-effect free.
This predicate is understood natively by CiaoPP.

True: ground (X)
— If the following properties hold at call time:
X is currently ground (it contains no variables).
then the following properties hold globally:
ground (X) is evaluable at compile-time.

True: ground (X)
— If the following properties hold at call time:
X is a free variable.
then the following properties hold globally:
ground (X) is equivalent to fail.

True: ground (X)
— If the following properties hold at call time:
X is currently ground (it contains no variables).
then the following properties hold globally:
ground (X) is equivalent to true.

type/2:
(True) Usage: type(X,Y)

(basic_props:sideff/2)
(basic_props:mative/1)

(term_typing:ground/1)

(basic_props:eval/1)

(term_typing:var/1)

(basic_props:equiv/2)

(term_typing:ground/1)

(basic_props:equiv/2)

PROPERTY

X is internally of type Y (var, attv, float, integer, structure, atom or 1ist).

— The following properties hold globally:
This predicate is understood natively by CiaoPP.

General properties:
Trust: type(X,Y)
— The following properties hold upon exit:
Y is an atom.
Trust:
— The following properties hold globally:

All calls of the form type(Argl,Arg2) are deterministic.

True:
— The following properties hold globally:
type (Argl,Arg2) is side-effect free.
This predicate is understood natively by CiaoPP.

asic_props:native
basi ive/1

(basic_props:atm/1)

(native_props:is_det/1)

(basic_props:sideff/2)
(basic_props:mative/1)

158 The Ciao System

True: type(X,Y)
— If the following properties hold at call time:

X is currently a term which is not a free variable. (term_typing:nonvar/1)
then the following properties hold globally:
type(X,Y) is evaluable at compile-time. (basic_props:eval/1)

24.3 Known bugs and planned improvements (term_typing)

e Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 25: Basic term manipulation 159

25 Basic term manipulation

Author(s): Daniel Cabeza, Manuel Hermenegildo.
This module provides basic term manipulation.

25.1 Usage and interface (term_basic)

e)
e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
e Exports:
— Predicates:

\=/2, arg/3, functor/3, =../2, copy_term/2, copy_term_nat/2, cyclic_term/1,
C/3.

— Properties:
=/2, const_head/1.
— Regular Types:
non_empty_list/1, list_functor/1.
e Imports:
— System library modules:
assertions/native_props.
— Packages:
prelude, nonpure, assertions, nativeprops, isomodes, nortchecks.

25.2 Documentation on exports (term_basic)

=/2: PROPERTY
A property, defined as follows:
X=Y :-
X=Y.
General properties:
Trust: X=Y

X and Y unify.
— The following properties hold globally:

X=Y is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)
X=Y is evaluable at compile-time. (basic_props:eval/1)
All calls of the form X=Y are deterministic. (native_props:is_det /1)
Goal X=Y produces inf solutions. (native_props:relations/2)

Indicates the type of test that a predicate performs. Required by the nonfailure
analyisis. (native_props:test_type/2)

160

\=/2:

(Trust) Usage: X\=Y
X and Y are not unifiable.
— The following properties hold globally:
X\=Y is side-effect free.
X\=Y is binding insensitive.
All calls of the form X\=Y are deterministic.
General properties:
Trust: X\=Y
— If the following properties hold at call time:
X is currently ground (it contains no variables).
Y is currently ground (it contains no variables).
then the following properties hold globally:
X\=Y is evaluable at compile-time.

Trust: X\=Y
— The following properties hold globally:
X\=Y is side-effect free.

arg/3:

(Trust) Usage 1: arg(ArgNo,Term, Arg)
— The following properties should hold at call time:
ArgNo is a number.
— The following properties hold globally:

The Ciao System

PREDICATE

(basic_props:sideff/2)
(basic_props:bind_ins/1)
(native_props:is_det /1)

(term_typing:ground/1)
(term_typing:ground/1)

(basic_props:eval/1)

(basic_props:sideff/2)

PREDICATE

(basic_props:num/1)

All calls of the form arg(ArgNo,Term,Arg) are deterministic. (native_props:is_det/1)

Goal arg(ArgNo,Term,Arg) produces inf solutions.

(Trust) Usage 2: arg(ArgNo,Term,Arg)
— The following properties should hold at call time:
ArgNo is a number.
Term is ground.
— The following properties hold upon exit:
Arg is ground.
(Trust) Usage 3: arg(ArgNo,Term, Arg)
Argument ArgNo of the term Term is Arg.
— The following properties should hold at call time:
ArgNo is a non-negative integer.
Term is a compound term.
— The following properties hold globally:
arg(ArgNo,Term, Arg) is side-effect free.

This predicate is understood natively by CiaoPP.

arg(ArgNo,Term,Arg) is binding insensitive.

(Trust) Usage 4: arg(ArgNo,Term, Arg)

(native_props:relations/2)

(basic_props:num/1)
(basic_props:gnd/1)

(basic_props:gnd/1)

(basic_props:nnegint /1)
(basic_props:struct /1)

(basic_props:sideff/2)
(basic_props:mative/1)
(basic_props:bind_ins/1)

Chapter 25: Basic term manipulation 161

— The following properties should hold at call time:

ArgNo is a non-negative integer. (basic_props:nnegint/1)
Term is ground. (basic_props:gnd/1)
— The following properties hold upon exit:
Arg is ground. (basic_props:gnd/1)
functor/3: PREDICATE
(Trust) Usage 1: functor(Term,Name,Arity)
— The following properties should hold at call time:
Term is currently a term which is not a free variable. (term_typing:nonvar/1)
— The following properties hold upon exit:
Name is an atom. (basic_props:atm/1)
Arity is a non-negative integer. (basic_props:nnegint/1)
— The following properties hold globally:
Term is not further instantiated. (basic_props:not_further_inst/2)
functor (Term,Name,Arity) is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:mative/1)
functor(Term,Name,Arity) is binding insensitive. (basic_props:bind_ins/1)
functor(Term,Name,Arity) is evaluable at compile-time. (basic_props:eval/1)
(Trust) Usage 2: functor(Term,Name,Arity)

The principal functor of the term Term has name Name and arity Arity.
— The following properties should hold at call time:

Name is currently a term which is not a free variable. (term_typing:nonvar/1)
Arity is currently a term which is not a free variable. (term_typing:nonvar/1)
— The following properties hold upon exit:
Term is currently a term which is not a free variable. (term_typing:nonvar/1)
Name is an atom. (basic_props:atm/1)
Arity is a non-negative integer. (basic_props:mnegint /1)
— The following properties hold globally:
functor(Term,Name,Arity) is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)
functor(Term,Name,Arity) is binding insensitive. (basic_props:bind_ins/1)
functor (Term,Name,Arity) is evaluable at compile-time. (basic_props:eval/1)
All the calls of the form functor(Term,Name,Arity) do not fail. (na-

tive_props:not_fails/1)

(Trust) Usage 3: functor(Term,Name,Arity)
— The following properties should hold at call time:

Term is currently a term which is not a free variable. (term_typing:nonvar/1)
Name is a free variable. (term_typing:var/1)
Arity is a free variable. (term_typing:var/1)
Term is currently a term which is not a free variable. (term_typing:nonvar/1)

162

— The following properties hold upon exit:

1 is the size of argument Name, for any approximation.

The Ciao System

(native_props:size/2)

arity(Term) is the size of argument Arity, for any approximation. (na-

tive_props:size/2)
— The following properties hold globally:

arity is the metric of the variable Term, for any approximation. (na-

tive_props:size_metric/3)
General properties:
Trust:
— The following properties hold globally:
functor(Argl,Arg2,Arg3) is side-effect free.
This predicate is understood natively by CiaoPP.

(basic_props:sideff/2)
(basic_props:native/1)

All calls of the form functor(Argl,Arg2,Arg3) are deterministic. (na-

tive_props:is_det/1)

=../2:

(Trust) Usage: Term=..List

PREDICATE

The functor and arguments of the term Term comprise the list List.

— The following properties hold upon exit:
List is a list.
— The following properties hold globally:
Term=. .List is side-effect free.
This predicate is understood natively by CiaoPP.

General properties:
True:
— If the following properties hold at call time:

Argl is currently a term which is not a free variable.

then the following properties hold globally:
Argi=. .Arg?2 is evaluable at compile-time.
True: Argl=..List

— If the following properties hold at call time:
List is a list.
term_basic:const_head (List)
then the following properties hold globally:
Argi=. .List is evaluable at compile-time.

non_empty _list/1:

Usage: non_empty_list(4)
A list that is not the empty list [].

(basic_props:list/1)

(basic_props:sideff/2)
(basic_props:native/1)

(term_typing:nonvar/1)

(basic_props:eval/1)

(basic_props:list/1)
(term_basic:const_head /1)

(basic_props:eval/1)

REGTYPE

Chapter 25: Basic term manipulation 163

copy_term/2: PREDICATE
Usage: copy_term(Term,Copy)

Copy is a renaming of Term, such that brand new variables have been substituted for all
variables in Term. If any of the variables of Term have attributes, the copied variables will
have copies of the attributes as well. It behaves as if defined by:

:— data ’copy of’/1.

copy_term(X, Y) :-
asserta_fact(’copy of’ (X)),
retract_fact(’copy of’(Y)).

— The following properties should hold globally:
copy_term(Term,Copy) is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
True: copy_term(Term,Copy)
— If the following properties hold at call time:

Term is currently ground (it contains no variables). (term_typing:ground/1)

then the following properties hold globally:

copy_term(Term,Copy) is evaluable at compile-time. (basic_props:eval/1)
copy_term_nat/2: PREDICATE

(Trust) Usage: copy_term_nat (Term,Copy)
Same as copy_term/2, except that attributes of variables are not copied.
— The following properties hold globally:
copy_term_nat (Term,Copy) is side-effect free. (basic_props:sideff/2)

cyclic_term/1: PREDICATE
Usage: cyclic_term(T)

True if T is cyclic (infinite).

C/3: PREDICATE
(Trust) Usage 1: C(S1,Terminal,S2)

— The following properties hold upon exit:
term_basic:list_functor(S1) (term_basic:list _functor/1)

(Trust) Usage 2: C(S1,Terminal,S2)

S1 is connected by the terminal Terminal to S2. Internally used in DCG grammar rules.
Defined as if by the single clause: >C’> ([X|8], X, S).

— The following properties hold globally:
C(81,Terminal,S2) is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)
General properties:
Trust: C(S1,Terminal,S2)

164

— If the following properties hold at call time:
A list that is not the empty list [].
then the following properties hold upon exit:
S2 is a list.

True:
— If the following properties hold at call time:

Argl is currently a term which is not a free variable.

then the following properties hold globally:
C(Argl,Arg2,Arg3) is evaluable at compile-time.

const_head/1:
A property, defined as follows:

const_head([Head|_1]) :-
constant (Head) .

list_functor/1:
A regular type, defined as follows:
list_functor([AIB]) :-
term(A),
term(B) .

The Ciao System

(term_basic:non_empty list /1)

(basic_props:list/1)

(term_typing:monvar/1)

(basic_props:eval/1)

PROPERTY

REGTYPE

25.3 Known bugs and planned improvements (term_basic)

e Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

Chapter 26: Comparing terms 165

26 Comparing terms

Author(s): Daniel Cabeza, Manuel Hermenegildo.

These built-in predicates are extra-logical. They treat uninstantiated variables as objects
with values which may be compared, and they never instantiate those variables. They should
not be used when what you really want is arithmetic comparison or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:
Variables, by age (roughly, oldest first — the order is not related to the names of variables).
Floats, in numeric order (e.g. -1.0 is put before 1.0).

Integers, in numeric order (e.g. -1 is put before 1).

Atoms, in alphabetical (i.e. character code) order.

e Compound terms, ordered first by arity, then by the name of the principal functor, then
by the arguments in left-to-right order. Recall that lists are equivalent to compound terms
with principal functor *.’/2.

For example, here is a list of terms in standard order:
[X, -1.0, -9, 1, bar, foo, [1], X =Y, fo00(0,2), bar(1,1,1)]

26.1 Usage and interface (term_compare)

~ N
e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
e Exports:
— Predicates:
\==/2, @</2, @=</2, @>/2, @>=/2, compare/3.
— Properties:
==/2.
— Regular Types:
comparator/1.
e Imports:
— System library modules:
assertions/native_props.

— Packages:
prelude, nonpure, assertions, nortchecks, nativeprops, isomodes.
)
26.2 Documentation on exports (term_compare)
=:/2: PROPERTY

Usage: Terml==Term2
The terms Terml and Term2 are strictly identical.

General properties:
True: Terml==Term2

166 The Ciao System

— The following properties hold globally:

Terml is not further instantiated. (basic_props:not_further_inst /2)
Term2 is not further instantiated. (basic_props:mot_further_inst/2)
Terml==Term?2 is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:mative/1)

True: Terml==Term?2
— If the following properties hold at call time:

Terml is currently ground (it contains no variables). (term_typing:ground/1)
Term?2 is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:

Terml==Term2 is evaluable at compile-time. (basic_props:eval/1)

Trust: Terml==Term2
— The following properties hold globally:

All calls of the form Term1==Term2 are deterministic. (native_props:is_det/1)

Indicates the type of test that a predicate performs. Required by the nonfailure

analyisis. (native_props:test_type/2)
\==/2: PREDICATE

(Trust) Usage: Term1\==Term2
The terms Terml and Term2 are not strictly identical.
— The following properties hold globally:

Terml is not further instantiated. (basic_props:mot_further_inst/2)
Term2 is not further instantiated. (basic_props:not_further_inst /2)
Termi\==Term2 is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
True: Term1\==Term?2
— If the following properties hold at call time:

Terml is currently ground (it contains no variables). (term_typing:ground/1)
Term?2 is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:

Term1\==Term2 is evaluable at compile-time. (basic_props:eval/1)

Trust: Term1\==Term2
— The following properties hold globally:

All calls of the form Term1\==Term2 are deterministic. (native_props:is_det /1)

Indicates the type of test that a predicate performs. Required by the nonfailure

analyisis. (native_props:test_type/2)
0</2: PREDICATE

(Trust) Usage: Term1@<Term?2
The term Terml precedes the term Term2 in the standard order.

Chapter 26: Comparing terms 167

— The following properties hold globally:

Terml is not further instantiated. (basic_props:not_further_inst/2)
Term2 is not further instantiated. (basic_props:not_further_inst/2)
Term1@<Term?2 is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
True: Term1@<Term?2
— If the following properties hold at call time:

Term1 is currently ground (it contains no variables). (term_typing:ground/1)

Term?2 is currently ground (it contains no variables). (term_typing:ground/1)

then the following properties hold globally:

Term1@<Term2 is evaluable at compile-time. (basic_props:eval/1)
0=</2: PREDICATE

(Trust) Usage: Term1@=<Term2
The term Terml precedes or is identical to the term Term2 in the standard order.

— The following properties hold globally:

Terml is not further instantiated. (basic_props:not_further_inst /2)
Term2 is not further instantiated. (basic_props:not_further_inst /2)
Term1@=<Term?2 is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
True: Term1@=<Term?2
— If the following properties hold at call time:

Terml is currently ground (it contains no variables). (term_typing:ground/1)

Term2 is currently ground (it contains no variables). (term_typing:ground/1)

then the following properties hold globally:

Term1@=<Term2 is evaluable at compile-time. (basic_props:eval/1)
@>/2: PREDICATE

(Trust) Usage: Term1@>Term2
The term Termi follows the term Term?2 in the standard order.

— The following properties hold globally:

Terml is not further instantiated. (basic_props:not_further_inst /2)
Term2 is not further instantiated. (basic_props:not_further_inst /2)
Term1@>Term?2 is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)

General properties:
True: Term1@>Term2
— If the following properties hold at call time:
Terml is currently ground (it contains no variables). (term_typing:ground/1)
Term2 is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
Term1@>Term?2 is evaluable at compile-time. (basic_props:eval/1)

168 The Ciao System
>=/2: PREDICATE
(Trust) Usage: Term1@>=Term?2
The term Terml follows or is identical to the term Term2 in the standard order.
— The following properties hold globally:
Terml is not further instantiated. (basic_props:mot_further_inst/2)
Term2 is not further instantiated. (basic_props:mot_further_inst/2)
Term1@>=Term?2 is side-effect free. (basic_props:sideff/2)
This predicate is understood natively by CiaoPP. (basic_props:native/1)
General properties:
True: Term1@>=Term?2
— If the following properties hold at call time:
Term1 is currently ground (it contains no variables). (term_typing:ground/1)
Term?2 is currently ground (it contains no variables). (term_typing:ground/1)
then the following properties hold globally:
Term1@>=Term2 is evaluable at compile-time. (basic_props:eval/1)
compare/3: PREDICATE

compare (Op,Terml,Term?2)
Op is the result of comparing the terms Terml and Term2.
(Trust) Usage:
— Clalls should, and exit will be compatible with:
Op is an atom.
— The following properties should hold at call time:
Terml is any term.
Term?2 is any term.
— The following properties hold upon exit:
Op is an atom.
Terml is any term.
Term?2 is any term.
term_compare:comparator(Op)
Terml is any term.
Term?2 is any term.
— The following properties hold globally:
Term1 is not further instantiated.
Term?2 is not further instantiated.
compare (Op,Terml,Term2) is side-effect free.
This predicate is understood natively by CiaoPP.

General properties:
True: compare(Op,Terml,Term2)
— If the following properties hold at call time:
Terml is currently ground (it contains no variables).
Term?2 is currently ground (it contains no variables).
then the following properties hold globally:

(basic_props:atm/1)

(basic_props:term/1)
(basic_props:term/1)

(basic_props:atm/1
asic_props:term

basi 1
asic_props:term

basi 1

)

)

)
(term_compare:comparator/1)
(basic_props:term/1)

)

(basic_props:term/1

(basic_props:not_further_inst /2
(basic_props:not_further_inst /2
(basic_props:sideff/2
(basic_props:mative/1

)
)
)
)

(term_typing:ground/1)
(term_typing:ground/1)

compare (Op,Terml,Term2) is evaluable at compile-time. (basic_props:eval/1)

Chapter 26: Comparing terms 169

comparator/1: REGTYPE
A regular type, defined as follows:

comparator (=) .
comparator (>) .
comparator (<) .

26.3 Known bugs and planned improvements (term_compare)

e Run-time checks have been reported not to work with this code. That means that either
the assertions here, or the code that implements the run-time checks are erroneous.

170 The Ciao System

Chapter 27: Basic predicates handling names of constants 171

27 Basic predicates handling names of constants

Author(s): The CLIP Group.

The Ciao system provides builtin predicates which allow dealing with names of constants
(atoms or numbers). Note that sometimes strings (character code lists) are more suitable to
handle sequences of characters.

27.1 Usage and interface (atomic_basic)

-
e Library usage:
These predicates are builtin in Ciao, so nothing special has to be done to use them.
e Exports:
— Predicates:

name/2, atom_codes/2, number_codes/2, number_codes/3, atom_number/2, atom_
number/3, atom_length/2, atom_concat/3, sub_atom/4.

— Properties:
number_codes/3.

— Regular Types:
valid_base/1.

e Imports:

— System library modules:
assertions/native_props.

— Packages:

prelude, nonpure, assertions, nortchecks, isomodes, nativeprops,
unittestprops, unittestdecls.

27.2 Documentation on exports (atomic_basic)

name/2: PREDICATE

name (Const,String)

String is the list of the ASCII codes of the characters