Prolog/Java Bidirectional Interface

The CIAO System Documentation Series
Printed on: 21 April 2003
Version 1.9478 (2003/4/21, 17:9:39 CEST)

Jesus Correas Fernandez and The CLIP Group
clip@dia.fi.upm.es

http://www.clip.dia.fi.upm.es/

The CLIP Group

Facultad de Informatica

Universidad Politécnica de Madrid

Copyright (© 1996-2002 Jests Correas Fernandez/The CLIP Group.

Table of Contents

SUMIMNATY .+ o v vt ettt ittt e ittt i ieenennneeeeeseeenns 1
1 Introduction.............. 3
1.1 Distributed Programming Model.............................. 3
2 Prolog to Java interface....................... 5
2.1 Prolog to Java Interface Structure)
2.1.1 Prolog side of the Java interface...................... 5

212 Javaside.......... ... 5

2.2 Java event handling from Prolog............. 6
2.3 Java exception handling from Prolog.......................... 8
2.4 Usage and interface (javart)..............ccoieiiiiiiiia.... 8
2.5 Documentation on exports (javart) 8
java_start/0 (pred) 8

java_start/1 (pred) L. 8

java_start/2 (pred) 9

java_stop/0 (pred) ... 9
java_connect/2 (pred)........... 9
java_disconnect /0 (pred) ... 9

machine name/1 (regtype) 9
java_constructor/1 (regtype)......................... 9

java_object/1 (regtype)c.oviiiiiiiii. 10

java_event/1 (regtype)coiiiiiiiiiii. 10

prolog_goal/1 (regtype)ovvuiiieniii... 10

java_field/1 (regtype)ovvvv 10
java_use_module/1 (pred) 10
java_create_object/2 (pred)............., 10
java_delete_object/1 (pred)......................... 11
java_invoke_method/2 (pred) 11
java_method/1 (regtype) 11

java_get _value/2 (pred)l 11
java_set_value/2 (pred).............. 11

java_add_ listener/3 (pred) 12
java_remove_listener/3 (pred)....................... 12

3 Java to Prolog interface...................... 13
3.1 Usage and interface (jtopl)..............cooiii .. 13
3.2 Documentation on exports (jtopl) 13
prolog_server/0 (pred) 13
prolog_server/1 (pred) ... 14

prolog server/2 (pred)c.oiiii.. 14

shell s/0 (pred) ... 14
query_solutions/2 (pred) 14
query_requests/2 (pred) ..., 15
running_queries/2 (pred)............... 15

ii Prolog/Java Bidirectional Interface

4 Low-level Prolog to Java socket connection.... 17

4.1 Usage and interface (javasock)cooieiii .. 17

4.2 Documentation on exports (javasock) 17
bind_socket_interface/1 (pred) 17
start_socket_interface/2 (pred)...................... 17
stop_socket_interface/0 (pred) 18
join_socket_interface/0 (pred)....................... 18

java_query/2 (pred)........ ..o 18

java_response/2 (pred)........... 18

prolog_query/2 (pred) ..., 18

prolog_response/2 (pred) ..., 19
is_connected_to_java/0 (pred)....................... 19

java_debug/1 (pred) 19

java_debug_redo/1 (pred) 19

start_threads/0 (pred) 19

References, 21
Predicate/Method Definition Index 23
Property Definition Index 25
Regular Type Definition Index................... 27

Concept Definition Index........................ 29

Summary 1

Summary

This manual includes the complete reference to the low-level Prolog to Java interface. This
interface allows a Prolog program to start a Java process and manipulate Java objects.

In this paper we present an interface between Ciao Prolog and Java to take advantage of
the capabilities of the java programming language, avoiding problems related to compile-time
linking, system dependencies, and static references. This interface fully achieves the objectives
using a simple but powerful protocol between both languages. The communication is established
by means of sockets, allowing the processes to be in separated machines, and thus providing a
means for distributed processing.

This documentation corresponds to version 1.9478 (2003/4/21, 17:9:39 CEST).

Prolog/Java Bidirectional Interface

Chapter 1: Introduction 3

1 Introduction

The increasing diversity of platforms used today and the diffusion of Internet and the World
Wide Web makes compatibility between platforms a key factor to run the software everywhere
with no change. Java seems to achieve this goal, using a bytecode intermediate language and a
large library of platform-dependent and independent classes which fully implements many. On
the other hand, Prolog provides a powerful implementation of logic programming paradigm. This
document includes the reference manual of the Prolog/Java bidirectional interface implemented
in Ciao. In addition, it has been developed an application of this interface that makes use of
an object oriented extension of Prolog to encapsulate the java classes, O’Ciao, both the ones
defined in the JDK as well as new classes developed in Java. These classes can be used in the
object oriented prolog extension of Ciao just like native O’Ciao classes.

The proposed interaction between both languages is realized as an interface between two
processes, a Java process and a Prolog process, running separately. This approach allows the
programmer to use of both Java and Prolog, without the compiler-dependent glue code used
in other linkage-oriented approaches, and preserves the philosophy of Java as an independent
language. The interface communication is based on a clean socket-based protocol, providing
hardware and software independence. This allows also both processes to be run in different
machines connected by a TCP/IP transport protocol, based on a client/server model that can
evolve to a more cooperative model.

The present manual includes reference information about the Prolog side of the bidirectional
Java/Prolog interface. The Java side of this interface is explained in the HTML pages generated
by Javadoc.

1.1 Distributed Programming Model

The differences between Prolog and Java impose the division of the interface in two main
parts: a prolog-to-java and a java-to-prolog interfaces. Most of the applications that will use this
interface will consider that will be a “client’ side that request actions and queries to a “server’
side, which accomplish the actions and answer the queries. In a first approach, any of the both
one-way interfaces implement a pure client/server model: the server waits for a query, performs
the received query and sleeps until the next query comes; the client starts the server, carries
out the initial part of the job initiating all the conversations with the server, and requests the
server to do some things sometimes.

This model cannot handle correctly the tasks regarding an event oriented programming en-
vironment like java. A usual application of the prolog-to-java interface could be a graphical
user interface server made in java, and a prolog client on the other side. A pure client/server
model based on requests and results is not powerful enough to leave the prolog side managing
all the application specific work of this example: some java specific stuff is needed to catch and
manipulate properly the events thrown by the graphical user interface. This problem can be
solved in a distributed context, on which both languages are clients and servers simultaneously,
and can perform requests and do actions at a time. Using this model, the prolog side can add
a prolog goal as listener of a specific event, and the java side launches that goal when the event
raises.

In any case, the client/server approach simplifies the design of the interface, so both interfaces
have been designed in such way, but keeping in mind that the goal is to reach a distributed
environment, so each side do the things it is best designed for.

Prolog/Java Bidirectional Interface

Chapter 2: Prolog to Java interface 5)

2 Prolog to Java interface

Author(s): Jests Correas.
Version: 1.9#78 (2003/4/21, 17:9:39 CEST)
Version of last change: 1.9#67 (2003/3/14, 12:48:36 CET)

This module defines the Ciao Prolog to Java interface. This interface allows a Prolog program
to start a Java process, create Java objects, invoke methods, set/get attributes (fields), and
handle Java events.

This interface only works with JDK version 1.2 or higher.

Although the Java side interface is explained in Javadoc format (it is available at
library/javall/javadoc/ in your Ciao installation), the general interface structure is detailed
here.

2.1 Prolog to Java Interface Structure

This interface is made up of two parts: a Prolog side and a Java side, running in separate
processes. The Prolog side receives requests from a Prolog program and sends them to the Java
side through a socket. The Java side receives requests from the socket and performs the actions
included in the requests.

If an event is thrown in the Java side, an asynchronous message must be sent away to
the Prolog side, in order to launch a Prolog goal to handle the event. This asynchronous
communication is performed using a separate socket. The nature of this communication needs
the use of threads both in Java and Prolog: to deal with the ’sequential program flow,” and
other threads for event handling.

In both sides the threads are automatically created by the context of the objects we use.
The user must be aware that different requests to the other side of the interface could run
concurrently.

2.1.1 Prolog side of the Java interface

The Prolog side receives the actions to do in the Java side from the user program, and sends
them to the Java process through the socket connection. When the action is done in the Java
side, the result is returned to the user Prolog program, or the action fails if there is any problem
in the Java side.

Prolog data representation of Java elements is very simple in this interface. Java primitive
types such as integers and characters are translated into the Prolog corresponding terms, and
even some Java objects are translated in the same way (e. g. Java strings). Java objects are
represented in Prolog as compound terms with a reference id to identify the corresponding Java
object. Data conversion is made automatically when the interface is used, so the Prolog user
programs do not have to deal with the complexity of this tasks.

2.1.2 Java side

The Java side of this layer is more complex than the Prolog side. The tasks this part has to
deal to are the following:

o Wait for requests from the Prolog side.

e Translate the Prolog terms received in the Prolog ’serialized’ form to a more useful Java rep-
resentation (see the Java interface documentation available at library/javall/javadoc/
in your Ciao installation for details regarding Java representation of Prolog terms).

e Interpret the requests received from the Prolog side, and execute them.

6 Prolog/Java Bidirectional Interface

e Handle the set of objects created by or derived from the requests received from de prolog
side.

e Handle the events raised in the Java side, and launch the listeners added in the prolog side.
o Handle the exceptions raised in the Java side, and send them to the Prolog side.

In the implementation of the Java side, two items must be carefully designed: the handling
of Java objects, and the representation of prolog data structures. The last item is specially
important because all the interactions between Prolog and Java are made using Prolog structures,
an easy way to standardize the different data management in both sides. Even the requests
themselves are encapsulated using Prolog structures. The overload of this encapsulation is not
significant in terms of socket traffic, due to the optimal implementation of the prolog serialized
term.

The java side must handle the objects created from the Prolog side dinamically, and these
objects must be accessed as fast as possible from the set of objects. The Java API provides a
powerful implementation of Hash tables that achieves all the requirements of our implementation.

On the other hand, the java representation of prolog terms is made using the inheritance of
java classes. In the java side exists a representation of a generic prolog term, implemented as an
abstract class in java. Variables, atoms, compound terms, lists, and numeric terms are classes in
the java side which inherit from the term class. Java objects can be seen also under the prolog
representation as compound terms, where the single argument corresponds to the Hash key of
the actual java object in the Hash table referred to before. This behaviour makes the handling
of mixed java and prolog elements easy. Prolog goals are represented in the java side as objects
which contain a prolog compound term with the term representing the goal. This case will be
seen more in depth next, when the java to prolog is explained.

2.2 Java event handling from Prolog

Java event handling is based on a delegation model since version 1.1.x. This approach to
event handling is very powerful and elegant, but a user program cannot handle all the events
that can arise on a given object: for each kind of event, a listener must be implemented and
added specifically. However, the Java 2 API includes a special listener (AWTEventListener)
that can manage the internal java event queue.

The prolog to java interface has been designed to emulate the java event handler, and is also
based on event objects and listeners. The prolog to java interface implements its own event
manager, to handle those events that have prolog listeners associated to the object that raises
the event. From the prolog side can be added listeners to objects for specific events. The java
side includes a list of goals to launch from the object and event type.

Due to the events nature, the event handler must work in a separate thread to manage
the events asynchronously. The java side has its own mechanisms to work this way. The
prolog side must be implemented specially for event handling using threads. The communication
between java and prolog is also asynchronous, and an additional socket stream is used to avoid
interferences with the main socket stream. The event stream will work in this implementation
only in one way: from java to prolog. If an event handler needs to send back requests to java,
it will use the main socket stream, just like the requests sent directly from a prolog program.

Chapter 2: Prolog to Java interface 7

The internal process of register a Prolog event handler to a Java event is shown in the next
figure:

Prolog registering of Java events

Java side Prolog side

java_add_listener(Button1,
‘java.awt.event.ActionListener’,
actionHandler("1")),

PLEventListener

Socket /

When an event raises, the Prolog to Java interface has to send to the Prolog user program
the goal to evaluate. Graphically, the complete process takes the tasks involved in the following
figure:

Prolog handling of Java events

Java side Prolog side

actionHandler("1"),

PLEventListener

Event raises

AWT System event queue
- J .

Socket

8 Prolog/Java Bidirectional Interface

2.3 Java exception handling from Prolog

Java exception handling is very similar to the peer prolog handling: it includes some specific
statements to trap exceptions from user code. In the java side, the exceptions can be originated
from an incorrect request, or can be originated in the code called from the request. Both
exception types will be sent to prolog using the main socket stream, allowing the prolog program
manage the exception. However, the first kind of exceptions are prefixed, so the user program
can distinguish them from the second type of exceptions.

In order to handle exceptions properly using the prolog to java and java to prolog interfaces
simultaneously, in both sides of the interface will be filtered those exceptions coming from their
own side: this avoids an endless loop of exceptions bouncing from one side to another.

2.4 Usage and interface (javart)

e Library usage:
:- use_module(library(javart)).
e Exports:
— Predicates:
java_start/0, java_start/1, java_start/2, java_stop/0, java_connect/2,
java_disconnect/0, java_use_module/1, java_create_object/2, java_delete_
object/1, java_invoke_method/2, java_get_value/2, java_set_value/2, java_
add_listener/3, java_remove_listener/3.
— Regular Types:
machine_name/1, java_constructor/1, java_object/1, java_event/1, prolog_
goal/1l, java_field/1, java_method/1.
e Other modules used:
— System library modules:
concurrency/concurrency, iso_byte_char, format, lists, read, write,
javall/javasock, system.
— Internal (engine) modules:
arithmetic, atomic_basic, attributes, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
basic, term_compare, term_typing.

2.5 Documentation on exports (javart)

java_start/0: PREDICATE
Usage:
— Description: Starts the Java server on the local machine, connects to it, and starts
the event handling thread.

java_start/1: PREDICATE
Usage: java_start(+Classpath)

Chapter 2: Prolog to Java interface 9

— Description: Starts the Java server on the local machine, connects to it, and starts
the event handling thread. The Java server is started using the classpath received as

argument.
— Clall and exit should be compatible with:
+Classpath is a string (a list of character codes). (string/1)
java_start/2: PREDICATE

Usage: java_start(+machine_name,+classpath)

— Description: Starts the Java server in machine name (using rsh!), connects to it,
and starts the event handling thread. The Java server is started using the classpath
received as argument.

— Clall and exit should be compatible with:

+machine_name is currently instantiated to an atom. (atom/1)
+classpath is a string (a list of character codes). (string/1)
java_stop/0: PREDICATE
Usage:

— Description: Stops the interface terminating the threads that handle the socket con-
nection, and finishing the Java interface server if it was started using java_start/n.

java_connect/2: PREDICATE

Usage: java_connect (+machine_name,+port_number)

— Description: Connects to an existing Java interface server running in machine name
and listening at port port_number. To connect to a Java server located in the local
machine, use ’localhost’ as machine_name.

— Clall and exit should be compatible with:

+machine_name is the network name of a machine. (machine_name/1)
+port_number is an integer. (int/1)
java_disconnect /0: PREDICATE
Usage:

— Description: Closes the connection with the java process, terminating the threads that
handle the connection to Java. This predicate does not terminate the Java process
(this is the disconnection procedure for Java servers not started from Prolog). This
predicate should be used when the communication is established with java_connect /2.

machine_name/1: REGTYPE
Usage: machine_name (X)

— Description: X is the network name of a machine.

Prolog/Java Bidirectional Interface

java_constructor/1: REGTYPE
Usage: java_constructor (X)

— Description: X is a java constructor (structure with functor as constructor full name,
and arguments as constructor arguments).

java_object/1: REGTYPE
Usage: java_object (X)

— Description: X is a java object (a structure with functor ’$java_object’, and argument
an integer given by the java side).

java_event /1: REGTYPE
Usage: java_event (X)

— Description: X is a java event represented as an atom with the full event constructor
name (e.g., java.awt.event.ActionListener’).

prolog_goal/1: REGTYPE
Usage: prolog_goal (X)

— Description: X is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be
java objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The variables
will be kept uninstantiated when the event raises and the predicate is called.

java_field/1: REGTYPE
Usage: java_field(X)

— Description: X is a java field (structure on which the functor name is the field name,
and the single argument is the field value).

java_use_module/1: PREDICATE
Usage: java_use_module (+Module)

— Description: Loads a module and makes it available from Java.
— Call and exit should be compatible with:
+Module is any term. (term/1)

java_create_object/2: PREDICATE
Usage: java_create_object(+java_constructor,-java_object)
— Description: New java object creation. The constructor must be a compound term
as defined by its type, with the full class name as functor (e.g., ’java.lang.String’),
and the parameters passed to the constructor as arguments of the structure.

Chapter 2: Prolog to Java interface

— Call and exit should be compatible with:
+java_constructor is a java constructor (structure with functor as constructor full

name, and arguments as constructor arguments). (java_constructor/1)

-java_object is a java object (a structure with functor '$java_object’, and argument

an integer given by the java side). (java_object/1)
java_delete_object/1: PREDICATE

Usage: java_delete_object(+java_object)
— Description: Java object deletion. It removes the object given as argument from the
Java object table.
— Call and exit should be compatible with:

+java_object is a java object (a structure with functor '$java_object’, and argument
an integer given by the java side). (java_object/1)

java_invoke_method/2: PREDICATE
Usage: java_invoke_method(+java_object,+java_method)

— Description: Invokes a java method on an object. Given a Java object reference,
invokes the method represented with the second argument.

— Call and exit should be compatible with:
+java_object is a java object (a structure with functor '$java_object’, and argument
an integer given by the java side). (java_object/1)
+java_method is a java method (structure with functor as method name, and argu-
ments as method ones, plus a result argument. This result argument is unified with
the atom ’Yes’ if the java method returns void). (java_method/1)

java_method/1: REGTYPE
Usage: java_method (X)
— Description: X is a java method (structure with functor as method name, and argu-
ments as method ones, plus a result argument. This result argument is unified with
the atom ’Yes’ if the java method returns void).

java_get_value/2: PREDICATE
Usage: java_get_value(+java_object,+java_field)

— Description: Gets the value of a field. Given a Java object as first argument, it
instantiates the variable given as second argument. This field must be uninstantiated
in the java_field functor, or this predicate will fail.

— Call and exit should be compatible with:
+java_object is a java object (a structure with functor ’$java_object’, and argument
an integer given by the java side). (java_object/1)
+java_field is a java field (structure on which the functor name is the field name,
and the single argument is the field value). (java_field/1)

Prolog/Java Bidirectional Interface

java_set_value/2: PREDICATE

Usage: java_set_value(+java_object,+java_field)

— Description: Sets the value of a Java object field. Given a Java object reference, it
assigns the value included in the java_field compound term. The field value in the
java_field structure must be instantiated.

— Call and exit should be compatible with:
+java_object is a java object (a structure with functor ’$java_object’, and argument

an integer given by the java side). (java_object/1)

+java_field is a java field (structure on which the functor name is the field name,

and the single argument is the field value). (java_field/1)
java_add_listener/3: PREDICATE

Meta-predicate with arguments: java_add_listener(?,7,goal).
Usage: java_add_listener(+java_object,+java_event,+prolog_goal)
— Description: Adds a listener to an event on an object. Given a Java object reference,

it registers the goal received as third argument to be launched when the Java event
raises.

— Call and exit should be compatible with:

+java_object is a java object (a structure with functor '$java_object’, and argument
an integer given by the java side). (java_object/1)
+java_event is a java event represented as an atom with the full event constructor
name (e.g., ’java.awt.event.ActionListener’). (java_event/1)

+prolog_goal is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated when
the event raises (instead of when the listener is added). The arguments that represent
java objects must be instantiated to already created objects. The variables will be

kept uninstantiated when the event raises and the predicate is called. (prolog_
goal/1)
java_remove_listener/3: PREDICATE

Usage: java_remove_listener(+java_object,+java_event,+prolog_goal)

— Description: It removes a listener from an object event queue. Given a Java object
reference, goal registered for the given event is removed.

— Call and exit should be compatible with:
+java_object is a java object (a structure with functor '$java_object’, and argument
an integer given by the java side). (java_object/1)
+java_event is a java event represented as an atom with the full event constructor
name (e.g., java.awt.event.ActionListener’). (java_event/1)

+prolog_goal is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated when
the event raises (instead of when the listener is added). The arguments that represent
java objects must be instantiated to already created objects. The variables will be
kept uninstantiated when the event raises and the predicate is called. (prolog_
goal/1)

Chapter 3: Java to Prolog interface

3 Java to Prolog interface

Author(s): Jests Correas.
Version: 1.9#78 (2003/4/21, 17:9:39 CEST)
Version of last change: 1.9#65 (2003/3/14, 12:48:10 CET)

This module defines the Prolog side of the Java to Prolog interface. This side of the interface
only has one public predicate: a server that listens at the socket connection with Java, and
executes the commands received from the Java side.

In order to evaluate the goals received from the Java side, this module can work in two
ways: executing them in the same engine, or starting a thread for each goal. The easiest way
is to launch them in the same engine, but the goals must be evaluated sequentially: once a
goal provides the first solution, all the subsequent goals must be finished before this goal can
backtrack to provide another solution. The Prolog side of this interface works as a top-level,
and the goals partially evaluated are not independent.

The solution of this goal dependence is to evaluate the goals in a different prolog engine.
Although Ciao includes a mechanism to evaluate goals in different engines, the approach used
in this interface is to launch each goal in a different thread.

The decision of what kind of goal evaluation is selected is done by the Java side. Each
evaluation type has its own command terms, so the Java side can choose the type it needs.

A Prolog server starts by calling the prolog_server/0 predicate, or by calling prolog_
server/1 predicate and providing the port number as argument. The user predicates and
libraries to be called from Java must be included in the executable file, or be accesible using the
built-in predicates dealing with code loading.

3.1 Usage and interface (jtopl)

-
e Library usage:
:- use_module(library(jtopl)).
e Exports:
— Predicates:

prolog_server/0, prolog_server/1, prolog_server/2, shell_s/0,
query_solutions/2, query_requests/2, running_queries/2.

e Other modules used:

— System library modules:
concurrency/concurrency, system, read, write, dynamic, lists, format,
compiler/compiler, atom2term, javall/javasock, prolog_sys.

— Internal (engine) modules:
internals, arithmetic, atomic_basic, attributes, basic_props, basiccontrol,
data_facts, exceptions, io_aux, io_basic, prolog_flags, streams_basic,
system_info, term_basic, term_compare, term_typing.

3.2 Documentation on exports (jtopl)

prolog_server/0: PREDICATE
Usage:

Prolog/Java Bidirectional Interface

— Description: Prolog server entry point. Reads from the standard input the node name
and port number where the java client resides, and starts the prolog server listening
at the jp socket. This predicate acts as a server: it includes an endless read-process
loop until the prolog_halt command is received.

However, from the low-level communication point of view, this Prolog server actually
works as a client of the Java side. This means that Java side waits at the given port
to a Prolog server trying to create a socket; Prolog side connects to that port, and
then waits for Java requests (acting as a ’logical” server). To use this Prolog server
as a real server waiting for connections at a given port, use prolog_server/1.

prolog_server/1: PREDICATE
Usage:

— Description: Waits for incoming Java connections to act as a Prolog goal server for
Java requests.This is the only prolog_server/* predicate that works as a true server:
given a port number, waits for a connection from Java and then serves Java requests.
When a termination request is received, finishes the connection to Java and waits
next Java connection request. This behaviour is different with respect to previous
versions of this library. To work as before, use prolog_server/2.

Although it currently does not support simultaneous Java connections, some work is
being done in that direction.

— Clall and exit should be compatible with:

Argl is an atom. (atm/1)
prolog_server/2: PREDICATE
Usage:

— Description: Prolog server entry point. Given a network node and a port number,
starts the prolog server trying to connect to Java side at that node:port address, and
then waits for Java requests. This predicate acts as a server: it includes an endless
read-process loop until the prolog_halt command is received.

However, from the low-level communication point of view, this Prolog server actually
works as a client of the Java side. This means that Java side waits at the given port
to a Prolog server trying to create a socket; Prolog side connects to that port, and
then waits for Java requests (acting as a ’logical’ server). To use this Prolog server
as a real server waiting for connections at a given port, use prolog_server/1.

— Call and exit should be compatible with:

Argl is an atom. (atm/1)
Arg2 is an atom. (atm/1)
shell_s/0: PREDICATE
Usage:

— Description: Command execution loop. This predicate is called when the connec-
tion to Java is established, and performs an endless loop processing the commands
received. This predicate is only intended to be used by the Prolog to Java interface
and it should not be used by a user program.

Chapter 3: Java to Prolog interface

query _solutions/2:

No further documentation available for this predicate.

The predicate is of type concurrent.

query_requests/2:

No further documentation available for this predicate.

The predicate is of type concurrent.

running_queries/2:

No further documentation available for this predicate.

The predicate is of type concurrent.

PREDICATE

PREDICATE

PREDICATE

Prolog/Java Bidirectional Interface

Chapter 4: Low-level Prolog to Java socket connection

4 Low-level Prolog to Java socket connection

Author(s): Jests Correas.
Version: 1.9#78 (2003/4/21, 17:9:39 CEST)
Version of last change: 1.9#66 (2003/3/14, 12:48:24 CET)

This module defines a low-level socket interface, to be used by javart and jtopl. Includes all
the code related directly to the handling of sockets. This library should not be used by any user
program, because is a very low-level connection to Java. Use javart (Prolog to Java interface)
or jtopl (Java to Prolog interface) libraries instead.

4.1 Usage and interface (javasock)

~
e Library usage:
:- use_module(library(javasock)).
e Exports:
— Predicates:
bind_socket_interface/1, start_socket_interface/2, stop_
socket_interface/0, join_socket_interface/0, java_query/2, java_response/2,
prolog_query/2, prolog_response/2, is_connected_to_java/0, java_debug/1,
java_debug_redo/1, start_threads/O0.
e Other modules used:
— System library modules:
fastrw, read, sockets/sockets, dynamic, format, concurrency/concurrency,
javall/jtopl, sockets/sockets_io.
— Internal (engine) modules:
arithmetic, atomic_basic, attributes, basic_props, basiccontrol, data_facts,
exceptions, io_aux, io_basic, prolog_flags, streams_basic, system_info, term_
basic, term_compare, term_typing.

4.2 Documentation on exports (javasock)

bind_socket_interface/1: PREDICATE
Usage: bind_socket_interface (+Port)

— Description: Given an port number, waits for a connection request from the Java
side, creates the sockets to connect to the java process, and starts the threads needed
to handle the connection.

— Clall and exit should be compatible with:
+Port is an integer. (int/1)

start_socket_interface/2: PREDICATE

Usage: start_socket_interface(+Address,+Stream)

— Description: Given an address in format 'node:port’, creates the sockets to connect
to the java process, and starts the threads needed to handle the connection.

Prolog/Java Bidirectional Interface

— Call and exit should be compatible with:

+Address is any term. (term/1)
+Stream is an open stream. (stream/1)
stop_socket_interface/0: PREDICATE
Usage:

— Description: Closes the sockets to disconnect from the java process, and waits until
the threads that handle the connection terminate.

join_socket_interface/0: PREDICATE
Usage:

— Description: Waits until the threads that handle the connection terminate.

java_query/2: PREDICATE
The predicate is of type concurrent.

Usage: java_query(ThreadId,Query)

— Description: Data predicate containing the queries to be sent to Java. First argument
is the Prolog thread Id, and second argument is the query to send to Java.

— Clall and exit should be compatible with:

ThreadId is an atom. (atm/1)
Query is any term. (term/1)
java_response/2: PREDICATE

The predicate is of type concurrent.
Usage: java_response(Id,Response)

— Description: Data predicate that stores the responses to requests received from Java.
First argument corresponds to the Prolog thread Id; second argument corresponds to
the response itself.

— Clall and exit should be compatible with:

Id is an atom. (atm/1)
Response is any term. (term/1)
prolog_query/2: PREDICATE

The predicate is of type concurrent.
Usage: prolog_query(Id,Query)

— Description: Data predicate that keeps a queue of the queries requested to Prolog
side from Java side.

— Call and exit should be compatible with:
Id is an integer. (int/1)
Query is any term. (term/1)

Chapter 4: Low-level Prolog to Java socket connection

prolog_response/2: PREDICATE
The predicate is of type concurrent.

Usage: prolog_response(Id,Response)

— Description: Data predicate that keeps a queue of the responses to queries requested
to Prolog side from Java side.

— Call and exit should be compatible with:

Id is an integer. (int/1)
Response is any term. (term/1)
is_connected_to_java/0: PREDICATE
Usage:

— Description: Checks if the connection to Java is established.

java_debug/1: PREDICATE
No further documentation available for this predicate.

java_debug_redo/1: PREDICATE
No further documentation available for this predicate.

start_threads/0: PREDICATE
Usage:
— Description: Starts the threads that will handle the connection to Java. This pred-
icate is declared public for internal purposes, and it is not intended to be used by a
user program.

Prolog/Java Bidirectional Interface

References

References

Prolog/Java Bidirectional Interface

Predicate/Method Definition Index

Predicate/Method Definition Index

B

bind_socket_interface/1...................... 17

I

is_connected_to_java/0....................... 19

J

java_add_listener/3............ 12
java_comnect/2 il 9
java_create_object/2........ 10
java_debug/1....... 19
java_debug_redo/1 19
java_delete_object/1................... 11
java_disconnect/0 9
java_get_value/2 11
java_invoke_method/2......................... 11
Java_query/2. 18
java_remove_listener/3....................... 12
java_response/2 i 18
java_set_value/2 11
java_start/0...... 8
java_start/1l..... ... 8
java_start/2........ ... 9

java_stop/0. ... 9

java_use_module/1 10
join_socket_interface/0...................... 18

P

Prolog_query/2 ... 18
prolog_response/2 ...t 19
prolog_server/0 ...t 13
prolog_server/1 14
prolog_server/2 14

Q

query_requests/2 i 15
query_solutions/2iiiiii... 14

R

running_queries/2 15

S

Shell _S/0 . ..ot 14
start_socket_interface/2..................... 17
start_threads/0ciiiiinnnnn. 19
stop_socket_interface/0...................... 18

Prolog/Java Bidirectional Interface

Property Definition Index

Property Definition Index

(Index is empty)

Prolog/Java Bidirectional Interface

Regular Type Definition Index

Regular Type Definition Index

J M

java_constructor/1liiriii 9 machine_name/1l
java_event/1.. 10

java_field/1.......... i 10

java_method/1.......... 11 I)

java_object/1.. 10 prolog_goal/1

Prolog/Java Bidirectional Interface

Concept Definition Index

Concept Definition Index

D P

Distributed Programming Model 3 Platform independence 3
Prolog server 14
Prolog to Java Interface Structure................ 5
Prolog to Java Interface Structure. Java side...... 5

J Prolog to Java Interface Structure. Prolog side.... 5

Java event handling from Prolog 6

Java exception handling from Prolog.............. 8 S

Java to Prolog interface...................... ... 13 Socket implementation 17

Prolog/Java Bidirectional Interface

