
The Ciao Prolog System
A Next Generation Logic Programming Environment

REFERENCE MANUAL
The Ciao System Documentation Series

Technical Report CLIP 3/97.1
Generated/Printed on: 29 April 2004

Version 1.9#344 (2004/4/29, 12:56:34 CEST)

F. Bueno
D. Cabeza
M. Carro
M. Hermenegildo
P. López
G. Puebla
clip@clip.dia.fi.upm.es

http://www.clip.dia.fi.upm.es/

The CLIP Group
School of Computer Science
Technical University of Madrid

Copyright c© F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López, and G. Puebla

This document may be freely read, stored, reproduced, disseminated, translated or quoted by
any means and on any medium provided the following conditions are met:

1. Every reader or user of this document acknowledges that is aware that no guarantee is given
regarding its contents, on any account, and specifically concerning veracity, accuracy and
fitness for any purpose.

2. No modification is made other than cosmetic, change of representation format, translation,
correction of obvious syntactic errors, or as permitted by the clauses below.

3. Comments and other additions may be inserted, provided they clearly appear as such;
translations or fragments must clearly refer to an original complete version, preferably one
that is easily accessed whenever possible.

4. Translations, comments and other additions or modifications must be dated and their au-
thor(s) must be identifiable (possibly via an alias).

5. This licence is preserved and applies to the whole document with modifications and additions
(except for brief quotes), independently of the representation format.

6. Any reference to the "official version", "original version" or "how to obtain original versions"
of the document is preserved verbatim. Any copyright notice in the document is preserved
verbatim. Also, the title and author(s) of the original document should be clearly mentioned
as such.

7. In the case of translations, verbatim sentences mentioned in (6.) are preserved in the
language of the original document accompanied by verbatim translations to the language
of the traslated document. All translations state clearly that the author is not responsible
for the translated work. This license is included, at least in the language in which it is
referenced in the original version.

8. Whatever the mode of storage, reproduction or dissemination, anyone able to access a
digitized version of this document must be able to make a digitized copy in a format directly
usable, and if possible editable, according to accepted, and publicly documented, public
standards.

9. Redistributing this document to a third party requires simultaneous redistribution of this
licence, without modification, and in particular without any further condition or restriction,
expressed or implied, related or not to this redistribution. In particular, in case of inclusion
in a database or collection, the owner or the manager of the database or the collection re-
nounces any right related to this inclusion and concerning the possible uses of the document
after extraction from the database or the collection, whether alone or in relation with other
documents.

Any incompatibility of the above clauses with legal, contractual or judiciary decisions or con-
straints implies a corresponding limitation of reading, usage, or redistribution rights for this
document, verbatim or modified.

i

Table of Contents

Summary. 1

1 Introduction. 3
1.1 About this manual . 3
1.2 About the Ciao Prolog development system 3
1.3 ISO-Prolog compliance versus extensibility . 4
1.4 About the name of the System . 4
1.5 Referring to Ciao . 5
1.6 Syntax terminology and notational conventions 5

1.6.1 Predicates and their components . 5
1.6.2 Characters and character strings . 5
1.6.3 Predicate specs . 6
1.6.4 Modes . 6
1.6.5 Properties and types . 6
1.6.6 Declarations . 6
1.6.7 Operators . 7

1.7 A tour of the manual . 7
1.7.1 PART I - The program development environment 7
1.7.2 PART II - The Ciao basic language (engine) 8
1.7.3 PART III - ISO-Prolog library (iso) 8
1.7.4 PART IV - Classic Prolog library (classic) 8
1.7.5 PART V - Annotated Prolog library (assertions) 8
1.7.6 PART VI - Ciao Prolog library miscellanea 8
1.7.7 PART VII - Ciao Prolog extensions 8
1.7.8 PART VIII - Interfaces to other languages and systems

. 9
1.7.9 PART IX - Abstract data types . 9
1.7.10 PART X - Miscellaneous standalone utilities 9
1.7.11 PART XI - Contributed libraries . 9
1.7.12 PART XII - Appendices . 9

1.8 Acknowledgments . 9
1.9 Version/Change Log (ciao) . 10

2 Getting started on Un*x-like machines 19
2.1 Testing your Ciao Un*x installation . 19
2.2 Un*x user setup . 19
2.3 Using Ciao from a Un*x command shell . 20

2.3.1 Starting/exiting the top-level shell (Un*x) 20
2.3.2 Getting help (Un*x) . 20
2.3.3 Compiling and running programs (Un*x) 20
2.3.4 Generating executables (Un*x) . 21
2.3.5 Running Ciao scripts (Un*x) . 21
2.3.6 The Ciao initialization file (Un*x) 22
2.3.7 Printing manuals (Un*x) . 22

2.4 An introduction to the Ciao emacs environment (Un*x) 22
2.5 Keeping up to date (Un*x) . 23

ii The Ciao Prolog System

3 Getting started on Windows machines 25
3.1 Testing your Ciao Win32 installation. 25
3.2 Using Ciao from the Windows explorer and command shell 25

3.2.1 Starting/exiting the top-level shell (Win32) 25
3.2.2 Getting help (Win32) . 26
3.2.3 Compiling and running programs (Win32) 26
3.2.4 Generating executables (Win32) . 26
3.2.5 Running Ciao scripts (Win32) . 27
3.2.6 The Ciao initialization file (Win32) 27
3.2.7 Printing manuals (Win32) . 27

3.3 An introduction to the Ciao emacs environment (Win32) 27
3.4 Keeping up to date (Win32) . 28

PART I - The program development environment
. 29

4 The stand-alone command-line compiler 31
4.1 Introduction to building executables . 31
4.2 Paths used by the compiler during compilation 32
4.3 Running executables from the command line 32
4.4 Types of executables generated . 33
4.5 Environment variables used by Ciao executables 35
4.6 Intermediate files in the compilation process 35
4.7 Usage (ciaoc) . 36

5 The interactive top-level shell 39
5.1 Shell invocation and startup . 39
5.2 Shell interaction . 39
5.3 Entering recursive (conjunctive) shell levels 40
5.4 Usage and interface (ciaosh) . 42
5.5 Documentation on exports (ciaosh) . 42

use module/1 (pred) . 42
use module/2 (pred) . 42
ensure loaded/1 (pred). 42
make exec/2 (pred) . 43
include/1 (pred) . 43
use package/1 (pred) . 43
consult/1 (pred) . 43
compile/1 (pred) . 43
./2 (pred) . 44
make po/1 (pred) . 44
unload/1 (pred) . 44
set debug mode/1 (pred) . 44
set nodebug mode/1 (pred) . 44
make actmod/2 (pred) . 44
force lazy/1 (pred) . 45
undo force lazy/1 (pred) . 45
dynamic search path/1 (pred) . 45
(multifile)/1 (pred) . 45

5.6 Documentation on internals (ciaosh) . 45
sourcenames/1 (prop). 45

iii

6 The interactive debugger . 47
6.1 Marking modules and files for debugging in the top-level debugger

. 47
6.2 The debugging process . 48
6.3 Marking modules and files for debugging with the embedded

debugger . 48
6.4 The procedure box control flow model. 49
6.5 Format of debugging messages . 51
6.6 Options available during debugging . 52
6.7 Calling predicates that are not exported by a module 54
6.8 Acknowledgements . 54

7 Predicates controlling the interactive debugger
. 55
7.1 Usage and interface (debugger) . 55
7.2 Documentation on exports (debugger) . 55

debug module/1 (pred) . 55
nodebug module/1 (pred) . 55
debug module source/1 (pred) . 55
debug/0 (pred) . 56
nodebug/0 (pred) . 56
trace/0 (pred) . 56
notrace/0 (pred) . 56
spy/1 (pred) . 56
nospy/1 (pred) . 56
nospyall/0 (pred) . 57
breakpt/6 (pred) . 57
nobreakpt/6 (pred) . 57
nobreakall/0 (pred) . 57
list breakpt/0 (pred) . 58
debugging/0 (pred) . 58
leash/1 (pred) . 58
maxdepth/1 (pred) . 58
call in module/2 (pred) . 58

7.3 Documentation on internals (debugger) . 59
multpredspec/1 (prop) . 59

7.4 Known bugs and planned improvements (debugger) 59

8 The script interpreter . 61
8.1 How it works . 61
8.2 Command line arguments in scripts . 62

9 Customizing library paths and path aliases 63
9.1 Usage and interface (libpaths) . 63
9.2 Documentation on exports (libpaths) . 63

get alias path/0 (pred) . 63
9.3 Documentation on multifiles (libpaths) . 63

file search path/2 (pred) . 63
library directory/1 (pred) . 64

iv The Ciao Prolog System

10 Using Ciao inside GNU emacs 65
10.1 Conventions for writing Ciao programs under Emacs 65
10.2 Checking the installation . 66
10.3 Functionality and associated key sequences (bindings) 66
10.4 Syntax coloring and syntax-based editing . 66
10.5 Getting on-line help . 66
10.6 Loading and compiling programs . 67
10.7 Commands available in toplevel and preprocessor buffers 68
10.8 Locating errors and checking the syntax of assertions 70
10.9 Commands which help typing in programs 70
10.10 Debugging programs . 70
10.11 Preprocessing programs . 71
10.12 Version control . 72
10.13 Generating program documentation . 75
10.14 Setting top level preprocessor and documenter executables . . . 75
10.15 Other commands . 76
10.16 Traditional Prolog Mode Commands . 76
10.17 Coexistence with other Prolog interfaces 76
10.18 Getting the Ciao/Prolog mode version . 77
10.19 Using Ciao/Prolog mode capabilities in standard shells 77
10.20 Customization . 77

10.20.1 Ciao general variables . 77
10.20.2 CiaoPP variables . 78
10.20.3 LPdoc variables . 79
10.20.4 Faces used in syntax-based highlighting (coloring) . . 79

10.21 Installation of the Ciao/Prolog emacs interface 82
10.22 Emacs version compatibility . 83
10.23 Acknowledgments (ciao.el) . 83

PART II - The Ciao basic language (engine) 85

11 The module system . 87
11.1 Usage and interface (modules) . 87
11.2 Documentation on internals (modules) . 87

module/3 (decl) . 87
module/2 (decl) . 88
export/1 (decl) . 88
use module/2 (decl) . 88
use module/1 (decl) . 89
import/2 (decl) . 89
reexport/2 (decl) . 89
reexport/1 (decl) . 89
(meta predicate)/1 (decl) . 89
modulename/1 (regtype) . 90
metaspec/1 (regtype) . 90

12 Directives for using code in other files 91
12.1 Usage and interface (loading_code) . 91
12.2 Documentation on internals (loading_code) 91

ensure loaded/1 (decl) . 91
include/1 (decl) . 91
use package/1 (decl) . 91

v

13 Control constructs/predicates 93
13.1 Usage and interface (basiccontrol) . 93
13.2 Documentation on exports (basiccontrol) 93

,/2 (pred) . 93
;/2 (pred) . 93
-> /2 (pred) . 93
!/0 (pred) . 93
(\+)/1 (pred) . 93
if/3 (pred) . 94
true/0 (pred) . 94
fail/0 (pred) . 94
repeat/0 (pred) . 94
call/1 (pred) . 94

13.3 Documentation on internals (basiccontrol) 95
|/2 (pred) . 95

14 Basic builtin directives . 97
14.1 Usage and interface (builtin_directives) 97
14.2 Documentation on internals (builtin_directives) 97

(multifile)/1 (decl) . 97
(discontiguous)/1 (decl) . 97
impl defined/1 (decl) . 97
redefining/1 (decl) . 98
initialization/1 (decl) . 98
on abort/1 (decl) . 98

15 Basic data types and properties 99
15.1 Usage and interface (basic_props) . 99
15.2 Documentation on exports (basic_props) 99

term/1 (regtype) . 99
int/1 (regtype) . 99
nnegint/1 (regtype) . 99
flt/1 (regtype) . 99
num/1 (regtype) . 100
atm/1 (regtype) . 100
struct/1 (regtype) . 100
gnd/1 (regtype) . 100
constant/1 (regtype). 100
callable/1 (regtype) . 100
operator specifier/1 (regtype) . 100
list/1 (regtype). 101
list/2 (regtype). 101
member/2 (prop) . 101
sequence/2 (regtype) . 101
sequence or list/2 (regtype) . 102
character code/1 (regtype) . 102
string/1 (regtype) . 102
predname/1 (regtype) . 102
atm or atm list/1 (regtype) . 102
compat/2 (prop) . 102
iso/1 (prop). 103
not further inst/2 (prop) . 103
sideff/2 (prop) . 103
regtype/1 (prop) . 103
native/1 (prop) . 103

vi The Ciao Prolog System

native/2 (prop) . 104

16 Extra-logical properties for typing 105
16.1 Usage and interface (term_typing) . 105
16.2 Documentation on exports (term_typing). 105

var/1 (prop) . 105
nonvar/1 (prop) . 105
atom/1 (prop) . 106
integer/1 (prop) . 106
float/1 (prop) . 106
number/1 (prop) . 106
atomic/1 (prop) . 106
ground/1 (prop). 107
type/2 (prop) . 107

17 Basic term manipulation 109
17.1 Usage and interface (term_basic) . 109
17.2 Documentation on exports (term_basic) 109

= /2 (prop) . 109
arg/3 (pred) . 109
functor/3 (pred) . 109
=.. /2 (pred) . 110
copy term/2 (pred) . 110
C/3 (pred) . 110

18 Comparing terms . 111
18.1 Usage and interface (term_compare) . 111
18.2 Documentation on exports (term_compare) 111

== /2 (prop) . 111
\== /2 (prop) . 111
@< /2 (prop) . 112
@=< /2 (prop) . 112
@> /2 (prop) . 112
@>= /2 (prop) . 112
compare/3 (pred) . 112

19 Basic predicates handling names of constants
. 115
19.1 Usage and interface (atomic_basic) . 115
19.2 Documentation on exports (atomic_basic) 115

name/2 (pred) . 115
atom codes/2 (pred) . 115
number codes/2 (pred) . 116
number codes/3 (pred) . 116
atom number/2 (pred) . 116
atom length/2 (pred) . 116
atom concat/3 (pred) . 117
sub atom/4 (pred) . 117

vii

20 Arithmetic . 119
20.1 Usage and interface (arithmetic) . 119
20.2 Documentation on exports (arithmetic) 119

is/2 (pred) . 119
< /2 (pred) . 119
=< /2 (pred) . 120
> /2 (pred) . 120
>= /2 (pred) . 120
=:= /2 (pred). 120
=\= /2 (pred) . 120
arithexpression/1 (regtype) . 121

21 Basic file/stream handling 123
21.1 Usage and interface (streams_basic) . 123
21.2 Documentation on exports (streams_basic) 123

open/3 (pred) . 123
open/4 (pred) . 123
open option list/1 (regtype) . 124
close/1 (pred) . 124
set input/1 (pred) . 124
current input/1 (pred) . 124
set output/1 (pred). 125
current output/1 (pred) . 125
character count/2 (pred) . 125
line count/2 (pred) . 125
line position/2 (pred) . 125
flush output/1 (pred) . 126
flush output/0 (pred) . 126
clearerr/1 (pred) . 126
current stream/3 (pred) . 126
stream code/2 (pred) . 126
absolute file name/2 (pred) . 126
absolute file name/7 (pred) . 127
sourcename/1 (regtype) . 127
stream/1 (regtype) . 128
stream alias/1 (regtype) . 128
io mode/1 (regtype) . 128

21.3 Documentation on multifiles (streams_basic) 129
file search path/2 (pred) . 129
library directory/1 (pred) . 129

viii The Ciao Prolog System

22 Basic input/output . 131
22.1 Usage and interface (io_basic) . 131
22.2 Documentation on exports (io_basic) . 131

get code/2 (pred) . 131
get code/1 (pred) . 131
get1 code/2 (pred) . 131
get1 code/1 (pred) . 132
peek code/2 (pred) . 132
peek code/1 (pred) . 132
skip code/2 (pred) . 132
skip code/1 (pred) . 132
skip line/1 (pred) . 132
skip line/0 (pred) . 132
put code/2 (pred) . 133
put code/1 (pred) . 133
nl/1 (pred) . 133
nl/0 (pred) . 133
tab/2 (pred) . 133
tab/1 (pred) . 133
code class/2 (pred) . 134
getct/2 (pred). 134
getct1/2 (pred) . 134
display/2 (pred) . 134
display/1 (pred) . 135
displayq/2 (pred). 135
displayq/1 (pred). 135

23 Exception handling . 137
23.1 Usage and interface (exceptions) . 137
23.2 Documentation on exports (exceptions) 137

catch/3 (pred) . 137
intercept/3 (pred) . 137
throw/1 (pred) . 138
halt/0 (pred) . 138
halt/1 (pred) . 138
abort/0 (pred) . 139

24 Changing system behaviour and various flags
. 141
24.1 Usage and interface (prolog_flags) . 142
24.2 Documentation on exports (prolog_flags) 142

set prolog flag/2 (pred) . 142
current prolog flag/2 (pred) . 142
prolog flag/3 (pred) . 142
push prolog flag/2 (pred) . 143
pop prolog flag/1 (pred) . 143
prompt/2 (pred) . 143
gc/0 (pred) . 143
nogc/0 (pred) . 143
fileerrors/0 (pred) . 143
nofileerrors/0 (pred) . 143

24.3 Documentation on multifiles (prolog_flags) 144
define flag/3 (pred) . 144

ix

25 Fast/concurrent update of facts 145
25.1 Usage and interface (data_facts) . 145
25.2 Documentation on exports (data_facts) 145

asserta fact/1 (pred). 145
asserta fact/2 (pred). 145
assertz fact/1 (pred) . 146
assertz fact/2 (pred) . 146
current fact/1 (pred) . 146
current fact/2 (pred) . 146
retract fact/1 (pred) . 146
retractall fact/1 (pred) . 146
current fact nb/1 (pred) . 147
retract fact nb/1 (pred) . 147
close predicate/1 (pred). 147
open predicate/1 (pred) . 147
set fact/1 (pred) . 147
erase/1 (pred). 147

25.3 Documentation on internals (data_facts). 148
(data)/1 (decl) . 148
(concurrent)/1 (decl) . 148
reference/1 (regtype) . 148

26 Extending the syntax . 149
26.1 Usage and interface (syntax_extensions) 149
26.2 Documentation on internals (syntax_extensions) 149

op/3 (decl) . 149
new declaration/1 (decl) . 149
new declaration/2 (decl) . 149
load compilation module/1 (decl) 150
add sentence trans/1 (decl) . 150
add term trans/1 (decl) . 150
add goal trans/1 (decl) . 151
add clause trans/1 (decl) . 151
translation predname/1 (regtype) 151

27 Message printing primitives 153
27.1 Usage and interface (io_aux) . 153
27.2 Documentation on exports (io_aux) . 153

message/2 (pred) . 153
message lns/4 (pred) . 153
error/1 (pred) . 154
warning/1 (pred) . 154
note/1 (pred) . 154
message/1 (pred) . 154
debug/1 (pred) . 154
inform user/1 (pred). 155
display string/1 (pred) . 155
display list/1 (pred) . 155
display term/1 (pred). 155

27.3 Known bugs and planned improvements (io_aux) 155

x The Ciao Prolog System

28 Attributed variables . 157
28.1 Usage and interface (attributes) . 157
28.2 Documentation on exports (attributes) 157

attach attribute/2 (pred) . 157
get attribute/2 (pred) . 157
update attribute/2 (pred) . 157
detach attribute/1 (pred) . 158

28.3 Documentation on multifiles (attributes) 158
verify attribute/2 (pred) . 158
combine attributes/2 (pred) . 158

28.4 Other information (attributes) . 158

29 Gathering some basic internal info 161
29.1 Usage and interface (system_info) . 161
29.2 Documentation on exports (system_info). 161

get arch/1 (pred) . 161
get os/1 (pred) . 161
this module/1 (pred) . 162
current module/1 (pred) . 162
ciaolibdir/1 (pred) . 162

29.3 Documentation on internals (system_info) 163
internal module id/1 (prop) . 163

30 Other predicates and features defined by default
. 165
30.1 Usage and interface (default_predicates) 165
30.2 Documentation on exports (default_predicates) 165

op/3 (udreexp) . 165
current op/3 (udreexp) . 165
append/3 (udreexp) . 165
delete/3 (udreexp) . 165
select/3 (udreexp) . 165
nth/3 (udreexp) . 166
last/2 (udreexp) . 166
reverse/2 (udreexp). 166
length/2 (udreexp) . 166
use module/1 (udreexp) . 166
use module/2 (udreexp) . 166
ensure loaded/1 (udreexp) . 166
^ /2 (udreexp) . 166
findnsols/5 (udreexp) . 166
findnsols/4 (udreexp) . 166
findall/4 (udreexp) . 166
findall/3 (udreexp) . 166
bagof/3 (udreexp) . 167
setof/3 (udreexp) . 167
wellformed body/3 (udreexp) . 167
(data)/1 (udreexp) . 167
(dynamic)/1 (udreexp) . 167
current predicate/2 (udreexp) . 167
current predicate/1 (udreexp) . 167
clause/3 (udreexp) . 167
clause/2 (udreexp) . 167
abolish/1 (udreexp) . 167
retractall/1 (udreexp) . 167

xi

retract/1 (udreexp) . 167
assert/2 (udreexp) . 168
assert/1 (udreexp) . 168
assertz/2 (udreexp) . 168
assertz/1 (udreexp) . 168
asserta/2 (udreexp). 168
asserta/1 (udreexp). 168
second prompt/2 (udreexp) . 168
read top level/3 (udreexp) . 168
read term/3 (udreexp) . 168
read term/2 (udreexp) . 168
read/2 (udreexp) . 168
read/1 (udreexp) . 168
printable char/1 (udreexp) . 169
prettyvars/1 (udreexp). 169
numbervars/3 (udreexp) . 169
portray clause/1 (udreexp) . 169
portray clause/2 (udreexp) . 169
write list1/1 (udreexp). 169
print/1 (udreexp) . 169
print/2 (udreexp) . 169
write canonical/1 (udreexp) . 169
write canonical/2 (udreexp) . 169
writeq/1 (udreexp) . 169
writeq/2 (udreexp) . 169
write/1 (udreexp) . 170
write/2 (udreexp) . 170
write option/1 (udreexp) . 170
write term/2 (udreexp) . 170
write term/3 (udreexp) . 170
put char/2 (udreexp) . 170
put char/1 (udreexp) . 170
peek char/2 (udreexp) . 170
peek char/1 (udreexp) . 170
get char/2 (udreexp) . 170
get char/1 (udreexp) . 170
put byte/2 (udreexp) . 170
put byte/1 (udreexp) . 171
peek byte/2 (udreexp) . 171
peek byte/1 (udreexp) . 171
get byte/2 (udreexp) . 171
get byte/1 (udreexp) . 171
number chars/2 (udreexp) . 171
atom chars/2 (udreexp) . 171
char code/2 (udreexp) . 171
unify with occurs check/2 (udreexp) 171
sub atom/5 (udreexp) . 171
compound/1 (udreexp) . 171
once/1 (udreexp) . 171
\= /2 (udreexp) . 172
format control/1 (udreexp) . 172
format/3 (udreexp) . 172
format/2 (udreexp) . 172
keylist/1 (udreexp) . 172
keysort/2 (udreexp) . 172
sort/2 (udreexp) . 172

xii The Ciao Prolog System

between/3 (udreexp) . 172
cyg2win/3 (udreexp) . 172
rename file/2 (udreexp) . 172
delete directory/1 (udreexp) . 172
delete file/1 (udreexp) . 172
chmod/3 (udreexp) . 173
chmod/2 (udreexp) . 173
fmode/2 (udreexp) . 173
modif time0/2 (udreexp) . 173
modif time/2 (udreexp) . 173
file properties/6 (udreexp) . 173
file property/2 (udreexp) . 173
file exists/2 (udreexp) . 173
file exists/1 (udreexp) . 173
mktemp/2 (udreexp) . 173
directory files/2 (udreexp) . 173
wait/3 (udreexp) . 173
exec/8 (udreexp) . 174
exec/3 (udreexp) . 174
exec/4 (udreexp) . 174
popen mode/1 (udreexp) . 174
popen/3 (udreexp) . 174
system/2 (udreexp) . 174
system/1 (udreexp) . 174
shell/2 (udreexp) . 174
shell/1 (udreexp) . 174
shell/0 (udreexp) . 174
cd/1 (udreexp) . 174
working directory/2 (udreexp) . 174
make dirpath/1 (udreexp) . 175
make dirpath/2 (udreexp) . 175
make directory/1 (udreexp) . 175
make directory/2 (udreexp) . 175
umask/2 (udreexp) . 175
current executable/1 (udreexp) . 175
current host/1 (udreexp) . 175
get pid/1 (udreexp) . 175
extract paths/2 (udreexp) . 175
setenvstr/2 (udreexp) . 175
getenvstr/2 (udreexp) . 175
datime struct/1 (udreexp) . 175
datime/9 (udreexp) . 176
datime/1 (udreexp) . 176
time/1 (udreexp) . 176
pause/1 (udreexp) . 176
new atom/1 (udreexp) . 176
garbage collect/0 (udreexp) . 176
current atom/1 (udreexp) . 176
predicate property/2 (udreexp) . 176
statistics/2 (udreexp) . 176
statistics/0 (udreexp) . 176
close file/1 (udreexp) . 176
told/0 (udreexp) . 176
telling/1 (udreexp) . 177
tell/1 (udreexp) . 177
seen/0 (udreexp) . 177

xiii

seeing/1 (udreexp) . 177
see/1 (udreexp) . 177
current key/2 (udreexp) . 177
recorded/3 (udreexp) . 177
recordz/3 (udreexp) . 177
recorda/3 (udreexp) . 177
ttydisplay string/1 (udreexp) . 177
ttyskipeol/0 (udreexp) . 177
ttydisplayq/1 (udreexp) . 177
ttydisplay/1 (udreexp) . 178
ttyflush/0 (udreexp) . 178
ttytab/1 (udreexp) . 178
ttyskip/1 (udreexp) . 178
ttyput/1 (udreexp) . 178
ttynl/0 (udreexp) . 178
ttyget1/1 (udreexp) . 178
ttyget/1 (udreexp) . 178

PART III - ISO-Prolog library (iso) 179

31 ISO-Prolog package . 181
31.1 Usage and interface (iso) . 181

32 All solutions predicates . 183
32.1 Usage and interface (aggregates) . 183
32.2 Documentation on exports (aggregates) 183

setof/3 (pred) . 183
bagof/3 (pred) . 184
findall/3 (pred) . 184
findall/4 (pred) . 184
findnsols/4 (pred) . 184
findnsols/5 (pred) . 185
^ /2 (pred) . 185

33 Dynamic predicates. 187
33.1 Usage and interface (dynamic) . 187
33.2 Documentation on exports (dynamic) . 187

asserta/1 (pred) . 187
asserta/2 (pred) . 187
assertz/1 (pred) . 188
assertz/2 (pred) . 188
assert/1 (pred) . 188
assert/2 (pred) . 188
retract/1 (pred) . 188
retractall/1 (pred) . 189
abolish/1 (pred) . 189
clause/2 (pred) . 189
clause/3 (pred) . 189
current predicate/1 (pred) . 190
current predicate/2 (pred) . 190
(dynamic)/1 (pred) . 190
(data)/1 (pred) . 190
wellformed body/3 (pred) . 190

33.3 Documentation on multifiles (dynamic) . 191
do on abolish/1 (pred) . 191

xiv The Ciao Prolog System

34 Term input . 193
34.1 Usage and interface (read) . 193
34.2 Documentation on exports (read) . 193

read/1 (pred) . 193
read/2 (pred) . 193
read term/2 (pred) . 193
read term/3 (pred) . 194
read top level/3 (pred) . 194
second prompt/2 (pred) . 194

34.3 Documentation on multifiles (read) . 194
define flag/3 (pred) . 194

34.4 Documentation on internals (read) . 195
read option/1 (regtype) . 195

34.5 Known bugs and planned improvements (read) 195

35 Term output . 197
35.1 Usage and interface (write) . 197
35.2 Documentation on exports (write) . 197

write term/3 (pred) . 197
write term/2 (pred) . 197
write option/1 (prop) . 198
write/2 (pred) . 198
write/1 (pred) . 199
writeq/2 (pred) . 199
writeq/1 (pred) . 199
write canonical/2 (pred) . 199
write canonical/1 (pred) . 199
print/2 (pred) . 199
print/1 (pred) . 200
write list1/1 (pred) . 200
portray clause/2 (pred) . 200
portray clause/1 (pred) . 200
numbervars/3 (pred) . 200
prettyvars/1 (pred) . 200
printable char/1 (pred) . 201

35.3 Documentation on multifiles (write) . 201
define flag/3 (pred) . 201
portray attribute/2 (pred) . 201
portray/1 (pred) . 201

36 Defining operators . 203
36.1 Usage and interface (operators) . 203
36.2 Documentation on exports (operators) . 203

op/3 (pred) . 203
current op/3 (pred) . 204
current prefixop/3 (pred) . 204
current infixop/4 (pred) . 204
current postfixop/3 (pred) . 204

xv

37 The Iso Byte Char module 205
37.1 Usage and interface (iso_byte_char) . 205
37.2 Documentation on exports (iso_byte_char) 205

char code/2 (pred) . 205
atom chars/2 (pred) . 205
number chars/2 (pred) . 205
get byte/1 (pred) . 205
get byte/2 (pred) . 205
peek byte/1 (pred) . 206
peek byte/2 (pred) . 206
put byte/1 (pred) . 206
put byte/2 (pred) . 206
get char/1 (pred) . 206
get char/2 (pred) . 206
peek char/1 (pred) . 206
peek char/2 (pred) . 206
put char/1 (pred) . 207
put char/2 (pred) . 207

38 Miscellaneous ISO Prolog predicates 209
38.1 Usage and interface (iso_misc) . 209
38.2 Documentation on exports (iso_misc) . 209

\= /2 (pred) . 209
once/1 (pred) . 209
compound/1 (pred) . 209
sub atom/5 (pred) . 209
unify with occurs check/2 (pred) 210

39 Incomplete ISO Prolog predicates 211
39.1 Usage and interface (iso_incomplete) . 211
39.2 Documentation on exports (iso_incomplete) 211

close/2 (pred) . 211
stream property/2 (pred) . 211

PART IV - Classic Prolog library (classic) 213

40 Definite clause grammars 215
40.1 Usage and interface (dcg) . 217

41 Definite clause grammars (expansion) 219
41.1 Usage and interface (dcg_expansion) . 219
41.2 Documentation on exports (dcg_expansion) 219

phrase/2 (pred) . 219
phrase/3 (pred) . 219
dcg translation/2 (pred) . 219

42 Formatted output . 221
42.1 Usage and interface (format) . 221
42.2 Documentation on exports (format) . 222

format/2 (pred) . 222
format/3 (pred) . 222
format control/1 (regtype) . 222

xvi The Ciao Prolog System

43 List processing . 227
43.1 Usage and interface (lists) . 227
43.2 Documentation on exports (lists) . 227

nonsingle/1 (pred). 227
append/3 (pred) . 227
reverse/2 (pred) . 227
reverse/3 (pred) . 228
delete/3 (pred) . 228
delete non ground/3 (pred) . 228
select/3 (pred) . 228
length/2 (pred) . 228
nth/3 (pred) . 229
add after/4 (pred) . 229
add before/4 (pred) . 229
list1/2 (prop) . 229
dlist/3 (pred) . 229
list concat/2 (pred). 229
list insert/2 (pred) . 230
insert last/3 (pred) . 230
contains ro/2 (pred) . 230
contains1/2 (pred) . 230
nocontainsx/2 (pred) . 230
last/2 (pred) . 230
list lookup/3 (pred) . 230
list lookup/4 (pred) . 230
intset insert/3 (pred) . 230
intset delete/3 (pred) . 230
intset in/2 (pred) . 231
intset sequence/3 (pred) . 231
intersection/3 (pred) . 231
union/3 (pred) . 231
difference/3 (pred) . 231
sublist/2 (prop) . 231
subordlist/2 (prop) . 231
equal lists/2 (pred) . 231
list to list of lists/2 (pred) . 232
powerset/2 (pred) . 232
cross product/2 (pred) . 232

44 Sorting lists . 233
44.1 Usage and interface (sort) . 233
44.2 Documentation on exports (sort) . 233

sort/2 (pred) . 233
keysort/2 (pred) . 233
keylist/1 (regtype) . 233

44.3 Documentation on internals (sort) . 234
keypair/1 (regtype) . 234

xvii

45 compiler (library) . 235
45.1 Usage and interface (compiler) . 235
45.2 Documentation on exports (compiler) . 235

make po/1 (pred) . 235
ensure loaded/1 (pred) . 235
use module/1 (pred) . 235
use module/2 (pred) . 235
use module/3 (pred) . 235
unload/1 (pred) . 235
set debug mode/1 (pred) . 236
set nodebug mode/1 (pred) . 236
set debug module/1 (pred) . 236
set nodebug module/1 (pred) . 236
set debug module source/1 (pred) 236
mode of module/2 (pred) . 236
module of/2 (pred) . 236

46 Enumeration of integers inside a range 237
46.1 Usage and interface (between) . 237
46.2 Documentation on exports (between) . 237

between/3 (pred) . 237

47 Operating system utilities 239
47.1 Usage and interface (system) . 239
47.2 Documentation on exports (system) . 239

pause/1 (pred) . 239
time/1 (pred) . 239
datime/1 (pred) . 239
datime/9 (pred) . 240
datime struct/1 (regtype) . 240
getenvstr/2 (pred) . 240
setenvstr/2 (pred) . 240
extract paths/2 (pred) . 240
get pid/1 (pred) . 241
current host/1 (pred) . 241
current executable/1 (pred) . 241
umask/2 (pred) . 241
make directory/2 (pred) . 241
make directory/1 (pred) . 241
make dirpath/2 (pred) . 242
make dirpath/1 (pred) . 242
working directory/2 (pred) . 242
cd/1 (pred) . 242
shell/0 (pred) . 242
shell/1 (pred) . 242
shell/2 (pred) . 243
system/1 (pred) . 243
system/2 (pred) . 243
popen/3 (pred) . 243
popen mode/1 (regtype) . 243
exec/4 (pred) . 243
exec/3 (pred) . 243
exec/8 (pred) . 243
wait/3 (pred) . 244
directory files/2 (pred). 244

xviii The Ciao Prolog System

mktemp/2 (pred) . 244
file exists/1 (pred). 244
file exists/2 (pred). 245
file property/2 (pred) . 245
file properties/6 (pred) . 245
modif time/2 (pred) . 245
modif time0/2 (pred) . 245
fmode/2 (pred) . 246
chmod/2 (pred) . 246
chmod/3 (pred) . 246
delete file/1 (pred) . 246
delete directory/1 (pred) . 246
rename file/2 (pred) . 246
cyg2win/3 (pred) . 247

47.3 Documentation on multifiles (system) . 247
define flag/3 (pred) . 247

47.4 Known bugs and planned improvements (system) 247

48 Prolog system internal predicates. 249
48.1 Usage and interface (prolog_sys) . 249
48.2 Documentation on exports (prolog_sys) 249

statistics/0 (pred) . 249
statistics/2 (pred) . 249
predicate property/2 (pred) . 250
current atom/1 (pred) . 251
garbage collect/0 (pred) . 251
new atom/1 (pred) . 251

48.3 Documentation on internals (prolog_sys). 251
time option/1 (regtype) . 251
memory option/1 (regtype) . 251
garbage collection option/1 (regtype) 251
symbol option/1 (regtype) . 251
time result/1 (regtype) . 252
memory result/1 (regtype) . 252
gc result/1 (regtype) . 252
symbol result/1 (regtype) . 252

48.4 Known bugs and planned improvements (prolog_sys) 252

49 DEC-10 Prolog file IO . 253
49.1 Usage and interface (dec10_io) . 253
49.2 Documentation on exports (dec10_io) . 253

see/1 (pred) . 253
seeing/1 (pred) . 253
seen/0 (pred) . 253
tell/1 (pred) . 253
telling/1 (pred) . 253
told/0 (pred) . 253
close file/1 (pred) . 253

xix

50 Quintus-like internal database 255
50.1 Usage and interface (old_database) . 255
50.2 Documentation on exports (old_database) 255

recorda/3 (pred) . 255
recordz/3 (pred) . 255
recorded/3 (pred) . 255
current key/2 (pred) . 256

51 ttyout (library) . 257
51.1 Usage and interface (ttyout) . 257
51.2 Documentation on exports (ttyout) . 257

ttyget/1 (pred) . 257
ttyget1/1 (pred). 257
ttynl/0 (pred) . 257
ttyput/1 (pred) . 257
ttyskip/1 (pred) . 257
ttytab/1 (pred) . 257
ttyflush/0 (pred) . 257
ttydisplay/1 (pred) . 258
ttydisplayq/1 (pred) . 258
ttyskipeol/0 (pred) . 258
ttydisplay string/1 (pred) . 258

52 Enabling operators at run-time 259
52.1 Usage and interface (runtime_ops) . 259

PART V - Annotated Prolog library (assertions)
. 261

53 The Ciao assertion package 263
53.1 More info . 263
53.2 Some attention points . 263
53.3 Usage and interface (assertions) . 264
53.4 Documentation on new declarations (assertions) 264

pred/1 (decl) . 264
pred/2 (decl) . 265
calls/1 (decl) . 265
calls/2 (decl) . 265
success/1 (decl) . 265
success/2 (decl) . 265
comp/1 (decl) . 266
comp/2 (decl) . 266
prop/1 (decl) . 266
prop/2 (decl) . 267
entry/1 (decl) . 267
modedef/1 (decl) . 267
decl/1 (decl) . 268
decl/2 (decl) . 268
comment/2 (decl) . 268

53.5 Documentation on exports (assertions) 268
check/1 (pred) . 268
trust/1 (pred) . 269
true/1 (pred) . 269
false/1 (pred) . 269

xx The Ciao Prolog System

54 Types and properties related to assertions . . 271
54.1 Usage and interface (assertions_props) 271
54.2 Documentation on exports (assertions_props) 271

assrt body/1 (regtype) . 271
head pattern/1 (prop) . 272
complex arg property/1 (regtype) 272
property conjunction/1 (regtype) 273
property starterm/1 (regtype) . 273
complex goal property/1 (regtype) 273
nabody/1 (prop) . 274
dictionary/1 (regtype) . 274
c assrt body/1 (regtype) . 274
s assrt body/1 (regtype) . 274
g assrt body/1 (regtype) . 275
assrt status/1 (regtype) . 275
assrt type/1 (regtype) . 275
predfunctor/1 (regtype) . 276
propfunctor/1 (regtype) . 276
docstring/1 (prop) . 276

55 Declaring regular types . 277
55.1 Defining properties . 277
55.2 Usage and interface (regtypes) . 280
55.3 Documentation on new declarations (regtypes) 280

regtype/1 (decl) . 280
regtype/2 (decl) . 281

56 Properties which are native to analyzers 283
56.1 Usage and interface (native_props) . 283
56.2 Documentation on exports (native_props) 283

covered/2 (prop) . 283
linear/1 (prop) . 283
mshare/1 (prop) . 284
nonground/1 (prop) . 284
fails/1 (prop) . 284
not fails/1 (prop) . 284
possibly fails/1 (prop) . 284
covered/1 (prop) . 285
not covered/1 (prop) . 285
is det/1 (prop) . 285
non det/1 (prop) . 285
possibly nondet/1 (prop) . 285
mut exclusive/1 (prop) . 285
not mut exclusive/1 (prop) . 285
size lb/2 (prop) . 286
size ub/2 (prop) . 286
steps lb/2 (prop) . 286
steps ub/2 (prop) . 286
steps/2 (prop) . 286
finite solutions/1 (prop) . 287
terminates/1 (prop) . 287
indep/1 (prop) . 287
indep/2 (prop) . 287
ground/1 (prop). 287
nonvar/1 (prop) . 287

xxi

var/1 (prop) . 288
regtype/1 (udreexp) . 288
native/2 (udreexp) . 288
native/1 (udreexp) . 288
sideff/2 (udreexp) . 288
term/1 (udreexp). 288
int/1 (udreexp) . 288
nnegint/1 (udreexp) . 288
flt/1 (udreexp) . 289
num/1 (udreexp) . 289
atm/1 (udreexp) . 289
struct/1 (udreexp) . 289
gnd/1 (udreexp) . 289
instance/2 (udreexp) . 289

57 ISO-Prolog modes . 291
57.1 Usage and interface (isomodes) . 291
57.2 Documentation on new modes (isomodes). 291

(+)/1 (modedef) . 291
(@)/1 (modedef) . 291
(-)/1 (modedef) . 291
(?)/1 (modedef) . 291
* /1 (modedef) . 291
(+)/2 (modedef) . 292
(@)/2 (modedef) . 292
(-)/2 (modedef) . 292
(?)/2 (modedef) . 292
* /2 (modedef) . 292

58 Classical Prolog modes . 293
58.1 Usage and interface (basicmodes) . 293
58.2 Documentation on new modes (basicmodes) 293

(+)/1 (modedef) . 293
(-)/1 (modedef) . 293
(?)/1 (modedef) . 293
(@)/1 (modedef) . 293
in/1 (modedef) . 294
out/1 (modedef) . 294
go/1 (modedef) . 294
(+)/2 (modedef) . 294
(-)/2 (modedef) . 294
(?)/2 (modedef) . 294
(@)/2 (modedef) . 295
in/2 (modedef) . 295
out/2 (modedef) . 295
go/2 (modedef) . 295

59 Run-time checking of assertions 297
59.1 Usage and interface (rtchecks) . 297
59.2 Documentation on exports (rtchecks) . 297

expr/1 (regtype) . 297
59.3 Documentation on internals (rtchecks) . 297

check/1 (pred) . 297
59.4 Known bugs and planned improvements (rtchecks) 298

xxii The Ciao Prolog System

PART VI - Ciao Prolog library miscellanea 299

60 Structured stream handling 301
60.1 Usage and interface (streams) . 301
60.2 Documentation on exports (streams) . 301

open null stream/1 (pred) . 301
open input/2 (pred) . 301
close input/1 (pred) . 301
open output/2 (pred) . 301
close output/1 (pred) . 301

61 Dictionaries . 303
61.1 Usage and interface (dict) . 303
61.2 Documentation on exports (dict) . 303

dictionary/1 (prop) . 303
dictionary/5 (pred) . 303
dic node/2 (pred) . 303
dic lookup/3 (pred) . 303
dic lookup/4 (pred) . 304
dic get/3 (pred) . 304
dic replace/4 (pred) . 304

62 String processing . 305
62.1 Usage and interface (strings) . 305
62.2 Documentation on exports (strings) . 305

get line/2 (pred) . 305
get line/1 (pred) . 305
write string/2 (pred) . 305
write string/1 (pred) . 305
whitespace/2 (pred) . 305
whitespace0/2 (pred) . 306
string/3 (pred) . 306

62.3 Documentation on internals (strings) . 306
line/1 (prop) . 306

63 Printing status and error messages 307
63.1 Usage and interface (messages) . 307
63.2 Documentation on exports (messages) . 307

error message/1 (pred) . 307
error message/2 (pred) . 307
error message/3 (pred) . 308
warning message/1 (pred) . 308
warning message/2 (pred) . 308
warning message/3 (pred) . 308
note message/1 (pred) . 308
note message/2 (pred) . 309
note message/3 (pred) . 309
simple message/1 (pred) . 309
simple message/2 (pred) . 309
optional message/2 (pred) . 310
optional message/3 (pred) . 310
debug message/1 (pred) . 310
debug message/2 (pred) . 310
debug goal/2 (pred) . 310

xxiii

debug goal/3 (pred) . 311
63.3 Documentation on multifiles (messages) 311

issue debug messages/1 (pred) . 311
63.4 Documentation on internals (messages) . 311

location/1 (regtype) . 311
63.5 Known bugs and planned improvements (messages) 311

64 Accessing and redirecting the stream aliases
. 313
64.1 Usage and interface (io_alias_redirection) 313
64.2 Documentation on exports (io_alias_redirection) 313

set stream/3 (pred). 313
get stream/2 (pred) . 313

65 Atom to term conversion 315
65.1 Usage and interface (atom2term) . 315
65.2 Documentation on exports (atom2term) . 315

atom2term/2 (pred) . 315
string2term/2 (pred) . 315
parse term/3 (pred) . 315

65.3 Known bugs and planned improvements (atom2term) 315

66 ctrlcclean (library) . 317
66.1 Usage and interface (ctrlcclean) . 317
66.2 Documentation on exports (ctrlcclean) 317

ctrlc clean/1 (pred) . 317
delete on ctrlc/2 (pred) . 317
ctrlcclean/0 (pred) . 317

67 errhandle (library) . 319
67.1 Usage and interface (errhandle) . 319
67.2 Documentation on exports (errhandle) . 319

error protect/1 (pred) . 319
handle error/2 (pred) . 319

68 Fast reading and writing of terms 321
68.1 Usage and interface (fastrw) . 321
68.2 Documentation on exports (fastrw) . 321

fast read/1 (pred) . 321
fast write/1 (pred) . 321
fast read/2 (pred) . 321
fast write/2 (pred) . 321
fast write to string/3 (pred) . 322

68.3 Known bugs and planned improvements (fastrw) 322

69 File name manipulation . 323
69.1 Usage and interface (filenames) . 323
69.2 Documentation on exports (filenames) . 323

no path file name/2 (pred) . 323
file name extension/3 (pred) . 324
basename/2 (pred) . 324
extension/2 (pred) . 324

xxiv The Ciao Prolog System

70 Symbolic filenames . 325
70.1 Usage and interface (symfnames) . 325
70.2 Documentation on exports (symfnames) . 325

open/3 (pred) . 325
70.3 Documentation on multifiles (symfnames) 325

alias file/1 (pred). 325
file alias/2 (pred). 326

70.4 Other information (symfnames). 326

71 File I/O utilities . 327
71.1 Usage and interface (file_utils) . 327
71.2 Documentation on exports (file_utils) 327

file terms/2 (pred) . 327
copy stdout/1 (pred) . 328
file to string/2 (pred) . 328
stream to string/2 (pred) . 328

72 File locks . 329
72.1 Usage and interface (file_locks) . 329
72.2 Documentation on exports (file_locks) 329

lock file/3 (pred) . 329
unlock file/2 (pred) . 329

72.3 Known bugs and planned improvements (file_locks) 329

73 Term manipulation utilities 331
73.1 Usage and interface (terms) . 331
73.2 Documentation on exports (terms) . 331

copy args/3 (pred) . 331
arg/2 (pred) . 331
atom concat/2 (pred) . 331

74 Term checking utilities . 333
74.1 Usage and interface (terms_check) . 333
74.2 Documentation on exports (terms_check). 333

ask/2 (pred) . 333
instance/2 (prop) . 333
variant/2 (pred) . 333
most general instance/3 (pred) . 333
most specific generalization/3 (pred) 333

74.3 Other information (terms_check) . 334

75 Sets of variables in terms 335
75.1 Usage and interface (terms_vars) . 335
75.2 Documentation on exports (terms_vars) 335

varset/2 (pred) . 335
varsbag/3 (pred) . 335
varset in args/2 (pred) . 335

xxv

76 A simple pretty-printer for Ciao programs . . 337
76.1 Usage and interface (pretty_print) . 337
76.2 Documentation on exports (pretty_print) 337

pretty print/2 (pred) . 337
pretty print/3 (pred) . 337

76.3 Documentation on internals (pretty_print) 338
clauses/1 (regtype) . 338
clause/1 (regtype) . 338
clterm/1 (regtype) . 338
body/1 (regtype) . 338
flag/1 (regtype) . 338

77 Pretty-printing assertions 341
77.1 Usage and interface (assrt_write) . 341
77.2 Documentation on exports (assrt_write). 341

write assertion/6 (pred). 341
write assertion as comment/6 (pred) 341

78 The Ciao library browser 343
78.1 Usage and interface (librowser) . 343
78.2 Documentation on exports (librowser) . 344

update/0 (pred) . 344
browse/2 (pred) . 344
where/1 (pred) . 344
describe/1 (pred) . 345
system lib/1 (pred) . 345
apropos/1 (pred) . 345

78.3 Documentation on internals (librowser) 346
apropos spec/1 (regtype) . 346

79 Code translation utilities 347
79.1 Usage and interface (expansion_tools) . 347
79.2 Documentation on exports (expansion_tools) 347

imports meta pred/3 (pred) . 347
body expander/6 (pred) . 347
arg expander/6 (pred) . 348

79.3 Documentation on internals (expansion_tools) 349
expander pred/1 (prop) . 349

79.4 Known bugs and planned improvements (expansion_tools)
. 349

xxvi The Ciao Prolog System

80 Low-level concurrency/multithreading primitives
. 351
80.1 Usage and interface (concurrency) . 351
80.2 Documentation on exports (concurrency). 351

eng call/4 (pred) . 351
eng call/3 (pred) . 352
eng backtrack/2 (pred) . 352
eng cut/1 (pred) . 352
eng release/1 (pred) . 352
eng wait/1 (pred) . 353
eng kill/1 (pred) . 353
eng killothers/0 (pred) . 353
eng self/1 (pred) . 353
goal id/1 (pred) . 353
eng goal id/1 (pred) . 354
eng status/0 (pred) . 354
lock atom/1 (pred) . 354
unlock atom/1 (pred) . 354
atom lock state/2 (pred) . 354
(concurrent)/1 (pred) . 355

80.3 Known bugs and planned improvements (concurrency) 355

81 All solutions concurrent predicates 357
81.1 Usage and interface (conc_aggregates) . 357
81.2 Documentation on exports (conc_aggregates) 357

findall/3 (pred) . 357
81.3 Known bugs and planned improvements (conc_aggregates)

. 357

82 The socket interface . 359
82.1 Usage and interface (sockets) . 359
82.2 Documentation on exports (sockets) . 359

connect to socket/3 (pred) . 359
socket recv/2 (pred) . 359
socket type/1 (regtype) . 360
shutdown type/1 (regtype) . 360
hostname address/2 (pred) . 360
socket shutdown/2 (pred) . 360
socket recv code/3 (pred) . 360
socket send/2 (pred) . 360
select socket/5 (pred) . 361
socket accept/2 (pred) . 361
bind socket/3 (pred) . 361
connect to socket type/4 (pred) 362

83 Sockets I/O . 363
83.1 Usage and interface (sockets_io) . 363
83.2 Documentation on exports (sockets_io) 363

serve socket/3 (pred) . 363
safe write/2 (pred) . 363

xxvii

84 The Ciao Make Package 365
84.1 Usage and interface (make) . 365
84.2 Other information (make) . 365

84.2.1 The Dependency Rules . 365
84.2.2 Specifying Paths . 367
84.2.3 Documenting Rules . 367
84.2.4 An Example of a Makefile . 367

85 Predicates Available When Using The Make
Package . 371
85.1 Usage and interface (make_rt) . 371
85.2 Documentation on exports (make_rt) . 371

make/1 (pred) . 371
target/1 (regtype) . 371
make option/1 (pred) . 371
verbose message/2 (pred) . 372
call unknown/1 (pred) . 372
dyn load cfg module into make/1 (pred) 372

86 system extra (library) . 373
86.1 Usage and interface (system_extra) . 373
86.2 Documentation on exports (system_extra) 373

del dir if empty/1 (pred) . 373
move files/2 (pred) . 373
move file/2 (pred) . 373
copy files/2 (pred) . 373
copy file/2 (pred) . 374
cat/2 (pred) . 374
cat append/2 (pred) . 374
convert permissions/4 (pred) . 374
symbolic link/2 (pred) . 374
symbolic link/3 (pred) . 374
delete files/1 (pred) . 374
del file nofail/1 (pred) . 374
del file nofail/2 (pred) . 374
del endings nofail/2 (pred) . 374
ls/3 (pred) . 375
ls/2 (pred) . 375
filter alist pattern/3 (pred) . 375
(-)/1 (pred) . 375
do/2 (pred) . 375
set perms/2 (pred) . 375
readf/2 (pred) . 375
datime string/1 (pred) . 375
datime string/2 (pred) . 375
all values/2 (pred). 375
no tr nl/2 (pred) . 376
call unknown/1 (pred) . 376
replace strings in file/3 (pred) . 376
writef/3 (pred) . 376
writef/2 (pred) . 376
cyg2win/3 (udreexp) . 376
rename file/2 (udreexp) . 376
delete directory/1 (udreexp) . 376
delete file/1 (udreexp) . 376

xxviii The Ciao Prolog System

chmod/3 (udreexp) . 376
chmod/2 (udreexp) . 376
fmode/2 (udreexp) . 377
modif time0/2 (udreexp) . 377
modif time/2 (udreexp) . 377
file properties/6 (udreexp) . 377
file property/2 (udreexp) . 377
file exists/2 (udreexp) . 377
file exists/1 (udreexp) . 377
mktemp/2 (udreexp) . 377
directory files/2 (udreexp) . 377
wait/3 (udreexp) . 377
exec/8 (udreexp) . 377
exec/3 (udreexp) . 378
exec/4 (udreexp) . 378
popen mode/1 (udreexp) . 378
popen/3 (udreexp) . 378
system/2 (udreexp) . 378
system/1 (udreexp) . 378
shell/2 (udreexp) . 378
shell/1 (udreexp) . 378
shell/0 (udreexp) . 378
cd/1 (udreexp) . 378
working directory/2 (udreexp) . 378
make dirpath/1 (udreexp) . 378
make dirpath/2 (udreexp) . 379
make directory/1 (udreexp) . 379
make directory/2 (udreexp) . 379
umask/2 (udreexp) . 379
current executable/1 (udreexp) . 379
current host/1 (udreexp) . 379
get pid/1 (udreexp) . 379
extract paths/2 (udreexp) . 379
setenvstr/2 (udreexp) . 379
getenvstr/2 (udreexp) . 379
datime struct/1 (udreexp) . 379
datime/9 (udreexp) . 379
datime/1 (udreexp) . 380
time/1 (udreexp) . 380
pause/1 (udreexp) . 380

PART VII - Ciao Prolog extensions 381

87 Pure Prolog package . 383
87.1 Usage and interface (pure) . 384
87.2 Known bugs and planned improvements (pure) 384

88 Multiple Argument Indexing 385
88.1 Usage and interface (indexer) . 385
88.2 Documentation on internals (indexer) . 385

index/1 (decl) . 385
indexspecs/1 (regtype) . 386
argspec/1 (regtype) . 386
hash term/2 (pred) . 386

xxix

89 Higher-order . 387
89.1 Usage and interface (hiord_rt) . 387
89.2 Documentation on exports (hiord_rt) . 387

call/2 (pred) . 387

90 Higher-order predicates . 389
90.1 Usage and interface (hiordlib) . 389
90.2 Documentation on exports (hiordlib) . 389

map/3 (pred) . 389
foldl/4 (pred) . 389
minimum/3 (pred) . 389

91 Terms with named arguments -records/feature
terms . 391
91.1 Usage and interface (argnames) . 391
91.2 Documentation on new declarations (argnames) 391

argnames/1 (decl) . 391
91.3 Other information (argnames) . 392

91.3.1 Using argument names in a toy database 392
91.3.2 Complete code for the zebra example 393

91.4 Known bugs and planned improvements (argnames) 394

92 Functional notation . 395
92.1 Usage and interface (functions) . 396
92.2 Known bugs and planned improvements (functions) 396

93 global (library) . 397
93.1 Usage and interface (global) . 397
93.2 Documentation on exports (global) . 397

set global/2 (pred) . 397
get global/2 (pred) . 397
push global/2 (pred) . 397
pop global/2 (pred) . 397
del global/1 (pred) . 397

94 Independent and-parallel execution 399
94.1 Usage and interface (andprolog) . 399
94.2 Documentation on internals (andprolog) 399

& /2 (pred) . 399
active agents/1 (pred) . 399
indep/2 (pred) . 399
indep/1 (pred) . 400

94.3 Known bugs and planned improvements (andprolog) 400

95 Andorra execution. 401
95.1 Usage and interface (andorra) . 401
95.2 Documentation on new declarations (andorra) 401

determinate/2 (decl) . 401
95.3 Documentation on exports (andorra) . 402

detcond/1 (regtype) . 402
path/1 (regtype) . 403

95.4 Other information (andorra) . 403

xxx The Ciao Prolog System

96 Call on determinate . 405
96.1 Usage and interface (det_hook_rt) . 405
96.2 Documentation on exports (det_hook_rt). 405

det try/3 (pred) . 405
96.3 Documentation on internals (det_hook_rt) 405

!!/0 (pred) . 405
96.4 Other information (det_hook_rt) . 406
96.5 Known bugs and planned improvements (det_hook_rt) 406

97 Miscellaneous predicates 407
97.1 Usage and interface (odd) . 407
97.2 Documentation on exports (odd) . 407

setarg/3 (pred) . 407
undo/1 (pred). 407

98 Delaying predicates (freeze) 409
98.1 Usage and interface (freeze) . 409
98.2 Documentation on exports (freeze) . 409

freeze/2 (pred) . 409
frozen/2 (pred). 409

99 Delaying predicates (when) 411
99.1 Usage and interface (when) . 412
99.2 Documentation on exports (when) . 412

when/2 (pred) . 412
wakeup exp/1 (regtype) . 412

99.3 Known bugs and planned improvements (when) 413

100 Active modules (high-level distributed
execution) . 415

100.0.1 Active module name servers . 416
100.0.2 Active modules as agents . 417

100.1 Usage and interface (actmods) . 418
100.2 Documentation on new declarations (actmods) 418

use active module/2 (decl) . 418
100.3 Known bugs and planned improvements (actmods) 418

101 Breadth-first execution 419
101.1 Usage and interface (bf) . 419
101.2 Known bugs and planned improvements (bf) 420

102 Iterative-deepening execution 421
102.1 Usage and interface (id) . 422

103 Constraint programming over rationals 423
103.1 Usage and interface (clpq) . 423
103.2 Other information (clpq) . 423

103.2.1 Some CLP(Q) examples . 423
103.3 Known bugs and planned improvements (clpq) 424

xxxi

104 Constraint programming over reals 425
104.1 Usage and interface (clpr) . 425
104.2 Other information (clpr) . 425

104.2.1 Some CLP(R) examples . 425
104.3 Known bugs and planned improvements (clpr) 427

105 Fuzzy Prolog . 429
105.1 Usage and interface (fuzzy) . 429
105.2 Documentation on new declarations (fuzzy) 430

aggr/1 (decl) . 430
105.3 Documentation on exports (fuzzy) . 430

:# /2 (pred) . 430
fuzzy predicate/1 (pred) . 430
fuzzy/1 (pred) . 430
fnot/1 (pred) . 431
:~ /2 (pred) . 431
fuzzybody/1 (prop) . 432
faggregator/1 (regtype) . 432
=> /4 (pred) . 432

105.4 Other information (fuzzy) . 433
105.5 Known bugs and planned improvements (fuzzy) 433

106 Object oriented programming 435
106.1 Early examples. 435
106.2 Recommendations on when to use objects 439
106.3 Limitations on object usage . 439

107 Declaring classes and interfaces 441
107.1 Usage and interface (class) . 441
107.2 Documentation on new declarations (class) 442

export/1 (decl) . 442
public/1 (decl) . 442
inheritable/1 (decl) . 442
(data)/1 (decl) . 442
(dynamic)/1 (decl) . 443
(concurrent)/1 (decl) . 443
inherit class/1 (decl) . 443
implements/1 (decl) . 444
virtual/1 (decl) . 444

107.3 Documentation on exports (class) . 445
inherited/1 (pred) . 445
self/1 (pred) . 445
constructor/0 (pred) . 445
destructor/0 (pred) . 446

107.4 Other information (class) . 446
107.4.1 Class and Interface error reporting at compile time

. 447
107.4.2 Class and Interface error reporting at run time 450
107.4.3 Normal Prolog module system interaction 450

107.5 Known bugs and planned improvements (class) 451

xxxii The Ciao Prolog System

108 Compile-time usage of objects 453
108.1 Usage and interface (objects) . 453
108.2 Documentation on new declarations (objects) 453

use class/1 (decl) . 453
instance of/2 (decl) . 453
new/2 (decl) . 454

108.3 Other information (objects) . 454
108.3.1 Error reporting at compile time (objects) 455
108.3.2 Error reporting at run time (objects) 457

109 Run time usage of objects 459
109.1 Usage and interface (objects_rt) . 459
109.2 Documentation on exports (objects_rt) 459

new/2 (pred) . 459
instance of/2 (pred) . 460
derived from/2 (pred) . 461
interface/2 (pred) . 461
instance codes/2 (pred) . 462
destroy/1 (pred) . 462
use class/1 (pred) . 462
constructor/1 (prop). 463
class name/1 (prop) . 463
interface name/1 (prop) . 463
instance id/1 (prop) . 463
class source/1 (prop) . 463
interface source/1 (prop) . 463
method spec/1 (prop) . 463
virtual method spec/1 (prop) . 463

109.3 Known bugs and planned improvements (objects_rt) 464

110 The Ciao Remote Services Package 465
110.1 Usage and interface (remote) . 465
110.2 Documentation on exports (remote) . 465

(@)/2 (udreexp) . 465
(@)/2 (udreexp) . 465
server stop/1 (udreexp) . 465
server stop/1 (udreexp) . 465
server trace/1 (udreexp) . 465
server trace/1 (udreexp) . 465
server notrace/1 (udreexp) . 465
server notrace/1 (udreexp) . 465

110.3 Known bugs and planned improvements (remote) 466

PART VIII - Interfaces to other languages and
systems . 467

xxxiii

111 Foreign Language Interface 469
111.1 Declaration of Types . 469
111.2 Equivalence between Ciao Prolog and C types 469
111.3 Equivalence between Ciao Prolog and C modes 470
111.4 Custom access to Prolog from C . 470

111.4.1 Term construction . 471
111.4.2 Testing the Type of a Term . 472
111.4.3 Term navigation . 472
111.4.4 Testing for Equality and Performing Unification . . . 473
111.4.5 Raising Exceptions . 473
111.4.6 Creating and disposing of memory chunks 474
111.4.7 Calling Prolog from C . 474

111.5 Examples . 474
111.5.1 Mathematical functions . 475
111.5.2 Addresses and C pointers . 475
111.5.3 Lists of bytes and buffers . 475
111.5.4 Lists of integers . 476
111.5.5 Strings and atoms . 476
111.5.6 Arbitrary Terms . 477
111.5.7 Exceptions . 477
111.5.8 Testing number types and using unbound length

integers . 478
111.6 Usage and interface (foreign_interface) 478

112 Foreign Language Interface Properties 479
112.1 Usage and interface (foreign_interface_properties) 479
112.2 Documentation on exports (foreign_interface_properties)

. 479
int list/1 (regtype) . 479
byte list/1 (regtype) . 479
byte/1 (regtype) . 479
null/1 (regtype) . 479
address/1 (regtype). 479
any term/1 (regtype) . 480
native/1 (prop) . 480
native/2 (prop) . 480
size of/3 (prop) . 480
foreign/1 (prop) . 480
foreign/2 (prop) . 480
returns/2 (prop) . 480
do not free/2 (prop) . 480

112.3 Documentation on internals (foreign_interface_properties)
. 481

use foreign source/1 (decl) . 481
use foreign source/2 (decl) . 481
use foreign library/1 (decl) . 481
use foreign library/2 (decl) . 481
extra compiler opts/1 (decl) . 481
extra compiler opts/2 (decl) . 481
use compiler/1 (decl) . 482
use compiler/2 (decl) . 482
extra linker opts/1 (decl) . 482
extra linker opts/2 (decl) . 482
use linker/1 (decl) . 482
use linker/2 (decl) . 483

xxxiv The Ciao Prolog System

112.4 Known bugs and planned improvements
(foreign_interface_properties) . 483

113 Utilities for on-demand compilation of foreign
files. 485
113.1 Usage and interface (foreign_compilation) 485
113.2 Documentation on exports (foreign_compilation) 485

compiler and opts/2 (pred) . 485
linker and opts/2 (pred) . 485

114 Foreign Language Interface Builder 487
114.1 Usage and interface (build_foreign_interface) 487
114.2 Documentation on exports (build_foreign_interface) . . . 487

build foreign interface/1 (pred) . 487
rebuild foreign interface/1 (pred) 487
build foreign interface explicit decls/2 (pred) 487
rebuild foreign interface explicit decls/2 (pred) 488
build foreign interface object/1 (pred) 488
rebuild foreign interface object/1 (pred). 488
do interface/1 (pred) . 488

115 Interface to daVinci . 489
115.1 Usage and interface (davinci) . 489
115.2 Documentation on exports (davinci) . 489

davinci/0 (pred). 489
topd/0 (pred) . 489
davinci get/1 (pred) . 489
davinci get all/1 (pred) . 489
davinci put/1 (pred) . 490
davinci quit/0 (pred) . 490
davinci ugraph/1 (pred) . 490
davinci lgraph/1 (pred) . 490
ugraph2term/2 (pred) . 490
formatting/2 (pred) . 490

115.3 Documentation on internals (davinci) . 491
davinci command/1 (prop) . 491
ugraph/1 (prop). 491
lgraph/1 (prop) . 491

116 The Tcl/Tk interface . 493
116.1 Usage and interface (tcltk) . 496
116.2 Documentation on exports (tcltk) . 496

tcl new/1 (pred) . 496
tcl eval/3 (pred) . 496
tcl delete/1 (pred) . 497
tcl event/3 (pred) . 497
tclInterpreter/1 (regtype) . 497
tclCommand/1 (regtype) . 497
tk event loop/1 (pred) . 497
tk main loop/1 (pred) . 497
tk new/2 (pred) . 498
tk next event/2 (pred) . 498

xxxv

117 Low level interface library to Tcl/Tk 499
117.1 Usage and interface (tcltk_low_level). 499
117.2 Documentation on exports (tcltk_low_level) 499

new interp/1 (pred) . 499
new interp/2 (pred) . 499
new interp file/2 (pred) . 499
tcltk/2 (pred) . 500
tcltk raw code/2 (pred) . 500
receive result/2 (pred) . 500
send term/2 (pred) . 500
receive event/2 (pred) . 501
receive list/2 (pred) . 501
receive confirm/2 (pred) . 501
delete/1 (pred) . 501

117.3 Documentation on internals (tcltk_low_level) 501
core/1 (pred) . 501

118 The Tcl/Tk Class Interface 503
118.1 Usage and interface (window_class) . 503
118.2 Documentation on exports (window_class) 503

widget/1 (regtype) . 503
option/1 (regtype) . 503
menu/1 (regtype) . 503
canvas/1 (regtype) . 504
window class/0 (pred) . 504
window class/3 (pred) . 504
destructor/0 (pred) . 504
show/0 (pred) . 504
hide /0 (pred) . 504
title/1 (pred) . 504
maxsize/2 (pred) . 505
minsize/2 (pred) . 505
withdraw/0 (pred) . 505
event loop/0 (pred) . 505

119 widget class (library) . 507
119.1 Usage and interface (widget_class) . 507
119.2 Documentation on exports (widget_class) 507

text characters/1 (pred) . 507
font type/1 (pred) . 507
background color/1 (pred) . 508
borderwidth value/1 (pred) . 508
foreground color/1 (pred) . 508
highlightbackground color/1 (pred) 508
highlight color/1 (pred) . 509
width value/1 (pred) . 509
relief type/1 (pred) . 509
side type/1 (pred) . 509
expand value/1 (pred) . 510
fill type/1 (pred) . 510
padx value/1 (pred) . 510
pady value/1 (pred) . 510
row value/1 (pred) . 511
rowspan value/1 (pred) . 511
column value/1 (pred) . 511

xxxvi The Ciao Prolog System

columnspan value/1 (pred) . 511
event type widget/1 (pred) . 512
action widget/3 (pred) . 512
action widget/1 (pred) . 512
creation options/1 (pred) . 513
creation position/1 (pred) . 513
creation position grid/1 (pred) . 513
creation bind/1 (pred) . 513

120 menu class (library) . 515
120.1 Usage and interface (menu_class) . 515
120.2 Documentation on exports (menu_class) 515

name menu/1 (pred) . 515
menu data/1 (pred) . 515
label value/1 (pred) . 515
tearoff value/1 (pred) . 516
tcl name/1 (pred) . 516
creation options/1 (pred) . 516
creation options entry/1 (pred) . 516
creation menu name/1 (pred) . 516

121 canvas class (library) . 517
121.1 Usage and interface (canvas_class) . 517
121.2 Documentation on multifiles (canvas_class) 517

$class$/1 (pred) . 517
class$super/2 (pred) . 517
class$initial state/3 (pred) . 517
class$virtual/6 (pred) . 517
class$attr template/4 (pred) . 517
class$default cons/1 (pred) . 517
class$constructor/4 (pred) . 518
class$destructor/3 (pred) . 518
class$implements/2 (pred) . 518

122 button class (library) . 519
122.1 Usage and interface (button_class) . 519
122.2 Documentation on exports (button_class) 519

command button/1 (pred) . 519

123 checkbutton class (library) 521
123.1 Usage and interface (checkbutton_class) 521
123.2 Documentation on exports (checkbutton_class) 521

variable value/1 (pred) . 521

124 radiobutton class (library) 523
124.1 Usage and interface (radiobutton_class) 523
124.2 Documentation on exports (radiobutton_class) 523

variable value/1 (pred) . 523

xxxvii

125 entry class (library) . 525
125.1 Usage and interface (entry_class) . 525
125.2 Documentation on exports (entry_class) 525

textvariable entry/1 (pred) . 525
textvariablevalue string/1 (pred) 525
textvariablevalue number/1 (pred) 525
justify entry/1 (pred) . 526

126 label class (library) . 527
126.1 Usage and interface (label_class) . 527
126.2 Documentation on exports (label_class) 527

textvariable label/1 (pred) . 527

127 menubutton class (library) 529
127.1 Usage and interface (menubutton_class) 529
127.2 Documentation on exports (menubutton_class) 529

menu name/1 (pred) . 529

128 menu entry class (library) 531
128.1 Usage and interface (menu_entry_class) 531
128.2 Documentation on exports (menu_entry_class) 531

set name/1 (pred) . 531
set action/1 (pred) . 531
label value/1 (pred) . 531
menu name/1 (pred) . 532

129 shape class (library) . 533
129.1 Usage and interface (shape_class) . 533
129.2 Documentation on exports (shape_class) 533

bg color/1 (pred) . 533
border width/1 (pred) . 533
shape class/0 (pred) . 534
shape class/1 (pred) . 534

130 arc class (library) . 535
130.1 Usage and interface (arc_class) . 535
130.2 Documentation on exports (arc_class) 535

coord/4 (pred) . 535
width/1 (pred) . 535
height/1 (pred) . 535
center/2 (pred). 536
angle start/1 (pred) . 536
style type/1 (pred) . 536
outline color/1 (pred) . 537

131 oval class (library) . 539
131.1 Usage and interface (oval_class) . 539
131.2 Documentation on exports (oval_class) 539

coord/4 (pred) . 539
width/1 (pred) . 539
height/1 (pred) . 539
center/2 (pred). 540
outline color/1 (pred) . 540

xxxviii The Ciao Prolog System

132 poly class (library) . 541
132.1 Usage and interface (poly_class) . 541
132.2 Documentation on exports (poly_class) 541

vertices/1 (pred) . 541
outline color/1 (pred) . 541

133 line class (library) . 543
133.1 Usage and interface (line_class) . 543
133.2 Documentation on exports (line_class) 543

vertices/1 (pred) . 543
arrowheads/1 (pred) . 543

134 text class (library) . 545
134.1 Usage and interface (text_class) . 545
134.2 Documentation on exports (text_class) 545

coord/2 (pred) . 545
point/2 (pred) . 545
text characters/1 (pred) . 545
anchor/1 (pred) . 546
font type/1 (pred) . 546
justify text/1 (pred) . 546

135 The PiLLoW Web programming library . . . 547
135.1 Installing PiLLoW . 547
135.2 Usage and interface (pillow) . 547

136 HTML/XML/CGI programming 549
136.1 Usage and interface (html) . 549
136.2 Documentation on exports (html) . 549

output html/1 (pred) . 549
html2terms/2 (pred) . 549
xml2terms/2 (pred) . 549
html template/3 (pred) . 550
html report error/1 (pred) . 551
get form input/1 (pred) . 551
get form value/3 (pred) . 551
form empty value/1 (pred) . 551
form default/3 (pred) . 551
set cookie/2 (pred) . 551
get cookies/1 (pred) . 552
url query/2 (pred) . 552
url query values/2 (pred) . 552
my url/1 (pred) . 552
url info/2 (pred) . 552
url info relative/3 (pred) . 552
form request method/1 (pred) . 552
icon address/2 (pred) . 553
html protect/1 (pred) . 553
http lines/3 (pred) . 553

136.3 Documentation on multifiles (html) . 553
define flag/3 (pred) . 553
html expansion/2 (pred) . 553

136.4 Other information (html) . 553

xxxix

137 HTTP conectivity . 555
137.1 Usage and interface (http) . 555
137.2 Documentation on exports (http) . 555

fetch url/3 (pred) . 555

138 PiLLoW types . 557
138.1 Usage and interface (pillow_types) . 557
138.2 Documentation on exports (pillow_types) 557

canonic html term/1 (regtype) . 557
canonic xml term/1 (regtype) . 558
html term/1 (regtype) . 559
form dict/1 (regtype) . 561
form assignment/1 (regtype) . 561
form value/1 (regtype) . 562
value dict/1 (regtype) . 562
url term/1 (regtype) . 562
http request param/1 (regtype) 562
http response param/1 (regtype) 562
http date/1 (regtype) . 563
weekday/1 (regtype) . 563
month/1 (regtype) . 563
hms time/1 (regtype) . 563

139 Persistent predicate database 565
139.1 Introduction to persistent predicates . 565
139.2 Persistent predicates, files, and relational databases 565
139.3 Using file-based persistent predicates . 566
139.4 Implementation Issues . 566
139.5 Defining an initial database . 567
139.6 Using persistent predicates from the top level 567
139.7 Usage and interface (persdbrt) . 568
139.8 Documentation on exports (persdbrt) . 568

passerta fact/1 (pred) . 568
passertz fact/1 (pred) . 568
pretract fact/1 (pred) . 569
pretractall fact/1 (pred) . 569
asserta fact/1 (pred). 569
assertz fact/1 (pred) . 569
retract fact/1 (pred) . 569
retractall fact/1 (pred) . 570
initialize db/0 (pred) . 570
make persistent/2 (pred) . 570
update files/0 (pred) . 570
update files/1 (pred) . 570

139.9 Documentation on multifiles (persdbrt) 571
persistent dir/2 (pred) . 571
$is persistent/2 (pred) . 571

139.10 Documentation on internals (persdbrt) 571
persistent/2 (decl) . 571
keyword/1 (pred) . 572
directoryname/1 (regtype) . 572

139.11 Known bugs and planned improvements (persdbrt) 572

xl The Ciao Prolog System

140 Using the persdb library 573
140.1 An example of persistent predicates (static version) 573
140.2 An example of persistent predicates (dynamic version) 573
140.3 A simple application / a persistent queue 574

141 Filed predicates . 577
141.1 Usage and interface (factsdb_rt) . 577
141.2 Documentation on exports (factsdb_rt) 577

asserta fact/1 (pred). 577
assertz fact/1 (pred) . 578
call/1 (pred) . 578
current fact/1 (pred) . 578
retract fact/1 (pred) . 578

141.3 Documentation on multifiles (factsdb_rt) 579
$factsdb$cached goal/3 (pred) . 579
persistent dir/2 (pred) . 579
file alias/2 (pred). 579

141.4 Documentation on internals (factsdb_rt) 579
facts/2 (decl) . 579
keyword/1 (pred) . 580

141.5 Known bugs and planned improvements (factsdb_rt) 580

142 SQL persistent database interface 581
142.1 Implementation of the Database Interface 581
142.2 Example(s) . 581
142.3 Usage and interface (persdbrt_mysql) . 584
142.4 Documentation on exports (persdbrt_mysql) 585

init sql persdb/0 (pred) . 585
dbassertz fact/1 (pred) . 585
dbretract fact/1 (pred) . 585
dbcurrent fact/1 (pred) . 585
dbretractall fact/1 (pred) . 585
make sql persistent/3 (pred) . 586
dbfindall/4 (pred) . 586
dbcall/2 (pred). 586
sql query/3 (pred) . 586
sql get tables/2 (pred) . 587
sql table types/3 (pred) . 587
socketname/1 (regtype) . 588
dbname/1 (regtype) . 588
user/1 (regtype) . 588
passwd/1 (regtype) . 588
projterm/1 (regtype) . 588
querybody/1 (regtype) . 588
sqltype/1 (udreexp) . 588

142.5 Documentation on multifiles (persdbrt_mysql) 588
sql persistent location/2 (pred) . 588

142.6 Documentation on internals (persdbrt_mysql) 589
tuple/1 (regtype) . 589
dbconnection/1 (regtype) . 589
sql persistent/3 (decl) . 589
db query/4 (pred) . 589
db query one tuple/4 (pred) . 590
sql query one tuple/3 (pred) . 590

xli

142.7 Known bugs and planned improvements (persdbrt_mysql)
. 591

143 Prolog to SQL translator 593
143.1 Usage and interface (pl2sql) . 594
143.2 Documentation on exports (pl2sql) . 594

pl2sqlstring/3 (pred) . 594
querybody/1 (regtype) . 594
projterm/1 (regtype) . 595
sqlstring/1 (regtype). 595
pl2sqlterm/3 (pred) . 595
sqlterm2string/2 (pred) . 596
sqltype/1 (udreexp) . 596

143.3 Documentation on multifiles (pl2sql) . 596
sql relation/3 (pred) . 596
sql attribute/4 (pred) . 596

143.4 Documentation on internals (pl2sql) . 597
query generation/3 (pred) . 597
translate conjunction/5 (pred) . 597
translate goal/5 (pred) . 598
translate arithmetic function/5 (pred) 598
translate comparison/5 (pred) . 598
aggregate function/3 (pred) . 598
comparison/2 (pred) . 598
negated comparison/2 (pred) . 599
arithmetic functor/2 (pred) . 599
aggregate functor/2 (pred) . 599

143.5 Known bugs and planned improvements (pl2sql) 599

144 Low-level socket interface to SQL/ODBC
databases . 601
144.1 Usage and interface (mysql_client) . 601
144.2 Documentation on exports (mysql_client) 601

mysql connect/5 (pred) . 601
dbconnection/1 (regtype) . 601
mysql query/3 (pred) . 601
mysql query one tuple/3 (pred) 601
dbqueryconnection/1 (regtype) . 602
mysql free query connection/1 (pred) 602
mysql fetch/2 (pred). 602
mysql get tables/2 (pred) . 602
mysql table types/3 (pred) . 602
mysql disconnect/1 (pred) . 602

xlii The Ciao Prolog System

145 Types for the Low-level interface to SQL
databases . 603
145.1 Usage and interface (db_client_types). 603
145.2 Documentation on exports (db_client_types) 603

socketname/1 (regtype) . 603
dbname/1 (regtype) . 603
user/1 (regtype) . 603
passwd/1 (regtype) . 603
answertableterm/1 (regtype) . 604
tuple/1 (regtype) . 604
answertupleterm/1 (regtype) . 604
sqlstring/1 (regtype). 604

146 sqltypes (library) . 605
146.1 Usage and interface (sqltypes) . 605
146.2 Documentation on exports (sqltypes) . 605

sqltype/1 (regtype) . 605
accepted type/2 (pred) . 605
get type/2 (pred) . 605
type compatible/2 (pred) . 606
type union/3 (pred) . 606
sybasetype/1 (regtype) . 606
sybase2sqltypes list/2 (pred) . 606
sybase2sqltype/2 (pred). 607
postgrestype/1 (regtype) . 607
postgres2sqltypes list/2 (pred) . 607
postgres2sqltype/2 (pred) . 607

147 persdbtr sql (library) . 609
147.1 Usage and interface (persdbtr_sql) . 609
147.2 Documentation on exports (persdbtr_sql) 609

sql persistent tr/2 (pred) . 609
dbId/2 (pred) . 609

148 pl2sqlinsert (library). 611
148.1 Usage and interface (pl2sqlinsert) . 611
148.2 Documentation on exports (pl2sqlinsert) 611

pl2sqlInsert/2 (pred) . 611
148.3 Documentation on multifiles (pl2sqlinsert) 611

sql relation/3 (pred) . 611
sql attribute/4 (pred) . 611

xliii

149 Prolog to Java interface 613
149.1 Prolog to Java Interface Structure . 613

149.1.1 Prolog side of the Java interface 613
149.1.2 Java side . 613

149.2 Java event handling from Prolog. 614
149.3 Java exception handling from Prolog . 616
149.4 Usage and interface (javart) . 616
149.5 Documentation on exports (javart) . 616

java start/0 (pred) . 616
java start/1 (pred) . 616
java start/2 (pred) . 617
java stop/0 (pred) . 617
java connect/2 (pred) . 617
java disconnect/0 (pred) . 617
machine name/1 (regtype) . 617
java constructor/1 (regtype) . 617
java object/1 (regtype) . 617
java event/1 (regtype) . 618
prolog goal/1 (regtype) . 618
java field/1 (regtype) . 618
java use module/1 (pred) . 618
java create object/2 (pred) . 618
java delete object/1 (pred) . 618
java invoke method/2 (pred) . 619
java method/1 (regtype) . 619
java get value/2 (pred) . 619
java set value/2 (pred) . 619
java add listener/3 (pred) . 620
java remove listener/3 (pred) . 620

150 Java to Prolog interface 621
150.1 Usage and interface (jtopl) . 621
150.2 Documentation on exports (jtopl) . 621

prolog server/0 (pred) . 621
prolog server/1 (pred) . 622
prolog server/2 (pred) . 622
shell s/0 (pred) . 622
query solutions/2 (pred) . 622
query requests/2 (pred) . 623
running queries/2 (pred) . 623

xliv The Ciao Prolog System

151 Low-level Prolog to Java socket connection
. 625
151.1 Usage and interface (javasock) . 625
151.2 Documentation on exports (javasock) . 625

bind socket interface/1 (pred) . 625
start socket interface/2 (pred) . 625
stop socket interface/0 (pred) . 625
join socket interface/0 (pred) . 626
java query/2 (pred) . 626
java response/2 (pred) . 626
prolog query/2 (pred) . 626
prolog response/2 (pred) . 626
is connected to java/0 (pred) . 627
java debug/1 (pred) . 627
java debug redo/1 (pred) . 627
start threads/0 (pred) . 627

152 Calling emacs from Prolog 629
152.1 Usage and interface (emacs) . 630
152.2 Documentation on exports (emacs) . 630

emacs edit/1 (pred) . 630
emacs edit nowait/1 (pred) . 630
emacs eval/1 (pred) . 630
emacs eval nowait/1 (pred) . 630
elisp string/1 (regtype) . 630

153 linda (library) . 631
153.1 Usage and interface (linda) . 631
153.2 Documentation on exports (linda) . 631

linda client/1 (pred) . 631
close client/0 (pred) . 631
in/1 (pred) . 631
in/2 (pred) . 631
in noblock/1 (pred) . 631
out/1 (pred) . 631
rd/1 (pred) . 632
rd/2 (pred) . 632
rd noblock/1 (pred) . 632
rd findall/3 (pred) . 632
linda timeout/2 (pred) . 632
halt server/0 (pred) . 632
open client/2 (pred) . 632
in stream/2 (pred) . 632
out stream/2 (pred) . 632

PART IX - Abstract data types. 633

xlv

154 Extendable arrays with logarithmic access time
. 635
154.1 Usage and interface (arrays) . 635
154.2 Documentation on exports (arrays) . 635

new array/1 (pred) . 635
is array/1 (pred) . 635
aref/3 (pred) . 635
arefa/3 (pred) . 635
arefl/3 (pred) . 635
aset/4 (pred) . 636
array to list/2 (pred) . 636

155 counters (library) . 637
155.1 Usage and interface (counters) . 637
155.2 Documentation on exports (counters) . 637

setcounter/2 (pred) . 637
getcounter/2 (pred) . 637
inccounter/2 (pred). 637

156 Identity lists . 639
156.1 Usage and interface (idlists) . 639
156.2 Documentation on exports (idlists) . 639

member 0/2 (pred) . 639
memberchk/2 (pred) . 639
list insert/2 (pred) . 639
add after/4 (pred) . 639
add before/4 (pred) . 639
delete/3 (pred) . 640
subtract/3 (pred) . 640
union idlists/3 (pred) . 640

157 Lists of numbers . 641
157.1 Usage and interface (numlists) . 641
157.2 Documentation on exports (numlists) . 641

get primes/2 (pred) . 641
intlist/1 (regtype) . 641
numlist/1 (regtype) . 641
sum list/2 (pred) . 641
sum list/3 (pred) . 642
sum list of lists/2 (pred) . 642
sum list of lists/3 (pred) . 642

158 Pattern (regular expression) matching 643
158.1 Usage and interface (patterns) . 643
158.2 Documentation on exports (patterns) . 643

match pattern/2 (pred) . 643
match pattern/3 (pred) . 643
case insensitive match/2 (pred) . 643
letter match/2 (pred) . 644
pattern/1 (regtype). 644
match pattern pred/2 (pred) . 644

xlvi The Ciao Prolog System

159 Graphs . 645
159.1 Usage and interface (graphs) . 645
159.2 Documentation on exports (graphs) . 645

dgraph/1 (regtype) . 645
dlgraph/1 (regtype) . 645
dgraph to ugraph/2 (pred) . 645
dlgraph to lgraph/2 (pred) . 646
edges to ugraph/2 (pred) . 646
edges to lgraph/2 (pred) . 646

159.3 Documentation on internals (graphs) . 647
pair/1 (regtype) . 647
triple/1 (regtype) . 647

160 Unweighted graph-processing utilities 649
160.1 Usage and interface (ugraphs) . 649
160.2 Documentation on exports (ugraphs) . 649

vertices edges to ugraph/3 (pred) 649
neighbors/3 (pred) . 649
edges/2 (pred) . 649
del vertices/3 (pred) . 650
vertices/2 (pred) . 650
add vertices/3 (pred) . 650
add edges/3 (pred) . 650
transpose/2 (pred) . 650
point to/3 (pred) . 650
ugraph/1 (regtype) . 650

161 wgraphs (library). 651
161.1 Usage and interface (wgraphs) . 651
161.2 Documentation on exports (wgraphs) . 651

vertices edges to wgraph/3 (pred) 651

162 Labeled graph-processing utilities 653
162.1 Usage and interface (lgraphs) . 653
162.2 Documentation on exports (lgraphs) . 653

lgraph/2 (regtype) . 653
vertices edges to lgraph/3 (pred) 653

163 queues (library) . 655
163.1 Usage and interface (queues) . 655
163.2 Documentation on exports (queues) . 655

q empty/1 (pred) . 655
q insert/3 (pred) . 655
q member/2 (pred) . 655
q delete/3 (pred) . 655

164 Random numbers . 657
164.1 Usage and interface (random) . 657
164.2 Documentation on exports (random) . 657

random/1 (pred) . 657
random/3 (pred) . 657
srandom/1 (pred) . 657

xlvii

165 Set Operations . 659
165.1 Usage and interface (sets) . 659
165.2 Documentation on exports (sets) . 659

insert/3 (pred) . 659
ord delete/3 (pred) . 659
ord member/2 (pred) . 659
ord test member/3 (pred) . 659
ord subtract/3 (pred) . 659
ord intersection/3 (pred) . 660
ord intersection diff/4 (pred) . 660
ord intersect/2 (pred) . 660
ord subset/2 (pred). 660
ord subset diff/3 (pred) . 660
ord union/3 (pred) . 660
ord union diff/4 (pred) . 660
ord union symdiff/4 (pred) . 660
ord union change/3 (pred) . 661
merge/3 (pred) . 661
ord disjoint/2 (pred) . 661
setproduct/3 (pred) . 661

166 Variable name dictionaries 663
166.1 Usage and interface (vndict) . 663
166.2 Documentation on exports (vndict) . 663

null dict/1 (regtype) . 663
create dict/2 (pred) . 663
complete dict/3 (pred) . 663
complete vars dict/3 (pred) . 663
prune dict/3 (pred) . 664
sort dict/2 (pred) . 664
dict2varnamesl/2 (pred) . 664
varnamesl2dict/2 (pred) . 664
find name/4 (pred) . 664
rename/2 (pred) . 664
varname/1 (regtype) . 665
varnamesl/1 (regtype) . 665
varnamedict/1 (regtype) . 665
vars names dict/3 (pred) . 665

PART X - Miscellaneous standalone utilities 667

167 A Program to Help Cleaning your Directories
. 669
167.1 Usage (cleandirs) . 669
167.2 Known bugs and planned improvements (cleandirs) 669

168 Printing the declarations and code in a file
. 671
168.1 Usage (fileinfo) . 671
168.2 More detailed explanation of options (fileinfo) 671

169 Printing the contents of a bytecode file 673
169.1 Usage (viewpo) . 673

xlviii The Ciao Prolog System

170 Crossed-references of a program 675

171 Gathering the dependent files for a file 677
171.1 Usage (get deps) . 677

172 Finding differences between two Prolog files
. 679
172.1 Usage (pldiff) . 679
172.2 Known bugs and planned improvements (pldiff) 679

173 The Ciao lpmake scripting facility 681
173.1 General operation . 681
173.2 Format of the Configuration File . 682
173.3 lpmake usage . 682
173.4 Acknowledgments (lpmake) . 682

174 Find out which architecture we are running on
. 683
174.1 Usage (ciao get arch) . 683
174.2 More details . 683

175 Print out WAM code . 685
175.1 Usage (compiler output) . 685

PART XI - Contributed libraries 687

176 Programming MYCIN rules. 689
176.1 Usage and interface (mycin) . 689
176.2 Documentation on new declarations (mycin) 689

export/1 (decl) . 689
176.3 Known bugs and planned improvements (mycin) 689

177 Constraint programming over finite domains
. 691
177.1 Usage and interface (fd) . 692
177.2 Documentation on exports (fd) . 693

fd item/1 (regtype) . 693
fd range/1 (regtype) . 693
fd subrange/1 (regtype). 693
fd store/1 (regtype) . 693
fd store entity/1 (regtype) . 693
labeling/1 (pred) . 693
pitm/2 (pred) . 693
choose var/3 (pred) . 694
choose free var/2 (pred) . 694
choose var nd/2 (pred) . 694
choose value/2 (pred) . 694
retrieve range/2 (pred) . 694
retrieve store/2 (pred) . 695
glb/2 (pred) . 695
lub/2 (pred) . 695

xlix

bounds/3 (pred) . 695
retrieve list of values/2 (pred) . 695

178 XDR handle library . 697
178.1 Usage and interface (xdr_handle) . 697
178.2 Documentation on exports (xdr_handle) 697

xdr tree/3 (pred) . 697
xdr tree/1 (pred) . 697
xdr node/1 (regtype) . 698
xdr2html/4 (pred) . 698
xdr2html/2 (pred) . 698
unfold tree/2 (pred) . 698
unfold tree dic/3 (pred) . 698
xdr xpath/2 (pred) . 699

179 XML query library . 701
179.1 Usage and interface (xml_path) . 702
179.2 Documentation on exports (xml_path) . 702

xml search/3 (pred) . 702
xml parse/3 (pred) . 702
xml parse match/3 (pred) . 703
xml search match/3 (pred) . 703
xml index query/3 (pred) . 703
xml index to file/2 (pred) . 703
xml index/1 (pred) . 703
xml query/3 (pred) . 704

179.3 Documentation on internals (xml_path) 704
canonic xml term/1 (regtype) . 704
canonic xml item/1 (regtype) . 704
tag attrib/1 (regtype) . 704
canonic xml query/1 (regtype) . 704
canonic xml subquery/1 (regtype) 704

180 A Chart Library . 705
180.1 Bar charts . 705
180.2 Line graphs . 707
180.3 Scatter graphs . 707
180.4 Tables . 708
180.5 Overview of widgets . 709
180.6 Usage and interface (chartlib) . 710
180.7 Documentation on exports (chartlib) . 710

barchart1/7 (udreexp) . 710
barchart1/9 (udreexp) . 710
percentbarchart1/7 (udreexp) . 710
barchart2/7 (udreexp) . 710
barchart2/11 (udreexp) . 710
percentbarchart2/7 (udreexp) . 710
barchart3/7 (udreexp) . 710
barchart3/9 (udreexp) . 711
percentbarchart3/7 (udreexp) . 711
barchart4/7 (udreexp) . 711
barchart4/11 (udreexp) . 711
percentbarchart4/7 (udreexp) . 711
multibarchart/8 (udreexp) . 711
multibarchart/10 (udreexp) . 711

l The Ciao Prolog System

tablewidget1/4 (udreexp) . 711
tablewidget1/5 (udreexp) . 711
tablewidget2/4 (udreexp) . 711
tablewidget2/5 (udreexp) . 711
tablewidget3/4 (udreexp) . 712
tablewidget3/5 (udreexp) . 712
tablewidget4/4 (udreexp) . 712
tablewidget4/5 (udreexp) . 712
graph b1/9 (udreexp) . 712
graph b1/13 (udreexp) . 712
graph w1/9 (udreexp) . 712
graph w1/13 (udreexp) . 712
scattergraph b1/8 (udreexp) . 712
scattergraph b1/12 (udreexp) . 712
scattergraph w1/8 (udreexp) . 712
scattergraph w1/12 (udreexp) . 712
graph b2/9 (udreexp) . 713
graph b2/13 (udreexp) . 713
graph w2/9 (udreexp) . 713
graph w2/13 (udreexp) . 713
scattergraph b2/8 (udreexp) . 713
scattergraph b2/12 (udreexp) . 713
scattergraph w2/8 (udreexp) . 713
scattergraph w2/12 (udreexp) . 713
chartlib text error protect/1 (udreexp) 713
chartlib visual error protect/1 (udreexp) 713

181 Low level Interface between Prolog and blt
. 715
181.1 Usage and interface (bltclass) . 715
181.2 Documentation on exports (bltclass) . 715

new interp/1 (pred) . 715
tcltk raw code/2 (pred) . 715
bltwish interp/1 (regtype) . 715
interp file/2 (pred) . 715

182 Error Handler for Chartlib 717
182.1 Usage and interface (chartlib_errhandle) 717
182.2 Documentation on exports (chartlib_errhandle) 717

chartlib text error protect/1 (pred) 717
chartlib visual error protect/1 (pred) 717

182.3 Documentation on internals (chartlib_errhandle) 717
handler type/1 (regtype) . 717
error message/2 (pred) . 718
error file/2 (pred) . 718

li

183 Color and Pattern Library 719
183.1 Usage and interface (color_pattern) . 719
183.2 Documentation on exports (color_pattern) 719

color/1 (regtype) . 719
color/2 (pred) . 720
pattern/1 (regtype). 721
pattern/2 (pred) . 721
random color/1 (pred) . 721
random lightcolor/1 (pred) . 721
random darkcolor/1 (pred) . 721
random pattern/1 (pred) . 722

184 Barchart widgets - 1 . 723
184.1 Usage and interface (genbar1) . 723
184.2 Documentation on exports (genbar1) . 723

barchart1/7 (pred) . 723
barchart1/9 (pred) . 724
percentbarchart1/7 (pred) . 724
yelement/1 (regtype) . 725
axis limit/1 (regtype) . 726
header/1 (regtype) . 726
title/1 (regtype) . 726
footer/1 (regtype) . 726

184.3 Documentation on internals (genbar1) . 726
xbarelement1/1 (regtype) . 726

185 Barchart widgets - 2 . 729
185.1 Usage and interface (genbar2) . 729
185.2 Documentation on exports (genbar2) . 729

barchart2/7 (pred) . 729
barchart2/11 (pred) . 730
percentbarchart2/7 (pred) . 730
xbarelement2/1 (regtype) . 730

186 Depict barchart widgets - 3 733
186.1 Usage and interface (genbar3) . 733
186.2 Documentation on exports (genbar3) . 733

barchart3/7 (pred) . 733
barchart3/9 (pred) . 733
percentbarchart3/7 (pred) . 734

186.3 Documentation on internals (genbar3) . 734
xbarelement3/1 (regtype) . 734

187 Depict barchart widgets - 4 737
187.1 Usage and interface (genbar4) . 737
187.2 Documentation on exports (genbar4) . 737

barchart4/7 (pred) . 737
barchart4/11 (pred) . 737
percentbarchart4/7 (pred) . 738

187.3 Documentation on internals (genbar4) . 738
xbarelement4/1 (regtype) . 738

lii The Ciao Prolog System

188 Depic line graph . 741
188.1 Usage and interface (gengraph1) . 742
188.2 Documentation on exports (gengraph1) 742

graph b1/9 (pred) . 742
graph b1/13 (pred) . 742
graph w1/9 (pred) . 743
graph w1/13 (pred) . 743
scattergraph b1/8 (pred) . 744
scattergraph b1/12 (pred). 744
scattergraph w1/8 (pred) . 745
scattergraph w1/12 (pred) . 745
vector/1 (regtype) . 745
smooth/1 (regtype) . 745
attributes/1 (regtype) . 746
symbol/1 (regtype) . 746
size/1 (regtype) . 747

189 Line graph widgets . 749
189.1 Usage and interface (gengraph2) . 749
189.2 Documentation on exports (gengraph2) 750

graph b2/9 (pred) . 750
graph b2/13 (pred) . 750
graph w2/9 (pred) . 750
graph w2/13 (pred) . 751
scattergraph b2/8 (pred) . 751
scattergraph b2/12 (pred). 752
scattergraph w2/8 (pred) . 752
scattergraph w2/12 (pred) . 753

190 Multi barchart widgets 755
190.1 Usage and interface (genmultibar) . 755
190.2 Documentation on exports (genmultibar) 756

multibarchart/8 (pred) . 756
multibarchart/10 (pred) . 756

190.3 Documentation on internals (genmultibar) 757
multibar attribute/1 (regtype) . 757
xelement/1 (regtype) . 757

191 table widget1 (library) . 759
191.1 Usage and interface (table_widget1) . 759
191.2 Documentation on exports (table_widget1) 759

tablewidget1/4 (pred) . 759
tablewidget1/5 (pred) . 759
table/1 (regtype) . 760
image/1 (regtype) . 760

191.3 Documentation on internals (table_widget1) 760
row/1 (regtype) . 760
row/1 (regtype) . 760
cell value/1 (regtype) . 760

liii

192 table widget2 (library) . 763
192.1 Usage and interface (table_widget2) . 763
192.2 Documentation on exports (table_widget2) 763

tablewidget2/4 (pred) . 763
tablewidget2/5 (pred) . 763

193 table widget3 (library) . 765
193.1 Usage and interface (table_widget3) . 765
193.2 Documentation on exports (table_widget3) 765

tablewidget3/4 (pred) . 765
tablewidget3/5 (pred) . 765

194 table widget4 (library) . 767
194.1 Usage and interface (table_widget4) . 767
194.2 Documentation on exports (table_widget4) 767

tablewidget4/4 (pred) . 767
tablewidget4/5 (pred) . 767

195 test format (library) . 769
195.1 Usage and interface (test_format) . 769
195.2 Documentation on exports (test_format) 769

equalnumber/3 (pred) . 769
not empty/4 (pred) . 769
not empty/3 (pred) . 769
check sublist/4 (pred) . 769
valid format/4 (pred) . 770
vectors format/4 (pred) . 770
valid vectors/4 (pred) . 770
valid attributes/2 (pred) . 770
valid table/2 (pred) . 770

196 ProVRML - a Prolog interface for VRML . . 771
196.1 Usage and interface (provrml) . 771
196.2 Documentation on exports (provrml) . 771

vrml web to terms/2 (pred) . 771
vrml file to terms/2 (pred) . 771
vrml web to terms file/2 (pred) 772
vrml file to terms file/2 (pred) . 772
terms file to vrml/2 (pred) . 772
terms file to vrml file/2 (pred) . 772
terms to vrml file/2 (pred) . 772
terms to vrml/2 (pred) . 773
vrml to terms/2 (pred) . 773
vrml in out/2 (pred) . 773
vrml http access/2 (pred) . 773

196.3 Documentation on internals (provrml) . 774
read page/2 (pred) . 774

liv The Ciao Prolog System

197 boundary (library) . 775
197.1 Usage and interface (boundary) . 775
197.2 Documentation on exports (boundary) . 775

boundary check/3 (pred) . 775
boundary rotation first/2 (pred) 775
boundary rotation last/2 (pred) 775
reserved words/1 (pred) . 776
children nodes/1 (pred) . 776

198 dictionary (library) . 777
198.1 Usage and interface (dictionary) . 777
198.2 Documentation on exports (dictionary) 777

dictionary/6 (pred) . 777

199 dictionary tree (library) 779
199.1 Usage and interface (dictionary_tree). 779
199.2 Documentation on exports (dictionary_tree) 779

create dictionaries/1 (pred) . 779
is dictionaries/1 (pred) . 779
get definition dictionary/2 (pred) 779
get prototype dictionary/2 (pred) 780
dictionary insert/5 (pred) . 780
dictionary lookup/5 (pred) . 780
merge tree/2 (pred) . 780

200 error (library) . 781
200.1 Usage and interface (error) . 781
200.2 Documentation on exports (error) . 781

error vrml/1 (pred) . 781
output error/1 (pred) . 781

201 field type (library) . 783
201.1 Usage and interface (field_type) . 783
201.2 Documentation on exports (field_type) 783

fieldType/1 (pred) . 783

202 field value (library) . 785
202.1 Usage and interface (field_value) . 785
202.2 Documentation on exports (field_value) 785

fieldValue/6 (pred) . 785
mfstringValue/5 (pred) . 785
parse/1 (prop) . 785

203 field value check (library) 787
203.1 Usage and interface (field_value_check) 787
203.2 Documentation on exports (field_value_check) 787

fieldValue check/8 (pred) . 787
mfstringValue/7 (pred) . 787

lv

204 generator (library) . 789
204.1 Usage and interface (generator) . 789
204.2 Documentation on exports (generator) 789

generator/2 (pred) . 789
nodeDeclaration/4 (pred) . 789

205 generator util (library) 791
205.1 Usage and interface (generator_util) . 791
205.2 Documentation on exports (generator_util) 791

reading/4 (pred) . 791
reading/5 (pred) . 791
reading/6 (pred) . 791
open node/6 (pred) . 792
close node/5 (pred) . 792
close nodeGut/4 (pred) . 792
open PROTO/4 (pred) . 792
close PROTO/6 (pred) . 792
open EXTERNPROTO/5 (pred) 792
close EXTERNPROTO/6 (pred) 792
open DEF/5 (pred). 792
close DEF/5 (pred) . 792
open Script/5 (pred) . 792
close Script/5 (pred) . 792
decompose field/3 (pred) . 793
indentation list/2 (pred) . 793
start vrmlScene/4 (pred). 793
remove comments/4 (pred) . 793

206 internal types (library) 795
206.1 Usage and interface (internal_types) . 795
206.2 Documentation on exports (internal_types) 795

bound/1 (regtype) . 795
bound double/1 (regtype) . 795
dictionary/1 (regtype) . 795
environment/1 (regtype) . 796
parse/1 (regtype). 796
tree/1 (regtype) . 796
whitespace/1 (regtype) . 796

207 io (library) . 799
207.1 Usage and interface (io) . 799
207.2 Documentation on exports (io) . 799

out/1 (pred) . 799
out/3 (pred) . 799
convert atoms to string/2 (pred) 799
read terms file/2 (pred) . 799
write terms file/2 (pred) . 800
read vrml file/2 (pred) . 800
write vrml file/2 (pred) . 800

lvi The Ciao Prolog System

208 lookup (library) . 801
208.1 Usage and interface (lookup) . 801
208.2 Documentation on exports (lookup) . 801

create proto element/3 (pred) . 801
get prototype interface/2 (pred) 801
get prototype definition/2 (pred) 801
lookup check node/4 (pred) . 802
lookup check field/6 (pred). 802
lookup check interface fieldValue/8 (pred) 802
lookup field/4 (pred) . 802
lookup route/5 (pred) . 802
lookup fieldTypeId/1 (pred) . 803
lookup get fieldType/4 (pred) . 803
lookup field access/4 (pred) . 803
lookup set def/3 (pred) . 803
lookup set prototype/4 (pred) . 804
lookup set extern prototype/4 (pred) 804

209 parser (library). 805
209.1 Usage and interface (parser) . 805
209.2 Documentation on exports (parser) . 805

parser/2 (pred) . 805
nodeDeclaration/4 (pred) . 805
field Id/1 (prop) . 805

210 parser util (library). 807
210.1 Usage and interface (parser_util) . 807
210.2 Documentation on exports (parser_util) 807

at least one/4 (pred) . 807
at least one/5 (pred) . 807
fillout/4 (pred) . 807
fillout/5 (pred) . 807
create node/3 (pred) . 807
create field/3 (pred) . 808
create field/4 (pred) . 808
create field/5 (pred) . 808
create directed field/5 (pred) . 808
correct commenting/4 (pred) . 809
create parse structure/1 (pred) . 809
create parse structure/2 (pred) . 809
create parse structure/3 (pred) . 810
create environment/4 (pred) . 810
insert comments in beginning/3 (pred) 810
get environment name/2 (pred) 810
get environment type/2 (pred) . 810
get row number/2 (pred) . 811
add environment whitespace/3 (pred) 811
get indentation/2 (pred) . 811
inc indentation/2 (pred) . 811
dec indentation/2 (pred) . 812
add indentation/3 (pred) . 812
reduce indentation/3 (pred) . 812
push whitespace/3 (pred) . 812
push dictionaries/3 (pred) . 812
get parsed/2 (pred). 812

lvii

get environment/2 (pred) . 813
inside proto/1 (pred) . 813
get dictionaries/2 (pred) . 813
strip from list/2 (pred) . 813
strip from term/2 (pred) . 813
strip clean/2 (pred) . 813
strip exposed/2 (pred) . 814
strip restricted/2 (pred) . 814
strip interface/2 (pred) . 814
set parsed/3 (pred) . 814
set environment/3 (pred) . 814
insert parsed/3 (pred) . 815
reverse parsed/2 (pred) . 815
stop parse/2 (pred) . 815
look first parsed/2 (pred) . 815
get first parsed/3 (pred) . 815
remove code/3 (pred) . 815
look ahead/3 (pred) . 815

211 possible (library) . 817
211.1 Usage and interface (possible) . 817
211.2 Documentation on exports (possible) . 817

continue/3 (pred) . 817

212 tokeniser (library) . 819
212.1 Usage and interface (tokeniser) . 819
212.2 Documentation on exports (tokeniser) 819

tokeniser/2 (pred) . 819
token read/3 (pred) . 819

213 Double linked list . 821
213.1 Usage and interface (ddlist) . 821
213.2 Documentation on exports (ddlist) . 821

null list/1 (pred) . 821
next/2 (pred) . 821
prev/2 (pred) . 821
insert/3 (pred) . 822
insert top/3 (pred) . 822
insert after/3 (pred) . 822
delete/2 (pred) . 822
delete top/2 (pred) . 822
delete after/2 (pred) . 823
top/2 (pred) . 823
rewind/2 (pred) . 823
forward/2 (pred) . 823
length/2 (pred) . 823
length next/2 (pred) . 824
length prev/2 (pred) . 824
ddlist/1 (regtype) . 824

213.3 Other information (ddlist) . 824
213.3.1 Using insert after . 824
213.3.2 More Complex example . 825

lviii The Ciao Prolog System

214 Measuring features from predicates (time cost
or memory used...) . 827
214.1 Usage and interface (time_analyzer) . 827
214.2 Documentation on exports (time_analyzer) 827

performance/3 (pred) . 827
benchmark/6 (pred) . 828
compare benchmark/7 (pred) . 828
benchmark2/6 (pred) . 829
compare benchmark2/7 (pred) . 830
sub times/3 (pred) . 830
div times/2 (pred). 830
cost/3 (pred) . 830
generate plot/3 (udreexp) . 831
generate plot/2 (udreexp) . 831
set general options/1 (udreexp) 831
get general options/1 (udreexp) 831

215 Printing graph using gnuplot as auxiliary tool.
. 833
215.1 Usage and interface (gnuplot) . 833
215.2 Documentation on exports (gnuplot) . 833

get general options/1 (pred) . 833
set general options/1 (pred) . 833
generate plot/2 (pred) . 834
generate plot/3 (pred) . 834

216 Automatic modules caller tester 837
216.1 Usage and interface (modtester) . 837
216.2 Documentation on exports (modtester) 837

tester func/1 (pred) . 837
modules tester/2 (pred) . 837
pred tester/2 (pred) . 838

217 Automatic tester . 839
217.1 Usage and interface (tester) . 839
217.2 Documentation on exports (tester) . 839

run tester/10 (pred) . 839
217.3 Other information (tester) . 840

217.3.1 Understanding run test predicate 840
217.3.2 More complex example . 841

PART XII - Appendices . 845

218 Installing Ciao from the source distribution
. 847
218.1 Un*x installation summary . 847
218.2 Un*x full installation instructions . 848
218.3 Checking for correct installation on Un*x 851
218.4 Cleaning up the source directory . 852
218.5 Multiarchitecture support . 852
218.6 Installation and compilation under Windows 852
218.7 Porting to currently unsupported operating systems 853
218.8 Troubleshooting (nasty messages and nifty workarounds) . . . 854

lix

219 Installing Ciao from a Win32 binary
distribution . 857
219.1 Win32 binary installation summary . 857
219.2 Checking for correct installation on Win32 858
219.3 Compiling the miscellaneous utilities under Windows. 859
219.4 Server installation under Windows . 859
219.5 CGI execution under IIS . 859
219.6 Uninstallation under Windows . 860

220 Beyond installation . 861
220.1 Architecture-specific notes and limitations 861
220.2 Keeping up to date with the Ciao users mailing list 861
220.3 Downloading new versions . 861
220.4 Reporting bugs . 862

References . 863

Library/Module Definition Index 869

Predicate/Method Definition Index 871

Property Definition Index . 873

Regular Type Definition Index 875

Declaration Definition Index. 877

Concept Definition Index. 879

Global Index . 881

Summary 1

Summary

Ciao is a public domain, next generation multi-paradigm programming environment with a
unique set of features:

• Ciao offers a complete Prolog system, supporting ISO-Prolog, but its novel modular design
allows both restricting and extending the language. As a result, it allows working with
fully declarative subsets of Prolog and also to extend these subsets (or ISO-Prolog) both
syntactically and semantically. Most importantly, these restrictions and extensions can be
activated separately on each program module so that several extensions can coexist in the
same application for different modules.

• Ciao also supports (through such extensions) programming with functions, higher-order
(with predicate abstractions), constraints, and objects, as well as feature terms (records),
persistence, several control rules (breadth-first search, iterative deepening, ...), concurrency
(threads/engines), a good base for distributed execution (agents), and parallel execution.
Libraries also support WWW programming, sockets, external interfaces (C, Java, TclTk,
relational databases, etc.), etc.

• Ciao offers support for programming in the large with a robust module/object system,
module-based separate/incremental compilation (automatically –no need for makefiles), an
assertion language for declaring (optional) program properties (including types and modes,
but also determinacy, non-failure, cost, etc.), automatic static inference and static/dynamic
checking of such assertions, etc.

• Ciao also offers support for programming in the small producing small executables (including
only those builtins used by the program) and support for writing scripts in Prolog.

• The Ciao programming environment includes a classical top-level and a rich emacs interface
with an embeddable source-level debugger and a number of execution visualization tools.

• The Ciao compiler (which can be run outside the top level shell) generates several forms of
architecture-independent and stand-alone executables, which run with speed, efficiency and
executable size which are very competitive with other commercial and academic Prolog/CLP
systems. Library modules can be compiled into compact bytecode or C source files, and
linked statically, dynamically, or autoloaded.

• The novel modular design of Ciao enables, in addition to modular program development,
effective global program analysis and static debugging and optimization via source to source
program transformation. These tasks are performed by the Ciao preprocessor (ciaopp,
distributed separately).

• The Ciao programming environment also includes lpdoc, an automatic documentation gen-
erator for LP/CLP programs. It processes Prolog files adorned with (Ciao) assertions and
machine-readable comments and generates manuals in many formats including postscript,
pdf, texinfo, info, HTML, man, etc. , as well as on-line help, ascii README files, entries for
indices of manuals (info, WWW, ...), and maintains WWW distribution sites.

Ciao is distributed under the GNU General Public License.

This documentation corresponds to version 1.9#344 (2004/4/29, 12:56:34 CEST).

2 The Ciao Prolog System

Chapter 1: Introduction 3

1 Introduction

1.1 About this manual

This is the Reference Manual for the Ciao Prolog development system. It contains basic
information on how to install Ciao Prolog and how to write, debug, and run Ciao Prolog pro-
grams from the command line, from inside GNU emacs, or from a windowing desktop. It also
documents all the libraries available in the standard distribution.

This manual has been generated using the LPdoc semi-automatic documentation generator
for LP/CLP programs [HC97,Her00]. lpdoc processes Prolog files (and files in other CLP
languages) adorned with assertions and machine-readable comments, which should be written
in the Ciao assertion language [PBH97,PBH00]. From these, it generates manuals in many
formats including postscript, pdf, texinfo, info, HTML, man, etc., as well as on-line help, ascii
README files, entries for indices of manuals (info, WWW, ...), and maintains WWW distribution
sites.

The big advantage of this approach is that it is easier to keep the on-line and printed docu-
mentation in sync with the source code [Knu84]. As a result, this manual changes continually as
the source code is modified. Because of this, the manual has a version number. You should make
sure the manual you are reading, whether it be printed or on-line, coincides with the version of
the software that you are using.

The approach also implies that there is often a variability in the degree to which different
libraries or system components are documented. Many libraries offer abundant documentation,
but a few will offer little. The latter is due to the fact that we tend to include libraries in the
manual if the code is found to be useful, even if they may still contain sparse documentation.
This is because including a library in the manual will at the bare minimum provide formal
information (such as the names of exported predicates and their arity, which other modules
it loads, etc.), create index entries, pointers for on-line help in the electronic versions of the
manuals, and command-line completion capabilities inside emacs. Again, the manual is being
updated continuously as the different libraries (and machine-readable documentation in them)
are improved.

1.2 About the Ciao Prolog development system

The Ciao system is a full programming environment for developing programs in the Pro-
log language and in several other languages which are extensions and modifications of Prolog
in several interesting and useful directions. The programming environment offers a number
of tools such as the Ciao standalone compiler (ciaoc), a traditional-style top-level interac-
tive shell (ciaosh or ciao), an interpreter of scripts written in Prolog (ciao-shell), a Prolog
emacs mode (which greatly helps the task of developing programs with support for editing,
debugging, version/change tracking, etc.), numerous libraries, a powerful program preproces-
sor (ciaopp [BdlBH99,BLGPH04,HBPLG99], which supports static debugging and optimiza-
tion from program analysis via source to source program transformation), and an automatic
documentation generator (lpdoc) [HC97,Her00]. A number of execution visualization tools
[CGH93,CH00d,CH00c] are also available.

This manual documents the first four of the tools mentioned above [see PART I - The program
development environment], and the Ciao Prolog language and libraries. The ciaopp and lpdoc
tools are documented in separate manuals.

The Ciao language [see PART II - The Ciao basic language (engine)] has been designed
from the ground up to be small, but to also allow extensions and restrictions in a modular
way. The first objective allows producing small executables (including only those builtins used
by the program), providing basic support for pure logic programming, and being able to write

4 The Ciao Prolog System

scripts in Prolog. The second one allows supporting standard ISO-Prolog [see PART III -
ISO-Prolog library (iso)], as well as powerful extensions such as constraint logic programming,
functional logic programming, and object-oriented logic programming [see PART VII - Ciao
Prolog extensions], and restrictions such as working with pure horn clauses.

The design of Ciao has also focused on allowing modular program development, as well
as automatic program manipulation and optimization. Ciao includes a robust module system
[CH00a], module-based automatic incremental compilation [CH99], and modular global program
analysis, debugging and optimization [PH99], based on a rich assertion language [see PART V
- Annotated Prolog library (assertions)] for declaring (optional) program properties (including
types and modes), which can be checked either statically or dynamically. The program analysis,
static debugging and optimization tasks related to these assertions are performed by the ciaopp
preprocessor, as mentioned above. These assertions (together with special comment-style dec-
larations) are also the ones used by the lpdoc autodocumenter to generate documentation for
programs (the comment-style declarations are documented in the lpdoc manual).

Ciao also includes several other features and utilities, such as support for several forms of
executables, concurrency (threads), distributed and parallel execution, higher-order, WWW
programming (PiLLoW [CHV96b]), interfaces to other languages like C and Java, database
interfaces, graphical interfaces, etc., etc. [see PARTS VI to XI].

1.3 ISO-Prolog compliance versus extensibility

One of the innovative features of Ciao is that it has been designed to subsume ISO-Prolog
(International Standard ISO/IEC 13211-1, PROLOG: Part 1–General Core [DEDC96]), while
at the same time extending it in many important ways. The intention is to ensure that all
ISO-compliant Prolog programs run correctly under Ciao. At the same time, the Ciao module
system (see [PART II - The Ciao basic language (engine)] and [CH00a] for a discussion of the
motivations behind the design) allows selectively avoiding the loading of most ISO-builtins (and
changing some other ISO characteristics) when not needed, so that it is possible to work with
purer subsets of Prolog and also to build small executables. Also, this module system makes
it possible to develop extensions using these purer subsets (or even the full ISO-standard) as a
starting point. Using these features, the Ciao distribution includes libraries which significantly
extend the language both syntactically and semantically.

Compliance with ISO is still not complete: currently there are some minor deviations in,
e.g., the treatment of characters, the syntax, some of the arithmetic functions, and part of the
error system. On the other hand, Ciao has been reported by independent sources (members
of the standarization body) to be one of the most conforming Prologs at the moment of this
writing, and the first one to be able to compile all the standard-conforming test cases. Also,
Ciao does not offer a strictly conforming mode which rejects uses of non-ISO features. However,
in order to aid programmers who wish to write standard compliant programs, library predicates
that correspond to those in the ISO-Prolog standard are marked specially in the manuals, and
differences between the Ciao and the prescribed ISO-Prolog behaviours, if any, are commented
appropriately.

The intention of the Ciao developers is to progressively complete the compliance of Ciao
with the published parts of the ISO standard as well as with other reasonable extensions of the
standard may be published in the future. However, since one of the design objectives of Ciao is
to address some shortcomings of previous implementations of Prolog and logic programming in
general, we also hope that some of the better ideas present in the system will make it eventually
into the standards.

1.4 About the name of the System

After reading the previous sections the sharp reader may have already seen the logic behind
the ’Ciao Prolog’ name. Ciao is an interesting word which means both hello and goodbye. Ciao

Chapter 1: Introduction 5

Prolog intends to be a really good, all-round, freely available ISO-Prolog system which can be
used as a classical Prolog, in both academic and industrial environments (and, in particular,
to introduce users to Prolog and to constraint and logic programming –the hello part). But
Ciao is also a new-generation, multiparadigm programming language and program development
system which goes well beyond Prolog and other classical logic programming languages. And it
has the advantage (when compared to other systems) that it does so while keeping full Prolog
compatibility when needed.

1.5 Referring to Ciao

If you find Ciao or any of its components useful, we would appreciate very much if you added
a reference to this manual (i.e., the Ciao reference manual [BCC97]) in your work. The following
is an appropriate BiBTeX entry with the relevant data:

@techreport{ciao-reference-manual-tr,
author = {F. Bueno and D. Cabeza and M. Carro and M. Hermenegildo

and P. L\’{o}pez-Garc\’{\i}a and G. Puebla},
title = {The Ciao Prolog system. Reference manual},
institution = {School of Computer Science,

Technical University of Madrid (UPM)},
year = 1997,
month = {August},
number = {{CLIP}3/97.1},
note = {Available from http://www.clip.dia.fi.upm.es/}

}

1.6 Syntax terminology and notational conventions

This manual is not meant to be an introduction to the Prolog language. The reader is referred
to standard textbooks on Prolog such as [SS86,CM81,Apt97,Hog84]. However, we would like
to refresh herein some concepts for the sake of establishing terminology. Also, we will briefly
introduce a few of the extensions that Ciao brings to the Prolog language.

1.6.1 Predicates and their components

In Prolog, procedures are called predicates and predicate calls literals. They all have the
classical syntax of procedures (and of logic predications and of mathematical functions). Predi-
cates are identified in this manual by a keyword ’PREDICATE’ at the right margin of the place
where they are documented.

Prolog instructions are expressions made up of control constructs (Chapter 13 [Control con-
structs/predicates], page 93) and literals, and are called goals. Literals are also (atomic) goals.

A predicate definition is a sequence of clauses. A clause has the form “H :- B.” (ending in
’.’), where H is syntactically the same as a literal and is called the clause head, and B is a goal
and is called the clause body. A clause with no body is written “H.” and is called a fact. Clauses
with body are also called rules. A Prolog program is a sequence of predicate definitions.

1.6.2 Characters and character strings

We adopt the following convention for delineating character strings in the text of this manual:
when a string is being used as a Prolog atom it is written thus: user or ’user’; but in all other
circumstances double quotes are used (as in "hello").

6 The Ciao Prolog System

When referring to keyboard characters, printing characters are written thus: 〈a〉, while control
characters are written like this: 〈̂ A〉. Thus 〈̂ C〉 is the character you get by holding down the
〈CTL〉 key while you type 〈c〉. Finally, the special control characters carriage-return, line-feed and
space are often abbreviated to 〈RET〉, 〈LFD〉 and 〈SPC〉 respectively.

1.6.3 Predicate specs

Predicates in Prolog are distinguished by their name and their arity. We will call name/arity
a predicate spec. The notation name/arity is therefore used when it is necessary to refer to a
predicate unambiguously. For example, concatenate/3 specifies the predicate which is named
“concatenate” and which takes 3 arguments.

(Note that different predicates may have the same name and different arity. Conversely, of
course, they may have the same arity and different name.)

1.6.4 Modes

When documenting a predicate, we will often describe its usage with a mode spec which
has the form name(Arg1, ..., ArgN) where each Arg may be preceded by a mode. A mode
is a functor which is wrapped around an argument (or prepended if defined as an operator).
Such a mode allows documenting in a compact way the instantiation state on call and exit of
the argument to which it is applied. The set of modes which can be used in Ciao is not fixed.
Instead, arbitrary modes can be defined by in programs using the modedef/1 declarations of the
Ciao assertion language (Chapter 53 [The Ciao assertion package], page 263 for details). Modes
are identified in this manual by a keyword ’MODE’.

Herein, we will use the set of modes defined in the Ciao isomodes library, which is essentially
the same as those used in the ISO-Prolog standard (Chapter 57 [ISO-Prolog modes], page 291).

1.6.5 Properties and types

Although Ciao Prolog is not a typed language, it allows writing (and using) types, as well
as (more general) properties. There may be properties of the states and of the computation.
Properties of the states allow expressing characteristics of the program variables during com-
putation, like in sorted(X) (X is a sorted list). Properties of the computation allow expressing
characteristics of a whole computation, like in is_det(p(X,Y)) (such calls yield only one so-
lution). Properties are just a special form of predicates (Chapter 55 [Declaring regular types],
page 277) and are identified in this manual by a keyword ’PROPERTY’.

Ciao types are regular types (Chapter 55 [Declaring regular types], page 277), which are a
special form of properties themselves. They are identified in this manual by a keyword ’REG-
TYPE’.

1.6.6 Declarations

A declaration provides information to one of the Ciao environment tools. Declarations are
interspersed in the code of a program. Usually the target tool is either the compiler (telling
it that a predicate is dynamic, or a meta-predicate, etc.), the preprocessor (which understands
declarations of properties and types, assertions, etc.), or the autodocumenter (which understands
the previous declarations and also certain “comment” declarations).

A declaration has the form :- D. where D is syntactically the same as a literal. Declarations
are identified in this manual by a keyword ’DECLARATION’.

In Ciao users can define (and document) new declarations. New declarations are typically
useful when defining extensions to the language (which in Ciao are called packages). Such exten-
sions are often implemented as expansions (see Chapter 26 [Extending the syntax], page 149).

Chapter 1: Introduction 7

There are many such extensions in Ciao. The functions library, which provides fuctional syn-
tax, is an example. The fact that in Ciao expansions are local to modules (as operators, see
below) makes it possible to use a certain language extension in one module without affecting
other modules.

1.6.7 Operators

An operator is a functor (or predicate name) which has been declared as such, thus allowing
its use in a prefix, infix, or suffix fashion, instead of the standard procedure-like fashion. E.g.,
declaring + as an infix operator allows writing X+Y instead of ’+’(X,Y) (which may still, of
course, be written).

Operators in Ciao are local to the module/file where they are declared. However, some opera-
tors are standard and allowed in every program (see Chapter 36 [Defining operators], page 203).
This manual documents the operator declarations in each (library) module where they are in-
cluded. As with expansions, the fact that in Ciao operators are local to modules makes it
possible to use a certain language extension in one module without affecting other modules.

1.7 A tour of the manual

The rest of the introductory chapters after this one provide a first “getting started” intro-
duction for newcomers to the Ciao system. The rest of the chapters in the manual are organized
into a sequence of major parts as follows:

1.7.1 PART I - The program development environment

This part documents the components of the basic Ciao program development environment.
They include:

ciaoc: the standalone compiler, which creates executables without having to enter the
interactive top-level.

ciaosh: (also invoked simply as ciao) is an interactive top-level shell, similar to the one
found on most Prolog systems (with some enhancements).

debugger.pl:
a Byrd box-type debugger, similar to the one found on most Prolog systems (also
with some enhancements, such as source-level debugging). This is not a standalone
application, but is rather included in ciaosh, as is done in other Prolog systems.
However, it is also embeddable, in the sense that it can be included as a library in
executables, and activated dynamically and conditionally while such executables are
running.

ciao-shell: an interpreter/compiler for Prolog scripts (i.e., files containing Prolog code which
run without needing explicit compilation).

ciao.el: a complete program development enviroment, based on GNU emacs, with syntax
coloring, direct access to all the tools described above (as well as the preprocessor
and the documenter), atomatic location of errors, source-level debugging, context-
sensitive access to on-line help/manuals, etc. The use of this environment is very
highly recommended !

The Ciao program development environment also includes ciaopp, the preprocessor, and
lpdoc, the documentation generator, which are described in separate manuals.

8 The Ciao Prolog System

1.7.2 PART II - The Ciao basic language (engine)

This part documents the Ciao basic builtins. These predefined predicates and declarations are
available in every program, unless the pure package is used (by using a :- module(_,_,[pure]).
declaration or :- use_package(pure).). These predicates are contained in the engine directory
within the lib library. The rest of the library predicates, including the packages that provide
most of the ISO-Prolog builtins, are documented in subsequent parts.

1.7.3 PART III - ISO-Prolog library (iso)

This part documents the iso package which provides to Ciao programs (most of) the ISO-
Prolog functionality , including the ISO-Prolog builtins not covered by the basic library.

1.7.4 PART IV - Classic Prolog library (classic)

This part documents some Ciao libraries which provide additional predicates and function-
alities that, despite not being in the ISO standard, are present in many popular Prolog systems.
This includes definite clause grammars (DCGs), “Quintus-style” internal database, list pro-
cessing predicates, DEC-10 Prolog-style input/output, formatted output, dynamic loading of
modules, activation of operators at run-time, etc.

1.7.5 PART V - Annotated Prolog library (assertions)

Ciao allows annotating the program code with assertions. Such assertions include type and
instantiation mode declarations, but also more general properties as well as comments in the
style of the literate programming. These assertions document predicates (and modules and
whole applications) and can be used by the Ciao preprocessor/compiler while debugging and
optimizing the program or library, and by the Ciao documenter to build the program or library
reference manual.

1.7.6 PART VI - Ciao Prolog library miscellanea

This part documents several Ciao libraries which provide different useful additional function-
alities. Such functionalities include performing operating system calls, gathering statistics from
the Prolog engine, file and file name manipulation, error and exception handling, fast reading
and writing of terms (marshalling and unmarshalling), file locking, program reporting messages,
pretty-printing programs and assertions, a browser of the system libraries, additional expansion
utilities, concurrent aggregates, graph visualization, etc.

1.7.7 PART VII - Ciao Prolog extensions

The libraries documented in this part extend the Ciao language in several different ways.
The extensions include:

• pure Prolog programming (well, this can be viewed more as a restriction than an extension);

• feature terms or records (i.e., structures with names for each field);

• parallel programming (e.g., &-Prolog style);

• functional syntax;

• higher-order library;

• global variables;

• setarg and undo;

• delaying predicate execution;

• active modules;

Chapter 1: Introduction 9

• breadth-first execution;

• iterative deepening-based execution;

• constraint logic programming;

• object oriented programming.

1.7.8 PART VIII - Interfaces to other languages and systems

The following interfaces to/from Ciao Prolog are documented in this part:

• External interface (e.g., to C).

• Socket interface.

• Tcl/tk interface.

• Web interface (http, html, xml, etc.);

• Persistent predicate databases (interface between the Prolog internal database and the
external file system).

• SQL-like database interface (interface between the Prolog internal database and external
SQL/ODBC systems).

• Java interface.

• Calling emacs from Prolog.

1.7.9 PART IX - Abstract data types

This part includes libraries which implement some generic data structures (abstract data
types) that are used frequently in programs or in the Ciao system itself.

1.7.10 PART X - Miscellaneous standalone utilities

This is the documentation for a set of miscellaneous standalone utilities contained in the etc
directory of the Ciao distribution.

1.7.11 PART XI - Contributed libraries

This part includes a number of libraries which have contributed by users of the Ciao system.
Over time, some of these libraries are moved to the main library directories of the system.

1.7.12 PART XII - Appendices

These appendices describe the installation of the Ciao environment on different systems and
some other issues such as reporting bugs, signing up on the Ciao user’s mailing list, downloading
new versions, limitations, etc.

1.8 Acknowledgments

The Ciao system is a joint effort on one side of the present (Francisco Bueno, Daniel
Cabeza, Manuel Carro, Manuel Hermenegildo, Pedro López, and Germán Puebla) and past (
Maŕıa José Garćıa de la Banda) members of the CLIP group at the School of Computer Science,
Technical University of Madrid , and on the other side of several colleagues and students that
have collaborated with us over the years of its development. The following is an (inevitably
incomplete) list of those that have contributed to the development of Ciao:

10 The Ciao Prolog System

• The Ciao engine, compiler, libraries and documentation, although completely rewritten at
this point, have their origins in the &-Prolog parallel Prolog engine and parallelizing com-
piler, developed by Manuel Hermenegildo, Kevin Greene, Kalyan Muthukumar, and Roger
Nasr at MCC and later at UPM. The &-Prolog engine and low-level (WAM) compilers in
turn were derived from early versions (0.5 to 0.7) of SICStus Prolog [Car88]. SICStus is an
excellent, high performance Prolog system, developed by Mats Carlsson and colleagues at
the Swedish Institute of Computer Science (SICS), that every user of Prolog should check
out [Swe95,AAF91]. Very special thanks are due to Seif Haridi, Mats Carlsson, and col-
leagues at SICS for allowing the SICStus 0.5-0.7 components in &-Prolog and its successor,
Ciao, to be distributed freely. Parts of the parallel abstract machine have been developed
in collaboration with Gopal Gupta and Enrico Pontelli (New Mexico State University).

• Many aspects of the analyzers in the Ciao preprocessor (ciaopp) have been developed in
collaboration with Peter Stuckey (Melbourne U.), Kim Marriott (Monash U.), Maurice
Bruynooghe, Gerda Janssens, Anne Mulkers, and Veroniek Dumortier (K.U. Leuven), and
Saumya Debray (U. of Arizona). The assertion system has been developed in collaboration
with Jan Maluzynski and Wlodek Drabent (Linkoping U.) and Pierre Deransart (INRIA).
The core of type inference system derives from the system developed by John Gallagher
[GdW94] (Bristol University) and later adapted to CLP(FD) by Pawel Pietrzak (Linkoping
U.).

• The constraint solvers for R and Q are derived from the code developed by Christian
Holzbauer (Austrian Research Institute for AI in Vienna) [Hol94,Hol90,Hol92].

• The Ciao manuals include material from the DECsystem-10 Prolog User’s Manual by D.L.
Bowen (editor), L. Byrd, F.C.N. Pereira, L.M. Pereira, and D.H.D. Warren [BBP81]. They
also contain material from the SICStus Prolog user manuals for SICStus versions 0.5-0.7
by Mats Carlsson and Johan Widen [Car88], as well as from the Prolog ISO standard
documentation [DEDC96].

• Ciao is designed to be highly extendable in a modular way. Many of the libraries distributed
with Ciao have been developed by other people all of which is impossible to mention here.
Individual author names are included in the documentation of each library and appear in
the indices.

• The development of the Ciao system has been supported in part by European research
projects ACCLAIM, PARFORCE, DISCIPL, AMOS, and ASAP and by MICYT projects
ELLA, EDIPIA, and CUBICO.

If you feel you have contributed to the development of Ciao and we have forgotten adding
your name to this list or the acknowledgements given in the different chapters, please let us
know and we will be glad to give proper credits.

1.9 Version/Change Log (ciao)

Version 1.10 (2004/4/15, 30:17:34 CEST)
• Classical prolog mode as default behavior.

• Emacs-based environment improved.

• Improved emacs inferior (interaction) mode for Ciao and CiaoPP.

• Xemacs compatibility improved (thanks to A. Rigo).

• New icons and modifications in the environment for the preprocessor.

• Icons now installed in a separate dir.

• Compatibility with newer versions of Cygwin.

• Changes to programming environment:

• Double-click startup of programming environment.

Chapter 1: Introduction 11

• Reorganized menus: help and customization grouped in separate
menus.

• Error location extended.

• Automatic/Manual location of errors produced when running Ciao
tools now customizable.

• Presentation of CiaoPP preprocessor output improved.

• Faces and coloring improved:

• Faces for syntax-based highlighting more customizable.

• Syntax-based coloring greatly improved. Literal-level assertions also
correctly colored now.

• Syntax-based coloring now also working on ASCII terminals (for newer
versions of emacs).

• Listing user-defined directives allowed to be colored in special face.

• Syntax errors now colored also in inferior buffers.

• Customizable faces now appear in the documentation.

• Added new tool bar button (and binding) to refontify block/buffer.

• Error marks now cleared automatically also when generating docs.

• Added some fixes to hooks in lpdoc buffer.

• Bug fixes in compiler.

• Replication of clauses in some cases (thanks to S. Craig).

• Improvements related to supported platforms

• Compilation and installation in different palatforms have been improved.

• New Mac OS X kernels supported.

• Improvement and bugs fixes in the engine:

• Got rid of several segmentation violation problems.

• Number of significant decimal digits to be printed now computed accu-
rately.

• Added support to test conversion of a Ciao integer into a machine int.

• Unbound length atoms now always working.

• C interface .h files reachable through a more standard location (thanks to
R. Bagnara).

• Compatibility with newer versions of gcc.

• New libraries and utilities added to the system:

• Factsdb: facts defined in external files can now be automatically cached
on-demand.

• Symfnames: File aliasing to internal streams added.

• New libraries added (in beta state):

• fd: clp(FD)

• xml path: XML querying and transformation to Prolog.

• xdr handle: XDR schema to HTML forms utility.

• ddlist: Two-way traversal list library.

• gnuplot: Interface to GnuPlot.

• time analyzer: Execution time profiling.

• Some libraries greatly improved:

• Pillow library improved in many senses.

12 The Ciao Prolog System

• HTTP media type parameter values returned are always strings now,
not atoms.

• Changed verbatim() pillow term so that newlines are translated to

.

• Changed management of cookies so that special characters in values
are correctly handled.

• Added predicate url_query_values/2, reversible. Predicate url_
query/2 now obsolete.

• Now attribute values in tags are escaped to handle values which have
double quotes.

• Improved get_form_input/1 and url_query/2 so that names of pa-
rameters having unusual characters are always correctly handled.

• Fixed bug in tokenizer regarding non-terminated single or multiple-line
comments. When the last line of a file has a single-line comment and does
not end in a newline, it is accepted as correct. When an open-comment /*
sequence is not terminated in a file, a syntax error exception is thrown.

• Other libraries improved:

• Added native props to assertions package and included nonground/1.

• In atom2terms, changed interpretation of double quoted strings so that
they are not parsed to terms.

• Control on exceptions improved.

• Added native/1,2 to basic props.

• Davinci error processing improved.

• Foreign predicates are now automatically declared as implementation-
defined.

• In lists, added cross_product/2 to compute the cartesian product of a list
of lists. Also added delete_non_ground/3, enabling deletion of nonground
terms from a list.

• In llists added transpose/2 and changed append/2 implementation with
a much more efficient code.

• The make library has been improved.

• In persdb, added pretractall_fact/1 and retractall_fact/1 as persdb
native capabilities.

• Some minor updates in persdb sql.

• Added treatment of operators and module:pred calls to pretty-printer.

• Updated report of read of syntax errors.

• File locking capabilities included in open/3.

• New input/output facilities added to sockets.

• Added most_specific_generalization/3 and
most_general_instance/3 to terms check.

• Added sort_dict/2 to library vndict.

• The xref library now treats also empty references.

• Miscellaneous updates:

• Extended documentation in libraries actmods, arrays, foreign interface,
javall, persdb mysql, prolog sys, old database, and terms vars.

Version 1.9 (2002/5/16, 23:17:34 CEST)
New development version after stable 1.8p0 (MCL, DCG)

Chapter 1: Introduction 13

Version 1.8 (2002/5/16, 21:20:27 CEST)
• Improvements related to supported platforms:

• Support for Mac OS X 10.1, based on the Darwin kernel.

• Initial support for compilation on Linux for Power PC (contributed by
Paulo Moura).

• Workaround for incorrect C compilation while using newer (> 2.95) gcc
compilers.

• .bat files generated in Windows.

• Changes in compiler behavior and user interface:

• Corrected a bug which caused wrong code generation in some cases.

• Changed execution of initialization directives. Now the initialization of a
module/file never runs before the initializations of the modules from which
the module/file imports (excluding circular dependences).

• The engine is more intelligent when looking for an engine to execute byte-
code; this caters for a variety of situations when setting explicitly the
CIAOLIB environment variable.

• Fixed bugs in the toplevel: behaviour of module:main calls and initializa-
tion of a module (now happens after related modules are loaded).

• Layout char not needed any more to end Prolog files.

• Syntax errors now disable .itf creation, so that they show next time the
code is used without change.

• Redefinition warnings now issued only when an unqualified call is seen.

• Context menu in Windows can now load a file into the toplevel.

• Updated Windows installation in order to run CGI executables under Win-
dows: a new information item is added to the registry.

• Added new directories found in recent Linux distributions to INFOPATH.

• Emacs-based environment and debugger improved:

• Errors located immediataly after code loading.

• Improved ciao-check-types-modes (preprocessor progress now visible).

• Fixed loading regions repeatedly (no more predicate redefinition warn-
ings).

• Added entries in ciaopp menu to set verbosity of output.

• Fixed some additional xemacs compatibility issues (related to
searches).

• Errors reported by inferior processes are now explored in forward order
(i.e., the first error rewported is the first one highlighted). Improved
tracking of errors.

• Specific tool bar now available, with icons for main fuctions (works
from emacs 21.1 on). Also, other minor adaptations for working with
emacs 21.1 and later.

• Debugger faces are now locally defined (and better customization).
This also improves comtability with xemacs (which has different faces).

• Direct access to a common use of the preprocessor (checking
modes/types and locating errors) from toolbar.

• Inferior modes for Ciao and CiaoPP improved: contextual help turned
on by default.

• Fixes to set-query. Also, previous query now appears in prompt.

14 The Ciao Prolog System

• Improved behaviour of stored query.

• Improved behaviour of recentering, finding errors, etc.

• Wait for prompt has better termination characteristics.

• Added new interactive entry points (M-x): ciao, prolog, ciaopp.

• Better tracking of last inferior buffer used.

• Miscellanous bugs removed; some colors changed to adapt to different
Emacs versions.

• Fixed some remaining incompatibilities with xemacs.

• :- doc now also supported and highlighted.

• Eliminated need for calendar.el

• Added some missing library directives to fontlock list, organized this
better.

• New libraries added to the system:

• hiord: new library which needs to be loaded in order to use higher-order
call/N and P(X) syntax. Improved model for predicate abstractions.

• fuzzy: allows representing fuzzy information in the form or Prolog rules.

• use url: allows loading a module remotely by using a WWW address of
the module source code

• andorra: alternative search method where goals which become determinis-
tic at run time are executed before others.

• iterative deepening (id): alternative search method which makes a depth-
first search until a predetermined depth is reached. Complete but in general
cheaper than breadth first.

• det hook: allows making actions when a deterministic situation is reached.

• ProVRML: read VRML code and translate it into Prolog terms, and the
other way around.

• io alias redirection: change where stdin/stdout/stderr point to from within
Ciao Prolog programs.

• tcl tk: an interface to Tcl/Tk programs.

• tcl tk obj: object-based interface to Tcl/Tk graphical objects.

• CiaoPP: options to interface with the CiaoPP Prolog preprocessor.

• Some libraries greatly improved:

• WebDB: utilities to create WWW-based database interfaces.

• Improved java interface implementation (this forced renaming some inter-
face primitives).

• User-transparent persistent predicate database revamped:

• Implemented passerta fact/1 (asserta fact/1).

• Now it is never necessary to explicitly call init persdb, a call to ini-
tialize db is only needed after dynamically defining facts of persis-
tent dir/2. Thus, pcurrent fact/1 predicate eliminated.

• Facts of persistent predicates included in the program code are now in-
cluded in the persistent database when it is created. They are ignored
in successive executions.

• Files where persistent predicates reside are now created inside a direc-
tory named as the module where the persistent predicates are defined,
and are named as F A* for predicate F/A.

Chapter 1: Introduction 15

• Now there are two packages: persdb and ’persdb/ll’ (for low level).
In the first, the standard builtins asserta fact/1, assertz fact/1, and
retract fact/1 are replaced by new versions which handle persistent
data predicates, behaving as usual for normal data predicates. In the
second package, predicates with names starting with ’p’ are defined,
so that there is not overhead in calling the standard builtins.

• Needed declarations for persistent dir/2 are now included in the pack-
ages.

• SQL now works with mysql.

• system: expanded to contain more predicates which act as interface to the
underlying system / operating system.

• Other libraries improved:

• xref: creates cross-references among Prolog files.

• concurrency: new predicates to create new concurrent predicates on-the-fly.

• sockets: bugs corrected.

• objects: concurrent facts now properly recognized.

• fast read/write: bugs corrected.

• Added ’webbased’ protocol for active modules: publication of active mod-
ule address can now be made through WWW.

• Predicates in library(dynmods) moved to library(compiler).

• Expansion and meta predicates improved.

• Pretty printing.

• Assertion processing.

• Module-qualified function calls expansion improved.

• Module expansion calls goal expansion even at runtime.

• Updates to builtins (there are a few more; these are the most relevant):

• Added a prolog flag to retrieve the version and patch.

• current predicate/1 in library(dynamic) now enumerates non-engine mod-
ules, prolog sys:current predicate/2 no longer exists.

• exec/* bug fixed.

• srandom/1 bug fixed.

• Updates for C interface:

• Fixed bugs in already existing code.

• Added support for creation and traversing of Prolog data structures from
C predicates.

• Added support for raising Prolog exceptions from C predicates.

• Preliminary support for calling Prolog from C.

• Miscellaneous updates:

• Installation made more robust.

• Some pending documentation added.

• ’ciao’ script now adds (locally) to path the place where it has been in-
stalled, so that other programs can be located without being explicitly in
the $PATH.

• Loading programs is somewhat faster now.

• Some improvement in printing path names in Windows.

16 The Ciao Prolog System

Version 1.7 (2000/7/12, 19:1:20 CEST)
Development version following even 1.6 distribution.

Version 1.6 (2000/7/12, 18:55:50 CEST)
• Source-level debugger in emacs, breakpts.

• Emacs environment improved, added menus for Ciaopp and LPDoc.

• Debugger embeddable in executables.

• Stand-alone executables available for UNIX-like operating systems.

• Many improvements to emacs interface.

• Menu-based interface to autodocumenter.

• Threads now available in Win32.

• Many improvements to threads.

• Modular clp(R) / clp(Q).

• Libraries implementing And-fair breadth-first and iterative deepening included.

• Improved syntax for predicate abstractions.

• Library of higher-order list predicates.

• Better code expansion facilities (macros).

• New delay predicates (when/2).

• Compressed object code/executables on demand.

• The size of atoms is now unbound.

• Fast creation of new unique atoms.

• Number of clauses/predicates essentially unbound.

• Delayed goals with freeze restored.

• Faster compilation and startup.

• Much faster fast write/read.

• Improved documentation.

• Other new libraries.

• Improved installation/deinstallation on all platforms.

• Many improvements to autodocumenter.

• Many bug fixes in libraries and engine.

Version 1.5 (1999/11/29, 16:16:23 MEST)
Development version following even 1.4 distribution.

Version 1.4 (1999/11/27, 19:0:0 MEST)
• Documentation greatly improved.

• Automatic (re)compilation of foreign files.

• Concurrency primitives revamped; restored &Prolog-like multiengine capability.

• Windows installation and overall operation greatly improved.

• New version of O’Ciao class/object library, with improved performance.

• Added support for "predicate abstractions" in call/N.

• Implemented reexportation through reexport declarations.

• Changed precedence of importations, last one is now higher.

• Modules can now implicitly export all predicates.

• Many minor bugs fixed.

Version 1.3 (1999/6/16, 17:5:58 MEST)
Development version following even 1.2 distribution.

Chapter 1: Introduction 17

Version 1.2 (1999/6/14, 16:54:55 MEST)
Temporary version distributed locally for extensive testing of reexportation and
other 1.3 features.

Version 1.1 (1999/6/4, 13:30:37 MEST)
Development version following even 1.0 distribution.

Version 1.0 (1999/6/4, 13:27:42 MEST)
• Added Tcl/Tk interface library to distribution.

• Added push prolog flag/2 and pop prolog flag/1 declarations/builtins.

• Filename processing in Windows improved.

• Added redefining/1 declaration to avoid redefining warnings.

• Changed syntax/1 declaration to use package/1.

• Added add clause trans/1 declaration.

• Changed format of .itf files such that a ’+’ stands for all the standard im-
ports from engine, which are included in c itf source internally (from en-
gine(builtin exports)). Further changes in itf data handling, so that once an .itf
file is read in a session, the file is cached and next time it is needed no access
to the file system is required.

• Many bugs fixed.

Version 0.9 (1999/3/10, 17:3:49 CET)
• Test version before 1.0 release. Many bugs fixed.

Version 0.8 (1998/10/27, 13:12:36 MET)
• Changed compiler so that only one pass is done, eliminated .dep files.

• New concurrency primitives.

• Changed assertion comment operator to #.

• Implemented higher-order with call/N.

• Integrated SQL-interface to external databases with persistent predicate con-
cept.

• First implementation of object oriented programming package.

• Some bugs fixed.

Version 0.7 (1998/9/15, 12:12:33 MEST)
• Improved debugger capabilities and made easier to use.

• Simplified assertion format.

• New arithmetic functions added, which complete all ISO functions.

• Some bugs fixed.

Version 0.6 (1998/7/16, 21:12:7 MET DST)
• Defining other path aliases (in addition to ’library’) which can be loaded dy-

namically in executables is now possible.

• Added the posibility to define multifile predicates in the shell.

• Added the posibility to define dynamic predicates dynamically.

• Added addmodule meta-argument type.

• Implemented persistent data predicates.

• New version of PiLLoW WWW library (XML, templates, etc.).

• Ported active modules from “distributed Ciao” (independent development ver-
sion of Ciao).

• Implemented lazy loading in executables.

18 The Ciao Prolog System

• Modularized engine(builtin).

• Some bugs fixed.

Version 0.5 (1998/3/23)
• First Windows version.

• Integrated debugger in toplevel.

• Implemented DCG’s as (Ciao-style) expansions.

• Builtins renamed to match ISO-Prolog.

• Made ISO the default syntax/package.

Version 0.4 (1998/2/24)
• First version with the new Ciao emacs mode.

• Full integration of concurrent engine and compiler/library.

• Added new declaration/1 directive.

• Added modular syntax enhancements.

• Shell script interpreter separated from toplevel shell.

• Added new compilation warnings.

Version 0.3 (1997/8/20)
• Ciao builtins modularized.

• New prolog flags can be defined by libraries.

• Standalone comand-line compiler available, with automatic "make".

• Added assertions and regular types.

• First version using the automatic documentation generator.

Version 0.2 (1997/4/16)
• First module system implemented.

• Implemented exceptions using catch/3 and throw/1.

• Added functional & record syntax.

• Added modular sentence, term, and goal translations.

• Implemented attributed variables.

• First CLPQ/CLPR implementation.

• Added the posibility of linking external .so files.

• Changes in syntax to allow P(X) and "string"||L.

• Changed to be more similar to ISO-Prolog.

• Implemented Prolog shell scripts.

• Implemented data predicates.

Version 0.1 (1997/2/13)
First fully integrated, standalone Ciao distribution. Based on integrating into
an evolution of the &-Prolog engine/libraries/preprocessor [Her86,HG91] many
functionalities from several previous independent development versions of Ciao
[HC93,HC94,HCC95,Bue95,CLI95,HBdlBP95,HBC96,CHV96b,HBC99].

Chapter 2: Getting started on Un*x-like machines 19

2 Getting started on Un*x-like machines

Author(s): M.Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#133 (2001/11/1, 16:34:6 CET)

This part guides you through some very basic first steps with Ciao on a Un*x-like system. It
assumes that Ciao is already installed correctly on your Un*x system. If this is not the case, then
follow the instructions in Chapter 218 [Installing Ciao from the source distribution], page 847
first.

We start with by describing the basics of using Ciao from a normal command shell such
as sh/bash, csh/tcsh, etc. We strongly recommend reading also Section 2.4 [An introduction
to the Ciao emacs environment (Un*x)], page 22 for the basics on using Ciao under emacs,
which is a much simpler and much more powerful way of developing Ciao programs, and has
the advantage of offering an almost identical environment under Un*x and Windows.

2.1 Testing your Ciao Un*x installation

It is a good idea to start by performing some tests to check that Ciao is installed correctly on
your system (these are the same tests that you are instructed to do during installation, so you
can obviously skip them if you have done them already at that time). If any of these tests do
not succeed either your environment variables are not set properly (see Section 2.2 [Un*x user
setup], page 19 for how to fix this):

• Typing ciao (or ciaosh) should start the typical Prolog top-level shell.

• In the top-level shell, Prolog library modules should load correctly. Type for example
use_module(library(dec10_io)) –you should get back a prompt with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

• Typing ciaoc should produce the help message from the Ciao standalone compiler.

• Typing ciao-shell should produce a message saying that no code was found. This is a
Ciao application which can be used to write scripts written in Prolog, i.e., files which do
not need any explicit compilation to be run.

Also, the following documentation-related actions should work:

• If the info program is installed, typing info should produce a list of manuals which should
include Ciao manual(s) in a separate area (you may need to log out and back in so that
your shell variables are reinitialized for this to work).

• Opening with a WWW browser (e.g., netscape) the directory or URL corresponding to the
DOCROOT setting should show a series of Ciao-related manuals. Note that style sheets should
be activated for correct formatting of the manual.

• Typing man ciao should produce a man page with some very basic general information on
Ciao (and pointing to the on-line manuals).

• The DOCROOT directory should contain the manual also in the other formats such as
postscript or pdf which specially useful for printing. See Section 2.3.7 [Printing man-
uals (Un*x)], page 22 for instructions.

2.2 Un*x user setup

If the tests above have succeeded, the system is probably installed correctly and your envi-
ronment variables have been set already. In that case you can skip to the next section.

Otherwise, if you have not already done so, make the following modifications in your startup
scripts, so that these files are used (<LIBROOT> must be replaced with the appropriate value,
i.e., where the Ciao library is installed):

20 The Ciao Prolog System

• For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

if (-e <LIBROOT>/ciao/DOTcshrc) then
source <LIBROOT>/ciao/DOTcshrc

endif

Mac OS X users should add (or modify) the path file in the directory ~/Library/init/tcsh,
adding the lines shown above. Note: while this is recognized by the terminal shell, and
therefore by the text-mode Emacs which comes with Mac OS X, the Aqua native Emacs 21
does not recognize that initialization. It is thus necessary, at this moment, to set manually
the Ciao shell (ciaosh) and Ciao library location by hand. This can be done from the Ciao
menu within Emacs after a Ciao Prolog file has been loaded. We suppose that the reason
is that Mac OS X does not actually consult the per-user initialization files on startup. It
should also be possible to put the right initializations in the .emacs file using the setenv
function of Emacs-lisp, as in

(setenv "CIAOLIB" "<LIBROOT>/ciao")

The same can be done for the rest of the variables initialized in <LIBROOT>/ciao/DOTcshrc

• For users of an sh-compatible shell (sh, bash, ...), add to ~/.profile:

if [-f <LIBROOT>/ciao/DOTprofile]; then
. <LIBROOT>/ciao/DOTprofile

fi

This will set up things so that the Ciao executables are found and you can access the Ciao
system manuals using the info command. Note that, depending on your shell, you may
have to log out and back in for the changes to take effect.

• Also, if you use emacs (highly recommended) add this line to your ~/.emacs file:

(load-file "<LIBROOT>/ciao/DOTemacs.el")

If after following these steps things do not work properly, then the installation was probably
not completed properly and you may want to try reinstalling the system.

2.3 Using Ciao from a Un*x command shell

2.3.1 Starting/exiting the top-level shell (Un*x)

The basic methods for starting/exiting the top-level shell have been discussed above. If upon
typing ciao you get a “command not found” error or you get a longer message from Ciao before
starting, it means that either Ciao was not installed correctly or you environment variables are
not set up properly. Follow the instructions on the message printed by Ciao or refer to the
installation instructions regarding user-setup for details.

2.3.2 Getting help (Un*x)

The basic methods for accessing the manual on-line have also been discussed above. Use
the table of contents and the indices of predicates, libraries, concepts, etc. to find what you are
looking for. Context-sensitive help is available within the emacs environment (see below).

2.3.3 Compiling and running programs (Un*x)

Once the shell is started, you can compile and execute Prolog modules inside the interactive
top-level shell in the standard way. E.g., type use_module(file)., use_module(library(file)).
for library modules, ensure_loaded(file). for files which are not modules, and use_
package(file). for library packages (these are syntactic/semantic packages that extend the Ciao

Chapter 2: Getting started on Un*x-like machines 21

Prolog language in many different ways). Note that the use of compile/1 and consult/1 is
discouraged in Ciao.

For example, you may want to type use_package(iso) to ensure Ciao has loaded all the ISO
builtins (whether this is done by default or not depends on your .ciaorc file). Do not worry
about any “module already in executable” messages –these are normal and simply mean that a
certain module is already pre-loaded in the top-level shell. At this point, typing write(hello).
should work.

Note that some predicates that may be built-ins in other Prologs are available through
libraries in Ciao. This facilitates making small executables.

To change the working directory to, say, the examples directory in the Ciao root directory,
first do:

?- use_module(library(system)).

(loading the system library makes a number of system-related predicates such as cd/1 accessible)
and then:

?- cd(’$/examples’).

(in Ciao the sequence $/ at the beginning of a path name is replaced by the path of the Ciao
root directory).

For more information see Chapter 5 [The interactive top-level shell], page 39.

2.3.4 Generating executables (Un*x)

Executables can be generated from the top-level shell (using make_exec/2) or using the
standalone compiler (ciaoc). To be able to make an executable, the file should define the
predicate main/1 (or main/0), which will be called upon startup (see the corresponding manual
section for details). In its simplest use, given a top-level foo.pl file for an application, the
compilation process produces an executable foo, automatically detecting which other files used
by foo.pl need recompilation.

For example, within the examples directory, you can type:

?- make_exec(hw,_).

which should produce an executable. Typing hw in a shell (or double-clicking on the icon from
a graphical window) should execute it.

For more information see Chapter 5 [The interactive top-level shell], page 39 and Chapter 4
[The stand-alone command-line compiler], page 31.

2.3.5 Running Ciao scripts (Un*x)

Ciao allows writing Prolog scripts. These are files containing Prolog source but which get
executed without having to explicitly compile them (in the same way as, e.g., .bat files or
programs in scripting languages). As an example, you can run the file hw in the examples
directory of the Ciao distribution and look at the source with an editor. You can try changing
the Hello world message and running the program again (no need to recompile!).

As you can see, the file should define the predicate main/1 (not main/0), which will be called
upon startup. The two header lines are necessary in Un*x in. In Windows you can leave them
in or you can take them out, but you need to rename the script to hw.pls. Leaving the lines in
has the advantage that the script will also work in Un*x without any change.

For more information see Chapter 8 [The script interpreter], page 61.

22 The Ciao Prolog System

2.3.6 The Ciao initialization file (Un*x)

The Ciao toplevel can be made to execute upon startup a number of commands (such as,
e.g., loading certain files or setting certain Prolog flags) contained in an initialization file. This
file should be called .ciaorc and placed in your home directory (e.g., ~, the same in which
the .emacs file is put). You may need to set the environment variable HOME to the path of this
directory for the Ciao toplevel shell to be able to locate this file on startup.

2.3.7 Printing manuals (Un*x)

As mentioned before, the manual is available in several formats in the reference directory
within the doc directory in the Ciao distribution, including postscript or pdf, which are spe-
cially useful for printing. These files are also available in the DOCROOT directory specified during
installation. Printing can be done using an application such as ghostview (freely available from
http://www.cs.wisc.edu/~ghost/index.html) or acrobat reader (http://www.adobe.com,
only pdf).

2.4 An introduction to the Ciao emacs environment (Un*x)

While it is easy to use Ciao with any editor of your choice, using it within the emacs edi-
tor/program development system is highly recommended: Ciao includes an emacs mode which
provides a very complete application development environment which greatly simplifies many
program development tasks. See Chapter 10 [Using Ciao inside GNU emacs], page 65 for details
on the capabilities of ciao/ emacs combination.

If the (freely available) emacs editor/environment is not installed in your system, we highly
recommend that you also install it at this point (there are instructions for where to find emacs
and how to install it in the Ciao installation instructions). After having done this you can try
for example the following things:

• A few basic things:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should
open a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Prolog file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename
(or using the menus) the code should appear highlighted according to syntax (e.g.,
comments in red), and Ciao/Prolog menus should appear in the menu bar on top of
the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch
the the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not
very useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to
do this is explained in the emacs frequently asked questions FAQs (see the emacs download
instructions for their location).

(if these things do not work the system or emacs may not be installed properly).

• You can go to the location of most of the errors that may be reported during compilation
by typing 〈̂ C〉 〈‘〉.

• You can also, e.g., create executables from the Ciao/Prolog menu, as well as compile
individual files, or generate active modules.

• Loading a file for source-level debugging using the Ciao/Prolog menu (or typing 〈̂ C〉 〈d〉)
and then issuing a query should start the source-level debugger and move a marker on the
code in a window while execution is stepped through in the window running the Ciao top
level.

Chapter 2: Getting started on Un*x-like machines 23

• You can add the lines needed in Un*x for turning any file defining main/1 into a script from
the Ciao/Prolog menu or by typing 〈̂ C〉 〈I〉 〈S〉.

• You can also work with the preprocessor and auto-documenter directly from emacs: see
their manuals or browse through the corresponding menus that appear when editing .pl
files.

We encourage you once more to read Chapter 10 [Using Ciao inside GNU emacs], page 65 to
discover the many other functionalities of this environment.

2.5 Keeping up to date (Un*x)

You may want to read Chapter 220 [Beyond installation], page 861 for instructions on how to
sign up on the Ciao user’s mailing list, receive announcements regarding new versions, download
new versions, report bugs, etc.

24 The Ciao Prolog System

Chapter 3: Getting started on Windows machines 25

3 Getting started on Windows machines

Author(s): M.Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#116 (2003/12/3, 13:35:35 CET)

This part guides you through some very basic first steps with Ciao on an MSWindows
(“Win32”) system. It assumes that Ciao is already installed correctly on your Windows system.
If this is not the case, then follow the instructions in Chapter 219 [Installing Ciao from a Win32
binary distribution], page 857 (or Chapter 218 [Installing Ciao from the source distribution],
page 847) first.

We start with by describing the basics of using Ciao from the Windows explorer and/or a
DOS command shell. We strongly recommend reading also Section 3.3 [An introduction to the
Ciao emacs environment (Win32)], page 27 for the basics on using Ciao under emacs, which is a
much simpler and much more powerful way of developing Ciao programs, and has the advantage
of offering an almost identical environment under Windows and Un*x.

3.1 Testing your Ciao Win32 installation

It is a good idea to start by performing some tests to check that Ciao is installed correctly on
your system (these are the same tests that you are instructed to do during installation, so you
can obviously skip them if you have done them already at that time):

• Ciao-related file types (.pl source files, .cpx executables, .itf,.po,.asr interface files,
.pls scripts, etc.) should have specific icons associated with them (you can look at the files
in the folders in the Ciao distribution to check).

• Double-clicking on the shortcut to ciaosh(.cpx) on the desktop should start the typical
Prolog top-level shell in a window. If this shortcut has not been created on the desktop, then
double-clicking on the ciaosh(.cpx) icon inside the shell folder within the Ciao source
folder should have the same effect.

• In the top-level shell, Prolog library modules should load correctly. Type for example use_
module(library(dec10_io)). at the Ciao top-level prompt –you should get back a prompt
with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

Also, the following documentation-related actions should work:

• Double-clicking on the shortcut to ciao(.html) which appears on the desktop should show
the Ciao manual in your default WWW browser. If this shortcut has not been created you
can double-click on the ciao(.html) file in the doc\reference\ciao_html folder inside the
Ciao source folder. Make sure you configure your browser to use style sheets for correct
formatting of the manual (note, however, that some older versions of Explorer did not
support style sheets well and will give better results turning them off).

• The doc\reference folder contains the manual also in the other formats present in the dis-
tribution, such as info (very convenient for users of the emacs editor/program development
system) and postscript or pdf, which are specially useful for printing. See Section 3.2.7
[Printing manuals (Win32)], page 27 for instructions.

3.2 Using Ciao from the Windows explorer and command shell

3.2.1 Starting/exiting the top-level shell (Win32)

The basic methods for starting/exiting the top-level shell have been discussed above. The
installation script also leaves a ciaosh(.bat) file inside the shell folder of the Ciao distribution
which can be used to start the top-level shell from the command line in Windows systems.

26 The Ciao Prolog System

3.2.2 Getting help (Win32)

The basic methods for accessing the manual on-line have also been discussed above. Use
the table of contents and the indices of predicates, libraries, concepts, etc. to find what you are
looking for. Context-sensitive help is available within the emacs environment (see below).

3.2.3 Compiling and running programs (Win32)

Once the shell is started, you can compile and execute Prolog modules inside the interactive
toplevel shell in the standard way. E.g., type use_module(file)., use_module(library(file)).
for library modules, ensure_loaded(file). for files which are not modules, and use_
package(file). for library packages (these are syntactic/semantic packages that extend the Ciao
Prolog language in many different ways). Note that the use of compile/1 and consult/1 is
discouraged in Ciao.

For example, you may want to type use_package(iso) to ensure Ciao has loaded all the ISO
builtins (whether this is done by default or not depends on your .ciaorc file). Do not worry
about any “module already in executable” messages –these are normal and simply mean that a
certain module is already pre-loaded in the toplevel shell. At this point, typing write(hello).
should work.

Note that some predicates that may be built-ins in other Prologs are available through
libraries in Ciao. This facilitates making small executables.

To change the working directory to, say, the examples directory in the Ciao source directory,
first do:

?- use_module(library(system)).

(loading the system library makes a number of system-related predicates such as cd/1 accessible)
and then:

?- cd(’$/examples’).

(in Ciao the sequence $/ at the beginning of a path name is replaced by the path of the Ciao
root directory).

For more information see Chapter 5 [The interactive top-level shell], page 39.

3.2.4 Generating executables (Win32)

Executables can be generated from the toplevel shell (using make_exec/2) or using the stan-
dalone compiler (ciaoc(.cpx), located in the ciaoc folder). To be able to make an executable,
the file should define the predicate main/1 (or main/0), which will be called upon startup (see
the corresponding manual section for details).

For example, within the examples directory, you can type:

?- make_exec(hw,_).

which should produce an executable. Double-clicking on this executable should execute it.

Another way of creating Ciao executables from source files is by right-clicking on .pl files
and choosing “make executable”. This uses the standalone compiler (this has the disadvantage,
however, that it is sometimes difficult to see the error messages).

For more information see Chapter 5 [The interactive top-level shell], page 39 and Chapter 4
[The stand-alone command-line compiler], page 31.

Chapter 3: Getting started on Windows machines 27

3.2.5 Running Ciao scripts (Win32)

Double-clicking on files ending in .pls, Ciao Prolog scripts, will also execute them. These
are files containing Prolog source but which get executed without having to explicitly compile
them (in the same way as, e.g., .bat files or programs in scripting languages). As an example,
you can double-click on the file hw.pls in the examples folder and look at the source with an
editor. You can try changing the Hello world message and double-clicking again (no need to
recompile!).

As you can see, the file should define the predicate main/1 (not main/0), which will be called
upon startup. The two header lines are only necessary in Un*x. In Windows you can leave
them in or you can take them out, but leaving them in has the advantage that the script will
also work in Un*x without any change.

For more information see Chapter 8 [The script interpreter], page 61.

3.2.6 The Ciao initialization file (Win32)

The Ciao toplevel can be made to execute upon startup a number of commands (such as,
e.g., loading certain files or setting certain Prolog flags) contained in an initialization file. This
file should be called .ciaorc and placed in your home folder (e.g., the same in which the .emacs
file is put). You may need to set the environment variable HOME to the path of this folder for
the Ciao toplevel shell to be able to locate this file on startup.

3.2.7 Printing manuals (Win32)

As mentioned before, the manual is available in several formats in the reference folder
within Ciao’s doc folder, including postscript or pdf, which are specially useful for print-
ing. This can be done using an application such as ghostview (freely available from
http://www.cs.wisc.edu/~ghost/index.html) or acrobat reader (http://www.adobe.com,
only pdf).

3.3 An introduction to the Ciao emacs environment (Win32)

While it is easy to use Ciao with any editor of your choice, using it within the emacs edi-
tor/program development system is highly recommended: Ciao includes an emacs mode which
provides a very complete application development environment which greatly simplifies many
program development tasks. See Chapter 10 [Using Ciao inside GNU emacs], page 65 for details
on the capabilities of ciao/ emacs combination.

If the (freely available) emacs editor/environment is not installed in your system, we highly
recommend that you also install it at this point (there are instructions for where to find emacs
and how to install it in the Ciao installation instructions). After having done this you can try
for example the following things:

• A few basic things:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should
open a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Prolog file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename
(or using the menus) the code should appear highlighted according to syntax (e.g.,
comments in red), and Ciao/Prolog menus should appear in the menu bar on top of
the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch
the the toplevel shell and make queries from within emacs.

28 The Ciao Prolog System

Note: when using emacs it is very convenient to swap the locations of the (normally not
very useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to
do this is explained in the emacs frequently asked questions FAQs (see the emacs download
instructions for their location).

(if these things do not work the system or emacs may not be installed properly).

• You can go to the location of most of the errors that may be reported during compilation
by typing 〈̂ C〉 〈‘〉.

• You can also, e.g., create executables from the Ciao/Prolog menu, as well as compile
individual files, or generate active modules.

• Loading a file for source-level debugging using the Ciao/Prolog menu (or typing 〈̂ C〉 〈d〉)
and then issuing a query should start the source-level debugger and move a marker on the
code in a window while execution is stepped through in the window running the Ciao top
level.

• You can add the lines needed in Un*x for turning any file defining main/1 into a script from
the Ciao/Prolog menu or by typing 〈̂ C〉 〈I〉 〈S〉.

• You can also work with the preprocessor and auto-documenter directly from emacs: see
their manuals or browse through the corresponding menus that appear when editing .pl
files.

We encourage you once more to read Chapter 10 [Using Ciao inside GNU emacs], page 65 to
discover the many other functionalities of this environment.

3.4 Keeping up to date (Win32)

You may want to read Chapter 220 [Beyond installation], page 861 for instructions on how to
sign up on the Ciao user’s mailing list, receive announcements regarding new versions, download
new versions, report bugs, etc.

PART I - The program development environment 29

PART I - The program development environment

® ©

Author(s): Manuel Carro.

This part documents the components of the basic Ciao program development environment.
They include:

ciaoc: the standalone compiler, which creates executables without having to enter the
interactive top-level.

ciaosh: (also invoked simply as ciao) is an interactive top-level shell, similar to the one
found on most Prolog systems (with some enhancements).

debugger.pl:
a Byrd box-type debugger, similar to the one found on most Prolog systems (also
with some enhancements, such as source-level debugging). This is not a standalone
application, but is rather included in ciaosh, as is done in other Prolog systems.
However, it is also embeddable, in the sense that it can be included as a library in
executables, and activated dynamically and conditionally while such executables are
running.

ciao-shell: an interpreter/compiler for Prolog scripts (i.e., files containing Prolog code which
run without needing explicit compilation).

ciao.el: a complete program development enviroment, based on GNU emacs, with syntax
coloring, direct access to all the tools described above (as well as the preprocessor
and the documenter), atomatic location of errors, source-level debugging, context-
sensitive access to on-line help/manuals, etc. The use of this environment is very
highly recommended !

The Ciao program development environment also includes ciaopp, the preprocessor, and
lpdoc, the documentation generator, which are described in separate manuals.

 ª

30 The Ciao Prolog System

Chapter 4: The stand-alone command-line compiler 31

4 The stand-alone command-line compiler

Author(s): Daniel Cabeza and the CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#98 (2003/8/27, 12:39:15 CEST)

ciaoc [CH00b] is the Ciao stand-alone command-line compiler. ciaoc can be used to create
executables or to compile individual files to object code (to be later linked with other files).
ciaoc is specially useful when working from the command line. Also, it can be called to compile
Ciao programs from other tools such as, e.g., shell scripts, Makefiles, or project files. All the
capabilities of ciaoc are also available from the interactive top-level shell, which uses the ciaoc
modules as its components.

4.1 Introduction to building executables

An executable can be built from a single file or from a collection of inter-related files. In the
case of only one file, this file must define the predicate main/0 or main/1. This predicate is the
one which will be called when the executable is started. As an example, consider the following
file, called hello.pl:

main :-
write(’Hello world’),
nl.

To compile it from the command line using the ciaoc standalone compiler it suffices to type
“ciaoc hello” (in Win32 you may have to put the complete path to the ciaoc folder of the
Ciao distribution, where the installation process leaves a ciaoc.bat file):

/herme@clip:/tmp
[60]> ciaoc hello

/herme@clip:/tmp
[61]>

This produces an executable called hello in Un*x-like systems and hello.cpx under Win32
systems. This executable can then be run in Win32 by double-clicking on it and on Un*x systems
by simply typing its name (see for Section 4.3 [Running executables from the command line],
page 32 for how to run executables from the command line in Win32):

/herme@clip:/tmp
[61]> hello
Hello world

If the application is composed of several files the process is identical. Assume hello.pl is
now:

:- use_module(aux,[p/1]).

main :-
p(X),
write(X),
nl.

where the file aux.pl contains:

:- module(aux,[p/1]).

p(’Hello world’).

This can again be compiled using the ciaoc standalone compiler as before:

32 The Ciao Prolog System

/herme@clip:/tmp
[60]> ciaoc hello

/herme@clip:/tmp
[61]> hello
Hello world

The invocation of ciaoc hello compiles the file hello.pl and all connected files that may
need recompilation – in this case the file aux.pl. Also, if any library files used had not been
compiled previously they would be compiled at this point (See Section 4.6 [Intermediate files
in the compilation process], page 35). Also, if, say, hello.pl is changed and recompiled, the
object code resulting from the previous compilation of aux.pl will be reused. This is all done
without any need for Makefiles, and considerably accelerates the development process for large
applications. This process can be observed by selecting the -v option when invoking ciaoc
(which is equivalent to setting the verbose_compilation Prolog flag to on in the top-level
interpreter).

If main/1 is defined instead of main/0 then when the executable is started the argument of
main/1 will be instantiated to a list of atoms, each one of them corresponding to a command
line option. Consider the file say.pl:

main(Argv) :-
write_list(Argv), nl.

write_list([]).
write_list([Arg|Args]) :-

write(Arg),
write(’ ’),
write_list(Args).

Compiling this program and running it results in the following output:

/herme@clip:/tmp
[91]> ciaoc say

/herme@clip:/tmp
[91]> say hello dolly
hello dolly

The name of the generated executable can be controlled with the -o option (See Section 4.7
[Usage (ciaoc)], page 36).

4.2 Paths used by the compiler during compilation

The compiler will look for files mentioned in commands such as use_module/1 or ensure_
loaded/1 in the current directory. Other paths can be added by including them in a file whose
name is given to ciaoc using the -u option. This file should contain facts of the predicates
file_search_path/2 and library_directory/1 (see the documentation for these predicates
and also Chapter 9 [Customizing library paths and path aliases], page 63 for details).

4.3 Running executables from the command line

As mentioned before, what the ciaoc compiler generates and how it is started varies some-
what from OS to OS. In general, the product of compiling an application with ciaoc is a file
that contains the bytecode (the product of the compilation) and invokes the Ciao engine on it.

Chapter 4: The stand-alone command-line compiler 33

• Un Un*x this is a script (see the first lines of the file) which invokes the ciao engine on this
file. To run the generated executable from a Un*x shell, or from the bash shell that comes
with the Cygwin libraries (see Section 218.6 [Installation and compilation under Windows],
page 852) it suffices to type its name at the shell command line, as in the examples above.

• In a Win32 system, the compiler produces a similar file with a .cpx ending. The Ciao
installation process typically makes sure that the Windows registry contains the right entries
so that this executable will run upon double-cliking on it.

In you want to run the executable from the command line an additional .bat file is typically
needed. To help in doing this, the Win32 installation process creates a .bat skeleton
file called bat_skel in the Win32 folder of the distribution) which allows running Ciao
executables from the command line. If you want to run a Ciao executable file.cpx from
the command line, you normally copy the skeleton file to the folder were the executable is
and rename it to file.bat, then change its contents as explained in a comment inside the
file itself.

Note that this .bat file is usually not necessary in NT, as its command shell understands
file extension associations. I.e., in windows NT it is possible to run the file.cpx executable
directly. Due to limitations of .bat files in Windows 95/98, in those OSs no more than 9
command line arguments can be passed to the executable (in NT there is no such restriction).

Finally, in a system in which Cygnus Win32 is installed executables can also be used directly
from the bash shell command line, without any associated .bat files, by simply typing their
name at the bash shell command line, in the same way as in Un*x. This only requires that
the bash shell which comes with Cygnus Win32 be installed and accessible: simply, make
sure that /bin/sh.exe exists.

Except for a couple of header lines, the contents of executables are almost identical un-
der different OSs (except for self-contained ones). The bytecode they contain is architecture-
independent. In fact, it is possible to create an executable under Un*x and run it on Windows
or viceversa, by making only minor modifications (e.g., creating the .bat file and/or setting
environment variables or editing the start of the file to point to the correct engine location).

4.4 Types of executables generated

While the default options used by ciaoc are sufficient for normal use, by selecting other
options ciaoc can generate several different types of executables, which offer interesting tradeoffs
among size of the generated executable, portability, and startup time [CH00b]:

Dynamic executables:
ciaoc produces by default dynamic executables. In this case the executable pro-
duced is a platform-independent file which includes in compiled form all the user de-
fined files. On the other hand, any system libraries used by the application are loaded
dynamically at startup. More precisely, any files that appear as library(...) in
use_module/1 and ensure_loaded/1 declarations will not be included explicitly in
the executable and will instead be loaded dynamically. Is is also possible to mark
other path aliases (see the documentation for file_search_path/2) for dynamic
loading by using the -d option. Files accessed through such aliases will also be
loaded dynamically.

Dynamic loading allows making smaller executables. Such executables may be used
directly in the same machine in which they were compiled, since suitable paths to
the location of the libraries will be included as default in the executable by ciaoc
during compilation.

The executable can also be used in another machine, even if the architecture and
OS are different. The requirement is that the Ciao libraries (which will also include
the appropriate Ciao engine for that architecture and OS) be installed in the target

34 The Ciao Prolog System

machine, and that the CIAOLIB and CIAOENGINE environment variables are set ap-
propriately for the executable to be able to find them (see Section 4.5 [Environment
variables used by Ciao executables], page 35). How to do this differs slightly from
OS to OS.

Static executables:
Selecting the -s option ciaoc produces a static executable. In this case the exe-
cutable produced (again a platform-independent file) will include in it all the aux-
iliary files and any system libraries needed by the application. Thus, such an exe-
cutable is almost complete, needing in order to run only the Ciao engine, which is
platform-specific.1 Again, if the executable is run in the same machine in which it
was compiled then the engine is found automatically. If the executable is moved to
another machine, the executable only needs access to a suitable engine (which can
be done by setting the CIAOENGINE environment variable to point to this engine).

This type of compilation produces larger executables, but has the advantage that
these executables can be installed and run in a different machine, with different
architecture and OS, even if Ciao is not installed on that machine. To install (or
distribute) such an executable, one only needs to copy the executable file itself
and the appropriate engine for the target platform (See Chapter 218 [Installing
Ciao from the source distribution], page 847 or Chapter 219 [Installing Ciao from a
Win32 binary distribution], page 857 and Section 218.5 [Multiarchitecture support],
page 852), and to set things so that the executable can find the engine.2

Dynamic executables, with lazy loading:
Selecting the -l option is very similar to the case of dynamic executables above,
except that the code in the library modules is not loaded when the program is
started but rather it is done during execution, the first time a predicate defined in
that file is called. This is advantageous if a large application is composed of many
parts but is such that typically only some of the parts are used in each invocation.
The Ciao preprocessor, ciaopp, is a good example of this: it has many capabilitites
but typically only some of them are used in a given session. An executable with lazy
load has the advantage that it starts fast, loading a minimal functionality on startup,
and then loads the different modules automatically as needed. Please beware that
initialization directives appearing in a module which is lazily loaded currently are
not executed until the module is effectively loaded. Since this happens when the
module is first required at runtime, the compiler cannot guarantee the exact time
and order in which these directives are executed.

Self-contained executables:
Self-contained executables are static executables (i.e., this option also implies static
compilation) which include a Ciao engine along with the bytecode, so they do not
depend on an external one for their execution. This is useful to create executables
which run even if the machine where the program is to be executed does not have a

1 Currently there is an exception to this related to libraries which are written in languages
other than Prolog, as, e.g., C. C files are currently always compiled to dynamically loadable
object files (.so files), and they thus need to be included manually in a distribution of an
application. This will be automated in upcoming versions of the Ciao system.

2 It is also possible to produce real standalone executables, i.e., executables that do not need
to have an engine around. However, this is not automated yet, although it is planned for an
upcoming version of the compiler. In particular, the compiler can generate a .c file for each
.pl file. Then all the .c files can be compiled together into a real executable (the engine
is added one more element during link time) producing a complete executable for a given
architecture. The downside of course is that such an executable will not be portable to other
architectures without recompilation.

Chapter 4: The stand-alone command-line compiler 35

Ciao engine installed and/or libraries. The disadvantage is that such execuatbles are
platform-dependent (as well as larger than those that simply use an external library).
This type of compilation is selected with the -S option. Cross-compilation is also
possible with the -SS option, so you can specify the target OS and architecture (e.g.
LINUXi86). To be able to use the latter option, it is necessary to have installed a
ciaoengine for the target machine in the Ciao library (this requires compiling the
engine in that OS/architecture and installing it, so that it is available in the library).

Compressed executables:
In compressed executables the bytecode is compressed. This allows producing
smaller executables, at the cost of a slightly slower startup time. This is selected
with the -z option. You can also produce compressed libraries if you use -zl along
with the -c option. If you select -zl while generating an executable, any library
which is compiled to accomplish this will be also compressed.

Active modules:
The compiler can also compile (via the -a option) a given file into an active module
(see Chapter 100 [Active modules (high-level distributed execution)], page 415 for
a description of this).

4.5 Environment variables used by Ciao executables

The executables generated by the Ciao compiler (including the ciao development tools them-
selves) locate automatically where the Ciao engine and libraries have been installed, since those
paths are stored as defaults in the engine and compiler at installation time. Thus, there is
no need for setting any environment variables in order to run Ciao executables (on a single
architecture – see Section 218.5 [Multiarchitecture support], page 852 for running on multiple
architectures).

However, the default paths can be overridden by using the environment variables CIAOENGINE
and CIAOLIB. The first one will tell the Ciao executables where to look for an engine, and the
second will tell them where to look for the libraries. Thus, it is possible to actually use the Ciao
system without installing it by setting these variables to the following values:

• CIAOENGINE: $(SRC)/bin/$(CIAOARCH)/ciaoengine

• CIAOLIB: $(SRC)

where $(CIAOARCH) is the string echoed by the command SRC/etc/ciao_get_arch (or
BINROOT/ciao_get_arch, after installation).

This allows using alternate engines or libraries, which can be very useful for system develop-
ment and experimentation.

4.6 Intermediate files in the compilation process

Compiling an individual source (i.e., .pl) file produces a .itf file and a .po file. The .itf
file contains information of the modular interface of the file, such as information on exported and
imported predicates and on the other modules used by this module. This information is used to
know if a given file should be recompiled at a given point in time and also to be able to detect
more errors statically including undefined predicates, mismatches on predicate charaterictics
across modules, etc. The .po file contains the platform-independent object code for a file, ready
for linking (statically or dynamically).

It is also possible to use ciaoc to explicitly generate the .po file for one or more .pl files by
using the -c option.

36 The Ciao Prolog System

4.7 Usage (ciaoc)

The following provides details on the different command line options available when invoking
ciaoc:

ciaoc <MiscOpts> <ExecOpts> [-o <execname>] <file> ...

Make an executable from the listed files. If there is
more than one file, they must be non-module, and the
first one must include the main predicate. The -o
option allows generating an arbitrary executable name.

ciaoc <MiscOpts> <ExecOpts> -a <publishmod> <module>

Make an active module executable from <module> with
address publish module <publishmod>.

ciaoc <MiscOpts> -c <file> ...

Compile listed files (make .po objects).

<MiscOpts> can be: [-v] [-ri] [-u <file>]

-v verbose mode

-ri generate human readable .itf files

-u use <file> for compilation

<ExecOpts> can be: [-s|-S|-SS <target>|-z|-zl|-e|-l|(-ll <module>)*]
(-d <alias>)* [-x]

-s make a static executable (otherwise dynamic files are not included)

-S make standalone executable for the current OS and architecture

-SS make standalone executable for <target> OS and architecture
valid <target> values may be: LINUXi86, SolarisSparc...

(both -S and -SS imply -s)

-z generate executables with compressed bytecode

-zl generate libraries with compressed bytecode - any library (re)compiled
as consequence of normal executable compilation will also be affected

-e make executable with eager load of dynamic files at startup (default)

-l idem with lazy load of dynamic files (except insecure cases)

-ll force <module> to be loaded lazily, implies -l

Chapter 4: The stand-alone command-line compiler 37

-d files using this path alias are dynamic (default: library)

-x Extended recompilation: only useful for Ciao standard library developers

default extension for files is ’.pl’

38 The Ciao Prolog System

Chapter 5: The interactive top-level shell 39

5 The interactive top-level shell

Author(s): Daniel Cabeza and the CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#129 (2001/10/28, 15:38:52 CET)

ciaosh is the Ciao interactive top-level shell. It provides the user with an interactive pro-
gramming environment with tools for incrementally building programs, debugging programs by
following their executions, and modifying parts of programs without having to start again from
scratch. If available, it is strongly recommended to use it with the emacs interface provided, as
it greatly simplifies the operation. This chapter documents general operation in the shell itself.
Other chapters document the

5.1 Shell invocation and startup

When invoked, the shell responds with a message of identification and the prompt ?- as
soon as it is ready to accept input, thus:

Ciao-Prolog X.Y #PP: Thu Mar 25 17:20:55 MET 1999
?-

When the shell is initialized it looks for a file .ciaorc in the HOME directory and makes
an include of it, if it exists. This file is useful for including use_module/1 declarations for the
modules one wants to be loaded by default, changing prolog flags, etc. (Note that the .ciaorc
file can only contain directives, not actual code; to load some code at startup put it in a separate
file and load it using e.g. a use_module/1 declaration.) If the initialization file does not exist,
the default package default is included, to provide more or less what other prologs define by
default. Thus, if you want to have available all builtins you had before adding the initialization
file, you have to include :- use_package(default) in it. Two command-line options control
the loading of the initialization file:

-f Fast start, do not load any initialization file.

-l File Look for initialization file File instead of ~/.ciaorc. If it does not exist, include
the default package.

5.2 Shell interaction

After the shell outputs the prompt, it is expecting either an internal command (see the
following sections) or a query (a goal or sequence of goals). When typing in the input, which
must be a valid prolog term, if the term does not end in the first line, subsequent lines are
indented. For example:

?- X =
f(a,
b).

X = f(a,b) ?

yes
?-

The queries are executed by the shell as if they appeared in the user module. Thus, in
addition to builtin predicates, predicates available to be executed directly are all predicates
defined by loaded user files (files with no module declaration), and imported predicates from
modules by the use of use_module.

The possible answers of the shell, after executing an internal command or query, are:

40 The Ciao Prolog System

• If the execution failed (or produced an error), the answer is no.

• If the execution was successful, and no answer variable (see below) was bound (or con-
straints where imposed on such variables), the answer is simply yes. This behavior can be
changed by doing set_prolog_flag(prompt_alternatives_no_bindings, on)., so that
in any case the user will be consulted as explained in the next point (useful if the solutions
produce side effects).

• If the execution was successful and bindings where made (or constraints where imposed)
on answer variables, then the shell outputs the values of answer variables, as a sequence of
bindings (or constraints), and then prints a ? as a prompt. At this point it is expecting an
input line from the user. By entering a carriage-return (〈RET〉) or any line starting with y,
the query terminates and the shell answer yes. Entering a ‘,’ the shell enters a recursive
level (see below). Finally, any other answer forces the system to backtrack and look for the
next solution (answering as with the first solution).

To allow using connection variables in queries without having to report their results, variables
whose name starts with _ are not considered in answers, the rest being the answer variables.
This example illustrates the previous points:

?- member(a, [b, c]).

no
?- member(a, [a, b]).

yes
?- member(X, [a|L]).

X = a ? ;

L = [X|_] ?

yes
?- atom_codes(ciao, _C), member(L, _C).

L = 99 ? ;

L = 105 ? ;

L = 97 ? ;

L = 111 ? ;

no
?-

5.3 Entering recursive (conjunctive) shell levels

As stated before, when the user answers with ‘,’ after a solution is presented, the shell enters
a recursive level, changing its prompt to N ?- (where N is the recursion level) and keeping the
bindings or constraints of the solution (this is inspired by the LogIn language developed by H.
Ait-Kaci, P. Lincoln and Roger Nasr [AKNL86]). Thus, the following queries will be executed
within that context, and all variables in the lower level solutions will be reported in subsequent
solutions at this level. To exit a recursive level, input an 〈EOF〉 character or the command up.
The last solution after entering the level is repeated, to allow asking for more solutions. Use
command top to exit all recursive levels and return to the top level. Example interaction:

Chapter 5: The interactive top-level shell 41

?- directory_files(’.’,_Fs), member(F,_Fs).

F = ’file_utils.po’ ? ,

1 ?- file_property(F, mod_time(T)).

F = ’file_utils.po’,
T = 923497679 ?

yes
1 ?- up.

F = ’file_utils.po’ ? ;

F = ’file_utils.pl’ ? ;

F = ’file_utils.itf’ ? ,

1 ?- file_property(F, mod_time(T)).

F = ’file_utils.itf’,
T = 923497679 ?

yes
1 ?- ^D
F = ’file_utils.itf’ ?

yes
?-

42 The Ciao Prolog System

5.4 Usage and interface (ciaosh)
® ©

• Library usage:

The following predicates can be used at the top-level shell natively (but see also the com-
mands available in Chapter 6 [The interactive debugger], page 47 which are also available
within the top-level shell).

• Exports:

− Predicates:

use_module/1, use_module/2, ensure_loaded/1, make_exec/2, include/1, use_
package/1, consult/1, compile/1, ./2, make_po/1, unload/1, set_debug_
mode/1, set_nodebug_mode/1, make_actmod/2, force_lazy/1, undo_force_lazy/1,
dynamic_search_path/1, multifile/1.

• Other modules used:

− Application modules:

library(ciaosh).

− System library modules:

libpaths, compiler/compiler, compiler/exemaker, compiler/c_itf,
debugger/debugger.

 ª

5.5 Documentation on exports (ciaosh)

PREDICATEuse module/1:
Usage: use_module(Module)

− Description: Load into the top-level the module defined in Module, importing all the
predicates it exports.

− The following properties should hold at call time:

Module is a source name. (streams_basic:sourcename/1)

PREDICATEuse module/2:
Usage: use_module(Module, Imports)

− Description: Load into the top-level the module defined in Module, importing the
predicates in Imports.

− The following properties should hold at call time:

Module is a source name. (streams_basic:sourcename/1)

Imports is a list of prednames. (basic_props:list/2)

PREDICATEensure loaded/1:
Usage: ensure_loaded(File)

− Description: Load into the top-level the code residing in file (or files) File, which is
user (i.e. non-module) code.

− The following properties should hold at call time:

File is a source name or a list of source names. (ciaosh_doc:sourcenames/1)

Chapter 5: The interactive top-level shell 43

PREDICATEmake exec/2:
Usage: make_exec(File, ExecName)

− Description: Make a Ciao executable from file (or files) File, giving it name
ExecName. If ExecName is a variable, the compiler will choose a default name for
the executable and will bind the variable ExecName to that name. The name is cho-
sen as follows: if the main prolog file has no .pl extension or we are in Windows, the
executable will have extension .cpx; else the executable will be named as the main
prolog file without extension.

− The following properties should hold at call time:

File is a source name or a list of source names. (ciaosh_doc:sourcenames/1)

− The following properties hold upon exit:

ExecName is an atom. (basic_props:atm/1)

PREDICATEinclude/1:
Usage: include(File)

− Description: The contents of the file File are included in the top-level shell. For the
moment, it only works with some directives, which are interpreted by the shell, or
with normal clauses (which are asserted), if library(dynamic) is loaded beforehand.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

PREDICATEuse package/1:
Usage: use_package(Package)

− Description: Equivalent to issuing an include(library(Package)) for each listed file.
By now some package contents cannot be handled.

− The following properties should hold at call time:

Package is a source name or a list of source names. (ciaosh_doc:sourcenames/1)

PREDICATEconsult/1:
Usage: consult(File)

− Description: Provided for backward compatibility. Similar to ensure_loaded/1, but
ensuring each listed file is loaded in consult mode (see Chapter 6 [The interactive
debugger], page 47).

− The following properties should hold at call time:

File is a source name or a list of source names. (ciaosh_doc:sourcenames/1)

PREDICATEcompile/1:
Usage: compile(File)

− Description: Provided for backward compatibility. Similar to ensure_loaded/1, but
ensuring each listed file is loaded in compile mode (see Chapter 6 [The interactive
debugger], page 47).

− The following properties should hold at call time:

File is a source name or a list of source names. (ciaosh_doc:sourcenames/1)

44 The Ciao Prolog System

PREDICATE./2:
Usage: .(File, Files)

− Description: Provided for backward compatibility, obsoleted by ensure_loaded/1.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

Files is a list of sourcenames. (basic_props:list/2)

PREDICATEmake po/1:
Usage: make_po(Files)

− Description: Make object (.po) files from Files. Equivalent to executing "ciaoc
-c" on the files.

− The following properties should hold at call time:

Files is a source name or a list of source names. (ciaosh_doc:sourcenames/1)

PREDICATEunload/1:
Usage: unload(File)

− Description: Unloads dynamically loaded file File.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

PREDICATEset debug mode/1:
Usage: set_debug_mode(File)

− Description: Set the loading mode of File to consult. See Chapter 6 [The interactive
debugger], page 47.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

PREDICATEset nodebug mode/1:
Usage: set_nodebug_mode(File)

− Description: Set the loading mode of File to compile. See Chapter 6 [The interactive
debugger], page 47.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

PREDICATEmake actmod/2:
Usage: make_actmod(ModuleFile, PublishMod)

− Description: Make an active module executable from the module residing in
ModuleFile, using address publish module of name PublishMod (which needs to
be in the library paths).

− The following properties should hold at call time:

ModuleFile is a source name. (streams_basic:sourcename/1)

PublishMod is an atom. (basic_props:atm/1)

Chapter 5: The interactive top-level shell 45

PREDICATEforce lazy/1:
Usage: force_lazy(Module)

− Description: Force module of name Module to be loaded lazily in the subsequent
created executables.

− The following properties should hold at call time:

Module is an atom. (basic_props:atm/1)

PREDICATEundo force lazy/1:
Usage: undo_force_lazy(Module)

− Description: Disable a previous force_lazy/1 on module Module (or, if it is unin-
stantiated, all previous force_lazy/1).

− Calls should, and exit will be compatible with:

Module is an atom. (basic_props:atm/1)

PREDICATEdynamic search path/1:
Usage: dynamic_search_path(Name)

− Description: Asserting a fact to this data predicate, files using path alias Name will
be treated as dynamic in the subsequent created executables.

− The following properties should hold at call time:

Name is an atom. (basic_props:atm/1)

PREDICATEmultifile/1:
Usage: multifile Pred

− Description: Dynamically declare predicate Pred as multifile. This is useful at the
top-level shell to be able to call multifile predicates of loaded files.

− The following properties should hold at call time:

Pred is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

5.6 Documentation on internals (ciaosh)

PROPERTYsourcenames/1:
Is defined as follows:

sourcenames(File) :-
sourcename(File).

sourcenames(Files) :-
list(Files,sourcename).

See sourcename/1 in Chapter 21 [Basic file/stream handling], page 123

Usage: sourcenames(Files)

− Description: Files is a source name or a list of source names.

46 The Ciao Prolog System

Chapter 6: The interactive debugger 47

6 The interactive debugger

Author(s): D. Cabeza, Manuel C. Rodriguez, (A. Ciepielewski, M. Carlsson, T. Chikayama,
K. Shen).

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#188 (2003/12/19, 16:2:3 CET)

The Ciao program development environment includes a number of advanced debugging tools,
such as a source-level debugger, the ciaopp preprocessor, and some execution visualizers. Herein
we discuss the interactive debugger available in the standard top-level, which allows tracing the
control flow of programs, in a similar way to other popular Prolog systems. This is a classical
Byrd box-type debugger [Byr80,BBP81], with some enhancements, most notably being able to
track the execution on the source program. We also discuss the embedded debugger, which
is a version of the debugger which can be embedded into executables so that an interactive
debugging session can be triggered at any time while running that executable without needing
the top-level shell.

Byrd’s Procedure Box model of debugging execution provides a simple way of visualising
control flow, including backtracking. Control flow is in principle viewed at the predicate level,
rather than at the level of individual clauses. The Ciao debugger has the ability to mark selected
modules and/or files for debugging (traditional and source debugging), rather than having to
exhaustively trace your program. It also allows to selectively set spy-points and breakpoints.
Spy-points allow the programmer to nominate interesting predicates at which program execution
is to pause so that the programmer can interact with the debugger. Breakpoints are similar to
spy-points, but allow pausing at a specific line in the code, corresponding to a particular literal.
There is a wide choice of control and information options available during debugging interaction.

Note: While the debugger described herein can be used in a standalone way (i.e., from a
operating system shell or terminal window) in the same way as other Prolog debuggers, the most
convenient way of debugging Ciao programs is by using the emacs mode (see Chapter 10 [Using
Ciao inside GNU emacs], page 65), i.e., debugging from within the emacs editor / programming
environment.

6.1 Marking modules and files for debugging in the top-level
debugger

Usually, when a program is not working properly, the programmer has a feeling of which are
the modules where the fault may be. Since full-fledged debugging is only available on interpreted
(called interpreted mode in traditional Prolog systems) modules, which are executed much slower
than compiled modules, there is the posibility of telling the top level which particular modules
are to be loaded in interpreted mode, with the aim of debugging them. The simplest way of
achieving this is by executing in the Ciao shell prompt, for each suspicious module Module in
the program, a command like this:

?- debug_module(Module).

An alternative way of loading a module in interpreted mode exists which will instruct the
debugger to keep track of the line numbers in the source file and to report them during debugging.
This feature can be selected for a suspicious module Module in the program by executing a
command such as:

?- debug_module_source(Module).

This is most useful when running the top-level inside the emacs editor since in that case the Ciao
emacs mode allows performing full source-level debugging in each module marked as above, i.e.,
the source lines being executed will be highlighted dynamically during debugging in a window
showing the source code of the module.

48 The Ciao Prolog System

Note that all files with no module declaration belong to the pseudo-module user, so the
command to be issued for debugging a user file, say foo.pl, would be debug_module(user) or
debug_module_source(user), and not debug_module(foo).

The two ways of performing source-level debugging are fully compatible between them, i.e.,
Ciao allows having some modules loaded with debug_module/1 and others with debug_module_
source/1. To change from one interpreted mode to the other mode it suffices to select the
module with the new interpreted mode (debugger mode), using the appropiate command, and
reload the module.

The commands above perform in fact two related actions: first, they let the compiler know
that if a file containing a module with this name is loaded, it should be loaded in interpreted
mode (source or traditional). In addition, they instruct the debugger to actually prepare for
debugging the code belonging to that module. After that, the modules which are to be debugged
have to be (re)loaded so that they are compiled or loaded for interpretation in the appropriate
way. The nice thing is that, due to the modular behaviour of the compiler/top-level, if the
modules are part of a bigger application, it suffices to load the main module of the application,
since this will automatically force the dependent modules which have changed to be loaded in
the appropriate way, including those whose loading mode has changed (i.e., changing the loading
mode has the effect of forcing the required re-loading of the module at the appropriate time).

Later in the debugging process, as the bug location is isolated, typically one will want to
restrict more and more the modules where debugging takes place. To this end, and without
the need for reloading, one can tell the debugger to not consider a module for debugging issu-
ing a nodebug_module/1 command, which counteracts a debug_module/1 or debug_module_
source/1 command with the same module name, and reloading it (or the main file).

There are also two top-level commands set_debug_mode/1 and set_nodebug_mode/1, which
accept as argument a file spec (i.e., library(foo) or foo, even if it is a user file) to be able to
load a file in interpreted mode without changing the set of modules that the debugger will try
to spy.

6.2 The debugging process

Once modules or user files are marked for debugging and reloaded, the traditional debugging
shell commands can be used (the documentation of the debugger library following this chapter
contains all the commands and their description), with the same meaning as in other classical
Prolog systems. The differences in their behavior are:

• Debugging takes place only in the modules in which it was activated,

• nospy/1 and spy/1 accept sequences of predicate specs, and they will search for those
predicates only in the modules marked for debugging (traditional or source-level debugging).

• breakpt/6 and nobreakpt/6 allow setting breakpoints at selected clause literals and will
search for those literals only in the modules marked for source-level debugging (modules
marked with debug_module_source/1).

In particular, the system is initially in nodebug mode, in which no tracing is performed. The
system can be put in debug mode by a call to debug/0 in which execution of queries will proceed
until the first spy-point or breakpoint. Alternatively, the system can be put in trace mode by a
call to trace/0 in which all predicates will be trace.

6.3 Marking modules and files for debugging with the
embedded debugger

The embedded debugger, as the interpreted debugger, has three different modes of operation:
debug, trace or nodebug. These debuggers modes can be set by adding a package declaration in
the module, as follows:

Chapter 6: The interactive debugger 49

:- use_package(debug).
:- use_package(trace).
:- use_package(nodebug).

and recompiling the application.

In order to debug, or trace, correctly the complete code these declarations must appear the
last ones of all use_package declarations used. Also it is possible, as usual, to add the debugging
package(s) in the module declaration using the predicate module/3 (and they should also be the
last ones).

The embedded debugger has limitations over the interpreted debugger. The most important
is that the “retry” option is not available. But it is possible to add, and remove, spy-points
and breakpoins using the predicates spy/1, nospy/1, breakpt/6 and nobreakpt/6, etc. These
can be used in a clause declaration or as declarations. Also it is possible to add in the code
predicates for issuing the debugger (i.e., use debug mode, and in a clause add the predicate
trace/1).

The nodebug mode allows keeping the spy-points and breakpoints in the code instead of
removing them from the code.

Note that there is a particularly interesting way of using the embedded debugger: if an
application is run in a shell buffer which has been set with Ciao inferior mode (〈M-x〉 ciao-
inferior-mode) and this application starts emitting output from the embedded debugger (i.e.,
which contains the embedded debugger and is debugging its code) then the Ciao emacs mode
will be able to follow these messages, for example tracking execution in the source level code.
This also works if the application is written in a combination of languages, provided the parts
written in Ciao are compiled with the embedded debugger package and is thus a covenient way of
debugging multi-language applications. The only thing needed is to make sure that the output
messages appear in a shell buffer that is in Ciao inferior mode.

See the following as a general example of use of the embedded debugger:

:- module(foo,[main/1],[assertions, debug]).

:- entry main/1.

main(X) :-
display(X),
spy(foo),
foo(X),
notrace,
nl.

foo([]).
foo([X|T]) :-

trace,
bar(X),
foo(T).

bar(X) :-
display(X).

6.4 The procedure box control flow model

During debugging the interpreter prints out a sequence of goals in various states of instan-
tiation in order to show the state that the program has reached in its execution. However, in

50 The Ciao Prolog System

order to understand what is occurring it is necessary to understand when and why the inter-
preter prints out goals. As in other programming languages, key points of interest are procedure
entry and return, but in Prolog there is the additional complexity of backtracking. One of the
major confusions that novice Prolog programmers have to face is the question of what actually
happens when a goal fails and the system suddenly starts backtracking. The Procedure Box
model of Prolog execution views program control flow in terms of movement about the program
text. This model provides a basis for the debugging mechanism in the interpreter, and enables
the user to view the behaviour of the program in a consistent way. It also provides the basis
for the visualization performed on the source level program when source level program when
source-level debugging is activated within emacs.

Let us look at an example Prolog procedure:

 descendant(Z,Y).
descendant(X,Y):- offspring(X,Z),

descendant(X,Y):- offspring(X,Y).
Exit

RedoFail

Call

The first clause states that Y is a descendant of X if Y is an offspring of X, and the second
clause states that Y is a descendant of X if Z is an offspring of X and Y is a descendant of Z. In
the diagram a box has been drawn around the whole procedure and labelled arrows indicate the
control flow in and out of this box. There are four such arrows which we shall look at in turn.

• Call

This arrow represents initial invocation of the procedure. When a goal of the form
descendant(X,Y) is required to be satisfied, control passes through the Call port of the
descendant box with the intention of matching a component clause and then satisfying any
subgoals in the body of that clause. Note that this is independent of whether such a match
is possible; i.e. first the box is called, and then the attempt to match takes place. Textually
we can imagine moving to the code for descendant when meeting a call to descendant in
some other part of the code.

• Exit

This arrow represents a successful return from the procedure. This occurs when the initial
goal has been unified with one of the component clauses and any subgoals have been satisfied.
Control now passes out of the Exit port of the descendant box. Textually we stop following
the code for descendant and go back to the place we came from.

• Redo

This arrow indicates that a subsequent goal has failed and that the system is backtracking
in an attempt to find alternatives to previous solutions. Control passes through the Redo
port of the descendant box. An attempt will now be made to resatisfy one of the component
subgoals in the body of the clause that last succeeded; or, if that fails, to completely rematch
the original goal with an alternative clause and then try to satisfy any subgoals in the body
of this new clause. Textually we follow the code backwards up the way we came looking for
new ways of succeeding, possibly dropping down on to another clause and following that if
necessary.

• Fail

This arrow represents a failure of the initial goal, which might occur if no clause is matched,
or if subgoals are never satisfied, or if any solution produced is always rejected by later
processing. Control now passes out of the Fail port of the descendant box and the system
continues to backtrack. Textually we move back to the code which called this procedure
and keep moving backwards up the code looking for choice points.

In terms of this model, the information we get about the procedure box is only the control
flow through these four ports. This means that at this level we are not concerned with which

Chapter 6: The interactive debugger 51

clause matches, and how any subgoals are satisfied, but rather we only wish to know the initial
goal and the final outcome. However, it can be seen that whenever we are trying to satisfy
subgoals, what we are actually doing is passing through the ports of their respective boxes. If
we were following this (e.g., activating source-level debugging), then we would have complete
information about the control flow inside the procedure box.

Note that the box we have drawn around the procedure should really be seen as an invocation
box. That is, there will be a different box for each different invocation of the procedure. Obvi-
ously, with something like a recursive procedure, there will be many different Calls and Exits in
the control flow, but these will be for different invocations. Since this might get confusing each
invocation box is given a unique integer identifier in the messages, as described below.

Note that not all procedure calls are traced; there are a few basic predicates which have been
made invisible since it is more convenient not to trace them. These include debugging directives,
basic control structures, and some builtins. This means that messages will never be printed for
these predicates during debugging.

6.5 Format of debugging messages

This section explains the two formats of the message output by the debugger at a port.
All trace messages are output to the terminal regardless of where the current output stream is
directed (which allows tracing programs while they are performing file I/O). The basic format,
which will be shown in traditional debug and in source-level debugging within Ciao emacs mode,
is as follows:

S 13 7 Call: T user:descendant(dani,_123) ?

S is a spy-point or breakpoint indicator. It is printed as ’+’, indicating that there is a spy-
point on descendant/2 in module user, as ’B’ denoting a breakpoint, or as ’ ’, denoting no
spy-point or breakpoint. If there is a spy-point and a breakpoint in the same predicate the
spy-point indicator takes preference over breakpoint indicator.

T is a subterm trace. This is used in conjunction with the ^ command (set subterm), described
below. If a subterm has been selected, T is printed as the sequence of commands used to select
the subterm. Normally, however, T is printed as ’ ’, indicating that no subterm has been selected.

The first number is the unique invocation identifier. It is always nondecreasing (provided
that the debugger is switched on) regardless of whether or not the invocations are being actually
seen. This number can be used to cross correlate the trace messages for the various ports, since
it is unique for every invocation. It will also give an indication of the number of procedure
calls made since the start of the execution. The invocation counter starts again for every fresh
execution of a command, and it is also reset when retries (see later) are performed.

The number following this is the current depth; i.e., the number of direct ancestors this
goal has. The next word specifies the particular port (Call, Exit, Redo or Fail). The goal is
then printed so that its current instantiation state can be inspected. The final ? is the prompt
indicating that the debugger is waiting for user interaction. One of the option codes allowed
(see below) can be input at this point.

The second format, quite similar to the format explained above, is shown when using source-
level debugging outside the Ciao emacs mode, and it is as follows:

In /home/mcarlos/ciao/foo.pl (5-9) descendant-1
S 13 7 Call: T user:descendant(dani,_123) ?

This format is identical to the format above except for the first line, which contains the
information for location of the point in the source program text where execution is currently
at. The first line contains the name of the source file, the start and end lines where the literal
can be found, the substring to search for between those lines and the number of substrings to
locate. This information for locating the point on the source file is not shown when executing
the source-level debugger from the Ciao emacs mode.

52 The Ciao Prolog System

Ports can be “unleashed” by calling the leash/1 predicate omiting that port in the argument.
This means that the debugger will stop but user interaction is not possible for an unleashed port.
Obviously, the ? prompt will not be shown in such messages, since the user has specified that
no interaction is desired at this point.

6.6 Options available during debugging

This section describes the particular options that are available when the debugger prompts
after printing out a debugging message. All the options are one letter mnemonics, some of
which can be optionally followed by a decimal integer. They are read from the terminal with
any blanks being completely ignored up to the next terminator (carriage-return, line-feed, or
escape). Some options only actually require the terminator; e.g., the creep option, only requires
〈RET〉.

The only option which really needs to be remembered is ’h’ (followed by 〈RET〉). This provides
help in the form of the following list of available options.

<cr> creep c creep
l leap s skip
r retry r <i> retry i
f fail f <i> fail i
d display p print
w write
g ancestors g <n> ancestors n
n nodebug = debugging
+ spy this - nospy this
a abort
@ command u unify
< reset printdepth < <n> set printdepth
^ reset subterm ^ <n> set subterm
? help h help

• c (creep)

causes the debugger to single-step to the very next port and print a message. Then if the
port is leashed the user is prompted for further interaction. Otherwise it continues creeping.
If leashing is off, creep is the same as leap (see below) except that a complete trace is printed
on the terminal.

• l (leap)

causes the interpreter to resume running the program, only stopping when a spy-point or
breakpoint is reached (or when the program terminates). Leaping can thus be used to follow
the execution at a higher level than exhaustive tracing. All that is needed to do is to set
spy-points and breakpoints on an evenly spread set of pertinent predicates or lines, and
then follow the control flow through these by leaping from one to the other.

• s (skip)

is only valid for Call and Redo ports, if it is issued in Exit or Fail ports it is equivalent to
creep. It skips over the entire execution of the predicate. That is, no message will be seen
until control comes back to this predicate (at either the Exit port or the Fail port). Skip
is particularly useful while creeping since it guarantees that control will be returned after
the (possibly complex) execution within the box. With skip then no message at all will
appear until control returns to the Exit port or Fail port corresponding to this Call port
or Redo port. This includes calls to predicates with spy-points and breakpoints set: they
will be masked out during the skip. There is a way of overriding this: the t option after
a 〈̂ C〉 interrupt will disable the masking. Normally, however, this masking is just what is
required!

Chapter 6: The interactive debugger 53

• r (retry)

can be used at any of the four ports (although at the Call port it has no effect). It transfers
control back to the Call port of the box. This allows restarting an invocation when, for
example, it has left the programmer with some weird result. The state of execution is
exactly the same as in the original call (unless the invocation has performed side effects,
which will not be undone). When a retry is performed the invocation counter is reset so
that counting will continue from the current invocation number regardless of what happened
before the retry. This is in accord with the fact that execution has, in operational terms,
returned to the state before anything else was called.

If an integer is supplied after the retry command, then this is taken as specifying an invoca-
tion number and the system tries to get to the Call port, not of the current box, but of the
invocation box specified. It does this by continuously failing until it reaches the right place.
Unfortunately this process cannot be guaranteed: it may be the case that the invocation
the programmer is looking for has been cut out of the search space by cuts in the program.
In this case the system fails to the latest surviving Call port before the correct one.

• f (fail)

can be used at any of the four ports (although at the Fail port it has no effect). It transfers
control to the Fail port of the box, forcing the invocation to fail prematurely. If an integer
is supplied after the command, then this is taken as specifying an invocation number and
the system tries to get to the Fail port of the invocation box specified. It does this by
continuously failing until it reaches the right place. Unfortunately, as before, this process
cannot be guaranteed.

• d (display)

displays the current goal using display/1. See w below.

• p (print)

re-prints the current goal using print/1. Nested structures will be printed to the specified
printdepth (see below).

• w (write)

writes the current goal on the terminal using write/1.

• g (ancestors)

provides a list of ancestors to the current goal, i.e., all goals that are hierarchically above
the current goal in the calling sequence. It is always possible to jump to any goal in the
ancestor list (by using retry, etc.). If an integer n is supplied, then only n ancestors will be
printed. That is to say, the last n ancestors will be printed counting back from the current
goal. Each entry in the list is preceded by the invocation number followed by the depth
number (as would be given in a trace message).

• n (nodebug)

switches the debugger off. Note that this is the correct way to switch debugging off at a
trace point. The @ option cannot be used because it always returns to the debugger.

• = (debugging)

outputs information concerning the status of the current debugging session.

• + spy

sets a spy-point on the current goal.

• - (nospy)

removes the spy-point from the current goal.

• a (abort)

causes an abort of the current execution. All the execution states built so far are destroyed
and the system is put right back at the top-level of the interpreter. (This is the same as
the built-in predicate abort/0.)

54 The Ciao Prolog System

• @ (command)

allows calling arbitrary goals. The initial message | ?- will be output on the terminal, and
a command is then read from the terminal and executed as if it was at top-level.

• u (unify()

is available at the Call port and gives the option of providing a solution to the goal from
the terminal rather than executing the goal. This is convenient, e.g., for providing a “stub”
for a predicate that has not yet been written. A prompt |: will be output on the terminal,
and the solution is then read from the terminal and unified with the goal.

• < (printdepth)

sets a limit for the subterm nesting level that is printed in messages. While in the debugger,
a printdepth is in effect for limiting the subterm nesting level when printing the current
goal. When displaying or writing the current goal, all nesting levels are shown. The limit is
initially 10. This command, without arguments, resets the limit to 10. With an argument
of n the limit is set to n.

• ^ (subterm)

sets the subterm to be printed in messages. While at a particular port, a current subterm
of the current goal is maintained. It is the current subterm which is displayed, printed, or
written when prompting for a debugger command. Used in combination with the printdepth,
this provides a means for navigating in the current goal for focusing on the part which is
of interest. The current subterm is set to the current goal when arriving at a new port.
This command, without arguments, resets the current subterm to the current goal. With
an argument of n (greater than 0 and less or equal to the number of subterms of the current
subterm), the current subterm is replaced by its n’th subterm. With an argument of 0, the
current subterm is replaced by its parent term.

• ? or h (help)

displays the table of options given above.

6.7 Calling predicates that are not exported by a module

The Ciao module system does not allow calling predicates which are not exported during
debugging. However, as an aid during debugging, this is allowed (only from the top-level and
for modules which are in debug mode or source-level debug mode) using the call_in_module/2
predicate.

Note that this does not affect analysis or optimization issues, since it only works on modules
which are loaded in debug mode or source-level debug mode, i.e. unoptimized.

6.8 Acknowledgements

Originally written by Andrzej Ciepielewski. Minor modifications by Mats Carlsson. Later
modifications (17 Dec 87) by Takashi Chikayama (making tracer to use print/1 rather than
write/1, temporarily switching debugging flag off while writing trace message and within
“break” level). Additional modifications by Kish Shen (May 88): subterm navigation, han-
dle unbound args in spy/1 and nospy/1, trapping arithmetics errors in debug mode. Adapted
then to &-Prolog and Ciao by D. Cabeza and included in the Ciao version control system. Ex-
tended for source-level debugging by Manuel C. Rodŕıguez. (See changelog if included in the
document for more detailed documentation of the later changes.)

Chapter 7: Predicates controlling the interactive debugger 55

7 Predicates controlling the interactive debugger

Author(s): A. Ciepielewski, M. Carlsson, T. Chikayama, K. Shen, D. Cabeza, M. Rodriguez.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#185 (2002/2/4, 18:45:52 CET)

This library implements predicates which are normally used in the interactive top-level shell
to debug programs. A subset of them are available in the embeddable debugger.

7.1 Usage and interface (debugger)
® ©

• Library usage:

:- use_module(library(debugger)).

• Exports:

− Predicates:

debug_module/1, nodebug_module/1, debug_module_source/1, debug/0, nodebug/0,
trace/0, notrace/0, spy/1, nospy/1, nospyall/0, breakpt/6, nobreakpt/6,
nobreakall/0, list_breakpt/0, debugging/0, leash/1, maxdepth/1, call_in_
module/2.

• Other modules used:

− System library modules:

debugger/debugger_lib, format, ttyout, read, system, write, aggregates, sort.

 ª

7.2 Documentation on exports (debugger)

PREDICATEdebug module/1:
Usage: debug_module(Module)

− Description: The debugger will take into acount module Module (assuming it is loaded
in interpreted mode). When issuing this command at the toplevel shell, the compiler
is instructed also to set to interpret the loading mode of files defining that module
and also to mark it as ’modified’ so that (re)loading this file or a main file that uses
this module will force it to be reloaded for source-level debugging.

− The following properties should hold at call time:

Module is an atom. (basic_props:atm/1)

PREDICATEnodebug module/1:
Usage: nodebug_module(Module)

− Description: The debugger will not take into acount module Module. When issuing
this command at the toplevel shell, the compiler is instructed also to set to compile
the loading mode of files defining that module.

− The following properties should hold at call time:

Module is an atom. (basic_props:atm/1)

56 The Ciao Prolog System

PREDICATEdebug module source/1:
Usage: debug_module_source(Module)

− Description: The debugger will take into acount module Module (assuming it is is
loaded in source-level debug mode). When issuing this command at the toplevel shell,
the compiler is instructed also to set to interpret the loading mode of files defining
that module and also to mark it as ’modified’ so that (re)loading this file or a main
file that uses this module will force it to be reloaded for source-level debugging.

− The following properties should hold at call time:

Module is an atom. (basic_props:atm/1)

PREDICATEdebug/0:
Usage:

− Description: Switches the debugger on. The interpreter will stop at all ports of
procedure boxes of spied predicates.

PREDICATEnodebug/0:
Usage:

− Description: Switches the debugger off. If there are any spy-points set then they will
be kept but disabled.

PREDICATEtrace/0:
Usage:

− Description: Start tracing, switching the debugger on if needed. The interpreter will
stop at all leashed ports of procedure boxes of predicates either belonging to debugged
modules or called from clauses of debugged modules. A message is printed at each
stop point, expecting input from the user (write h to see the available options).

PREDICATEnotrace/0:
Usage:

− Description: Equivalent to nodebug/0.

PREDICATEspy/1:
Usage: spy(PredSpec)

− Description: Set spy-points on predicates belonging to debugged modules and which
match PredSpec, switching the debugger on if needed. This predicate is defined as a
prefix operator by the toplevel.

− The following properties should hold at call time:

PredSpec is a sequence of multpredspecs. (basic_props:sequence/2)

Chapter 7: Predicates controlling the interactive debugger 57

PREDICATEnospy/1:
Usage: nospy(PredSpec)

− Description: Remove spy-points on predicates belonging to debugged modules which
match PredSpec. This predicate is defined as a prefix operator by the toplevel.

− The following properties should hold at call time:

PredSpec is a sequence of multpredspecs. (basic_props:sequence/2)

PREDICATEnospyall/0:
Usage:

− Description: Remove all spy-points.

PREDICATEbreakpt/6:
Usage: breakpt(Pred, Src, Ln0, Ln1, Number, RealLine)

− Description: Set a breakpoint in file Src between lines Ln0 and Ln1 at the literal
corresponding to the Number’th occurence of (predicate) name Pred. The pair Ln0-
Ln1 uniquely identifies a program clause and must correspond to the start and end
line numbers for the clause. The rest of the arguments provide enough information to
be able to locate the exact literal that the RealLine line refers to. This is normally
not issued by users but rather by the emacs mode, which automatically computes the
different argument after selecting a point in the source file.

− The following properties should hold at call time:

Pred is an atom. (basic_props:atm/1)

Src is a source name. (streams_basic:sourcename/1)

Ln0 is an integer. (basic_props:int/1)

Ln1 is an integer. (basic_props:int/1)

Number is an integer. (basic_props:int/1)

RealLine is an integer. (basic_props:int/1)

PREDICATEnobreakpt/6:
Usage: nobreakpt(Pred, Src, Ln0, Ln1, Number, RealLine)

− Description: Remove a breakpoint in file Src between lines Ln0 and Ln1 at the
Number’th occurence of (predicate) name Pred (see breakpt/6). Also normally used
from de emacs mode.

− The following properties should hold at call time:

Pred is an atom. (basic_props:atm/1)

Src is a source name. (streams_basic:sourcename/1)

Ln0 is an integer. (basic_props:int/1)

Ln1 is an integer. (basic_props:int/1)

Number is an integer. (basic_props:int/1)

RealLine is an integer. (basic_props:int/1)

58 The Ciao Prolog System

PREDICATEnobreakall/0:
Usage:

− Description: Remove all breakpoints.

PREDICATElist breakpt/0:
Usage:

− Description: Prints out the location of all breakpoints. The location of the break-
points is showed usual by referring to the source file, the lines between which the
predicate can be found, the predicate name and the number of ocurrence of the pred-
icate name of the literal.

PREDICATEdebugging/0:
Usage:

− Description: Display debugger state.

PREDICATEleash/1:
Usage: leash(Ports)

− Description: Leash on ports Ports, some of call, exit, redo, fail. By default, all
ports are on leash.

− The following properties should hold at call time:

Ports is a list of ports. (basic_props:list/2)

PREDICATEmaxdepth/1:
Usage: maxdepth(MaxDepth)

− Description: Set maximum invocation depth in debugging to MaxDepth. Calls to
compiled predicates are not included in the computation of the depth.

− The following properties should hold at call time:

MaxDepth is an integer. (basic_props:int/1)

PREDICATEcall in module/2:
Usage: call_in_module(Module, Predicate)

− Description: Calls predicate Predicate belonging to module Module, even if that
module does not export the predicate. This only works for modules which are in
debug (interpreted) mode (i.e., they are not optimized).

− The following properties should hold at call time:

Module is an atom. (basic_props:atm/1)

Predicate is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Chapter 7: Predicates controlling the interactive debugger 59

7.3 Documentation on internals (debugger)

PROPERTYmultpredspec/1:
A property, defined as follows:

multpredspec(Mod:Spec) :-
atm(Mod),
multpredspec(Spec).

multpredspec(Name/Low-High) :-
atm(Name),
int(Low),
int(High).

multpredspec(Name/(Low-High)) :-
atm(Name),
int(Low),
int(High).

multpredspec(Name/Arity) :-
atm(Name),
int(Arity).

multpredspec(Name) :-
atm(Name).

7.4 Known bugs and planned improvements (debugger)

• Add an option to the emacs menu to automatically select all modules in a project.

• Consider the possibility to show debugging messages directly in the source code emacs
buffer.

60 The Ciao Prolog System

Chapter 8: The script interpreter 61

8 The script interpreter

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#130 (2000/5/3, 20:19:4 CEST)

ciao-shell is the Ciao script interpreter. It can be used to write Prolog shell scripts (see
[Her96,CHV96b]), that is, executable files containing source code, which are compiled on de-
mand.

Writing Prolog scripts can sometimes be advantageous with respect to creating binary ex-
ecutables for small- to medium-sized programs that are modified often and perform relatively
simple tasks. The advantage is that no explicit compilation is necessary, and thus changes and
updates to the program imply only editing the source file. The disadvantage is that startup of
the script (the first time after it is modified) is slower than for an application that has been
compiled previously.

An area of application is, for example, writing CGI executables: the slow speed of the network
connection in comparison with that of executing a program makes program execution speed less
important and has made scripting languages very popular for writing these applications. Logic
languages are, a priori, excellent candidates to be used as scripting languages. For example,
the built-in grammars and databases can sometimes greatly simplify many typical script-based
applications.

8.1 How it works

Essentially, ciao-shell is a smaller version of the Ciao top-level, which starts by loading
the file given to it as the first argument and then starts execution at main/1 (the argument is
instantiated to a list containing the command line options, in the usual way). Note that the
Prolog script cannot have a module declaration for this to work. While loading the file, ciao-
shell changes the prolog flag quiet so that no informational or warning messages are printed
(error messages will be reported to user_error, however). The operation of ciao-shell in
Unix-like systems is based in a special compiler feature: when the first character of a file is ’#’,
the compiler skips the first lines until an empty line is found. In Windows, its use is as easy as
naming the file with a .pls extension, which will launch ciao-shell appropriately.

For example, in a Linux/Unix system, assume a file called hello contains the following
program:

#!/bin/sh
exec ciao-shell $0 "$@" # -*- mode: ciao; -*-

main(_) :-
write(’Hello world’), nl.

Then, the file hello can be run by simply making it executable and invoking it from the
command line:

/herme@clip:/tmp
[86]> chmod +x hello

/herme@clip:/tmp
[87]> hello
Hello world

The line:

#!/bin/sh

invokes the /bin/sh shell which will interpret the following line:

62 The Ciao Prolog System

exec ciao-shell $0 "$@" # -*- mode: ciao; -*-

and invoke ciao-shell, instructing it to read this same file ($0), passing it the rest of the
arguments to hello as arguments to the prolog program. The second part of the line # -*-
mode: ciao; -*- is simply a comment which is seen by emacs and instructs it to edit this file in
Ciao mode (this is needed because these script files typically do not have a .pl ending). When
ciao-shell starts, if it is the first time, it compiles the program (skipping the first lines, as
explained above), or else at successive runs loads the .po object file, and then calls main/1.

Note that the process of creating Prolog scripts is made very simple by the Ciao emacs mode,
which automatically inserts the header and makes the file executable (See Chapter 10 [Using
Ciao inside GNU emacs], page 65).

8.2 Command line arguments in scripts

The following example illustrates the use of command-line arguments in scripts. Assume that a
file called say contains the following lines:

#!/bin/sh
exec ciao-shell $0 "$@" # -*- mode: ciao; -*-

main(Argv) :-
write_list(Argv), nl.

write_list([]).
write_list([Arg|Args]) :-

write(Arg),
write(’ ’),
write_list(Args).

An example of use is:

/herme@clip:/tmp
[91]> say hello dolly
hello dolly

Chapter 9: Customizing library paths and path aliases 63

9 Customizing library paths and path aliases

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#189 (2003/12/19, 16:8:47 CET)

This library provides means for customizing, from environment variables, the libraries and
path aliases known by an executable. Many applications of Ciao, including ciaoc, ciaosh, and
ciao-shell make use of this library. Note that if an executable is created dynamic, it will try
to load its components at startup, before the procedures of this module can be invoked, so in
this case all the components should be in standard locations.

9.1 Usage and interface (libpaths)
® ©

• Library usage:

:- use_module(library(libpaths)).

• Exports:

− Predicates:

get_alias_path/0.

− Multifiles:

file_search_path/2, library_directory/1.

• Other modules used:

− System library modules:

system, lists.

 ª

9.2 Documentation on exports (libpaths)

PREDICATEget alias path/0:
get_alias_path(get_alias_path

Consult the environment variable ’CIAOALIASPATH’ and add facts to predicates
library_directory/1 and file_search_path/2 to define new library paths and path
aliases. The format of ’CIAOALIASPATH’ is a sequence of paths or alias assignments
separated by colons, an alias assignment is the name of the alias, an ’=’ and the path
represented by that alias (no blanks allowed). For example, given

CIAOALIASPATH=/home/bardo/ciao:contrib=/usr/local/lib/ciao

the predicate will define /home/bardo/ciao as a library path and /usr/local/lib/ciao as
the path represented by ’contrib’.

9.3 Documentation on multifiles (libpaths)

PREDICATEfile search path/2:
See Chapter 21 [Basic file/stream handling], page 123.

The predicate is multifile.

The predicate is of type dynamic.

64 The Ciao Prolog System

PREDICATElibrary directory/1:
See Chapter 21 [Basic file/stream handling], page 123.

The predicate is multifile.

The predicate is of type dynamic.

Chapter 10: Using Ciao inside GNU emacs 65

10 Using Ciao inside GNU emacs

Author(s): Manuel Hermenegildo, Manuel C. Rodriguez, Daniel
Cabeza, clip@clip.dia.fi.upm.es, http://www.clip.dia.fi.upm.es/, The CLIP Group,
School of Computer Science, Technical University of Madrid.

Version: 1.9#344 (2004/4/29, 12:56:34 CEST)

Version of last change: 1.9#323 (2004/3/8, 18:37:17 CET)

The Ciao/Prolog emacs interface (or mode in emacs terms) provides a rich, integrated user
interface to the Ciao program development environment components, including the ciaosh in-
teractive top level and the ciaopp preprocessor. While most features of the Ciao development
environment are available from the command line of the preprocessor and the top-level shell,
using Ciao inside emacs is highly recommended. The facilities that this mode provides include:

• Syntax-based highlighting (coloring), auto-indentation, auto-fill, etc. of code. This includes
the assertions used by the preprocessor and the documentation strings used by the Ciao
auto-documenter, lpdoc.

• Providing automatic access to on-line help for all predicates by accessing the Ciao system
manuals in info format.

• Starting and communicating with ciaopp, the Ciao preprocessor, running in its own sub-
shell. This allows easily performing certain kinds of static checks (useful for finding errors
in programs before running them), program analysis tasks, and program transformations
on source programs.

• Starting and communicating with the Ciao top-level, running in its own sub-shell. This
facilitates loading programs, checking the syntax of programs (and of assertions within
programs), marking and unmarking modules for interactive debugging, tracing the source
code during debugging, making stand-alone executables, compiling modules to dynamically
linkable Prolog objects, compiling modules to active objects, etc.

• Syntax highlighting and coloring of the error and warning messages produced by the top
level, preprocessor, or any other tool using the same message format (such as the lpdoc
auto-documenter), and locating automatically the points in the source files where such errors
occur.

• Performing automatic version control and keeping a changelog of individual files or whole
applications. This is done by automatically including changelog entries in source files, which
can then be processed by the lpdoc auto-documenter.

This chapter explains how to use the Ciao/Prolog emacs interface and how to set up your
emacs environment for correct operation. The Ciao emacs interface can also be used to work
with other Prolog or CLP systems.

10.1 Conventions for writing Ciao programs under Emacs

This is particularly important for the source-level debugger and the syntax-based coloring
capabilities. This is due to the fact that it would be unrealistic to write a complete Prolog parser
in Emacs lisp. These conventions are the following, in order of importance:

• Clauses should begin on the first column (this is used to recognize the beginning of a clause).

• C style comments should not be used in a clause, but can be used outside any clause.

The following suggestion is not strictly necessary but can improve operation:

• Body literals should be indented. There should be not more than one literal per line. This
allows more precision in the location of program points during source-level debugging, i.e.,
when marking breakpoints and during line tracing.

66 The Ciao Prolog System

Comments which start with %s are indented to the right if indentation is asked for.

For syntax-based highlighting to be performed font-lock must be available and not disabled (the
Ciao mode enables it but it may be disabled elsewhere in, e.g., the .emacs file).

10.2 Checking the installation

Typically, a complete pre-installation of the Ciao/Prolog emacs interface is completed during
Ciao installation. To check that installation was done and sucessful, open a file with a .pl ending.
You should see that emacs enters Ciao/Prolog mode: the mode is identified in the status bar
below the buffer and, if the emacs menu bar is enabled, you should see the Ciao/Prolog menus.
You should be able from the menu-bar, for example, to go to the Ciao manuals in the info or
load the .pl file that you just opened into a ciao top level.

If things don’t work properly, see the section Section 10.21 [Installation of the Ciao/Prolog
emacs interface], page 82 later in this chapter.

10.3 Functionality and associated key sequences (bindings)

The following sections summarize the capabilities of the Ciao/Prolog emacs interface and the
(default) key sequences used to access those capabilities. Most of these functions are accessible
also from the menu bar.

10.4 Syntax coloring and syntax-based editing

Syntax-based highlighting (coloring) of code is provided automatically when opening
Ciao/Prolog files. This includes also the assertions used by the preprocessor and the documenta-
tion strings used by the Ciao auto-documenter, lpdoc. The mode should be set to Ciao/Prolog
and the Ciao mode menus should appear on the menu bar. The colors and fonts used can be
changed through the customize options in the help menu (see Section 10.20 [Customization],
page 77).

During editing this coloring may be refreshed by calling the appropriate function (see below).

Limited syntax-based auto-indentation and auto-fill of code and comments is also provided.
Syntax highlighting and coloring is also available for the error and warning messages produced
by the top level, preprocessor, and auto-documenter, and, in general, for the output produced
by these tools.

Commands:

〈̂ C〉 〈h〉 Undate (recompute) syntax-based highlighting (coloring).

〈TAB〉 Indent current line as Ciao/Prolog code. With argument, indent any additional
lines of the same clause rigidly along with this one.

10.5 Getting on-line help

The following commands are useful for getting on-line help. This is done by accessing the
info version of the Ciao manuals or the emacs built-in help strings. Note also that the info
standard search command (generally bound to 〈s〉) can be used inside info buffers to search for
a given string.

〈̂ C〉 〈TAB〉 Find help for the symbol (e.g., predicate, directive, declaration, type, etc.) that is
currently under the cursor. Opens a (hopefully) relevant part of the Ciao manuals
in info mode. Requires that the Ciao manuals in info format be installed and
accessible to emacs (i.e., they should appear somewhere in the info directory when
typing M-x info). It also requires word-help.el, which is provided with Ciao.
Refer to the installation instructions if this is not the case.

Chapter 10: Using Ciao inside GNU emacs 67

〈̂ C〉 〈/〉 Find a completion for the symbol (e.g., predicate, directive, declaration, type, etc.)
that is currently under the cursor. Uses for completion the contents of the indices
of the Ciao manuals. Same requirements as for finding help for the symbol.

〈̂ C〉 〈̂ M〉 Go to the part of the info directory containing the Ciao manuals.

〈̂ H〉 〈m〉 Show a short description of the Ciao/Prolog emacs mode, including all key bindings.

10.6 Loading and compiling programs

These commands allow loading programs, creating executables, etc. by issuing the appro-
priate commands to a Ciao/Prolog top level shell, running in its own buffer as a subprocess.
See Chapter 5 [The interactive top-level shell], page 39 for details. The following commands
implement the communication with the Ciao/Prolog top level:

〈̂ C〉 〈t〉 Ensure that an inferior Ciao/Prolog top-level process is running.

This opens a top-level window (if one did not exist already) where queries can be
input directly as in any normal Prolog top level. Programs can be loaded into this
top level by typing the corresponding commands in this window (such as use module,
etc.), or, more typically, by opening the file to be loaded in an emacs window (where
it can be edited) and issuing a load command (such as C-c l or C-c L) directly from
there (see the loading commands of this mode and their bindings).

Note that many useful commands (e.g., to repeat and edit previous commands,
interrupt jobs, locate errors, automatic completions, etc.) are available in this top-
level window (see Section 10.7 [Commands available in toplevel and preprocessor
buffers], page 68).

Often, it is not necessary to use this function since execution of any of the other
functions related to the top level (e.g., loading buffers into the top level) ensures
that a top level is started (starting one if required).

〈̂ C〉 〈l〉 Load the current buffer (and any auxiliary files it may use) into the top level.

The type of compilation performed (compiling or interpreting) is selected automat-
ically depending on whether the buffer has been marked for debugging or not – see
below. In case you try to load a file while in the middle of the debugging process
the debugger is first aborted and then the buffer is loaded. Also, if there is a defined
query, the user is asked whether it should be called.

〈̂ C〉 〈x〉 Make an executable from the code in the current buffer. The buffer must contain
a main/0 or main/1 predicate. Note that compiler options can be set to determine
whether the libraries and auxiliary files used by the executable will be statically
linked, dynamically linked, auto-loaded, etc.

〈̂ C〉 〈o〉 Make a Prolog object (.po) file from the code in the current buffer. This is useful
for example while debugging during development of a very large application which
is compiled into an excutable, and only one or a few files are modified. If the
application executable is dynamically linked, i.e., the component .po files are loaded
dynamically during startup of the application, then this command can be used to
recompile only the file or files which have changed, and the correct version will be
loaded dynamically the next time the application is started. However, note that this
must be done with care since it only works if the inter-module interfaces have not
changed. The recommended, much safer way is to generate the executable again,
letting the Ciao compiler, which is inherently incremental, determine what needs to
be recompiled.

〈̂ C〉 〈a〉 Make an active module executable from the code in the current buffer. An active
module is a remote procedure call server (see the activemod library documentation
for details).

68 The Ciao Prolog System

〈̂ C〉 〈s〉 Set the current buffer as the principal file in a multiple module programming envi-
ronment.

〈̂ C〉 〈L〉 Load the module designated as main module (and all related files that it uses) into
the top level. If no main module is defined it will load the current buffer.

The type of compilation performed (compiling or interpreting) is selected automat-
ically depending on whether the buffer has been marked for debugging or not – see
below. In case you try to load a file while in the middle of the debugging process
the debugger is first aborted and then the buffer is loaded. Also, if there is a defined
query, the user is asked whether is should be called.

〈̂ C〉 〈q〉 Set a default query. This may be useful specially during debugging sessions. How-
ever, as mentioned elsewhere, note that commands that repeat previous queries are
also available.

This query can be recalled at any time using C-c Q. It is also possible to set things
up so that this query will be issued automatically any time a program is (re)loaded.
The functionality is available in the major mode (i.e., from a buffer containing a
source file) and in the inferior mode (i.e., from the buffer running the top-level shell).
When called from the major mode (i.e., from window containing a source file) then
the user is prompted in the minibuffer for the query. When called from the inferior
mode (i.e., from a top-level window) then the query on the current line, following
the Ciao prompt, is taken as the default query.

To clear the default query use M-x ciao-clear-query or simply set it to an empty
query: i.e., in a source buffer select C-c q and enter an empty query. In an inferior
mode simply select C-c q on a line that contains only the system prompt.

〈̂ C〉 〈Q〉 Issue predefined query.

10.7 Commands available in toplevel and preprocessor buffers

The interactive top level and the preprocessor both are typically run in an iteractive buffer, in
which it is possible to communicate with them in the same way as if they had been started from
a standard shell. These interactive buffers run in the so-called Ciao/Prolog inferior mode. This
is a particular version of the standard emacs shell package (comint) and thus all the commands
typically available when running shells inside emacs also work in these buffers. In addition,
many of the commands and key bindings available in buffers containing Ciao source code are
also available in these interactive buffers, when applicable. The Ciao/Prolog-specific commands
available include:

〈̂ C〉 〈TAB〉 Find help for the symbol (e.g., predicate, directive, declaration, type, etc.) that is
currently under the cursor. Opens a (hopefully) relevant part of the Ciao manuals
in info mode. Requires that the Ciao manuals in info format be installed and
accessible to emacs (i.e., they should appear somewhere in the info directory when
typing M-x info). It also requires word-help.el, which is provided with Ciao.
Refer to the installation instructions if this is not the case.

〈̂ C〉 〈/〉 Find a completion for the symbol (e.g., predicate, directive, declaration, type, etc.)
that is currently under the cursor. Uses for completion the contents of the indices
of the Ciao manuals. Same requirements as for finding help for the symbol.

〈̂ C〉 〈‘〉 Go to the location in the source file containing the next error reported by the last
Ciao/Prolog subprocess (preprocessor or toplevel) which was run.

〈̂ C〉 〈e〉 Remove error marks from last run (and also debugging marks if present).

〈̂ C〉 〈q〉 Set a default query. This may be useful specially during debugging sessions. How-
ever, as mentioned elsewhere, note that commands that repeat previous queries are
also available.

Chapter 10: Using Ciao inside GNU emacs 69

This query can be recalled at any time using C-c Q. It is also possible to set things
up so that this query will be issued automatically any time a program is (re)loaded.
The functionality is available in the major mode (i.e., from a buffer containing a
source file) and in the inferior mode (i.e., from the buffer running the top-level shell).
When called from the major mode (i.e., from window containing a source file) then
the user is prompted in the minibuffer for the query. When called from the inferior
mode (i.e., from a top-level window) then the query on the current line, following
the Ciao prompt, is taken as the default query.

To clear the default query use M-x ciao-clear-query or simply set it to an empty
query: i.e., in a source buffer select C-c q and enter an empty query. In an inferior
mode simply select C-c q on a line that contains only the system prompt.

〈̂ C〉 〈Q〉 Issue predefined query.

〈̂ C〉 〈̂ V〉 Show last output file produced by Ciao preprocessor. The preprocessor works by
producing a file which is a transformed and/or adorned (with assertions) version of
the input file. This command is often used after running the preprocessor in order
to visit the output file and see the results from running the preprocessor.

〈̂ C〉 〈v〉 Report the version of the emacs Ciao/Prolog mode.

The following are some of the commands from the comint shell package which may be spe-
cially useful (type M-x describe-mode while in a Ciao interactive buffer for a complete list of
commands):

〈M-p〉 Cycle backwards through input history.

〈M-n〉 Cycle forwards through input history.

〈M-r〉 Search backwards through input history for match for REGEXP. (Previous history
elements are earlier commands.) With prefix argument N, search for Nth previous
match. If N is negative, find the next or Nth next match.

〈TAB〉 Dynamically find completion of the item at point. Note that this completion com-
mand refers generally to filenames (rather than, e.g., predicate names, as in the
previous functions).

〈M-?〉 List all (filename) completions of the item at point.

〈RET〉 Return at any point of the a line at the end of a buffer sends that line as input.
Return not at end copies the rest of the current line to the end of the buffer and
sends it as input.

〈̂ D〉 Delete ARG characters forward or send an EOF to subprocess. Sends an EOF only
if point is at the end of the buffer and there is no input.

〈̂ C〉 〈̂ U〉 Kill all text from last stuff output by interpreter to point.

〈̂ C〉 〈̂ W〉 Kill characters backward until encountering the end of a word. With argument, do
this that many times.

〈̂ C〉 〈̂ C〉 Interrupt the current subjob. This command also kills the pending input between
the process-mark and point.

〈̂ C〉 〈̂ Z〉 Stop the current subjob. This command also kills the pending input between the
process-mark and point.

WARNING: if there is no current subjob, you can end up suspending the top-level
process running in the buffer. If you accidentally do this, use M-x comint-continue-
subjob to resume the process. (This is not a problem with most shells, since they
ignore this signal.)

〈̂ C〉 〈̂ \〉 Send quit signal to the current subjob. This command also kills the pending input
between the process-mark and point.

70 The Ciao Prolog System

10.8 Locating errors and checking the syntax of assertions

These commands allow locating quickly the point in the source code corresponding to er-
rors flagged by the compiler or preprocessor as well as performing several syntactic checks of
assertions:

〈̂ C〉 〈‘〉 Go to the location in the source file containing the next error reported by the last
Ciao/Prolog subprocess (preprocessor or toplevel) which was run.

〈̂ C〉 〈e〉 Remove error marks from last run (and also debugging marks if present).

〈̂ C〉 〈E〉 Check the syntax of the code and assertions in the current buffer, as well as imports
and exports. This uses the standard top level (i.e., does not call the preprocessor
and thus does not require the preprocessor to be installed). Note that full (semantic)
assertion checking must be done with the preprocessor.

10.9 Commands which help typing in programs

The following commands are intended to help in the process of writing programs:

〈̂ C〉 〈I〉 〈S〉 Insert a (Unix) header at the top of the current buffer so that the ciao script
interpreter will be called on this file if run from the command line. It also makes
the file “executable” (e.g., ’chmod +x <file>’ in Unix). See Chapter 8 [The script
interpreter], page 61 for details.

10.10 Debugging programs

These commands allow marking modules for debugging by issuing the appropiate commands
to a Ciao/Prolog top level shell, running in its own buffer as a subprocess. There are two
differents types of debugging: traditional Prolog debugging (using the byrd-box model and
spy-points) and source-level debugging (same as traditional debugging plus source tracing and
breakpoints). In order to use breakpoints, source debugging must be on. The following commands
implement comunication with the Ciao/Prolog top level:

〈̂ C〉 〈d〉 Debug (or stop debugging) buffer source. This is a shortcut which is particularly
useful when using the source debugger on a single module. It corresponds to several
lower-level actions. Those lower-level actions depend on how the module was selected
for debugging. In case the module was not marked for source-level debugging, it
marks the module corresponding to the current buffer for source-level debugging,
reloads it to make sure that it is loaded in the correct way for debugging (same as
C-c l), and sets the debugger in trace mode (i.e., issues the trace. command to
the top-level shell). Conversely, if the module was already marked for source-level
debugging then it will take the opposite actions, i.e., it unmarks the module for
source-level debugging, reloads it, and sets the debugger to non-debug mode.

〈̂ C〉 〈m〉 Mark, or unmkark, the current buffer for debugging (traditional debugging or source
debugging). Note that if the buffer has already been loaded while it was unmarked
for debugging (and has therefore been loaded in “compile” mode) it has to be loaded
again. The minibuffer shows how the module is loaded now and allows selecting
another mode for it. There are three posibilities: N for no debug, S for source
debug and D for traditional debug.

〈̂ C〉 〈M-m〉 Visits all Ciao/Prolog files which are currently open in a buffer allowing selecting for
each of them whether to debug them or not and the type of debugging performed.
When working on a multiple module program, it is possible to have many modules
open at a time. In this case, you will navigate through all open Ciao/Prolog files
and select the debug mode for each of them (same as doing C-c m for each).

Chapter 10: Using Ciao inside GNU emacs 71

〈̂ C〉 〈S〉 〈b〉 Set a breakpoint on the current literal (goal). This can be done at any time (while
debugging or not). The cursor must be on the predicate symbol of the literal. Break-
points are only useful when using source-level debugging.

〈̂ C〉 〈S〉 〈v〉 Remove a breakpoint from the current literal (goal). This can be done at any time
(while debugging or not). The cursor must be on the predicate symbol of the literal.

〈̂ C〉 〈S〉 〈n〉 Remove all breakpoints. This can be done at any time (while debugging or not).

〈̂ C〉 〈S〉 〈l〉 Redisplay breakpoints in all Ciao buffers. This ensures that the marks in the source
files and the Ciao/Prolog toplevel are synchronized.

〈̂ C〉 〈S〉 〈r〉 Remove breakpoints color in all Ciao/Prolog files.

〈̂ C〉 〈S〉 〈t〉 Set the debugger to the trace state. In this state, the program is executed step by
step.

〈̂ C〉 〈S〉 〈d〉 Set the debugger to the debug state. In this state, the program will only stop in
breakpoints and spypoints. Breakpoints are specially supported in emacs and using
source debug.

〈̂ C〉 〈r〉 Load the current region (between the cursor and a previous mark) into the top
level. Since loading a region of a file is typically done for debugging and/or testing
purposes, this command always loads the region in debugging mode (interpreted).

〈̂ C〉 〈p〉 Load the predicate around the cursor into the top level. Since loading a single
predicate is typically done for debugging and/or testing purposes, this command
always loads the predicate in debugging mode (interpreted).

10.11 Preprocessing programs

These commands allow preprocessing programs with ciaopp, the Ciao preprocessor.

ciaopp is the precompiler of the Ciao Prolog development environment. ciaopp can perform
a number of program debugging, analysis and source-to-source transformation tasks on (Ciao)
Prolog programs. These tasks include:

• Inference of properties of the predicates and literals of the progam, including types,
modes and other variable instantiation properties, non-failure, determinacy, bounds on
computational cost, bounds on sizes of terms in the program, etc.

• Certain kinds of static debugging, finding errors before running the program. This includes
checking the ways in which programs call the system library predicates and also checking
the assertions present in the program or in other modules used by the program. Such
assertions essentially represent partial specifications of the program.

• Several kinds of source to source program transformations such as program specialization,
program parallelization (including granularity control), inclusion of run-time tests for asser-
tions which cannot be checked completely at compile-time, etc.

The information generated by analysis, the assertions in the system libraries, and the asser-
tions optionally included in user programs as specifications are all written in the same assertion
language, which is in turn also used by the Ciao system documentation generator, lpdoc.

ciaopp is distributed under the GNU general public license.

See the preprocessor manual for details. The following commands implement the communi-
cation with the Ciao preprocessor:

〈̂ C〉 〈M〉 Preprocess the buffer, selecting options. Instructs the preprocessor to load the
current buffer and start an interactive dialog in which the different options available
in the preprocessor can be set.

72 The Ciao Prolog System

〈̂ C〉 〈P〉 Preprocess the buffer, using the previously selected options. If no options were set
previously, then the preprocessor defaults are used.

〈̂ C〉 〈T〉 Uses the preprocessor to perform compile-time checking of types and modes (pp-
typesfd and shfr analyses).

〈̂ C〉 〈̂ P〉 Make ciaopp output only predicate-level analysis information.

〈̂ C〉 〈̂ F〉 Make ciaopp output both literal- and predicate-level analysis information.

〈̂ C〉 〈̂ X〉 Make ciaopp output no analysis information.

〈̂ C〉 〈̂ V〉 Show last output file produced by Ciao preprocessor. The preprocessor works by
producing a file which is a transformed and/or adorned (with assertions) version of
the input file. This command is often used after running the preprocessor in order
to visit the output file and see the results from running the preprocessor.

〈̂ C〉 〈V〉 Preprocess the buffer, using the previously selected (or default) options, waits for
preprocessing to finish and displays the preprocessor output (leaving the cursor at
the same point if already on a preprocessor output file). This allows running the
preprocessor over and over and watching the output while modifying the source
code.

〈̂ C〉 〈̂ R〉 Ensure that an inferior Ciao preprocessor process is running.

This opens a preprocessor top-level window (if one did not exist already) where
preprocessing commands and preprocessing menu options can be input directly.
Programs can be preprocessed by typing commands in this window, or, more typi-
cally, by opening the file to be preprocessed in an emacs window (where it can be
edited) and issuing a command (such as C-c M or C-c P) directly from there (see
the preprocessing commands of this mode and their bindings).

Note that many useful commands (e.g., to repeat and edit previous commands,
interrupt jobs, locate errors, automatic completions, etc.) are available in this top-
level window (see Section 10.7 [Commands available in toplevel and preprocessor
buffers], page 68).

Often, it is not necessary to use this function since execution of any of the other
functions related to the top level (e.g., loading buffers into the top level) ensures
that a top level is started (starting one if required).

10.12 Version control

The following commands can be used to carry out a simple but effective form of version
control by keeping a log of changes on a file or a group of related files. Interestingly, this log is
kept in a format that is understood by lpdoc, the Ciao documenter [Her99]. As a result, if these
version comments are present, then lpdoc will be able to automatically assign up to date version
numbers to the manuals that it generates. This way it is always possible to identify to which
version of the software a manual corresponds. Also, lpdoc can create automatically sections
describing the changes made since previous versions, which are extracted from the comments in
the changelog entries.

The main effect of these commands is to automatically associate the following information
to a set of changes performed in the file and/or in a set of related files:

• a version number (such as, e.g., 1.2, where 1 is the major version number and 2 is the
minor version number),

• a patch number (such as, e.g., the 4 in 1.2#4),

• a time stamp (such as, e.g., 1998/12/14,17:20*28+MET),

• the author of the change, and

Chapter 10: Using Ciao inside GNU emacs 73

• a comment explaining the change.

The version numbering used can be local to a single file or common to a number of related
files. A simple version numbering policy is implemented: when a relevant change is made, the
user typically inserts a changelog entry for it, using the appropriate command (or selecting the
corresponding option when prompted while saving a file). This will cause the patch number for
the file (or for the whole system that the file is part of) to be incremented automatically and the
corresponding machine-readable comment to be inserted in the file. Major and minor version
numbers can also be changed, but this is always invoked by hand (see below).

The changelog entry is written in the form of a comment/2 declaration. As mentioned before,
the advantage of using this kind of changelog entries is that these declarations can be processed
by the lpdoc automatic documenter (see the lpdoc reference manual [Her99] or the assertions
library documentation for more details on these declarations).

Whether the user is asked or not to introduce such changelog entries, and how the patch and
version numbers should be increased is controlled by the presence in the file of a comment/2
declaration of the type:

:- comment(version_maintenance,<type>).

(note that this requires including the assertions library in the source file). These declarations
themselves are also typically introduced automatically when using this mode (see below).

The version maintenance mode can also be set alternatively by inserting a comment such as:

%% Local Variables:
%% mode: ciao
%% update-version-comments: "off"
%% End:

The lines above instruct emacs to put the buffer visiting the file in emacs Ciao/Prolog mode
and to turn version maintenance off. Setting the version maintenance mode in this way has
the disadvantage that lpdoc, the auto-documenter, and other related tools will not be aware
of the type of version maintenance being performed (the lines above are comments for Prolog).
However, this can be useful in fact for setting the version maintenance mode for packages and
other files meant for inclusion in other files, since that way the settings will not affect the file in
which the package is included.

The following commands implement the version control support:

〈̂ X〉 〈̂ S〉 This is the standard emacs command that saves a buffer by writing the contents into
the associated .pl file. However, in Ciao/Prolog mode this command can be set to
ask the user before saving whether to introduce a changelog entry documenting the
changes performed.

If the buffer does not already contain a comment specifying the type of version con-
trol to be performed, and before saving the buffer, the Ciao/Prolog mode prompts
the user to choose among the following options:

〈q〉 Turn off prompting for the introduction of changelog entries for now.
emacs will not ask again while the buffer is loaded, but it will ask again
next time you load the buffer.

〈n〉 Turn off version control for this file. A version control comment such
as:

:- comment(version_maintenance,off).

is added to the buffer and the file is saved. emacs will not perform any
version control on this file until the line above is removed or modified
(i.e., from now on C-x C-s simply saves the buffer).

〈y〉 Turn version control on for this file.

74 The Ciao Prolog System

If 〈y〉 is selected, then the system prompts again regarding how and where the ver-
sion and patch number information is to be maintained. The following options are
available:

on All version control information will be contained within this file. When
saving a buffer (C-x C-s) emacs will ask if a changelog entry should
be added to the file before saving. If a comment is entered by the
user, a new patch number is assigned to it and the comment is added
to the file. This patch number will be the one that follows the most
recent changelog entry already in the file. This is obviously useful when
maintaining version numbers individually for each file.

<directory_name>
Global version control will be performed coherently on several files.
When saving a buffer (C-x C-s) emacs will ask if a changelog entry
should be added to the file before saving. If a comment is given,
the global patch number (which will be kept in the file: <directory_
name>/GlobalPatch) is atomically incremented and the changelog en-
try is added to the current file, associated to that patch number. Also,
a small entry is added to a file <directory_name>/GlobalChangeLog
which points to the current file. This allows inspecting all changes se-
quentially by visiting all the files where the changes were made (see
C-c C-n). This is obviously useful when maintaining a single thread of
version and patch numbers for a set of files.

off Turns off version control: C-x C-s then simply saves the file as usual.

Some useful tips:

• If a changelog entry is in fact introduced, the cursor is left at the point in the
file where the comment was inserted and the mark is left at the original file
point. This allows inspecting (and possibly modifying) the changelog entry,
and then returning to the original point in the file by simply typing C-x C-x.

• The first changelog entry is entered by default at the end of the buffer. Later,
the changelog entries can be moved anywhere else in the file. New changelog
entries are always inserted just above the first changelog entry which appears
in the file.

• The comments in changelog entries can be edited at any time.

• If a changelog entry is moved to another file, and version numbers are shared
by several files through a directory, the corresponding file pointer in the
<directory_name>/GlobalChangeLog file needs to be changed also, for the
entry to be locatable later using C-c C-n.

〈̂ C〉 〈̂ S〉 Same as C-x C-s except that it forces prompting for inclusion of a changelog entry
even if the buffer is unmodified.

〈̂ C〉 〈n〉 Force a move to a new major/minor version number (the user will be prompted for
the new numbers). Only applicable if using directory-based version maintenance.
Note that otherwise it suffices with introducing a changelog entry in the file and
changing its version number by hand.

〈̂ C〉 〈̂ N〉 When a unique version numbering is being maintained across several files, this
command allows inspecting all changes sequentially by visiting all the files in which
the changes were made:

• If in a source file, find the next changelog entry in the source file, open in another
window the corresponding GlobalChangeLog file, and position the cursor at the
corresponding entry. This allows browsing the previous and following changes
made, which may perhaps reside in other files in the system.

Chapter 10: Using Ciao inside GNU emacs 75

• If in a GlobalChangeLog file, look for the next entry in the file, and open in
another window the source file in which the corresponding comment resides, po-
sitioning the corresponding comment at the top of the screen. This allows going
through a section of the GlobalChangeLog file checking all the corresponding
comments in the different files in which they occur.

10.13 Generating program documentation

These commands provide some bindings and facilities for generating and viewing the docu-
mentation corresponding to the current buffer. The documentation is generated in a temporary
directory, which is created automatically. This is quite useful while modifying the documenta-
tion for a file, in order to check the output that will be produced, whithout having to set up
a documentation directory by hand or to regenerate a large manual of which the file may be a
part.

〈̂ C〉 〈D〉 〈B〉 Generate the documentation for the current buffer in the default format. This
allows generating a simple document for the current buffer. Basically, it creates
a SETTINGS file, sets MAIN in SETTINGS to the current buffer and then generates
the documentation in a temporary directory. Note that for generating complex
manuals the best approach is to set up a permanent documentation directory with
the appropriate SETTINGS and Makefile files (see the LPdoc manual).

〈̂ C〉 〈D〉 〈F〉 Change the default output format used by the LPdoc auto-documenter. It is set by
default to dvi or to the environment variable LPDOCFORMAT if it is defined.

〈̂ C〉 〈D〉 〈S〉 Visit, or create, the SETTINGS file (which controls all auto-documenter options).

〈̂ C〉 〈D〉 〈G〉 Generate the documentation according to SETTINGS in the default format. This
allows generating complex documents but it assumes that SETTINGS exists and that
the options that it contains (main file, component files, paths, etc.) have been
set properly. Documentation is generated in a temporary directory. Note however
that for generating complex manuals the best approach is to set up a permanent
documentation directory with the appropriate SETTINGS and Makefile files (see the
LPdoc manual).

〈̂ C〉 〈D〉 〈V〉 Start a viewer on the documentation for the current buffer in the default format.

〈̂ C〉 〈D〉 〈W〉

Change the root working dir used by the LPdoc auto-documenter. It is set by
default to a new dir under /tmp or to the environment variable LPDOCWDIR if it is
defined.

10.14 Setting top level preprocessor and documenter
executables

These commands allow changing the executables used when starting a Prolog top-level, the
preprocessor, or the auto-documenter. They also allow changing the arguments that these
executables take, and changing the path where the libraries reside. In the case of the top-level
and preprocessor, this should be done only by users which understand the implications, but it is
very useful if several versions of Ciao/Prolog or the preprocessor are available in the system. All
these settings can be changed through the customize options in the help menu (see Section 10.20
[Customization], page 77).

〈̂ C〉 〈S〉 〈C〉 Change the Ciao/Prolog executable used to run the Prolog-like top level. It is set
by default to ciao or, to the environment variable CIAO if it is defined.

76 The Ciao Prolog System

〈̂ C〉 〈S〉 〈̂ C〉

Change the arguments passed to the Ciao/Prolog executable. They are set by
default to none or, to the environment variable CIAOARGS if it is defined.

〈̂ C〉 〈S〉 〈P〉 Change the executable used to run the Ciao Preprocessor toplevel. It is set by
default to ciaopp or, to the environment variable CIAOPP if it is defined.

〈̂ C〉 〈S〉 〈̂ P〉

Change the arguments passed to the Ciao preprocessor executable. They are set by
default to none or to the environment variable CIAOPPARGS if it is defined.

〈̂ C〉 〈S〉 〈L〉 Change the location of the Ciao/Prolog library paths (changes the environment
variable CIAOLIB).

〈̂ C〉 〈S〉 〈D〉 Change the executable used to run the LPdoc auto-documenter. It is set by default
to lpdoc or to the environment variable LPDOC if it is defined.

〈̂ C〉 〈S〉 〈̂ D〉

Change the arguments passed to the LPdoc auto-documenter. They are set by
default to none or to the environment variable LPDOCARGS if it is defined.

〈̂ C〉 〈S〉 〈̂ L〉

Change the path in which the LPdoc library is installed. It is set by default to
/home/clip/lib or to the environment variable LPDOCLIB if it is defined.

10.15 Other commands

Some other commands which are active in the Ciao/Prolog mode:

〈̂ C〉 〈̂ L〉 Recenter the most recently used Ciao/Prolog inferior process buffer (top level or
preprocessor).

10.16 Traditional Prolog Mode Commands

These commands provide some bindings and facilities for loading programs, which are present
in emacs Prolog modes of other Prolog systems (e.g., SICStus). This is useful mainly if the
Ciao/Prolog emacs mode is used with such Prolog systems. Note that these commands (
compile/1 and consult/1) are deprecated in Ciao (due to the more advanced, separate com-
pilation model in Ciao) and their use in the Ciao top-level is not recommended.

〈̂ C〉 〈K〉 Compile the entire buffer.

〈̂ C〉 〈k〉 Compile a given region.

〈̂ C〉 〈̂ K〉 Compile the predicate around point.

〈̂ C〉 〈C〉 Consult the entire buffer.

〈̂ C〉 〈c〉 Consult a given region.

〈̂ C〉 〈̂ C〉 Consult the predicate around point.

10.17 Coexistence with other Prolog interfaces

As mentioned previously, the Ciao/Prolog emacs interface can also be used to work with other
Prolog or CLP systems. Also, the Ciao/Prolog emacs interface (mode) can coexist with other
Prolog-related emacs interfaces (modes) (such as, e.g., the SICStus Prolog interface). Only one
of the interfaces can be active at a time for a given buffer (i.e., for each given file opened inside
emacs). In order the change a buffer to a given interface, move the cursor to that buffer and
type M-x ...-mode (e.g., for the Ciao/Prolog mode, M-x ciao-mode).

Chapter 10: Using Ciao inside GNU emacs 77

If several Prolog-related emacs interfaces are loaded, then typically the last one to be loaded
takes precedence, in the sense that this will be the interface in which emacs will be set when
opening files which have a .pl ending (this depends a bit on how things are set up in your
.emacs file).

10.18 Getting the Ciao/Prolog mode version

〈̂ C〉 〈v〉 Report the version of the emacs Ciao/Prolog mode.

10.19 Using Ciao/Prolog mode capabilities in standard shells

The capabilities (commands, coloring, error location, ...) which are active in the Ciao/Prolog
inferior mode can also be made available in any standard command line shell which is being
run within emacs. This can be enabled by going to the buffer in which the shell is running
and typing “〈M-x〉 ciao-inferior-mode”. This is very useful for example when running the
stand-alone compiler, the lpdoc auto-documenter, or even certain user applications (those that
use the standard error message library) in an emacs sub-shell. Turning the Ciao/Prolog inferior
mode on on that sub-shell will highlight and color the error messages, and automatically find
and visit the locations in the files in which the errors are reported.

Finally, one the most useful applications of this is when using the embedded debugger (a
version of the debugger which can be embedded into executables so that an interactive debugging
session can be triggered at any time while running that executable without needing the top-level
shell). If an application is run in a shell buffer which has been set with Ciao inferior mode (〈M-x〉

ciao-inferior-mode) and this application starts emitting output from the embedded debugger
(i.e., which contains the embedded debugger and is debugging its code) then the Ciao emacs
mode will be able to follow these messages, for example tracking execution in the source level
code. This also works if the application is written in a combination of languages, provided the
parts written in Ciao are compiled with the embedded debugger package and is thus a covenient
way of debugging multi-language applications. The only thing needed is to make sure that the
output messages appear in a shell buffer that is in Ciao inferior mode.

10.20 Customization

This section explains all variables used in the Ciao/Prolog emacs mode which can be cus-
tomized by users. Such customization can be performed (in later versions of emacs) from the
emacs menus (Help -> Customize -> Top-level Customization Group), or also by adding a
setq expression in the .emacs file. Such setq expression should be similar to:

(setq <variable> <new_value>)

The following sections list the different variables which can be customized for ciao, ciaopp and
lpdoc.

10.20.1 Ciao general variables

ciao-clip-logo (file)
CLIP logo image.

ciao-create-sample-file-on-startup (boolean)
When starting the ciao environment using ciao-startup two buffers are opened: one
with a Prolog toplevel and another with a sample file. This toggle controls whether
the sample file, meant for novice users, is created or not. Set by default, non-novice
users will probably want to turn it off.

78 The Ciao Prolog System

ciao-indent-width (integer)
Indentation for a new goal.

ciao-library-path (string)
Path to the Ciao/Prolog System libraries (reads/sets the CIAOLIB environment
variable). Typically left empty, since ciao executables know which library to use.

ciao-locate-also-note-messages (boolean)
If set, also when errors of type NOTE are detected the corresponding file is visited
and the location marked. It is set to nil by default because sometimes the user prefers
not to take any action with respect to these messages (for example, many come
from the documenter, indicating that adding certain declarations the documentation
would be improved).

ciao-locate-errors-after-run (boolean)
If set, location of any errors produced when running Ciao tools (loading or prepro-
cessing code, running the documenter, etc.) will be initiated automatically. I.e.,
after running a command, the system will automatically highlight any error mes-
sages and the corresponding areas in source files if possible. If set to nil this location
will only happen after typing C-c ‘ or accessing the corresponding menu or tool bar
button.

ciao-logo (file)
Ciao logo image.

ciao-main-filename (string)
Name of main file in a multiple module program. Setting thsi is very useful when
working on a multi-module program because it allows issuing a load command after
working on an inferior module which will reload from the main module, thus also
reloading automatically all dependent modules.

ciao-os-shell-prompt-pattern (string)
Regular expression used to describe the shell prompt pattern, so that error location
works in inferior shells. This is useful for example so that errors are located when
generating documentation (for lpdoc versions up to 1.9), and also when using the
embedded debugger or any other application in a shell. It is best to be as precise
as possible when defining this so that the standard ciao error location does not get
confused.

ciao-query (string)
Query to use in Ciao. Setting this is useful when using a long or complicated query
because it saves from having to type it over and over again. It is possible to set that
this query will be issued any time a program is (re)loaded.

ciao-system (string)
Name of Ciao or Prolog executable which runs the classical Prolog-like top level.

ciao-system-args (string)
Arguments passed to Ciao/Prolog toplevel executable.

ciao-toplevel-buffer-name (string)
Basic name of the buffer running the Ciao/Prolog toplevel inferior process.

ciao-user-directives (list)
List of identifiers of any directives defined by users which you would like highlighted
(colored). Be careful, since wrong entries may affect other syntax highlighting.

10.20.2 CiaoPP variables

Chapter 10: Using Ciao inside GNU emacs 79

ciao-ciaopp-buffer-name (string)
Basic name of the buffer running the Ciao preprocessor inferior process.

ciao-ciaopp-system (string)
Name of Ciao preprocessor executable.

ciao-ciaopp-system-args (string)
Arguments passed to Ciao preprocessor executable.

10.20.3 LPdoc variables

ciao-lpdoc-buffer-name (string)
Basic name of the buffer running the auto-documenter inferior process.

ciao-lpdoc-docformat (symbol)
Name of default output format used by LPdoc.

ciao-lpdoc-libpath (directory)
Path in which the LPdoc library is installed.

ciao-lpdoc-system (string)
Name of LPdoc auto-documenter executable.

ciao-lpdoc-system-args (string)
Arguments passed to LPdoc executable.

ciao-lpdoc-wdir-root (directory)
Name of root working dir used by LPdoc.

10.20.4 Faces used in syntax-based highlighting (coloring)

ciao-face-answer-val (face)
Face to use for answer values in top level.

ciao-face-answer-var (face)
Face to use for answer variables in top level.

ciao-face-builtin-directive (face)
Face to use for the standard directives.

ciao-face-check-assrt (face)
Face to use for check assertions.

ciao-face-checked-assrt (face)
Face to use for checked assertions.

ciao-face-ciaopp-option (face)
Face to use for CiaoPP option menus.

ciao-face-clauseheadname (face)
Face to use for clause head functors.

ciao-face-comment (face)
Face to use for code comments using fixed pitch (double %).

ciao-face-comment-variable-pitch (face)
Face to use for code comments using variable pitch (single %).

ciao-face-concurrency-op (face)
Face to use for concurrency operators.

ciao-face-cut (face)
Face to use for cuts.

80 The Ciao Prolog System

ciao-face-debug-breakpoint (face)
Face to use with breakpoints in source debugger.

ciao-face-debug-call (face)
Face to use when at call port in source debugger.

ciao-face-debug-exit (face)
Face to use when at exit port in source debugger.

ciao-face-debug-expansion (face)
Face to use in source debugger when source literal not located.

ciao-face-debug-fail (face)
Face to use when at fail port in source debugger.

ciao-face-debug-mess (face)
Face to use for debug messages.

ciao-face-debug-redo (face)
Face to use when at redo port in source debugger.

ciao-face-entry-assrt (face)
Face to use for entry assertions.

ciao-face-error-mess (face)
Face to use for error messages.

ciao-face-false-assrt (face)
Face to use for false assertions.

ciao-face-highlight-code (face)
Face to use for highlighting code areas (e.g., when locating the code area that an
error message refers to).

ciao-face-library-directive (face)
Face to use for directives defined in the library.

ciao-face-lpdoc-bug-comment (face)
Face to use for LPdoc bug comments.

ciao-face-lpdoc-command (face)
Face to use LPdoc commands inserted in documentation text.

ciao-face-lpdoc-comment (face)
Face to use for LPdoc textual comments.

ciao-face-lpdoc-comment-variable-pitch (face)
Face to use for LPdoc textual comments in variable pitch.

ciao-face-lpdoc-crossref (face)
Face to use for LPdoc cross-references.

ciao-face-lpdoc-include (face)
Face to use for LPdoc include commands.

ciao-face-lpdoc-verbatim (face)
Face to use for LPdoc verbatim text.

ciao-face-lpdoc-version-comment (face)
Face to use for LPdoc version comments.

ciao-face-modedef-assrt (face)
Face to use for modedef definitions.

Chapter 10: Using Ciao inside GNU emacs 81

ciao-face-module-directive (face)
Face to use for the module-related directives.

ciao-face-no-answer (face)
Face to use for no answer in top level.

ciao-face-note-mess (face)
Face to use for note messages.

ciao-face-other-mess (face)
Face to use for other messages.

ciao-face-predicate-directive (face)
Face to use for the predicate-related directives.

ciao-face-prompt (face)
Face to use for prompts in top-level and shells.

ciao-face-prop-assrt (face)
Face to use for property definitions.

ciao-face-quoted-atom (face)
Face to use for quoted atoms.

ciao-face-regtype-assrt (face)
Face to use for regtype definitions.

ciao-face-script-header (face)
Face to use for script headers.

ciao-face-startup-mess (face)
Face to use for system splash message.

ciao-face-string (face)
Face to use for strings.

ciao-face-true-assrt (face)
Face to use for true assertions.

ciao-face-trust-assrt (face)
Face to use for trust assertions.

ciao-face-user-directive (face)
Face to use for directives defined by the user (see ciao-user-directives custom variable
to add new ones).

ciao-face-variable (face)
Face to use for variables.

ciao-face-warning-mess (face)
Face to use for warning messages.

ciao-face-yes-answer (face)
Face to use for yes answer in top level.

ciao-faces-use-variable-pitch-in-comments (boolean)
Controls whether variable pitch fonts are used when highlighting comments. Unset
by default. After changing this you must exit and reinitialize for the change to take
effect.

82 The Ciao Prolog System

10.21 Installation of the Ciao/Prolog emacs interface

If opening a file ending with .pl puts emacs in another mode (such as perl mode, which
is the –arguably incorrect– default setting in some emacs distributions), then either the emacs
mode was not installed or the installation settings are being overwritten by other settings in your
.emacs file or in some library. In any case, you can set things manually so that the Ciao/Prolog
mode is loaded by default in your system. This can be done by including in your .emacs file a
line such as:

(load <CIAOLIBDIR>/DOTemacs)

This loads the above mentioned file from the Ciao library, which contains the following lines
(except that the paths are changed during installation to appropriate values for your system):

;; Ciao/Prolog mode initialization
;; -------------------------------
;; (can normally be used with other Prolog modes and the default prolog.el)
;;
(setq load-path (cons "<CIAOLIBDIR>" load-path))
(autoload ’run-ciao-toplevel "ciao"

"Start a Ciao/Prolog top-level sub-process." t)
(autoload ’ciao-startup "ciao"

"The Ciao/Prolog program development system startup screens." t)
(autoload ’ciao "ciao"

"Start a Ciao/Prolog top-level sub-process." t)
(autoload ’prolog "ciao"

"Start a Ciao/Prolog top-level sub-process." t)
(autoload ’run-ciao-preprocessor "ciao"

"Start a Ciao/Prolog preprocessor sub-process." t)
(autoload ’ciaopp "ciao"

"Start a Ciao/Prolog preprocessor sub-process." t)
(autoload ’ciao-mode "ciao"

"Major mode for editing and running Ciao/Prolog" t)
(autoload ’ciao-inferior-mode "ciao"

"Major mode for running Ciao/Prolog, CiaoPP, LPdoc, etc." t)
(setq auto-mode-alist (cons ’("\\.pl$" . ciao-mode) auto-mode-alist))
(setq auto-mode-alist (cons ’("\\.pls$" . ciao-mode) auto-mode-alist))
(setq auto-mode-alist (cons ’("\\.lpdoc$" . ciao-mode) auto-mode-alist))
(setq completion-ignored-extensions

(append ’(".dep" ".itf" ".po" ".asr" ".cpx")
completion-ignored-extensions))

;; --
;; In Un*x, the following (or similar) lines should be included in your
;; .cshrc or .profile to find the manuals (the Ciao installation leaves
;; in the Ciao library directory ’DOTcshrc’ and ’DOTprofile’ files with
;; the right paths which can be included directly in your startup scripts):
;;
;; setenv INFOPATH /usr/local/info:/usr/info:<LPDOCDIR>
;; --

If you would like to configure things in a different way, you can also copy the contents of this
file to your .emacs file and make the appropriate changes. For example, if you do not want .pl
files to be put automatically in Ciao/Prolog mode, then comment out (or remove) the line:

(setq auto-mode-alist ...)

Chapter 10: Using Ciao inside GNU emacs 83

You will then need to switch manually to Ciao/Prolog mode by typing M-x ciao-mode after
opening a Prolog file.

If you are able to open the Ciao/Prolog menu but the Ciao manuals are not found or the
ciao command (the top-level) is not found when loading .pl files, the probable cause is that you
do not have the Ciao paths in the INFOPATH and MANPATH environment variables (whether these
variables are set automatically or not for users depends on how the Ciao system was installed).
Under Un*x, you can add these paths easily by including the line:

source <CIAOLIBDIR>/DOTcshrc

in your .login or .cshrc files if you are using csh (or tcsh, etc.), or, alternatively, the line:

. <CIAOLIBDIR>/DOTprofile

in your .login or .profile files if you are using sh (or bash, etc.). See the Ciao installation
instructions (Chapter 218 [Installing Ciao from the source distribution], page 847 or Chapter 219
[Installing Ciao from a Win32 binary distribution], page 857) for details.

10.22 Emacs version compatibility

This mode is currently being developed within GNU emacs version 21.2. It should also (hope-
fully) work with all other 21.XX, 20.XX, and later 19.XX versions. We also try our best to keep
things working under xemacs.

10.23 Acknowledgments (ciao.el)

This code is derived from the 1993 version of the emacs interface for &-Prolog by M.
Hermenegildo, itself derived from the original prolog.el by Masanobu Umeda with changes
by Johan Andersson, Peter Olin, Mats Carlsson, and Johan Bevemyr of SICS, Sweden. Other
changes also by Daniel Cabeza and Manuel C. Rodriguez. See the changelog for details.

84 The Ciao Prolog System

PART II - The Ciao basic language (engine) 85

PART II - The Ciao basic language (engine)

® ©

Author(s): The Clip Group.

This part documents the Ciao basic builtins. These predefined predicates and declarations are
available in every program, unless the pure package is used (by using a :- module(_,_,[pure]).
declaration or :- use_package(pure).). These predicates are contained in the engine directory
within the lib library. The rest of the library predicates, including the packages that provide
most of the ISO-Prolog builtins, are documented in subsequent parts.

 ª

86 The Ciao Prolog System

Chapter 11: The module system 87

11 The module system

Author(s): Daniel Cabeza and the CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#28 (2002/11/20, 14:3:5 CET)

Modularity is a basic notion in a modern computer language. Modules allow dividing pro-
grams in several parts, which have its own independent name spaces. The module system in
Ciao [CH00a], as in many other Prolog implementations, is procedure based. This means that
predicate names are local to a module, but functor/atom names in data are shared.

The predicates visible in a module are the predicates defined in that module, plus the pred-
icates imported from other modules. Only predicates exported by a module can be imported
from other modules. The default module of a given predicate name is the local one if the
predicate is defined locally, else the last module from which the predicate is imported, hav-
ing explicit imports priority (that is, a predicate imported by an use_module/2 declaration is
always preferred above a predicate imported by an use_module/1 declaration). To refer to a
predicate from a module which is not the default for that predicate the name has to be module
qualified. A module qualified predicate name has the form Module:Predicate as in the call
debugger:debug_module(M). Note that this does not allow having access to predicates not
imported, nor defining clauses of other modules.

All predicates defined in files with no module declaration belong to a special module called
user, and all are implicitly exported. This allows dividing programs in several files without being
aware of the module system at all. Note that this feature is only supported for compatibility
reasons, being its use discouraged. Many attractive compilation features of Ciao cannot be
performed in user modules.

The case of multifile predicates (defined with the declaration multifile/1) is also special.
Multifile predicates can be defined by clauses distributed in several modules, and all modules
which define a predicate as multifile can use that predicate. The name space of multifile predi-
cates is independent, as if they belonged to special module multifile.

Every user or module file imports implicitly a number of modules called builtin modules.
They are imported before all other importations of the module, allowing thus redefining any
of their predicates (with the exception of true/0) by defining local versions or importing them
from other modules. Importing explicitly from a builtin module, however, disables the implicit
importation of the rest (this feature is used by package library(pure) to define pure prolog
code).

11.1 Usage and interface (modules)
® ©

• Library usage:

Modules are an intrinsic feature of Ciao, so nothing special has to be done to use them.

 ª

11.2 Documentation on internals (modules)

DECLARATIONmodule/3:
Usage: :- module(Name, Exports, Packages).

− Description: Declares a module of name Name which exports the predicates in
Exports, and uses the packages in Packages. Name must match with the name of
the file where the module resides, without extension. For each source in Packages,

88 The Ciao Prolog System

a package file is included, as if by an include/1 declaration. If the source is spec-
ified with a path alias, this is the file included, if it is an atom, the library paths
are searched. Package files provide functionalities by declaring imports from other
modules, defining operators, new declarations, translations of code, etc.

This directive must appear the first in the file.

Also, if the compiler finds an unknown declaration as the first term in a file, the name
of the declaration is regarded as a package library to be included, and the arguments
of the declaration (if present) are interpreted like the arguments of module/3.

− The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)

Exports is a list of prednames. (basic_props:list/2)

Packages is a list of sourcenames. (basic_props:list/2)

DECLARATIONmodule/2:
Usage: :- module(Name, Exports).

− Description: Same as directive module/3, with an implicit package default.

− The following properties hold at call time:

Name is a module name (an atom). (modules:modulename/1)

Exports is a list of prednames. (basic_props:list/2)

DECLARATIONexport/1:
Usage 1: :- export(Pred).

− Description: Adds Pred to the set of exported predicates.

− The following properties hold at call time:

Pred is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

Usage 2: :- export(Exports).

− Description: Adds Exports to the set of exported predicates.

− The following properties hold at call time:

Exports is a list of prednames. (basic_props:list/2)

DECLARATIONuse module/2:
Usage: :- use_module(Module, Imports).

− Description: Specifies that this code imports from the module defined in Module
the predicates in Imports. The imported predicates must be exported by the other
module.

− The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)

Imports is a list of prednames. (basic_props:list/2)

Chapter 11: The module system 89

DECLARATIONuse module/1:
Usage: :- use_module(Module).

− Description: Specifies that this code imports from the module defined in Module all
the predicates exported by it. The previous version with the explicit import list is
preferred to this as it minimizes the chances to have to recompile this code if the
other module changes.

− The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)

DECLARATIONimport/2:
Usage: :- import(Module, Imports).

− Description: Declares that this code imports from the module with name Module the
predicates in Imports.

Important note: this declaration is intended to be used when the current module or
the imported module is going to be dynamically loaded, and so the compiler does not
include the code of the imported module in the current executable (if only because
the compiler cannot know the location of the module file at the time of compilation).
For the same reason the predicates imported are not checked to be exported by
Module. Its use in other cases is strongly discouraged, as it disallows many compiler
optimizations.

− The following properties hold at call time:

Module is a module name (an atom). (modules:modulename/1)

Imports is a list of prednames. (basic_props:list/2)

DECLARATIONreexport/2:
Usage: :- reexport(Module, Preds).

− Description: Specifies that this code reexports from the module defined in Module the
predicates in Preds. This implies that this module imports from the module defined
in Module the predicates in Preds, an also that this module exports the predicates in
Preds .

− The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)

Preds is a list of prednames. (basic_props:list/2)

DECLARATIONreexport/1:
Usage: :- reexport(Module).

− Description: Specifies that this code reexports from the module defined in Module all
the predicates exported by it. This implies that this module imports from the module
defined in Module all the predicates exported by it, an also that this module exports
all such predicates .

− The following properties hold at call time:

Module is a source name. (streams_basic:sourcename/1)

90 The Ciao Prolog System

DECLARATIONmeta predicate/1:
Usage: :- meta_predicate MetaSpecs.

− Description: Specifies that the predicates in MetaSpecs have arguments which repre-
sent predicates and thus have to be module expanded. The directive is only mandatory
for exported predicates (in modules). This directive is defined as a prefix operator in
the compiler.

− The following properties hold at call time:

MetaSpecs is a sequence of metaspecs. (basic_props:sequence/2)

REGTYPEmodulename/1:
A module name is an atom, not containing characters ‘:’ or ‘$’. Also, user and multifile
are reserved, as well as the module names of all builtin modules (because in an executable
all modules must have distinct names).

Usage: modulename(M)

− Description: M is a module name (an atom).

REGTYPEmetaspec/1:
A meta-predicate specification for a predicate is the functor of that predicate applied
to atoms which represent the kind of module expansion that should be done with the
arguments. Possible contents are represented as:

goal This argument will be a term denoting a goal (either a simple or complex one)
which will be called. For commpatibility reasons it can be named as : as well.

clause This argument will be a term denoting a clause.

fact This argument should be instantiated to a term denoting a fact (head-only
clause).

spec This argument should be instantiated to a predicate name, as Functor/Arity.

pred(N) This argument should be instantiated to a predicate construct to be called by
means of a call/N predicate call (see call/2).

addmodule
This is in fact is not a real meta-data specification. It specifies that in an
argument added after this one will be passed the calling module, to allow
handling more involved meta-data (e.g., lists of goals) by using conversion
builtins.

?,+,-,_ These other values denote that this argument is not module expanded.

Usage: metaspec(M)

− Description: M is a meta-predicate specification.

Chapter 12: Directives for using code in other files 91

12 Directives for using code in other files

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#30 (2002/11/20, 14:15:12 CET)

Documentation for the directives used to load code into Ciao Prolog (both from the toplevel
shell and by other modules).

12.1 Usage and interface (loading_code)
® ©

• Library usage:

These directives are builtin in Ciao, so nothing special has to be done to use them.

 ª

12.2 Documentation on internals (loading_code)

DECLARATIONensure loaded/1:
Usage: :- ensure_loaded(File). 〈 • ISO • 〉

− Description: Specifies that the code present in File will be included in the executable
being prepared, in the user module. The file File cannot have a module declaration.
This directive is intended to be used by programs not divided in modules. Dividing
programs into modules is however strongly encouraged, since most of the attractive
features of Ciao (such as static debugging and global optimization) are only partially
available for user modules.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

DECLARATIONinclude/1:
Usage: :- include(File). 〈 • ISO • 〉

− Description: The contents of the file File are included in the current program text
exactly as if they had been written in place of this directive.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

DECLARATIONuse package/1:
:- use_package(Package).

Specifies the use in this file of the packages defined in Package. See the description of the
third argument of module/3 for an explanation of package files.

This directive must appear the first in the file, or just after a module/3 declaration. A
file with no module declaration, in the absence of this directive, uses an implicit package
default (see Chapter 30 [Other predicates and features defined by default], page 165).

Usage 1: :- use_package(Package).

92 The Ciao Prolog System

− The following properties should hold at call time:

Package is a source name. (streams_basic:sourcename/1)

Usage 2: :- use_package(Package).

− The following properties should hold at call time:

Package is a list of sourcenames. (basic_props:list/2)

Chapter 13: Control constructs/predicates 93

13 Control constructs/predicates

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#316 (2004/2/25, 19:16:1 CET)

This module contains the set of basic control predicates, except the predicates dealing with
exceptions, which are in Chapter 23 [Exception handling], page 137.

13.1 Usage and interface (basiccontrol)
® ©

• Library usage:

These predicates/constructs are builtin in Ciao, so nothing special has to be done to use
them. In fact, as they are hardwired in some parts of the system, most of them cannot be
redefined.

• Exports:

− Predicates:

,/2, ;/2, ->/2, !/0, \+/1, if/3, true/0, fail/0, repeat/0, call/1.

 ª

13.2 Documentation on exports (basiccontrol)

PREDICATE,/2:
P , Q

Conjunction (P and Q).

PREDICATE;/2:
P ; Q

Disjunction (P or Q).

PREDICATE->/2:
P -> Q

If P then Q else fail, using first solution of P only. Also, (P -> Q ; R), if P then Q else R,
using first solution of P only. No cuts are allowed in P.

PREDICATE!/0:
Usage: 〈 • ISO • 〉

− Description: Commit to any choices taken in the current predicate.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

94 The Ciao Prolog System

PREDICATE\+/1:
\+ P

Goal P is not provable (negation by failure). Fails if P has a solution, and succeeds
otherwise. No cuts are allowed in P.

Meta-predicate with arguments: \+goal.

General properties: \+ X

− The following properties hold globally:

This predicate is understood natively by CiaoPP as not(X). (basic_
props:native/2)

PREDICATEif/3:
if(P, Q, R)

If P then Q else R, exploring all solutions of P. No cuts are allowed in P.

PREDICATEtrue/0:
Usage: 〈 • ISO • 〉

− Description: Succeed (noop).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEfail/0:
Usage: 〈 • ISO • 〉

− Description: Fail, backtrack immediately.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATErepeat/0:
Usage: 〈 • ISO • 〉

− Description: Generates an infinite sequence of backtracking choices.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcall/1:
call(G)

Executes goal G, restricting the scope of the cuts to the execution of G. Equivalent to
writing a variable G in a goal position.

Meta-predicate with arguments: call(goal).

Chapter 13: Control constructs/predicates 95

13.3 Documentation on internals (basiccontrol)

PREDICATE|/2:
An alias for disjunction (when appearing outside a list). The alias is performed when
terms are read in.

96 The Ciao Prolog System

Chapter 14: Basic builtin directives 97

14 Basic builtin directives

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#29 (2002/11/20, 14:4:17 CET)

This chapter documents the basic builtin directives in Ciao, additional to the documented in
other chapters. These directives are natively interpreted by the Ciao compiler (ciaoc).

Unlike in other Prolog systems, directives in Ciao are not goals to be executed by the compiler
or top level. Instead, they are read and acted upon by these programs. The advantage of this is
that the effect of the directives is consistent for executables, code loaded in the top level, code
analyzed by the preprocessor, etc.

As a result, by default only the builtin directives or declarations defined in this manual can
be used in user programs. However, it is possible to define new declarations using the new_
declaration/1 and new_declaration/2 directives (or using packages including them). Also,
packages may define new directives via code translations.

14.1 Usage and interface (builtin_directives)
® ©

• Library usage:

These directives are builtin in Ciao, so nothing special has to be done to use them.

 ª

14.2 Documentation on internals (builtin_directives)

DECLARATIONmultifile/1:
Usage: :- multifile Predicates. 〈 • ISO • 〉

− Description: Specifies that each predicate in Predicates may have clauses in more
than one file. Each file that contains clauses for a multifile predicate must contain a
directive multifile for the predicate. The directive should precede all clauses of the
affected predicates. This directive is defined as a prefix operator in the compiler.

− The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic_props:sequence_or_list/2)

DECLARATIONdiscontiguous/1:
Usage: :- discontiguous Predicates. 〈 • ISO • 〉

− Description: Specifies that each predicate in Predicates may be defined in this file
by clauses which are not in consecutive order. Otherwise, a warning is signaled by the
compiler when clauses of a predicate are not consecutive (this behavior is controllable
by the prolog flag discontiguous warnings). The directive should precede all clauses of
the affected predicates. This directive is defined as a prefix operator in the compiler.

− The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic_props:sequence_or_list/2)

98 The Ciao Prolog System

DECLARATIONimpl defined/1:
Usage: :- impl_defined(Predicates).

− Description: Specifies that each predicate in Predicates is impl icitly defined in the
current prolog source, either because it is a builtin predicate or because it is defined in
a C file. Otherwise, a warning is signaled by the compiler when an exported predicate
is not defined in the module or imported from other module.

− The following properties should hold at call time:

Predicates is a sequence or list of prednames. (basic_props:sequence_or_list/2)

DECLARATIONredefining/1:
Usage: :- redefining(Predicate).

− Description: Specifies that this module redefines predicate Predicate, also imported
from other module, or imports it from more than one module. This prevents the
compiler giving warnings about redefinitions of that predicate. Predicate can be
partially (or totally) uninstantiated, to allow disabling those warnings for several (or
all) predicates at once.

− The following properties should hold at call time:

Predicate is compatible with predname (basic_props:compat/2)

DECLARATIONinitialization/1:
Usage: :- initialization(Goal). 〈 • ISO • 〉

− Description: Goal will be executed at the start of the execution of any program
containing the current code. The initialization of a module/file never runs before the
initializations of the modules from which the module/file imports (excluding circular
dependences).

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

DECLARATIONon abort/1:
Usage: :- on_abort(Goal).

− Description: Goal will be executed after an abort of the execution of any program
containing the current code.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Chapter 15: Basic data types and properties 99

15 Basic data types and properties

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#93 (2003/7/29, 17:53:15 CEST)

This library contains the set of basic properties used by the builtin predicates, and which
constitute the basic data types and properties of the language. They can be used both as type
testing builtins within programs (by calling them explicitly) and as properties in assertions.

15.1 Usage and interface (basic_props)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Properties:

member/2, compat/2, iso/1, not_further_inst/2, sideff/2, regtype/1, native/1,
native/2.

− Regular Types:

term/1, int/1, nnegint/1, flt/1, num/1, atm/1, struct/1, gnd/1, constant/1,
callable/1, operator_specifier/1, list/1, list/2, sequence/2, sequence_or_
list/2, character_code/1, string/1, predname/1, atm_or_atm_list/1.

 ª

15.2 Documentation on exports (basic_props)

REGTYPEterm/1:
The most general type (includes all possible terms).

Usage: term(X)

− Description: X is any term.

REGTYPEint/1:
The type of integers. The range of integers is [-2^2147483616, 2^2147483616). Thus
for all practical purposes, the range of integers can be considered infinite.

Usage: int(T)

− Description: T is an integer.

REGTYPEnnegint/1:
The type of non-negative integers, i.e., natural numbers.

Usage: nnegint(T)

− Description: T is a non-negative integer.

100 The Ciao Prolog System

REGTYPEflt/1:
The type of floating-point numbers. The range of floats is the one provided by the C
double type, typically [4.9e-324, 1.8e+308] (plus or minus). There are also three spe-
cial values: Infinity, either positive or negative, represented as 1.0e1000 and -1.0e1000;
and Not-a-number, which arises as the result of indeterminate operations, represented as
0.Nan

Usage: flt(T)

− Description: T is a float.

REGTYPEnum/1:
The type of numbers, that is, integer or floating-point.

Usage: num(T)

− Description: T is a number.

REGTYPEatm/1:
The type of atoms, or non-numeric constants. The size of atoms is unbound.

Usage: atm(T)

− Description: T is an atom.

REGTYPEstruct/1:
The type of compound terms, or terms with non-zeroary functors. By now there is a limit
of 255 arguments.

Usage: struct(T)

− Description: T is a compound term.

REGTYPEgnd/1:
The type of all terms without variables.

Usage: gnd(T)

− Description: T is ground.

REGTYPEconstant/1:
Usage: constant(T)

− Description: T is an atomic term (an atom or a number).

REGTYPEcallable/1:
Usage: callable(T)

− Description: T is a term which represents a goal, i.e., an atom or a structure.

Chapter 15: Basic data types and properties 101

REGTYPEoperator specifier/1:
The type and associativity of an operator is described by the following mnemonic atoms:

xfx Infix, non-associative: it is a requirement that both of the two subexpressions
which are the arguments of the operator must be of lower precedence than
the operator itself.

xfy Infix, right-associative: only the first (left-hand) subexpression must be of
lower precedence; the right-hand subexpression can be of the same precedence
as the main operator.

yfx Infix, left-associative: same as above, but the other way around.

fx Prefix, non-associative: the subexpression must be of lower precedence than
the operator.

fy Prefix, associative: the subexpression can be of the same precedence as the
operator.

xf Postfix, non-associative: the subexpression must be of lower precedence than
the operator.

yf Postfix, associative: the subexpression can be of the same precedence as the
operator.

Usage: operator_specifier(X)

− Description: X specifies the type and associativity of an operator.

REGTYPElist/1:
A list is formed with successive applications of the functor ’.’/2, and its end is the atom
[]. Defined as

list([]).
list([_1|L]) :-

list(L).

Usage: list(L)

− Description: L is a list.

REGTYPElist/2:
list(L, T)

L is a list, and for all its elements, T holds.

Meta-predicate with arguments: list(?,pred(1)).

Usage: list(L, T)

− Description: L is a list of Ts.

PROPERTYmember/2:
Usage: member(X, L)

− Description: X is an element of L.

102 The Ciao Prolog System

REGTYPEsequence/2:
A sequence is formed with zero, one or more occurrences of the operator ’,’/2. For
example, a, b, c is a sequence of three atoms, a is a sequence of one atom.

Meta-predicate with arguments: sequence(?,pred(1)).

Usage: sequence(S, T)

− Description: S is a sequence of Ts.

REGTYPEsequence or list/2:
Meta-predicate with arguments: sequence_or_list(?,pred(1)).

Usage: sequence_or_list(S, T)

− Description: S is a sequence or list of Ts.

REGTYPEcharacter code/1:
Usage: character_code(T)

− Description: T is an integer which is a character code.

− The following properties hold upon exit:

T is an integer. (basic_props:int/1)

REGTYPEstring/1:
A string is a list of character codes. The usual syntax for strings "string" is allowed, which
is equivalent to [0’s,0’t,0’r,0’i,0’n,0’g] or [115,116,114,105,110,103]. There
is also a special Ciao syntax when the list is not complete: "st"||R is equivalent to
[0’s,0’t|R].

Usage: string(T)

− Description: T is a string (a list of character codes).

− The following properties hold upon exit:

T is a list of character_codes. (basic_props:list/2)

REGTYPEpredname/1:
Usage: predname(P)

− Description: P is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

REGTYPEatm or atm list/1:
Usage: atm_or_atm_list(T)

− Description: T is an atom or a list of atoms.

Chapter 15: Basic data types and properties 103

PROPERTYcompat/2:
This property captures the notion of type or property compatibility. The instantiation
or constraint state of the term is compatible with the given property, in the sense that
assuming that imposing that property on the term does not render the store inconsistent.
For example, terms X (i.e., a free variable), [Y|Z], and [Y,Z] are all compatible with the
regular type list/1, whereas the terms f(a) and [1|2] are not.

Meta-predicate with arguments: compat(?,pred(1)).

Usage: compat(Term, Prop)

− Description: Term is compatible with Prop

PROPERTYiso/1:
Usage: iso(G)

− Description: Complies with the ISO-Prolog standard.

PROPERTYnot further inst/2:
Usage: not_further_inst(G, V)

− Description: V is not further instantiated.

PROPERTYsideff/2:
sideff(G, X)

Declares that G is side-effect free, soft (do not affect execution, e.g., input/output), or
hard (e.g., assert/retract).

Meta-predicate with arguments: sideff(goal,?).

General properties: sideff(G, X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as sideff(G,X). (basic_
props:native/2)

sideff(G, X)

− The following properties should hold at call time:

X is an element of [free,soft,hard]. (basic_props:member/2)

Usage: sideff(G, X)

− Description: G is side-effect X.

PROPERTYregtype/1:
Meta-predicate with arguments: regtype(goal).

Usage: regtype(G)

− Description: Defines a regular type.

PROPERTYnative/1:
Meta-predicate with arguments: native(goal).

Usage: native(Pred)

− Description: This predicate is understood natively by CiaoPP.

104 The Ciao Prolog System

PROPERTYnative/2:
Meta-predicate with arguments: native(goal,?).

Usage: native(Pred, Key)

− Description: This predicate is understood natively by CiaoPP as Key.

Chapter 16: Extra-logical properties for typing 105

16 Extra-logical properties for typing

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 0.7#8 (1998/9/23, 19:21:44 MEST)

This library contains traditional Prolog predicates for testing types. They depend on the
state of instantiation of their arguments, thus being of extra-logical nature.

16.1 Usage and interface (term_typing)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Properties:

var/1, nonvar/1, atom/1, integer/1, float/1, number/1, atomic/1, ground/1,
type/2.

 ª

16.2 Documentation on exports (term_typing)

PROPERTYvar/1:
General properties: var(X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

This predicate is understood natively by CiaoPP as free(X). (basic_
props:native/2)

var(X) is side-effect hard. (basic_props:sideff/2)

Usage: var(X)

− Description: X is a free variable.

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

PROPERTYnonvar/1:
General properties: nonvar(X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

This predicate is understood natively by CiaoPP as not_free(X). (basic_
props:native/2)

Usage: nonvar(X)

− Description: X is currently a term which is not a free variable.

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

106 The Ciao Prolog System

PROPERTYatom/1:
Usage: atom(X)

− Description: X is currently instantiated to an atom.

− The following properties hold upon exit:

X is an atom. (basic_props:atm/1)

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYinteger/1:
Usage: integer(X)

− Description: X is currently instantiated to an integer.

− The following properties hold upon exit:

X is an integer. (basic_props:int/1)

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYfloat/1:
Usage: float(X)

− Description: X is currently instantiated to a float.

− The following properties hold upon exit:

X is a float. (basic_props:flt/1)

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYnumber/1:
Usage: number(X)

− Description: X is currently instantiated to a number.

− The following properties hold upon exit:

X is a number. (basic_props:num/1)

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYatomic/1:
Usage: atomic(X)

− Description: X is currently instantiated to an atom or a number.

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 16: Extra-logical properties for typing 107

PROPERTYground/1:
Usage: ground(X)

− Description: X is currently ground (it contains no variables).

− The following properties hold upon exit:

X is ground. (basic_props:gnd/1)

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYtype/2:
Usage: type(X, Y)

− Description: X is internally of type Y (var, attv, float, integer, structure, atom
or list).

− The following properties hold upon exit:

Y is an atom. (basic_props:atm/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

108 The Ciao Prolog System

Chapter 17: Basic term manipulation 109

17 Basic term manipulation

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#191 (2003/12/19, 16:47:39 CET)

This module provides basic term manipulation.

17.1 Usage and interface (term_basic)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

arg/3, functor/3, =../2, copy_term/2, C/3.

− Properties:

=/2.
 ª

17.2 Documentation on exports (term_basic)

PROPERTY=/2:
Usage: X = Y 〈 • ISO • 〉

− Description: X and Y unify.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEarg/3:
Usage: arg(+ArgNo, +Term, ?Arg) 〈 • ISO • 〉

− Description: Argument ArgNo of the term Term is Arg.

− The following properties should hold at call time:

ArgNo is an integer. (basic_props:int/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEfunctor/3:
Usage: functor(?Term, ?Name, ?Arity) 〈 • ISO • 〉

− Description: The principal functor of the term Term has name Name and arity Arity.

− The following properties hold upon exit:

Name is an atom. (basic_props:atm/1)

Arity is a number. (basic_props:num/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

110 The Ciao Prolog System

PREDICATE=../2:
Usage: ?Term =.. ?List 〈 • ISO • 〉

− Description: The functor and arguments of the term Term comprise the list List.

− The following properties hold upon exit:

List is a list. (basic_props:list/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcopy term/2:
Usage: copy_term(Term, Copy) 〈 • ISO • 〉

− Description: Copy is a renaming of Term, such that brand new variables have been
substituted for all variables in Term. If any of the variables of Term have attributes,
the copied variables will have copies of the attributes as well. It behaves as if defined
by:

:- data ’copy of’/1.

copy_term(X, Y) :-
asserta_fact(’copy of’(X)),
retract_fact(’copy of’(Y)).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEC/3:
Usage: C(?S1, ?Terminal, ?S2)

− Description: S1 is connected by the terminal Terminal to S2. Internally used in DCG
grammar rules. Defined as if by the single clause: ’C’([X|S], X, S).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 18: Comparing terms 111

18 Comparing terms

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#199 (2003/12/19, 18:18:33 CET)

These built-in predicates are extra-logical. They treat uninstantiated variables as objects
with values which may be compared, and they never instantiate those variables. They should
not be used when what you really want is arithmetic comparison or unification.

The predicates make reference to a standard total ordering of terms, which is as follows:

• Variables, by age (roughly, oldest first – the order is not related to the names of variables).

• Floats, in numeric order (e.g. -1.0 is put before 1.0).

• Integers, in numeric order (e.g. -1 is put before 1).

• Atoms, in alphabetical (i.e. character code) order.

• Compound terms, ordered first by arity, then by the name of the principal functor, then
by the arguments in left-to-right order. Recall that lists are equivalent to compound terms
with principal functor ’.’/2.

For example, here is a list of terms in standard order:

[X, -1.0, -9, 1, bar, foo, [1], X = Y, foo(0,2), bar(1,1,1)]

18.1 Usage and interface (term_compare)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

compare/3.

− Properties:

==/2, \==/2, @</2, @=</2, @>/2, @>=/2.

 ª

18.2 Documentation on exports (term_compare)

PROPERTY==/2:
Usage: Term1 == Term2

− Description: The terms Term1 and Term2 are strictly identical.

− The following properties should hold globally:

Term1 is not further instantiated. (basic_props:not_further_inst/2)

Term2 is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTY\==/2:
Usage: Term1 \== Term2

112 The Ciao Prolog System

− Description: The terms Term1 and Term2 are not strictly identical.

− The following properties should hold globally:

Term1 is not further instantiated. (basic_props:not_further_inst/2)

Term2 is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTY@</2:
Usage: @<(Term1, Term2)

− Description: The term Term1 precedes the term Term2 in the standard order.

− The following properties should hold globally:

Term1 is not further instantiated. (basic_props:not_further_inst/2)

Term2 is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTY@=</2:
Usage: @=<(Term1, Term2)

− Description: The term Term1 precedes or is identical to the term Term2 in the stan-
dard order.

− The following properties should hold globally:

Term1 is not further instantiated. (basic_props:not_further_inst/2)

Term2 is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTY@>/2:
Usage: @>(Term1, Term2)

− Description: The term Term1 follows the term Term2 in the standard order.

− The following properties should hold globally:

Term1 is not further instantiated. (basic_props:not_further_inst/2)

Term2 is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTY@>=/2:
Usage: @>=(Term1, Term2)

− Description: The term Term1 follows or is identical to the term Term2 in the standard
order.

− The following properties should hold globally:

Term1 is not further instantiated. (basic_props:not_further_inst/2)

Term2 is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 18: Comparing terms 113

PREDICATEcompare/3:
compare(Op, Term1, Term2)

Op is the result of comparing the terms Term1 and Term2.

Usage: compare(?atm, @term, @term)

− The following properties hold upon exit:

?atm is an element of [=,>,<]. (basic_props:member/2)

@term is any term. (basic_props:term/1)

@term is any term. (basic_props:term/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

114 The Ciao Prolog System

Chapter 19: Basic predicates handling names of constants 115

19 Basic predicates handling names of constants

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#334 (2004/4/13, 13:28:2 CEST)

The Ciao system provides builtin predicates which allow dealing with names of constants
(atoms or numbers). Note that sometimes strings (character code lists) are more suitable to
handle sequences of characters.

19.1 Usage and interface (atomic_basic)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

name/2, atom_codes/2, number_codes/2, number_codes/3, atom_number/2, atom_
length/2, atom_concat/3, sub_atom/4.

 ª

19.2 Documentation on exports (atomic_basic)

PREDICATEname/2:
name(Const, String)

String is the list of the ASCII codes of the characters comprising the name of Const.
Note that if Const is an atom whose name can be interpreted as a number (e.g. ’96’),
the predicate is not reversible, as that atom will not be constructed when Const is unin-
stantiated. Thus it is recommended that new programs use the ISO-compliant predicates
atom_codes/2 or number_codes/2, as these predicates do not have this inconsistency.

Usage 1: name(+constant, ?string)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: name(-constant, +string)

− Description: If String can be interpreted as a number, Const is unified with that
number, otherwise with the atom whose name is String.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEatom codes/2:
atom_codes(Atom, String)

String is the list of the ASCII codes of the characters comprising the name of Atom.

Usage 1: atom_codes(+atm, ?string) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

116 The Ciao Prolog System

Usage 2: atom_codes(-atm, +string) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEnumber codes/2:
number_codes(Number, String)

String is the list of the ASCII codes of the characters comprising a representation of
Number.

Usage 1: number_codes(+num, ?string) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: number_codes(-num, +string) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEnumber codes/3:
number_codes(Number, Base, String)

String is the list of the ASCII codes of the characters comprising a representation of
Number in base Base.

Usage 1: number_codes(+num, +int, ?string)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: number_codes(-num, +int, +string)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEatom number/2:
atom_number(Atom, Number)

Atom can be read as a representation of Number.

Usage 1: atom_number(+atm, ?num)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: atom_number(-atm, +num)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEatom length/2:
atom_length(Atom, Length)

Length is the number of characters forming the name of Atom.

Usage: atom_length(+atm, ?int) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 19: Basic predicates handling names of constants 117

PREDICATEatom concat/3:
atom_concat(Atom_1, Atom_2, Atom_12)

Atom_12 is the result of concatenating Atom_1 followed by Atom_2.

Usage 1: atom_concat(+atom, +atom, ?atom) 〈 • ISO • 〉

− Description: Concatenate two atoms.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: atom_concat(-atom, -atom, +atom) 〈 • ISO • 〉

− Description: Non-deterministically split an atom.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 3: atom_concat(-atom, +atom, +atom) 〈 • ISO • 〉

− Description: Take out of an atom a certain suffix (or fail if it cannot be done).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 4: atom_concat(+atom, -atom, +atom) 〈 • ISO • 〉

− Description: Take out of an atom a certain prefix (or fail if it cannot be done).

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEsub atom/4:
sub_atom(Atom, Before, Length, Sub_atom)

Sub_atom is formed with Length consecutive characters of Atom after the Before character.
For example, the goal sub_atom(summer,1,4,umme) succeeds.

Usage: sub_atom(+atm, +int, +int, ?atm)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

118 The Ciao Prolog System

Chapter 20: Arithmetic 119

20 Arithmetic

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 0.9#18 (1999/3/23, 21:6:13 MET)

Arithmetic is performed by built-in predicates which take as arguments arithmetic expressions
(see arithexpression/1) and evaluate them. Terms representing arithmetic expressions can
be created dynamically, but at the time of evaluation, each variable in an arithmetic expression
must be bound to a non-variable expression (the term must be ground). For example, given the
code in the first line a possible shell interaction follows:

evaluate(Expression, Answer) :- Answer is Expression.

?- _X=24*9, evaluate(_X+6, Ans).

Ans = 222 ?

yes

20.1 Usage and interface (arithmetic)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

is/2, </2, =</2, >/2, >=/2, =:=/2, =\=/2.

− Regular Types:

arithexpression/1.

 ª

20.2 Documentation on exports (arithmetic)

PREDICATEis/2:
Val is Exp

The arithmetic expression Exp is evaluated and the result is unified with Val

Usage: X is +arithexpression 〈 • ISO • 〉

− The following properties hold upon exit:

X is a number. (basic_props:num/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATE</2:
Exp1 < Exp2

The numeric value of Exp1 is less than the numeric value of Exp2 when both are evaluated
as arithmetic expressions.

Usage: +arithexpression < +arithexpression 〈 • ISO • 〉

120 The Ciao Prolog System

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATE=</2:
Exp1 =< Exp2

The numeric value of Exp1 is less than or equal to the numeric value of Exp2 when both
are evaluated as arithmetic expressions.

Usage: +arithexpression =< +arithexpression 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATE>/2:
Exp1 > Exp2

The numeric value of Exp1 is greater than the numeric value of Exp2 when both are
evaluated as arithmetic expressions.

Usage: +arithexpression > +arithexpression 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATE>=/2:
Exp1 >= Exp2

The numeric value of Exp1 is greater than or equal to the numeric value of Exp2 when
both are evaluated as arithmetic expressions.

Usage: +arithexpression >= +arithexpression 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATE=:=/2:
Exp1 =:= Exp2

The numeric values of Exp1 and Exp2 are equal when both are evaluated as arithmetic
expressions.

Usage: +arithexpression =:= +arithexpression 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATE=\=/2:
Exp1 =\= Exp2

The numeric values of Exp1 and Exp2 are not equal when both are evaluated as arithmetic
expressions.

Usage: +arithexpression =\= +arithexpression 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 20: Arithmetic 121

REGTYPEarithexpression/1:
An arithmetic expression is a term built from numbers and evaluable functors that repre-
sent arithmetic functions. An arithmetic expression evaluates to a number, which may be
an integer (int/1) or a float (flt/1). The evaluable functors allowed in an arithmetic
expression are listed below, together with an indication of the functions they represent.
All evaluable functors defined in ISO-Prolog are implemented, as well as some other use-
ful or traditional. Unless stated otherwise, an expression evaluates to a float if any of its
arguments is a float, otherwise to an integer.

• - /1: sign reversal. 〈 • ISO • 〉

• + /1: identity.

• -- /1: decrement by one.

• ++ /1: increment by one.

• + /2: addition. 〈 • ISO • 〉

• - /2: subtraction. 〈 • ISO • 〉

• * /2: multiplication. 〈 • ISO • 〉

• // /2: integer division. Float arguments are truncated to integers, result always
integer. 〈 • ISO • 〉

• / /2: division. Result always float. 〈 • ISO • 〉

• rem/2: integer remainder. The result is always an integer, its sign is the sign of the
first argument. 〈 • ISO • 〉

• mod/2: modulo. The result is always a positive integer. 〈 • ISO • 〉

• abs/1: absolute value. 〈 • ISO • 〉

• sign/1: sign of. 〈 • ISO • 〉

• float_integer_part/1: float integer part. Result always float. 〈 • ISO • 〉

• float_fractional_part/1: float fractional part. Result always float. 〈 • ISO • 〉

• truncate/1: The result is the integer equal to the integer part of the argument.
〈 • ISO • 〉

• integer/1: same as truncate/1.

• float/1: conversion to float. 〈 • ISO • 〉

• floor/1: largest integer not greater than. 〈 • ISO • 〉

• round/1: integer nearest to. 〈 • ISO • 〉

• ceiling/1: smallest integer not smaller than. 〈 • ISO • 〉

• ** /2: exponentiation. Result always float. 〈 • ISO • 〉

• >> /2: integer bitwise right shift. 〈 • ISO • 〉

• << /2: integer bitwise left shift. 〈 • ISO • 〉

• /\ /2: integer bitwise and. 〈 • ISO • 〉

• \/ /2: integer bitwise or. 〈 • ISO • 〉

• \ /1: integer bitwise complement. 〈 • ISO • 〉

• # /2: integer bitwise exclusive or (xor).

• exp/1: exponential (e to the power of). Result always float. 〈 • ISO • 〉

• log/1: natural logarithm (base e). Result always float. 〈 • ISO • 〉

• sqrt/1: square root. Result always float. 〈 • ISO • 〉

• sin/1: sine. Result always float. 〈 • ISO • 〉

• cos/1: cosine. Result always float. 〈 • ISO • 〉

• atan/1: arc tangent. Result always float. 〈 • ISO • 〉

122 The Ciao Prolog System

• gcd/2: Greatest common divisor. Arguments must evaluate to integers, result always
integer.

In addition to these functors, a list of just a number evaluates to this number. Since a
quoted string is just a list of integers, this allows a quoted character to be used in place
of its ASCII code; e.g. "A" behaves within arithmetic expressions as the integer 65. Note
that this is not ISO-compliant, and that can be achieved by using the ISO notation 0’A.

Arithmetic expressions, as described above, are just data structures. If you want one
evaluated you must pass it as an argument to one of the arithmetic predicates defined in
this library.

Usage: arithexpression(E)

− Description: E is an arithmetic expression.

Chapter 21: Basic file/stream handling 123

21 Basic file/stream handling

Author(s): Daniel Cabeza, Mats Carlsson.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#247 (2003/12/29, 18:50:42 CET)

This module provides basic predicates for handling files and streams, in order to make in-
put/output on them.

21.1 Usage and interface (streams_basic)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

open/3, open/4, close/1, set_input/1, current_input/1, set_output/1, current_
output/1, character_count/2, line_count/2, line_position/2, flush_output/1,
flush_output/0, clearerr/1, current_stream/3, stream_code/2, absolute_file_
name/2, absolute_file_name/7.

− Regular Types:

open_option_list/1, sourcename/1, stream/1, stream_alias/1, io_mode/1.

− Multifiles:

file_search_path/2, library_directory/1.

 ª

21.2 Documentation on exports (streams_basic)

PREDICATEopen/3:
open(File, Mode, Stream)

Open File with mode Mode and return in Stream the stream associated with the file. No
extension is implicit in File.

Usage 1: open(+sourcename, +io_mode, ?stream) 〈 • ISO • 〉

− Description: Normal use.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: open(+int, +io_mode, ?stream)

− Description: In the special case that File is an integer, it is assumed to be a file
descriptor passed to Prolog from a foreign function call. The file descriptor is con-
nected to a Prolog stream (invoking the UNIX function fdopen) which is unified with
Stream.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

124 The Ciao Prolog System

PREDICATEopen/4:
open(File, Mode, Stream, Options)

Same as open(File, Mode, Stream) with options Options. See the definition of open_
option_list/1 for details.

Usage: open(+sourcename, +io_mode, ?stream, +open_option_list)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

REGTYPEopen option list/1:
A list of options for open/4, currently the meaningful options are:

lock Try to set an advisory lock for the file. If the open mode is read, the lock is
a read (shared) lock, else it is a write (exclusive) lock. If the lock cannot be
acquired, the call waits until it is released (but can fail in exceptional cases).

lock_nb Same as lock, but the call immediately fails if the lock cannot be acquired.

lock(Lock_Mode)
Same as lock, but specifying in Lock_Mode whether the lock is read (also
shared) or write (also exclusive). This option has be included for compat-
ibility with the SWI-Prolog locking options, because in general the type of
lock should match the open mode as in the lock option.

lock_nb(Lock_Mode)
Same as the previous option but with the lock_nb behavior.

All file locking is implemented via the POSIX function fcntl(). Please refer to its manual
page for details.

Usage: open_option_list(L)

− Description: L is a list of options for open/4.

PREDICATEclose/1:
close(Stream)

Close the stream Stream.

Usage: close(+stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEset input/1:
set_input(Stream)

Set the current input stream to Stream. A notion of current input stream is maintained
by the system, so that input predicates with no explicit stream operate on the current
input stream. Initially it is set to user_input.

Usage: set_input(+stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 21: Basic file/stream handling 125

PREDICATEcurrent input/1:
current_input(Stream)

Unify Stream with the current input stream.

Usage: current_input(?stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEset output/1:
set_output(Stream)

Set the current output stream to Stream. A notion of current output stream is maintained
by the system, so that output predicates with no explicit stream operate on the current
output stream. Initially it is set to user_output.

Usage: set_output(+stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcurrent output/1:
current_output(Stream)

Unify Stream with the current output stream.

Usage: current_output(?stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcharacter count/2:
character_count(Stream, Count)

Count characters have been read from or written to Stream.

Usage: character_count(+stream, ?int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEline count/2:
line_count(Stream, Count)

Count lines have been read from or written to Stream.

Usage: line_count(+stream, ?int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

126 The Ciao Prolog System

PREDICATEline position/2:
line_position(Stream, Count)

Count characters have been read from or written to the current line of Stream.

Usage: line_position(+stream, ?int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEflush output/1:
flush_output(Stream)

Flush any buffered data to output stream Stream.

Usage: flush_output(+stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEflush output/0:
flush_output(flush_output

Behaves like current_output(S), flush_output(S)

Usage: 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEclearerr/1:
clearerr(Stream)

Clear the end-of-file and error indicators for input stream Stream.

PREDICATEcurrent stream/3:
current_stream(Filename, Mode, Stream)

Stream is a stream which was opened in mode Mode and which is connected to the abso-
lute file name Filename (an atom) or to the file descriptor Filename (an integer). This
predicate can be used for enumerating all currently open streams through backtracking.

General properties:

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEstream code/2:
stream_code(Stream, StreamCode)

StreamCode is the file descriptor (an integer) corresponding to the Prolog stream Stream.

Chapter 21: Basic file/stream handling 127

PREDICATEabsolute file name/2:
absolute_file_name(RelFileSpec, AbsFileSpec)

If RelFileSpec is an absolute pathname then do an absolute lookup. If RelFileSpec
is a relative pathname then prefix the name with the name of the current directory and
do an absolute lookup. If RelFileSpec is a path alias, perform the lookup following the
path alias rules (see sourcename/1). In all cases: if a matching file with suffix .pl exists,
then AbsFileSpec will be unified with this file. Failure to open a file normally causes an
exception. The behaviour can be controlled by the fileerrors prolog flag.

Usage: absolute_file_name(+RelFileSpec, -AbsFileSpec)

− Description: AbsFileSpec is the absolute name (with full path) of RelFileSpec.

− Calls should, and exit will be compatible with:

+RelFileSpec is a source name. (streams_basic:sourcename/1)

-AbsFileSpec is an atom. (basic_props:atm/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEabsolute file name/7:
absolute_file_name(Spec, Opt, Suffix, CurrDir, AbsFile, AbsBase, AbsDir)

AbsFile is the absolute name (with full path) of Spec, which has an optional first suffix Opt
and an optional second suffix Suffix, when the current directory is CurrDir. AbsBase is
the same as AbsFile, but without the second suffix, and AbsDir is the absolute path of the
directory where AbsFile is. The Ciao compiler invokes this predicate with Opt=’_opt’
and Suffix=’.pl’ when searching source files.

Usage: absolute_file_name(+sourcename, +atm, +atm, +atm, -atm, -atm, -atm)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

REGTYPEsourcename/1:
A source name is a flexible way of referring to a concrete file. A source name is either a
relative or absolute filename given as:

• an atom, or

• a unary functor (which represents a path alias, see below) applied to a relative path,
the latter being given as an atom.

In all cases certain filename extensions (e.g., .pl) can be implicit. In the first form above,
file names can be relative to the current directory. Also, file names beginning with ~ or $
are treated specially. For example,

’~/ciao/sample.pl’
is equivalent to ’/home/staff/herme/ciao/sample.pl’, if
/home/staff/herme is the user’s home directory. (This is also equivalent
to ’$HOME/ciao/sample.pl’ as explained below.)

’~bardo/prolog/sample.pl’
is equivalent to ’/home/bardo/prolog/sample.pl’, if /home/bardo is
bardo’s home directory.

’$UTIL/sample.pl’
is equivalent to ’/usr/local/src/utilities/sample.pl’, if
/usr/local/src/utilities is the value of the environment variable UTIL.

128 The Ciao Prolog System

The second form allows using path aliases. Such aliases allow refering to files not with
absolute file system paths but with paths which are relative to predefined (or user-
defined) abstract names. For example, given the path alias myutils which has been
defined to refer to path ’/home/bardo/utilities’, if that directory contains the file
stuff.pl then the term myutils(stuff) in a use_module/1 declaration would refer to
the file ’/home/bardo/utilities/stuff.pl’ (the .pl extension is implicit in the use_
module/1 declaration). As a special case, if that directory contains a subdirectory named
stuff which in turn contains the file stuff.pl, the same term would refer to the file
’/home/bardo/utilities/stuff/stuff.pl’. If a path alias is related to several paths,
all paths are scanned in sequence until a match is found. For information on predefined
path aliases or how to define new path aliases, see file_search_path/2.

Usage: sourcename(F)

− Description: F is a source name.

REGTYPEstream/1:
Streams correspond to the file pointers used at the operating system level, and usually
represent opened files. There are four special streams which correspond with the operating
system standard streams:

user_input
The standard input stream, i.e. the terminal, usually.

user_output
The standard output stream, i.e. the terminal, usually.

user_error
The standard error stream.

user The standard input or output stream, depending on context.

Usage: stream(S)

− Description: S is an open stream.

REGTYPEstream alias/1:
Usage: stream_alias(S)

− Description: S is the alias of an open stream, i.e., an atom which represents a stream
at Prolog level.

REGTYPEio mode/1:
Can have the following values:

read Open the file for input.

write Open the file for output. The file is created if it does not already exist, the
file will otherwise be truncated.

append Open the file for output. The file is created if it does not already exist, the
file will otherwise be appended to.

Usage: io_mode(M)

− Description: M is an opening mode (’read’, ’write’ or ’append’).

Chapter 21: Basic file/stream handling 129

21.3 Documentation on multifiles (streams_basic)

PREDICATEfile search path/2:
file_search_path(Alias, Path)

The path alias Alias is linked to path Path. Both arguments must be atoms. New facts
(or clauses) of this predicate can be asserted to define new path aliases. Predefined path
aliases in Ciao are:

library Initially points to all Ciao library paths. See library_directory/1.

engine The path of the Ciao engine builtins.

. The current path (’.’).

The predicate is multifile.

The predicate is of type dynamic.

PREDICATElibrary directory/1:
library_directory(Path)

Path is a library path (a path represented by the path alias library). Predefined library
paths in Ciao are ’$CIAOLIB/lib’, ’$CIAOLIB/library’, and ’$CIAOLIB/contrib’,
given that $CIAOLIB is the path of the root ciao library directory. More library paths
can be defined by asserting new facts (or clauses) of this predicate.

The predicate is multifile.

The predicate is of type dynamic.

130 The Ciao Prolog System

Chapter 22: Basic input/output 131

22 Basic input/output

Author(s): Daniel Cabeza, Mats Carlsson.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#285 (2004/2/13, 17:36:9 CET)

This module provides predicates for character input/output and for canonical term out-
put. From the ISO-Prolog predicates for character input/output, only the _code versions are
provided, the rest are given by library(iso_byte_char), using these. Most predicates are
provided in two versions: one that specifies the input or output stream as the first argument
and a second which omits this argument and uses the current input or output stream.

22.1 Usage and interface (io_basic)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

get_code/2, get_code/1, get1_code/2, get1_code/1, peek_code/2, peek_code/1,
skip_code/2, skip_code/1, skip_line/1, skip_line/0, put_code/2, put_code/1,
nl/1, nl/0, tab/2, tab/1, code_class/2, getct/2, getct1/2, display/2, display/1,
displayq/2, displayq/1.

 ª

22.2 Documentation on exports (io_basic)

PREDICATEget code/2:
get_code(Stream, Code)

Reads from Stream the next character and unifies Code with its character code. At end
of stream, unifies Code with the integer -1.

Usage: get_code(+stream, ?int) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEget code/1:
get_code(Code)

Behaves like current_input(S), get_code(S,Code).

Usage: get_code(?int) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

132 The Ciao Prolog System

PREDICATEget1 code/2:
get1_code(Stream, Code)

Reads from Stream the next non-layout character (see code_class/2) and unifies Code
with its character code. At end of stream, unifies Code with the integer -1.

Usage: get1_code(+stream, ?int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEget1 code/1:
get1_code(Code)

Behaves like current_input(S), get1_code(S,Code).

Usage: get1_code(?int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEpeek code/2:
peek_code(Stream, Code)

Unifies Code with the character code of the next character of Stream, leaving the stream
position unaltered. At end of stream, unifies Code with the integer -1.

PREDICATEpeek code/1:
peek_code(Code)

Behaves like current_input(S), peek_code(S,Code).

PREDICATEskip code/2:
skip_code(Stream, Code)

Skips just past the next character code Code from Stream.

PREDICATEskip code/1:
skip_code(Code)

Behaves like current_input(S), skip_code(S,Code).

PREDICATEskip line/1:
skip_line(Stream)

Skips from Stream the remaining input characters on the current line. If the end of the
stream is reached, the stream will stay at its end. Portable among different operating
systems.

Chapter 22: Basic input/output 133

PREDICATEskip line/0:
skip_line(skip_line

Behaves like current_input(S), skip_line(S).

PREDICATEput code/2:
put_code(Stream, Code)

Outputs to Stream the character corresponding to character code Code.

Usage: put_code(+stream, +int) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEput code/1:
put_code(Code)

Behaves like current_output(S), put_code(S,Code).

Usage: put_code(+int) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEnl/1:
nl(Stream)

Outputs a newline character to Stream. Equivalent to put_code(Stream, 0’\n).

Usage: nl(+stream) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEnl/0:
nl(nl

Behaves like current_output(S), nl(S).

Usage: 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEtab/2:
tab(Stream, Num)

Outputs Num spaces to Stream.

Usage: tab(+stream, +int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

134 The Ciao Prolog System

PREDICATEtab/1:
tab(Num)

Behaves like current_output(S), tab(S,Num).

Usage: tab(+int)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcode class/2:
code_class(Code, Class)

Unifies Class with an integer corresponding to the lexical class of the character whose
code is Code, with the following correspondence:

0 - layout (includes space, newline, tab)
1 - small letter
2 - capital letter (including ’_’)
3 - digit
4 - graphic (includes #$&*+-./:<=>?@^\‘~)
5 - punctuation (includes !;"’%(),[]{|})

Note that in ISO-Prolog the back quote ‘ is a punctuation character, whereas in Ciao it
is a graphic character. Thus, if compatibility with ISO-Prolog is desired, the programmer
should not use this character in unquoted names.

PREDICATEgetct/2:
getct(Code, Type)

Reads from the current input stream the next character, unifying Code with its character
code, and Type with its lexical class. At end of stream, unifies both Code and Type with
the integer -1. Equivalent to

get(Code), (Code = -1 -> Type = -1 ; code_class(Code,Type))

PREDICATEgetct1/2:
getct1(Code, Type)

Reads from the current input stream the next non-layout character, unifying Code with its
character code, and Type with its lexical class (which will be nonzero). At end of stream,
unifies both Code and Type with the integer -1. Equivalent to

get1(Code), (Code = -1 -> Type = -1 ; code_class(Code,Type))

PREDICATEdisplay/2:
display(Stream, Term)

Displays Term onto Stream. Lists are output using list notation, the other compound
terms are output in functional notation. Similar to write_term(Stream, Term, [ignore_
ops(ops)]), except that curly bracketed notation is not used with {}/1, and the write_
strings flag is not honored.

Usage: display(+stream, @term)

Chapter 22: Basic input/output 135

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEdisplay/1:
display(Term)

Behaves like current_output(S), display(S,Term).

Usage: display(@term)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEdisplayq/2:
displayq(Stream, Term)

Similar to display(Stream, Term), but atoms and functors that can’t be read back by
read_term/3 are quoted. Thus, similar to write_term(Stream, Term, [quoted(true),
ignore_ops(ops)]), with the same exceptions as display/2.

PREDICATEdisplayq/1:
displayq(Term)

Behaves like current_output(S), displayq(S,Term).

136 The Ciao Prolog System

Chapter 23: Exception handling 137

23 Exception handling

Author(s): The CLIP Group.

Version: 1.9#344 (2004/4/29, 12:56:34 CEST)

This module includes predicates related to exceptions, which alter the normal flow of Prolog.

23.1 Usage and interface (exceptions)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

catch/3, intercept/3, throw/1, halt/0, halt/1.

 ª

23.2 Documentation on exports (exceptions)

PREDICATEcatch/3:
catch(Goal, Error, Handler)

Executes Goal. If an exception is raised during its execution, Error is unified with the ex-
ception, and if the unification succeeds, the entire execution derived from Goal is aborted,
and Handler is executed. The execution resumes with the continuation of the catch/3
call. For example, given the code

p(X) :- throw(error), display(’---’).
p(X) :- display(X).

the execution of "catch(p(0), E, display(E)), display(.), fail." results in the out-
put "error.".

Meta-predicate with arguments: catch(goal,?,goal).

Usage 1: catch(+callable, ?term, +callable) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Error is any term. (basic_props:term/1)

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

− The following properties hold upon exit:

Error is any term. (basic_props:term/1)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

138 The Ciao Prolog System

PREDICATEintercept/3:
intercept(Goal, Error, Handler)

Executes Goal. If an exception is raised during its execution, Error is unified with the
exception, and if the unification succeeds, Handler is executed and then the execution
resumes after the predicate which produced the exception. Note the difference with
builtin catch/3, given the same code defined there, the execution of "intercept(p(0),
E, display(E)), display(.), fail." results in the output "error---.0.".

Meta-predicate with arguments: intercept(goal,?,goal).

Usage 2:

− Calls should, and exit will be compatible with:

Error is any term. (basic_props:term/1)

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

− The following properties hold upon exit:

Error is any term. (basic_props:term/1)

PREDICATEthrow/1:
throw(Ball)

Raises an error, throwing the exception Ball, to be caught by an ancestor catch/3 or
intercept/3. The closest matching ancestor is chosen. Exceptions are also thrown by
other builtins in case of error.

Usage 1: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Ball is currently a term which is not a free variable. (term_typing:nonvar/1)

Usage 2: 〈 • ISO • 〉

− Calls should, and exit will be compatible with:

Ball is currently a term which is not a free variable. (term_typing:nonvar/1)

PREDICATEhalt/0:
halt(halt

Halt the system, exiting to the invoking shell.

Usage 1: 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 23: Exception handling 139

PREDICATEhalt/1:
halt(Code)

Halt the system, exiting to the invoking shell, returning exit code Code.

Usage 2: 〈 • ISO • 〉

− The following properties should hold at call time:

Code is an integer. (basic_props:int/1)

PREDICATEabort/0:
abort(abort

Abort the current execution.

140 The Ciao Prolog System

Chapter 24: Changing system behaviour and various flags 141

24 Changing system behaviour and various flags

Author(s): Daniel Cabeza, Mats Carlsson.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#213 (2002/5/14, 18:11:29 CEST)

Flags define some parameters of the system and control the behavior of system or library
predicates. Each flag has a name and an associated predefined value, and except some system
flags which are fixed in general their associated value is changeable. Predefined flags in the
system are:

version The Ciao version, as a term ciao(Version,Patch). Version is a floating point
number, Patch is an integer. Unchangeable.

argv Its value is a list of atoms representing the program arguments supplied when the
current executable was invoked. This is the value to which is instantiated the argu-
ment of the main/1 predicate at executable startup. Unchangeable.

bounded It is false, to denote that the range of integers can be considered infinite (but see
int/1). Unchangeable. 〈 • ISO • 〉

fileerrors
If on, predicates handling files give errors (throw exceptions) when a file is inexistent
or an operation is not allowed. If off, fail in that conditions. Initially on.

gc Controls whether garbage collection is done. May be on (default) or off.

gc_margin
An integer Margin. If less than Margin kilobytes are reclaimed in a garbage collec-
tion then the size of the garbage collected area should be increased. Also, no garbage
collection is attempted unless the garbage collected area has at least Margin kilo-
bytes. Initially 500.

gc_trace Governs garbage collection trace messages. An element off
[on,off,terse,verbose]. Initially off.

integer_rounding_function
It is toward_zero, so that -1 =:= -3//2 succeeds. Unchangeable. 〈 • ISO • 〉

max_arity
It is 255, so that no compound term (or predicate) can have more than this number
of arguments. Unchangeable. 〈 • ISO • 〉

quiet Controls which messages issued using io_aux are actually written. As the system
uses that library to report its messages, this flag controls the verbosity of the system.
Possible states of the flag are:

on No messages are reported.

error Only error messages are reported.

warning Only error and warning messages are reported.

off All messages are reported, except debug messages. This is the default
state.

debug All messages, including debug messages, are reported. This is only
intended for the system implementators.

unknown Controls action on calls to undefined predicates. The possible states of the flag are:

error An error is thrown with the error term existence_error(procedure,
F/A).

142 The Ciao Prolog System

fail The call simply fails.

warning A warning is written and the call fails.

The state is initially error. 〈 • ISO • 〉

24.1 Usage and interface (prolog_flags)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

set_prolog_flag/2, current_prolog_flag/2, prolog_flag/3,
push_prolog_flag/2, pop_prolog_flag/1, prompt/2, gc/0, nogc/0, fileerrors/0,
nofileerrors/0.

− Multifiles:

define_flag/3.

 ª

24.2 Documentation on exports (prolog_flags)

PREDICATEset prolog flag/2:
set_prolog_flag(FlagName, Value)

Set existing flag FlagName to Value.

PREDICATEcurrent prolog flag/2:
current_prolog_flag(FlagName, Value)

FlagName is an existing flag and Value is the value currently associated with it.

PREDICATEprolog flag/3:
prolog_flag(FlagName, OldValue, NewValue)

FlagName is an existing flag, unify OldValue with the value associated with it, and set it
to new value NewValue.

Usage 1: prolog_flag(?atm, ?term, +term)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: prolog_flag(?FlagName, -OldValue, -NewValue)

− Description: Same as current_prolog_flag(FlagName, OldValue)

− The following properties should hold at call time:

FlagName is an atom. (basic_props:atm/1)

The terms OldValue and NewValue are strictly identical. (term_compare:== /2)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 24: Changing system behaviour and various flags 143

PREDICATEpush prolog flag/2:
push_prolog_flag(Flag, NewValue)

Same as set_prolog_flag/2, but storing current value of Flag to restore it with pop_
prolog_flag/1.

PREDICATEpop prolog flag/1:
pop_prolog_flag(Flag)

Restore the value of Flag previous to the last non-canceled push_prolog_flag/2 on it.

PREDICATEprompt/2:
prompt(Old, New)

Unify Old with the current prompt for reading, change it to New.

Usage 2: prompt(Old, New)

− Description: Unify Old with the current prompt for reading without changing it.

− The following properties should hold at call time:

Old is a free variable. (term_typing:var/1)

New is a free variable. (term_typing:var/1)

The terms Old and New are strictly identical. (term_compare:== /2)

− The following properties hold upon exit:

Old is an atom. (basic_props:atm/1)

New is an atom. (basic_props:atm/1)

PREDICATEgc/0:
Usage:

− Description: Enable garbage collection. Equivalent to set_prolog_flag(gc, on)

PREDICATEnogc/0:
Usage:

− Description: Disable garbage collection. Equivalent to set_prolog_flag(gc, off)

PREDICATEfileerrors/0:
Usage:

− Description: Enable reporting of file errors. Equivalent to set_prolog_
flag(fileerrors, on)

PREDICATEnofileerrors/0:
Usage:

− Description: Disable reporting of file errors. Equivalent to set_prolog_
flag(fileerrors, off)

144 The Ciao Prolog System

24.3 Documentation on multifiles (prolog_flags)

PREDICATEdefine flag/3:
define_flag(Flag, Values, Default)

New flags can be defined by writing facts of this predicate. Flag is the name of the new
flag, Values defines the posible values for the flag (see below) and Default defines the
predefined value associated with the flag (which should be compatible with Values).

The predicate is multifile.

Usage 1: define_flag(-atm, Values, -atm)

− Description: Posible values for the flag are atoms.

Example:

:- multifile define_flag/3.
define_flag(tmpdir, atom, ’/tmp’).

− Call and exit should be compatible with:

The terms Values and atom are strictly identical. (term_compare:== /2)

Usage 2: define_flag(-atm, Values, -int)

− Description: Posible values for the flag are integers.

Example:

:- multifile define_flag/3.
define_flag(max_connections, integer, 10).

− Call and exit should be compatible with:

The terms Values and integer are strictly identical. (term_compare:== /2)

Usage 3: define_flag(Flag, Values, Default)

− Description: Posible values for the flag are the elements of Values.

Example:

:- multifile define_flag/3.
define_flag(debug, [on,debug,trace,off], off).

− Call and exit should be compatible with:

Flag is an atom. (basic_props:atm/1)

Values is a list. (basic_props:list/1)

− The following properties should hold upon exit:

Default is an element of Values. (basic_props:member/2)

Chapter 25: Fast/concurrent update of facts 145

25 Fast/concurrent update of facts

Author(s): Daniel Cabeza, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#95 (2001/5/2, 12:18:6 CEST)

Prolog implementations traditionally implement the concept of dynamic predicates: pred-
icates which can be inspected or modified at run-time, adding or deleting individual clauses.
The power of this feature comes at a cost: as new clause bodies can be arbitrarily added to
the program, new predicate calls can arise which are not ’visible’ at compile-time, thus compli-
cating global analysis and optimization of the code. But it is the case that most of the time
what the programmer wants is simply to store data, with the purpose of sharing it between
search branches, predicates, or even execution threads. In Ciao the concept of data predicate
serves this purpose: a data predicate is a predicate composed exclusively by facts, which can
be inspected, and dynamically added or deleted, at run-time. Using data predicates instead of
normal dynamic predicates brings benefits in terms of speed, but above all makes the code much
easier to analyze automatically and thus allows better optimization.

Also, a special kind of data predicates exists, concurrent predicates, which can be used to
communicate/synchronize among different execution threads (see Chapter 80 [Low-level concur-
rency/multithreading primitives], page 351).

Data predicates must be declared through a data/1 declaration. Concurrent data predicates
must be declared through a concurrent/1 declaration.

25.1 Usage and interface (data_facts)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

asserta_fact/1, asserta_fact/2, assertz_fact/1, assertz_fact/2, current_
fact/1, current_fact/2, retract_fact/1, retractall_fact/1, current_fact_
nb/1, retract_fact_nb/1, close_predicate/1, open_predicate/1, set_fact/1,
erase/1.

 ª

25.2 Documentation on exports (data_facts)

PREDICATEasserta fact/1:
asserta_fact(Fact)

Fact is added to the corresponding data predicate. The fact becomes the first clause of
the predicate concerned.

Meta-predicate with arguments: asserta_fact(fact).

PREDICATEasserta fact/2:
asserta_fact(Fact, Ref)

Same as asserta_fact/1, instantiating Ref to a unique identifier of the asserted fact.

Meta-predicate with arguments: asserta_fact(fact,?).

146 The Ciao Prolog System

PREDICATEassertz fact/1:
assertz_fact(Fact)

Fact is added to the corresponding data predicate. The fact becomes the last clause of
the predicate concerned.

Meta-predicate with arguments: assertz_fact(fact).

PREDICATEassertz fact/2:
assertz_fact(Fact, Ref)

Same as assertz_fact/1, instantiating Ref to a unique identifier of the asserted fact.

Meta-predicate with arguments: assertz_fact(fact,?).

PREDICATEcurrent fact/1:
current_fact(Fact)

Gives on backtracking all the facts defined as data or concurrent which unify with Fact. It
is faster than calling the predicate explicitly, which do invoke the meta-interpreter. If the
Fact has been defined as concurrent and has not been closed, current_fact/1 will wait
(instead of failing) for more clauses to appear after the last clause of Fact is returned.

Meta-predicate with arguments: current_fact(fact).

PREDICATEcurrent fact/2:
current_fact(Fact, Ref)

Fact is a fact of a data predicate and Ref is its reference identifying it uniquely.

Meta-predicate with arguments: current_fact(fact,?).

Usage 1: current_fact(+callable, -reference)

− Description: Gives on backtracking all the facts defined as data which unify with
Fact, instantiating Ref to a unique identifier for each fact.

Usage 2: current_fact(?callable, +reference)

− Description: Given Ref, unifies Fact with the fact identified by it.

PREDICATEretract fact/1:
retract_fact(Fact)

Unifies Fact with the first matching fact of a data predicate, and then erases it. On
backtracking successively unifies with and erases new matching facts. If Fact is declared
as concurrent and is non- closed, retract_fact/1 will wait for more clauses or for the
closing of the predicate after the last matching clause has been removed.

Meta-predicate with arguments: retract_fact(fact).

PREDICATEretractall fact/1:
retractall_fact(Fact)

Erase all the facts of a data predicate unifying with Fact. Even if all facts are removed,
the predicate continues to exist.

Meta-predicate with arguments: retractall_fact(fact).

Chapter 25: Fast/concurrent update of facts 147

PREDICATEcurrent fact nb/1:
current_fact_nb(Fact)

Behaves as current_fact/1 but a fact is never waited on even if it is concurrent and
non-closed.

Meta-predicate with arguments: current_fact_nb(fact).

PREDICATEretract fact nb/1:
retract_fact_nb(Fact)

Behaves as retract_fact/1, but never waits on a fact, even if it has been declared as
concurrent and is non- closed.

Meta-predicate with arguments: retract_fact_nb(fact).

PREDICATEclose predicate/1:
close_predicate(Pred)

Changes the behavior of the predicate Pred if it has been declared as a concurrent pred-
icate: calls to this predicate will fail (instead of wait) if no more clauses of Pred are
available.

Meta-predicate with arguments: close_predicate(fact).

PREDICATEopen predicate/1:
open_predicate(Pred)

Reverts the behavior of concurrent predicate Pred to waiting instead of failing if no more
clauses of Pred are available.

Meta-predicate with arguments: open_predicate(fact).

PREDICATEset fact/1:
set_fact(Fact)

Sets Fact as the unique fact of the corresponding data predicate.

Meta-predicate with arguments: set_fact(fact).

PREDICATEerase/1:
erase(Ref)

Deletes the clause referenced by Ref.

148 The Ciao Prolog System

25.3 Documentation on internals (data_facts)

DECLARATIONdata/1:
Usage: :- data Predicates.

− Description: Defines each predicate in Predicates as a data predicate. If a predicate
is defined data in a file, it must be defined data in every file containing clauses for
that predicate. The directive should precede all clauses of the affected predicates.
This directive is defined as a prefix operator in the compiler.

− The following properties hold at call time:

Predicates is a sequence or list of prednames. (basic_props:sequence_or_list/2)

DECLARATIONconcurrent/1:
Usage: :- concurrent Predicates.

− Description: Defines each predicate in Predicates as a concurrent predicate. If a
predicate is defined concurrent in a file, it must be defined concurrent in every file
containing clauses for that predicate. The directive should precede all clauses of the
affected predicates. This directive is defined as a prefix operator in the compiler.

− The following properties hold at call time:

Predicates is a sequence or list of prednames. (basic_props:sequence_or_list/2)

REGTYPEreference/1:
Usage: reference(R)

− Description: R is a reference of a dynamic or data clause.

Chapter 26: Extending the syntax 149

26 Extending the syntax

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#193 (2003/12/19, 16:54:6 CET)

This chapter documents the builtin directives in Ciao for extending the syntax of source files.
Note that the ISO-Prolog directive char_conversion/2 is not implemented, since Ciao does not
(yet) have a character conversion table.

26.1 Usage and interface (syntax_extensions)
® ©

• Library usage:

These directives are builtin in Ciao, so nothing special has to be done to use them.

 ª

26.2 Documentation on internals (syntax_extensions)

DECLARATIONop/3:
Usage: :- op(Priority, Op_spec, Operator). 〈 • ISO • 〉

− Description: Updates the operator table for reading the terms in the rest of the
current text, in the same way as the builtin op/3 does. Its scope is local to the
current text. Usually included in package files.

− The following properties hold at call time:

Priority is an integer. (basic_props:int/1)

Op_spec specifies the type and associativity of an operator. (basic_
props:operator_specifier/1)

Operator is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONnew declaration/1:
Usage: :- new_declaration(Predicate).

− Description: Declares Predicate to be a valid declaration in the rest of the current
text. Such declarations are simply ignored by the compiler or top level, but can be
used by other code processing programs such as an automatic documentator. Also,
they can easily translated into standard code (a set of facts and/or rules) by defining
a suitable expansion (e.g., by add_sentence_trans/1, etc.). This is tipically done in
package files.

Equivalent to new_declaration(Predicate, off).

− The following properties hold at call time:

Predicate is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

150 The Ciao Prolog System

DECLARATIONnew declaration/2:
Usage: :- new_declaration(Predicate, In_Itf).

− Description: Declares Predicate to be a valid declaration in the rest of the current
text. Such declarations will be included in the interface file for this file if In_Itf is
’on’, not if it is ’off’. Including such declarations in interface files makes them visible
while processing other modules which make use of this one.

− The following properties hold at call time:

Predicate is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

In_Itf is ’on’ or ’off’ (syntax_extensions:switch/1)

DECLARATIONload compilation module/1:
Usage: :- load_compilation_module(File).

− Description: Loads code defined in File into the compiler, usually including predi-
cates which define translations of terms, for use with the declarations add_sentence_
trans/1 and similar ones. Normally included in package files.

− The following properties hold at call time:

File is a source name. (streams_basic:sourcename/1)

DECLARATIONadd sentence trans/1:
Usage: :- add_sentence_trans(Predicate).

− Description: Starts a translation, defined by Predicate, of the terms read by the
compiler in the rest of the current text. For each subsequent term read by the com-
piler, the translation predicate is called to obtain a new term which will be used by
the compiler as if it where the term present in the file. If the call fails, the term
is used as such. A list may be returned also, to translate a single term into several
terms. Before calling the translation predicate with actual program terms, it is called
with an input of 0 to give an opportunity of making initializations for the module,
discarding the result (note that normally a 0 could not be there). Predicate must be
exported by a module previously loaded with a load_compilation_module/1 decla-
ration. Normally included in package files.

− The following properties hold at call time:

Predicate is a translation predicate spec (has arity 2 or 3). (syntax_
extensions:translation_predname/1)

DECLARATIONadd term trans/1:
Usage: :- add_term_trans(P).

− Description: Starts a translation, defined by Predicate, of the terms and sub-terms
read by the compiler in the rest of the current text. This translation is performed af-
ter all translations defined by add_sentence_trans/1 are done. For each subsequent
term read by the compiler, and recursively any subterm included, the translation
predicate is called to possibly obtain a new term to replace the old one. Care must

Chapter 26: Extending the syntax 151

be taken of not introducing an endless loop of translations. Predicate must be
exported by a module previously loaded with a load_compilation_module/1 decla-
ration. Normally included in package files.

− The following properties hold at call time:

P is a translation predicate spec (has arity 2 or 3). (syntax_
extensions:translation_predname/1)

DECLARATIONadd goal trans/1:
Usage: :- add_goal_trans(Predicate).

− Description: Declares a translation, defined by Predicate, of the goals present in
the clauses of the current text. This translation is performed after all translations
defined by add_sentence_trans/1 and add_term_trans/1 are done. For each clause
read by the compiler, the translation predicate is called with each goal present in the
clause to possibly obtain other goal to substitute the original one, and the translation
is subsequently applied to the resulting goal. Care must be taken of not introducing
an endless loop of translations. Predicate must be exported by a module previously
loaded with a load_compilation_module/1 declaration. Bear in mind that this type
of translation noticeably slows down compilation. Normally included in package files.

− The following properties hold at call time:

Predicate is a translation predicate spec (has arity 2 or 3). (syntax_
extensions:translation_predname/1)

DECLARATIONadd clause trans/1:
Usage: :- add_clause_trans(Predicate).

− Description: Declares a translation, defined by Predicate, of the clauses of the
current text. The translation is performed before add_goal_trans/1 translations but
after add_sentence_trans/1 and add_term_trans/1 translations. The usefulness of
this translation is that information of the interface of related modules is available
when it is performed. For each clause read by the compiler, the translation predicate
is called with the first argument instantiated to a structure clause(Head,Body),
and the predicate must return in the second argument a similar structure, without
changing the functor in Head (or fail, in which case the clause is used as is). Before
executing the translation predicate with actual clauses it is called with an input of
clause(0,0), discarding the result.

− The following properties hold at call time:

Predicate is a translation predicate spec (has arity 2 or 3). (syntax_
extensions:translation_predname/1)

REGTYPEtranslation predname/1:
A translation predicate is a predicate of arity 2 or 3 used to make compile-time translations.
The compiler invokes a translation predicate instantiating its first argument with the item
to be translated, and if the predicate is of arity 3 its third argument with the name of
the module where the translation is done. If the call is successful, the second argument is
used as if that item were in the place of the original, else the original item is used.

Usage: translation_predname(P)

− Description: P is a translation predicate spec (has arity 2 or 3).

152 The Ciao Prolog System

Chapter 27: Message printing primitives 153

27 Message printing primitives

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#194 (2003/12/19, 16:56:0 CET)

This module provides predicates for printing in a unified way informational messages, and
also for printing some terms in a specific way.

27.1 Usage and interface (io_aux)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

message/2, message_lns/4, error/1, warning/1, note/1, message/1, debug/1,
inform_user/1, display_string/1, display_list/1, display_term/1.

 ª

27.2 Documentation on exports (io_aux)

PREDICATEmessage/2:
message(Type, Message)

Output to standard error Message, which is of type Type. The quiet prolog flag (see
Chapter 24 [Changing system behaviour and various flags], page 141) controls which mes-
sages are actually output, depending on its type. Also, for error, warning and note
messages, a prefix is output which denotes the severity of the message. Message is an
item or a list of items from this list:

$$(String)
String is a string, which is output with display_string/1.

’’(Term) Term is output quoted. If the module write is loaded, the term is output with
writeq/1, else with displayq/1.

~~(Term) Term is output unquoted. If the module write is loaded, the term is output
with write/1, else with display/1.

[](Term) Term is recursively output as a message, can be an item or a list of items from
this list.

Term Any other term is output with display/1.

Usage: message(Type, Message)

− The following properties should hold at call time:

Type is an atom. (basic_props:atm/1)

Type is an element of [error,warning,note,message,debug]. (basic_
props:member/2)

154 The Ciao Prolog System

PREDICATEmessage lns/4:
message_lns(Type, L0, L1, Message)

Output to standard error Message, which is of type Type, and occurs between lines L0
and L1. This is the same as message/2, but printing the lines where the message occurs
in a unified way (this is useful because automatic tools such as the emacs mode know how
to parse them).

Usage: message_lns(Type, L0, L1, Message)

− The following properties should hold at call time:

Type is an atom. (basic_props:atm/1)

Type is an element of [error,warning,note,message,debug]. (basic_
props:member/2)

PREDICATEerror/1:
Defined as

error(Message) :-
message(error,Message).

.

PREDICATEwarning/1:
Defined as

warning(Message) :-
message(warning,Message).

.

PREDICATEnote/1:
Defined as

note(Message) :-
message(note,Message).

.

PREDICATEmessage/1:
Defined as

message(Message) :-
message(message,Message).

.

PREDICATEdebug/1:
Defined as

debug(Message) :-
message(debug,Message).

.

Chapter 27: Message printing primitives 155

PREDICATEinform user/1:
inform_user(Message)

Similar to message/1, but Message is output with display_list/1. This predicate is
obsolete, and may disappear in future versions.

PREDICATEdisplay string/1:
display_string(String)

Output String as the sequence of characters it represents.

Usage: display_string(String)

− The following properties should hold at call time:

String is a string (a list of character codes). (basic_props:string/1)

PREDICATEdisplay list/1:
display_list(List)

Outputs List. If List is a list, do display/1 on each of its elements, else do display/1
on List.

PREDICATEdisplay term/1:
display_term(Term)

Output Term in a way that a read/1 will be able to read it back, even if operators change.

27.3 Known bugs and planned improvements (io_aux)

•

message/2 assumes that a module with name ’write’ is library(write).

156 The Ciao Prolog System

Chapter 28: Attributed variables 157

28 Attributed variables

Author(s): Christian Holzbaur, Daniel Cabeza, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#157 (2000/5/30, 13:4:47 CEST)

These predicates allow the manipulation of attributed variables. Attributes are special terms
which are attached to a (free) variable, and are hidden from the normal Prolog computation.
They can only be treated by using the predicates below.

28.1 Usage and interface (attributes)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

attach_attribute/2, get_attribute/2, update_attribute/2,
detach_attribute/1.

− Multifiles:

verify_attribute/2, combine_attributes/2.

 ª

28.2 Documentation on exports (attributes)

PREDICATEattach attribute/2:
Usage: attach_attribute(Var, Attr)

− Description: Attach attribute Attr to Var.

− The following properties should hold at call time:

Var is a free variable. (term_typing:var/1)

Attr is currently a term which is not a free variable. (term_typing:nonvar/1)

PREDICATEget attribute/2:
Usage: get_attribute(Var, Attr)

− Description: Unify Attr with the attribute of Var, or fail if Var has no attribute.

− The following properties should hold at call time:

Var is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

Attr is currently a term which is not a free variable. (term_typing:nonvar/1)

PREDICATEupdate attribute/2:
Usage: update_attribute(Var, Attr)

− Description: Change the attribute of attributed variable Var to Attr.

158 The Ciao Prolog System

− The following properties should hold at call time:

Var is a free variable. (term_typing:var/1)

Attr is currently a term which is not a free variable. (term_typing:nonvar/1)

PREDICATEdetach attribute/1:
Usage: detach_attribute(Var)

− Description: Take out the attribute from the attributed variable Var.

− The following properties should hold at call time:

Var is a free variable. (term_typing:var/1)

28.3 Documentation on multifiles (attributes)

PREDICATEverify attribute/2:
The predicate is multifile.

Usage: verify_attribute(Attr, Term)

− Description: A user defined predicate. This predicate is called when an attributed
variable with attribute Attr is about to be unified with the non-variable term Term.
The user should define this predicate (as multifile) in the modules implementing
special unification.

− The following properties should hold at call time:

Attr is currently a term which is not a free variable. (term_typing:nonvar/1)

Term is currently a term which is not a free variable. (term_typing:nonvar/1)

PREDICATEcombine attributes/2:
The predicate is multifile.

Usage: combine_attributes(Var1, Var2)

− Description: A user defined predicate. This predicate is called when two attributed
variables with attributes Var1 and Var2 are about to be unified. The user should
define this predicate (as multifile) in the modules implementing special unification.

− The following properties should hold at call time:

Var1 is a free variable. (term_typing:var/1)

Var2 is a free variable. (term_typing:var/1)

28.4 Other information (attributes)

Note that combine_attributes/2 and verify_attribute/2 are not called with the at-
tributed variables involved, but with the corresponding attributes instead. The reasons are:

• There are simple applications which only refer to the attributes.

• If the application wants to refer to the attributed variables themselves, they can be made
part the attribute term. The implementation of freeze/2 utilizes this technique. Note that
this does not lead to cyclic structures, as the connection between an attributed variable and
its attribute is invisible to the pure parts of the Prolog implementation.

• If attributed variables were passed as arguments, the user code would have to refer to the
attributes through an extra call to get_attribute/2.

Chapter 28: Attributed variables 159

• As the/one attribute is the first argument to each of the two predicates, indexing applies.
Note that attributed variables themselves look like variables to the indexing mechanism.

However, future improvements may change or extend the interface to attributed variables in
order to provide a richer and more expressive interface.

For customized output of attributed variables, please refer to the documentation of the pred-
icate portray_attribute/2.

160 The Ciao Prolog System

Chapter 29: Gathering some basic internal info 161

29 Gathering some basic internal info

Author(s): Daniel Cabeza, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.3#13 (1999/7/2, 18:49:49 MEST)

This module provides predicates which return basic internal info.

29.1 Usage and interface (system_info)
® ©

• Library usage:

These predicates are builtin in Ciao, so nothing special has to be done to use them.

• Exports:

− Predicates:

get_arch/1, get_os/1, this_module/1, current_module/1, ciaolibdir/1.

 ª

29.2 Documentation on exports (system_info)

PREDICATEget arch/1:
This predicate will describe the computer architecture wich is currently executing the
predicate.

Computer architectures are identified by a simple atom. This atom is implementation-
defined, and may suffer any change from one Ciao Prolog version to another.

For example,Ciao Prolog running on an Intel-based machine will retrieve:

?- get_arch(I).

I = i86 ? ;

no
?-

Usage: get_arch(?ArchDescriptor)

− Description: Unifies ArchDescriptor with a simple atom which describes the com-
puter architecture currently executing the predicate.

− Calls should, and exit will be compatible with:

?ArchDescriptor is an atom. (basic_props:atm/1)

PREDICATEget os/1:
This predicate will describe the Operating System which is running on the machine cur-
rently executing the Prolog program.

Operating Systems are identified by a simple atom. This atom is implementation-defined,
and may suffer any change from one Ciao Prolog version to another.

For example,Ciao Prolog running on Linux will retrieve:

162 The Ciao Prolog System

?- get_os(I).

I = ’LINUX’ ? ;

no
?-

Usage: get_os(?OsDescriptor)

− Description: Unifies OsDescriptor with a simple atom which describes the running
Operating System when predicate was called.

− Calls should, and exit will be compatible with:

?OsDescriptor is an atom. (basic_props:atm/1)

PREDICATEthis module/1:
Meta-predicate with arguments: this_module(addmodule).

Usage: this_module(Module)

− Description: Module is the internal module identifier for current module.

− Call and exit should be compatible with:

Module is an internal module identifier (system_info:internal_module_id/1)

PREDICATEcurrent module/1:
This predicate will successively unify its argument with all module names currently loaded.
Module names will be simple atoms.

When called using a free variable as argument, it will retrieve on backtracking all modules
currently loaded. This is usefull when called from the Ciao toplevel.

When called using a module name as argument it will check whether the given module is
loaded or not. This is usefull when called from user programs.

Usage: current_module(Module)

− Description: Retrieves (on backtracking) all currently loaded modules into your ap-
plication.

− Call and exit should be compatible with:

Module is an internal module identifier (system_info:internal_module_id/1)

− The following properties should hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEciaolibdir/1:
Usage: ciaolibdir(CiaoPath)

− Description: CiaoPath is the path to the root of the Ciao libraries. Inside this
directory, there are the directories ’lib’, ’library’ and ’contrib’, which contain library
modules.

− Call and exit should be compatible with:

CiaoPath is an atom. (basic_props:atm/1)

Chapter 29: Gathering some basic internal info 163

29.3 Documentation on internals (system_info)

PROPERTYinternal module id/1:
For a user file it is a term user/1 with an argument different for each user file, for other
modules is just the name of the module (as an atom).

Usage: internal_module_id(M)

− Description: M is an internal module identifier

164 The Ciao Prolog System

Chapter 30: Other predicates and features defined by default 165

30 Other predicates and features defined by default

Author(s): Daniel Cabeza.

To simplify the use of Ciao Prolog to the first-timers, some other predicates and features are
defined by default in normal cases, to provide more or less what other prologs define by default.
Here are explicitly listed the predicates defined, coming from several libraries. Apart from
those, the features defined in Chapter 40 [Definite clause grammars], page 215 and Chapter 52
[Enabling operators at run-time], page 259 are also activated.

30.1 Usage and interface (default_predicates)
® ©

• Library usage:

No need of explicit loading. It is included by default in modules starting with a module/2
declaration or user files without a starting use_package/1 declaration. In the Ciao shell, it
is loaded by default when no ~/.ciaorc exists. Note that :- module(modulename,exports)
is equivalent to :- module(modulename,exports,[default]) If you do not want these pred-
icates/features loaded for a given file (in order to make the executable smaller) you can
ask for this explicitly using :- module(modulename,exports,[]) or in a user file :- use_
package([]).

• Other modules used:

− System library modules:

aggregates, dynamic, read, write, operators, iso_byte_char, iso_misc, format,
lists, sort, between, compiler/compiler, system, prolog_sys, dec10_io, old_
database, ttyout.

 ª

30.2 Documentation on exports (default_predicates)

(UNDOC REEXPORT)op/3:
Imported from operators (see the corresponding documentation for details).

(UNDOC REEXPORT)current op/3:
Imported from operators (see the corresponding documentation for details).

(UNDOC REEXPORT)append/3:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)delete/3:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)select/3:
Imported from lists (see the corresponding documentation for details).

166 The Ciao Prolog System

(UNDOC REEXPORT)nth/3:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)last/2:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)reverse/2:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)length/2:
Imported from lists (see the corresponding documentation for details).

(UNDOC REEXPORT)use module/1:
Imported from compiler (see the corresponding documentation for details).

(UNDOC REEXPORT)use module/2:
Imported from compiler (see the corresponding documentation for details).

(UNDOC REEXPORT)ensure loaded/1:
Imported from compiler (see the corresponding documentation for details).

(UNDOC REEXPORT)^/2:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findnsols/5:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findnsols/4:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findall/4:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)findall/3:
Imported from aggregates (see the corresponding documentation for details).

Chapter 30: Other predicates and features defined by default 167

(UNDOC REEXPORT)bagof/3:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)setof/3:
Imported from aggregates (see the corresponding documentation for details).

(UNDOC REEXPORT)wellformed body/3:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)data/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)dynamic/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)current predicate/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)current predicate/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)clause/3:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)clause/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)abolish/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)retractall/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)retract/1:
Imported from dynamic (see the corresponding documentation for details).

168 The Ciao Prolog System

(UNDOC REEXPORT)assert/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)assert/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)assertz/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)assertz/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)asserta/2:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)asserta/1:
Imported from dynamic (see the corresponding documentation for details).

(UNDOC REEXPORT)second prompt/2:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read top level/3:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read term/3:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read term/2:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read/2:
Imported from read (see the corresponding documentation for details).

(UNDOC REEXPORT)read/1:
Imported from read (see the corresponding documentation for details).

Chapter 30: Other predicates and features defined by default 169

(UNDOC REEXPORT)printable char/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)prettyvars/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)numbervars/3:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)portray clause/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)portray clause/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write list1/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)print/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)print/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write canonical/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write canonical/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)writeq/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)writeq/2:
Imported from write (see the corresponding documentation for details).

170 The Ciao Prolog System

(UNDOC REEXPORT)write/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write option/1:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write term/2:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)write term/3:
Imported from write (see the corresponding documentation for details).

(UNDOC REEXPORT)put char/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)put char/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek char/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek char/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get char/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get char/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)put byte/2:
Imported from iso_byte_char (see the corresponding documentation for details).

Chapter 30: Other predicates and features defined by default 171

(UNDOC REEXPORT)put byte/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek byte/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)peek byte/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get byte/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)get byte/1:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)number chars/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)atom chars/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)char code/2:
Imported from iso_byte_char (see the corresponding documentation for details).

(UNDOC REEXPORT)unify with occurs check/2:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)sub atom/5:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)compound/1:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)once/1:
Imported from iso_misc (see the corresponding documentation for details).

172 The Ciao Prolog System

(UNDOC REEXPORT)\=/2:
Imported from iso_misc (see the corresponding documentation for details).

(UNDOC REEXPORT)format control/1:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)format/3:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)format/2:
Imported from format (see the corresponding documentation for details).

(UNDOC REEXPORT)keylist/1:
Imported from sort (see the corresponding documentation for details).

(UNDOC REEXPORT)keysort/2:
Imported from sort (see the corresponding documentation for details).

(UNDOC REEXPORT)sort/2:
Imported from sort (see the corresponding documentation for details).

(UNDOC REEXPORT)between/3:
Imported from between (see the corresponding documentation for details).

(UNDOC REEXPORT)cyg2win/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)rename file/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete file/1:
Imported from system (see the corresponding documentation for details).

Chapter 30: Other predicates and features defined by default 173

(UNDOC REEXPORT)chmod/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)chmod/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)fmode/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time0/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file properties/6:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file property/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)mktemp/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)directory files/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)wait/3:
Imported from system (see the corresponding documentation for details).

174 The Ciao Prolog System

(UNDOC REEXPORT)exec/8:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/4:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen mode/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/0:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)cd/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)working directory/2:
Imported from system (see the corresponding documentation for details).

Chapter 30: Other predicates and features defined by default 175

(UNDOC REEXPORT)make dirpath/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make dirpath/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)umask/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current executable/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current host/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get pid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)extract paths/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)setenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)getenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime struct/1:
Imported from system (see the corresponding documentation for details).

176 The Ciao Prolog System

(UNDOC REEXPORT)datime/9:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)time/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)pause/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)new atom/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)garbage collect/0:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)current atom/1:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)predicate property/2:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)statistics/2:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)statistics/0:
Imported from prolog_sys (see the corresponding documentation for details).

(UNDOC REEXPORT)close file/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)told/0:
Imported from dec10_io (see the corresponding documentation for details).

Chapter 30: Other predicates and features defined by default 177

(UNDOC REEXPORT)telling/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)tell/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)seen/0:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)seeing/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)see/1:
Imported from dec10_io (see the corresponding documentation for details).

(UNDOC REEXPORT)current key/2:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)recorded/3:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)recordz/3:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)recorda/3:
Imported from old_database (see the corresponding documentation for details).

(UNDOC REEXPORT)ttydisplay string/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyskipeol/0:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttydisplayq/1:
Imported from ttyout (see the corresponding documentation for details).

178 The Ciao Prolog System

(UNDOC REEXPORT)ttydisplay/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyflush/0:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttytab/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyskip/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyput/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttynl/0:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyget1/1:
Imported from ttyout (see the corresponding documentation for details).

(UNDOC REEXPORT)ttyget/1:
Imported from ttyout (see the corresponding documentation for details).

PART III - ISO-Prolog library (iso) 179

PART III - ISO-Prolog library (iso)

® ©

Author(s): The CLIP Group.

This part documents the iso package which provides to Ciao programs (most of) the ISO-
Prolog functionality , including the ISO-Prolog builtins not covered by the basic library.

 ª

180 The Ciao Prolog System

Chapter 31: ISO-Prolog package 181

31 ISO-Prolog package

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#196 (2003/12/19, 17:2:41 CET)

This library package allows the use of the ISO-Prolog predicates in Ciao programs. The
compatibility is not at 100% yet.

31.1 Usage and interface (iso)
® ©

• Library usage:

:- use_package(iso).

or

:- module(...,...,[iso]).

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write.

 ª

182 The Ciao Prolog System

Chapter 32: All solutions predicates 183

32 All solutions predicates

Author(s): First version by Richard A. O’Keefe and David H.D. Warren. Changes by Mats
Carlsson, Daniel Cabeza, and Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#115 (2000/4/12, 12:17:22 CEST)

This module implements the standard solution aggregation predicates.

When there are many solutions to a problem, and when all those solutions are required to be
collected together, this can be achieved by repeatedly backtracking and gradually building up a
list of the solutions. The following built-in predicates are provided to automate this process.

32.1 Usage and interface (aggregates)
® ©

• Library usage:

:- use_module(library(aggregates)).

• Exports:

− Predicates:

setof/3, bagof/3, findall/3, findall/4, findnsols/4, findnsols/5, ^/2.

• Other modules used:

− System library modules:

sort, lists.

 ª

32.2 Documentation on exports (aggregates)

PREDICATEsetof/3:
setof(Template, Generator, Set)

Finds the Set of instances of the Template satisfying Generator. The set is in ascending
order (see Chapter 18 [Comparing terms], page 111 for a definition of this order) without
duplicates, and is non-empty. If there are no solutions, setof fails. setof may succeed in
more than one way, binding free variables in Generator to different values. This can be
avoided by using existential quantifiers on the free variables in front of Generator, using
^/2. For example, given the clauses:

father(bill, tom).
father(bill, ann).
father(bill, john).
father(harry, july).
father(harry, daniel).

The following query produces two alternative solutions via backtracking:

?- setof(X,father(F,X),Sons).

F = bill,
Sons = [ann,john,tom] ? ;

F = harry,
Sons = [daniel,july] ? ;

184 The Ciao Prolog System

no
?-

Meta-predicate with arguments: setof(?,goal,?).

General properties: setof(X, Y, Z)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as findall(X,Y,Z). (basic_
props:native/2)

PREDICATEbagof/3:
bagof(Template, Generator, Bag)

Finds all the instances of the Template produced by the Generator, and returns them in
the Bag in the order in which they were found. If the Generator contains free variables
which are not bound in the Template, it assumes that this is like any other Prolog question
and that you want bindings for those variables. This can be avoided by using existential
quantifiers on the free variables in front of the Generator, using ^/2.

Meta-predicate with arguments: bagof(?,goal,?).

General properties: bagof(X, Y, Z)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as findall(X,Y,Z). (basic_
props:native/2)

PREDICATEfindall/3:
findall(Template, Generator, List)

A special case of bagof, where all free variables in the Generator are taken to be existen-
tially quantified. Faster than the other aggregation predicates.

Meta-predicate with arguments: findall(?,goal,?).

Usage: findall(@term, +callable, ?list) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEfindall/4:
Meta-predicate with arguments: findall(?,goal,?,?).

Usage: findall(Template, Generator, List, Tail)

− Description: As findall/3, but returning in Tail the tail of List.

PREDICATEfindnsols/4:
findnsols(N, Template, Generator, List)

As findall/3, but generating at most N solutions of Generator. Thus, the length of
List will not be greater than N. If N=<0, returns directly an empty list. This predicate is
especially useful if Generator may have an infinite number of solutions.

Meta-predicate with arguments: findnsols(?,?,goal,?).

Chapter 32: All solutions predicates 185

PREDICATEfindnsols/5:
findnsols(N, Template, Generator, List, Tail)

As findnsols/4, but returning in Tail the tail of List.

Meta-predicate with arguments: findnsols(?,?,goal,?,?).

PREDICATE^/2:
General properties: _X ^ Y

− The following properties hold globally:

This predicate is understood natively by CiaoPP as call(Y). (basic_
props:native/2)

Usage: X ^ P

− Description: Existential quantification: X is existentially quantified in P. E.g., in
A^p(A,B), A is existentially quantified. Used only within aggregation predicates. In
all other contexts, simply, execute the procedure call P.

186 The Ciao Prolog System

Chapter 33: Dynamic predicates 187

33 Dynamic predicates

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#197 (2003/12/19, 17:4:32 CET)

This module implements the assert/retract family of predicates to manipulate dynamic pred-
icates.

The predicates defined in this module allow modification of the program as it is actually run-
ning. Clauses can be added to the program (asserted) or removed from the program (retracted).
For these predicates, the argument which corresponds to the clause head must be instantiated to
an atom or a compound term. The argument corresponding to the clause must be instantiated
either to a term Head :- Body or, if the body part is empty, to Head. An empty body part is
represented as true. Note that using this library is very detrimental to global analysis, and that
for most uses the predicates listed in Chapter 25 [Fast/concurrent update of facts], page 145
suffice.

33.1 Usage and interface (dynamic)
® ©

• Library usage:

:- use_module(library(dynamic)).

• Exports:

− Predicates:

asserta/1, asserta/2, assertz/1, assertz/2, assert/1, assert/2, retract/1,
retractall/1, abolish/1, clause/2, clause/3, current_predicate/1, current_
predicate/2, dynamic/1, data/1, wellformed_body/3.

− Multifiles:

do_on_abolish/1.

• Other modules used:

− System library modules:

prolog_sys.

 ª

33.2 Documentation on exports (dynamic)

PREDICATEasserta/1:
Meta-predicate with arguments: asserta(clause).

Usage: asserta(+Clause) 〈 • ISO • 〉

− Description: The current instance of Clause is interpreted as a clause and is added
to the current program. The predicate concerned must be dynamic. The new clause
becomes the first clause for the predicate concerned. Any uninstantiated variables in
Clause will be replaced by new private variables.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

188 The Ciao Prolog System

PREDICATEasserta/2:
Meta-predicate with arguments: asserta(clause,?).

Usage: asserta(+Clause, -Ref)

− Description: Like asserta/1. Ref is a unique identifier of the asserted clause.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEassertz/1:
Meta-predicate with arguments: assertz(clause).

Usage: assertz(+Clause) 〈 • ISO • 〉

− Description: Like asserta/1, except that the new clause becomes the last clause for
the predicate concerned.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEassertz/2:
Meta-predicate with arguments: assertz(clause,?).

Usage: assertz(+Clause, -Ref)

− Description: Like assertz/1. Ref is a unique identifier of the asserted clause.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEassert/1:
Meta-predicate with arguments: assert(clause).

Usage: assert(+Clause)

− Description: Identical to assertz/1. Included for compatibility.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEassert/2:
Meta-predicate with arguments: assert(clause,?).

Usage: assert(+Clause, -Ref)

− Description: Identical to assertz/2. Included for compatibility.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEretract/1:
Meta-predicate with arguments: retract(clause).

Usage: retract(+Clause) 〈 • ISO • 〉

Chapter 33: Dynamic predicates 189

− Description: The first clause in the program that matches Clause is erased. The
predicate concerned must be dynamic.

The predicate retract/1 may be used in a non-determinate fashion, i.e., it will suc-
cessively retract clauses matching the argument through backtracking. If reactivated
by backtracking, invocations of the predicate whose clauses are being retracted will
proceed unaffected by the retracts. This is also true for invocations of clause for
the same predicate. The space occupied by a retracted clause will be recovered when
instances of the clause are no longer in use.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEretractall/1:
Meta-predicate with arguments: retractall(fact).

Usage: retractall(+Head)

− Description: Erase all clauses whose head matches Head, where Head must be instan-
tiated to an atom or a compound term. The predicate concerned must be dynamic.
The predicate definition is retained.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEabolish/1:
Meta-predicate with arguments: abolish(spec).

Usage: abolish(+Spec) 〈 • ISO • 〉

− Description: Erase all clauses of the predicate specified by the predicate spec Spec.
The predicate definition itself is also erased (the predicate is deemed undefined after
execution of the abolish). The predicates concerned must all be user defined.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEclause/2:
Meta-predicate with arguments: clause(fact,?).

Usage: clause(+Head, ?Body) 〈 • ISO • 〉

− Description: The clause ’Head :- Body’ exists in the current program. The predicate
concerned must be dynamic.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEclause/3:
clause(Head, Body, Ref)

Like clause(Head,Body), plus the clause is uniquely identified by Ref.

Meta-predicate with arguments: clause(fact,?,?).

Usage 1: clause(+Head, ?Body, ?Ref)

190 The Ciao Prolog System

− Description: Head must be instantiated to an atom or a compound term.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 2: clause(?Head, ?Body, +Ref)

− Description: Ref must be instantiated to a valid identifier.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcurrent predicate/1:
Usage: current_predicate(?Spec) 〈 • ISO • 〉

− Description: A predicate in the current module is named Spec.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcurrent predicate/2:
Usage: current_predicate(?Spec, ?Module)

− Description: A predicate in Module is named Spec. Module never is an engine module.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEdynamic/1:
dynamic Spec

Spec is of the form F/A. The predicate named F with arity A is made dynamic in the current
module at runtime (useful for predicate names generated on-the-fly). If the predicate
functor name F is uninstatiated, a new, unique, predicate name is generated at runtime.

PREDICATEdata/1:
data Spec

Spec is of the form F/A. The predicate named F with arity A is made data in the current
module at runtime (useful for predicate names generated on-the-fly). If the predicate
functor name F is uninstatiated, a new, unique, predicate name is generated at runtime.

PREDICATEwellformed body/3:
wellformed_body(BodyIn, Env, BodyOut)

BodyIn is a well-formed clause body. BodyOut is its counterpart with no single-variable
meta-goals (i.e., with call(X) for X). Env denotes if global cuts are admissible in BodyIn
(+ if they are, - if they are not).

Chapter 33: Dynamic predicates 191

33.3 Documentation on multifiles (dynamic)

PREDICATEdo on abolish/1:
do_on_abolish(Head)

A hook predicate which will be called when the definition of the predicate of Head is
abolished.

The predicate is multifile.

192 The Ciao Prolog System

Chapter 34: Term input 193

34 Term input

Author(s): First versions from SICStus 0.6 code; additional changes and documentation by
Daniel Cabeza and Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#289 (2004/2/13, 19:46:27 CET)

This module provides falicities to read terms in Prolog syntax. This is very convenient in
many cases (and not only if you are writing a Prolog compiler), because Prolog terms are easy
to write and can convey a lot of information in a human-readable fashion.

34.1 Usage and interface (read)
® ©

• Library usage:

:- use_module(library(read)).

• Exports:

− Predicates:

read/1, read/2, read_term/2, read_term/3, read_top_level/3, second_prompt/2.

− Multifiles:

define_flag/3.

• Other modules used:

− System library modules:

tokenize, operators, lists.

 ª

34.2 Documentation on exports (read)

PREDICATEread/1:
read(Term)

Like read(Stream,Term) with Stream associated to the current input stream.

PREDICATEread/2:
Usage: read(+Stream, ?Term) 〈 • ISO • 〉

− Description: The next term, delimited by a full-stop (i.e., a . followed by either a
space or a control character), is read from Stream and is unified with Term. The
syntax of the term must agree with current operator declarations. If the end of
Stream has been reached, Term is unified with the term end_of_file. Further calls
to read/2 for the same stream will then cause an error, unless the stream is connected
to the terminal (in which case a prompt is opened on the terminal).

− The following properties hold upon exit:

+Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

194 The Ciao Prolog System

PREDICATEread term/2:
Usage: read_term(?Term, +Options) 〈 • ISO • 〉

− Description: Like read_term/3, but reading from the current input

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

+Options is a list of read_options. (basic_props:list/2)

PREDICATEread term/3:
Usage: read_term(+Stream, ?Term, +Options) 〈 • ISO • 〉

− Description: Reads a Term from Stream with the ISO-Prolog Options. These options
can control the behavior of read term (see read_option/1).

− The following properties hold upon exit:

+Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

+Options is a list of read_options. (basic_props:list/2)

PREDICATEread top level/3:
read_top_level(Stream, Data, Variables)

Predicate used to read in the Top Level.

PREDICATEsecond prompt/2:
Usage: second_prompt(?Old, ?New)

− Description: Changes the prompt (the second prompt, as oposed to the first one, used
by the toplevel) used by read/2 and friends to New, and returns the current one in
Old.

− The following properties should hold upon exit:

?Old is currently instantiated to an atom. (term_typing:atom/1)

?New is currently instantiated to an atom. (term_typing:atom/1)

34.3 Documentation on multifiles (read)

PREDICATEdefine flag/3:
Defines flags as follows:

define_flag(read_hiord,[on,off],off).

(See Chapter 24 [Changing system behaviour and various flags], page 141).

If flag is on (it is off by default), a variable followed by a parenthesized lists of arguments
is read as a call/N term, except if the variable is anonymous, in which case it is read as
an anonymous predicate abstraction head. For example, P(X) is read as call(P,X) and
_(X,Y) as ’’(X,Y).

The predicate is multifile.

Chapter 34: Term input 195

34.4 Documentation on internals (read)

REGTYPEread option/1:
Usage: read_option(Option)

− Description: Option is an allowed read_term/[2,3] option. These options are:

read_option(variables(_V)).
read_option(variable_names(_N)).
read_option(singletons(_S)).
read_option(lines(_StartLine,_EndLine)).
read_option(dictionary(_Dict)).

They can be used to return the singleton variables in the term, a list of variables, etc.

− The following properties should hold upon exit:

Option is currently instantiated to an atom. (term_typing:atom/1)

34.5 Known bugs and planned improvements (read)

• The comma cannot be redefined as an operator, it is defined in any case as op(1000, xfy,[’,’]).

196 The Ciao Prolog System

Chapter 35: Term output 197

35 Term output

Author(s): Adapted from shared code written by Richard A. O’Keefe. Changes by Mats
Carlsson, Daniel Cabeza, Manuel Hermenegildo, and Manuel Carro..

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#290 (2004/2/13, 20:20:3 CET)

This library provides different predicates for term output, additional to the kernel predicates
display/1- display/2 and displayq/1-displayq/2. All the predicates defined in ISO-Prolog
are included, plus other traditionally provided by Prolog Implementations. Output predicates
are provided in two versions: one that uses the current output stream and other in which the
stream is specified explicitly, as an additional first argument.

35.1 Usage and interface (write)
® ©

• Library usage:

:- use_module(library(write)).

• Exports:

− Predicates:

write_term/3, write_term/2, write/2, write/1, writeq/2, writeq/1, write_
canonical/2, write_canonical/1, print/2, print/1, write_list1/1, portray_
clause/2, portray_clause/1, numbervars/3, prettyvars/1, printable_char/1.

− Properties:

write_option/1.

− Multifiles:

define_flag/3, portray_attribute/2, portray/1.

• Other modules used:

− System library modules:

operators, sort.

 ª

35.2 Documentation on exports (write)

PREDICATEwrite term/3:
Usage: write_term(@Stream, ?Term, +OptList) 〈 • ISO • 〉

− Description: Outputs the term Term to the stream Stream, with the list of write-
options OptList. See write_option/1 type for default options.

− The following properties hold upon exit:

@Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

+OptList is a list of write_options. (basic_props:list/2)

PREDICATEwrite term/2:
Usage: write_term(?Term, +OptList) 〈 • ISO • 〉

− Description: Behaves like current_output(S), write_term(S,Term,OptList).

198 The Ciao Prolog System

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

+OptList is a list of write_options. (basic_props:list/2)

PROPERTYwrite option/1:
Opt is a valid write option which affects the predicate write_term/3 and similar ones.
Possible write options are:

• quoted(bool): If bool is true, atoms and functors that can’t be read back by read_
term/3 are quoted, if it is false, each atom and functor is written as its name.
Default value is false.

• ignore ops(flag): If flag is true, each compound term is output in functional notation,
if it is ops, curly bracketed notation and list notation is enabled when outputing
compound terms, if it is false, also operator notation is enabled when outputing
compound terms. Default value is false.

• numbervars(bool): If bool is true, a term of the form ’$VAR’(N) where N is an
integer, is output as a variable name consisting of a capital letter possibly followed
by an integer, a term of the form ’$VAR’(Atom) where Atom is an atom, as this
atom (without quotes), and a term of the form ’$VAR’(String) where String is a
character string, as the atom corresponding to this character string. See predicates
numbervars/3 and prettyvars/1. If bool is false this cases are not treated in any
special way. Default value is false.

• portrayed(bool): If bool is true, then call multifile predicates portray/1 and
portray_attribute/2, to provide the user handlers for pretty printing some terms.
portray_attribute/2 is called whenever an attributed variable is to be printed,
portray/1 is called whenever a non-variable term is to be printed. If either call suc-
ceeds, then it is assumed that the term has been output, else it is printed as usual. If
bool is false, these predicates are not called. Default value is false. This option is
set by the toplevel when writting the final values of variables, and by the debugging
package when writting the goals in the tracing messages. Thus you can vary the forms
of these messages if you wish.

• max depth(depth): depth is a positive integer or cero. If it is positive, it denotes the
depth limit on printing compound terms. If it is cero, there is no limit. Default value
is 0 (no limit).

• priority(prio): prio is an integer between 1 and 1200. If the term to be printed has
higher priority than prio, it will be printed parenthesized. Default value is 1200 (no
term parenthesized).

.

Usage: write_option(Opt)

− Description: Opt is a valid write option.

PREDICATEwrite/2:
Usage: write(@Stream, ?Term) 〈 • ISO • 〉

− Description: Behaves like write_term(Stream, Term, [numbervars(true)]).

− The following properties hold upon exit:

@Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

Chapter 35: Term output 199

PREDICATEwrite/1:
Usage: write(?Term) 〈 • ISO • 〉

− Description: Behaves like current_output(S), write(S,Term).

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

PREDICATEwriteq/2:
Usage: writeq(@Stream, ?Term) 〈 • ISO • 〉

− Description: Behaves like write_term(Stream, Term, [quoted(true),
numbervars(true)]).

− The following properties hold upon exit:

@Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

PREDICATEwriteq/1:
Usage: writeq(?Term) 〈 • ISO • 〉

− Description: Behaves like current_output(S), writeq(S,Term).

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

PREDICATEwrite canonical/2:
Usage: write_canonical(@Stream, ?Term) 〈 • ISO • 〉

− Description: Behaves like write_term(Stream, Term, [quoted(true), ignore_
ops(true)]). The output of this predicate can always be parsed by read_term/2
even if the term contains special characters or if operator declarations have changed.

− The following properties hold upon exit:

@Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

PREDICATEwrite canonical/1:
Usage: write_canonical(?Term) 〈 • ISO • 〉

− Description: Behaves like current_output(S), write_canonical(S,Term).

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

PREDICATEprint/2:
Usage: print(@Stream, ?Term)

− Description: Behaves like write_term(Stream, Term, [numbervars(true),
portrayed(true)]).

− The following properties hold upon exit:

@Stream is an open stream. (streams_basic:stream/1)

?Term is any term. (basic_props:term/1)

200 The Ciao Prolog System

PREDICATEprint/1:
Usage: print(?Term)

− Description: Behaves like current_output(S), print(S,Term).

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

PREDICATEwrite list1/1:
Usage:

− Description: Writes a list to current output one element in each line.

− Calls should, and exit will be compatible with:

Arg1 is a list. (basic_props:list/1)

PREDICATEportray clause/2:
Usage: portray_clause(@Stream, ?Clause)

− Description: Outputs the clause Clause onto Stream, pretty printing its variables and
using indentation, including a period at the end. This predicate is used by listing/0.

− The following properties hold upon exit:

@Stream is an open stream. (streams_basic:stream/1)

?Clause is any term. (basic_props:term/1)

PREDICATEportray clause/1:
Usage: portray_clause(?Clause)

− Description: Behaves like current_output(S), portray_clause(S,Term).

− The following properties hold upon exit:

?Clause is any term. (basic_props:term/1)

PREDICATEnumbervars/3:
Usage: numbervars(?Term, +N, ?M)

− Description: Unifies each of the variables in term Term with a term of the form
’$VAR’(I) where I is an integer from N onwards. M is unified with the last integer
used plus 1. If the resulting term is output with a write option numbervars(true),
in the place of the variables in the original term will be printed a variable name
consisting of a capital letter possibly followed by an integer. When N is 0 you will get
the variable names A, B, ..., Z, A1, B1, etc.

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

+N is an integer. (basic_props:int/1)

?M is an integer. (basic_props:int/1)

Chapter 35: Term output 201

PREDICATEprettyvars/1:
Usage: prettyvars(?Term)

− Description: Similar to numbervars(Term,0,_), except that singleton variables in
Term are unified with ’$VAR’(’_’), so that when the resulting term is output with a
write option numbervars(true), in the place of singleton variables _ is written. This
predicate is used by portray_clause/2.

− The following properties hold upon exit:

?Term is any term. (basic_props:term/1)

PREDICATEprintable char/1:
Usage: printable_char(+Char)

− Description: Char is the code of a character which can be printed.

− The following properties should hold upon exit:

+Char is currently instantiated to a number. (term_typing:number/1)

35.3 Documentation on multifiles (write)

PREDICATEdefine flag/3:
Defines flags as follows:

define_flag(write_strings,[on,off],off).

(See Chapter 24 [Changing system behaviour and various flags], page 141).

If flag is on, lists which may be written as strings are.

The predicate is multifile.

PREDICATEportray attribute/2:
The predicate is multifile.

Usage: portray_attribute(Attr, Var)

− Description: A user defined predicate. When an attributed variable Var is about to
be printed, this predicate receives the variable and its attribute Attr. The predicate
should either print something based on Attr or Var, or do nothing and fail. In the
latter case, the default printer (write/1) will print the attributed variable like an
unbound variable, e.g. _673.

− The following properties should hold at call time:

Attr is currently a term which is not a free variable. (term_typing:nonvar/1)

Var is a free variable. (term_typing:var/1)

PREDICATEportray/1:
The predicate is multifile.

Usage: portray(?Term)

− Description: A user defined predicate. This should either print the Term and succeed,
or do nothing and fail. In the latter case, the default printer (write/1) will print the
Term.

202 The Ciao Prolog System

Chapter 36: Defining operators 203

36 Defining operators

Author(s): Adapted from SICStus 0.6 code; modifications and documentation by Daniel
Cabeza and Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#287 (2004/2/13, 18:59:4 CET)

Operators allow writting terms in a more clear way than the standard functional notation.
Standard operators in Ciao are defined by this predicate (but note that the compiler itself defines
more operators at compile time):

standard_ops :-
op(1200,xfx,[:-]),
op(1200,fx,[:-,?-]),
op(1100,xfy,[;]),
op(1050,xfy,[->]),
op(1000,xfy,[’,’]),
op(900,fy,[\+]),
op(700,xfx,[=,\=,==,\==,@<,@>,@=<,@>=,=..,is,=:=,=\=,<,=<,>,>=]),
op(550,xfx,[:]),
op(500,yfx,[+,-,/\,\/,#]),
op(500,fy,[++,--]),
op(400,yfx,[*,/,//,rem,mod,<<,>>]),
op(200,fy,[+,-,\]),
op(200,xfx,[**]),
op(200,xfy,[^]).

36.1 Usage and interface (operators)
® ©

• Library usage:

:- use_module(library(operators)).

• Exports:

− Predicates:

op/3, current_op/3, current_prefixop/3, current_infixop/4,
current_postfixop/3.

 ª

36.2 Documentation on exports (operators)

PREDICATEop/3:
op(Precedence, Type, Name)

Declares the atom Name to be an operator of the stated Type and Precedence (0 =<
Precedence =< 1200). Name may also be a list of atoms in which case all of them are
declared to be operators. If Precedence is 0 then the operator properties of Name (if any)
are cancelled. Note that, unlike in ISO-Prolog, it is allowed to define two operators with
the same name, one infix and the other postfix.

Usage: op(+int, +operator_specifier, +atm_or_atm_list) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

204 The Ciao Prolog System

PREDICATEcurrent op/3:
current_op(Precedence, Type, Op)

The atom Op is currently an operator of type Type and precedence Precedence. Neither
Op nor the other arguments need be instantiated at the time of the call; i.e., this predicate
can be used to generate as well as to test.

Usage: current_op(?int, ?operator_specifier, ?atm) 〈 • ISO • 〉

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcurrent prefixop/3:
current_prefixop(Op, Less, Precedence)

Similar to current_op/3, but it concerns only the prefix operators. It returns only one
solution. Not a predicate for general use.

PREDICATEcurrent infixop/4:
current_infixop(Op, LeftLess, Prec, RightLess)

Similar to current_op/3, but it concerns only infix operators. It returns only one solution.
Not a predicate for general use.

PREDICATEcurrent postfixop/3:
current_postfixop(Op, Less, Precedence)

Similar to current_op/3, but it concerns only the postfix operators. It returns only one
solution. Not a predicate for general use.

Chapter 37: The Iso Byte Char module 205

37 The Iso Byte Char module

Author(s): The CLIP Group, Daniel Cabeza, Documentation written by Edison Mera, based
on ISO Prolog standard. Minor mods by M. Hermenegildo..

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#217 (2003/12/21, 15:33:54 CET)

This module provides some basic predicates according to the ISO specification of byte and
char manipulation.

37.1 Usage and interface (iso_byte_char)
® ©

• Library usage:

:- use_module(library(iso_byte_char)).

• Exports:

− Predicates:

char_code/2, atom_chars/2, number_chars/2, get_byte/1, get_byte/2, peek_
byte/1, peek_byte/2, put_byte/1, put_byte/2, get_char/1, get_char/2, peek_
char/1, peek_char/2, put_char/1, put_char/2.

 ª

37.2 Documentation on exports (iso_byte_char)

PREDICATEchar code/2:
char_code(Char, Code)

Succeeds iff the character code of the one char atom Char is Code.

PREDICATEatom chars/2:
atom_chars(Atom, Chars)

Succeeds iff Chars is a list whose elements are the one-char atoms whose names are the
successive characters of the name of atom Atom

PREDICATEnumber chars/2:
number_chars(Number, Chars)

Success iff Chars is a list whose elements are the one-char atoms corresponding to a
character sequence of Number which could be output

PREDICATEget byte/1:
Usage: get_byte(?int) 〈 • ISO • 〉

− Description: Same as get_byte/2, but use the current input.

206 The Ciao Prolog System

PREDICATEget byte/2:
get_byte(Stream, Byte)

Is true iff Byte unifies with the next byte to be input from the target Stream.

PREDICATEpeek byte/1:
Usage: peek_byte(?int) 〈 • ISO • 〉

− Description: Same as peek_byte/2, but use the current input.

PREDICATEpeek byte/2:
peek_byte(Stream, Byte)

Is true iff Byte unifies with the next byte to be input from the target Stream.

PREDICATEput byte/1:
Usage: put_byte(+int) 〈 • ISO • 〉

− Description: Same as put_byte/2, but use the current input.

PREDICATEput byte/2:
put_byte(Stream, Byte)

Is true. Procedurally, putbyte/2 is executed as follows:

a) Outputs the byte Byte to the target stream.

b) Changes the stream position of the target stream to take account of the byte which has
been output.

c) The goal succeeds.

PREDICATEget char/1:
Usage: get_char(?atm) 〈 • ISO • 〉

− Description: Same as get_char/2, but use the current input.

PREDICATEget char/2:
get_char(Stream, Char)

Is true iif Char unifies with the next character to be input from the target Stream.

PREDICATEpeek char/1:
Usage: peek_char(?atm) 〈 • ISO • 〉

− Description: Similar to peek_code/1, but using char instead of code.

Chapter 37: The Iso Byte Char module 207

PREDICATEpeek char/2:
Usage: peek_char(@stream, ?atm) 〈 • ISO • 〉

− Description: Similar to peek_code/2, but using char instead of code.

PREDICATEput char/1:
Usage: put_char(+atm) 〈 • ISO • 〉

− Description: Similar to put_code/1, but using char instead of code.

PREDICATEput char/2:
Usage: put_char(@stream, +atm) 〈 • ISO • 〉

− Description: Similar to put_code/2, but using char instead of code.

208 The Ciao Prolog System

Chapter 38: Miscellaneous ISO Prolog predicates 209

38 Miscellaneous ISO Prolog predicates

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#304 (2004/2/17, 17:20:4 CET)

This module implements some miscellaneous ISO Prolog predicates.

38.1 Usage and interface (iso_misc)
® ©

• Library usage:

:- use_module(library(iso_misc)).

• Exports:

− Predicates:

\=/2, once/1, compound/1, sub_atom/5, unify_with_occurs_check/2.

• Other modules used:

− System library modules:

between.
 ª

38.2 Documentation on exports (iso_misc)

PREDICATE\=/2:
X \= Y

X and Y are not unifiable.

PREDICATEonce/1:
once(G)

Finds the first solution of goal G (if any). once/1 behaves as call/1, except that no
further solutions are explored on backtracking.

Meta-predicate with arguments: once(goal).

PREDICATEcompound/1:
compound(T)

T is currently instantiated to a compound term.

PREDICATEsub atom/5:
sub_atom(Atom, Before, Length, After, Sub_atom)

Is true iff atom Atom can be broken into three pieces, AtomL, Sub_atom and AtomR such
that Before is the number of characters of the name of AtomL, Length is the number of
characters of the name of Sub_atom and After is the number of characters of the name
of AtomR

210 The Ciao Prolog System

PREDICATEunify with occurs check/2:
unify_with_occurs_check(X, Y)

Attempts to compute and apply a most general unifier of the two terms X and Y. Is true
iff X and Y are unifiable.

Chapter 39: Incomplete ISO Prolog predicates 211

39 Incomplete ISO Prolog predicates

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#263 (2003/12/31, 11:55:21 CET)

This module implements some ISO Prolog predicates, but that are not complete yet.

39.1 Usage and interface (iso_incomplete)
® ©

• Library usage:

:- use_module(library(iso_incomplete)).

• Exports:

− Predicates:

close/2, stream_property/2.

 ª

39.2 Documentation on exports (iso_incomplete)

PREDICATEclose/2:
No further documentation available for this predicate.

PREDICATEstream property/2:
No further documentation available for this predicate.

212 The Ciao Prolog System

PART IV - Classic Prolog library (classic) 213

PART IV - Classic Prolog library (classic)

® ©

Author(s): The CLIP Group.

This part documents some Ciao libraries which provide additional predicates and function-
alities that, despite not being in the ISO standard, are present in many popular Prolog systems.
This includes definite clause grammars (DCGs), “Quintus-style” internal database, list pro-
cessing predicates, DEC-10 Prolog-style input/output, formatted output, dynamic loading of
modules, activation of operators at run-time, etc.

 ª

214 The Ciao Prolog System

Chapter 40: Definite clause grammars 215

40 Definite clause grammars

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#209 (2003/12/21, 2:5:22 CET)

This library package allows the use of DCGs (Definite Clause Grammars) [Col78,PW80] in
a Ciao module/program.

Definite clause grammars are an extension of the well-known context-free grammars. Prolog’s
grammar rules provide a convenient notation for expressing definite clause grammars. A DCG
rule in Prolog takes the general form

head --> body.

meaning “a possible form for head is body”. Both body and head are sequences of one or more
items linked by the standard Prolog conjunction operator ",".

Definite clause grammars extend context-free grammars in the following ways:

1. A non-terminal symbol may be any Prolog term (other than a variable or number).

2. A terminal symbol may be any Prolog term. To distinguish terminals from non-terminals,
a sequence of one or more terminal symbols is written within a grammar rule as a Prolog
list. An empty sequence is written as the empty list []. If the terminal symbols are ASCII
character codes, such lists can be written (as elsewhere) as strings. An empty sequence is
written as the empty list, [] or "".

3. Extra conditions, in the form of Prolog procedure calls, may be included in the right-hand
side of a grammar rule. Such procedure calls are written enclosed in {} brackets.

4. The left-hand side of a grammar rule consists of a non-terminal, optionally followed by a
sequence of terminals (again written as a Prolog list).

5. Alternatives may be stated explicitly in the right-hand side of a grammar rule, using the
disjunction operator ;, or, also, as traditionally in Prolog, using | (which is treated specially
when this package is loaded).

6. The cut symbol may be included in the right-hand side of a grammar rule, as in a Prolog
clause. The cut symbol does not need to be enclosed in {} brackets.

As an example, here is a simple grammar which parses an arithmetic expression (made up
of digits and operators) and computes its value.

expr(Z) --> term(X), "+", expr(Y), {Z is X + Y}.
expr(Z) --> term(X), "-", expr(Y), {Z is X - Y}.
expr(X) --> term(X).

term(Z) --> number(X), "*", term(Y), {Z is X * Y}.
term(Z) --> number(X), "/", term(Y), {Z is X / Y}.
term(Z) --> number(Z).

number(C) --> "+", number(C).
number(C) --> "-", number(X), {C is -X}.
number(X) --> [C], {0’0=<C, C=<0’9, X is C - 0’0}.

In the last rule, C is the ASCII code of some digit.

The query

?- expr(Z, "-2+3*5+1", []).

will compute Z=14. The two extra arguments are explained below.

Now, in fact, grammar rules are merely a convenient “syntactic sugar” for ordinary Prolog
clauses. Each grammar rule takes an input string, analyses some initial portion, and produces

216 The Ciao Prolog System

the remaining portion (possibly enlarged) as output for further analysis. The arguments required
for the input and output strings are not written explicitly in a grammar rule, but the syntax
implicitly defines them. We now show how to translate grammar rules into ordinary clauses by
making explicit the extra arguments.

A rule such as

p(X) --> q(X).

translates into

p(X, S0, S) :- q(X, S0, S).

If there is more than one non-terminal on the right-hand side, as in

p(X, Y) -->
q(X),
r(X, Y),
s(Y).

then corresponding input and output arguments are identified, as in

p(X, Y, S0, S) :-
q(X, S0, S1),
r(X, Y, S1, S2),
r(Y, S2, S).

Terminals are translated using the built-in predicate ’C’/3 (this predicate is not normally
useful in itself; it has been given the name ’C’ simply to avoid using up a more useful name).
Then, for instance

p(X) --> [go,to], q(X), [stop].

is translated by

p(X, S0, S) :-
’C’(S0, go, S1),
’C’(S1, to, S2),
q(X, S2, S3),
’C’(S3, stop, S).

Extra conditions expressed as explicit procedure calls naturally translate as themselves, e.g.

p(X) --> [X], {integer(X), X>0}, q(X).

translates to

p(X, S0, S) :-
’C’(S0, X, S1),
integer(X),
X>0,
q(X, S1, S).

Similarly, a cut is translated literally.

Terminals on the left-hand side of a rule translate into an explicit list in the output argument
of the main non-terminal, e.g.

is(N), [not] --> [aint].

becomes

is(N, S0, [not|S]) :- ’C’(S0, aint, S).

Disjunction has a fairly obvious translation, e.g.

args(X, Y) -->
(dir(X), [to], indir(Y)
; indir(Y), dir(X)
).

translates to

Chapter 40: Definite clause grammars 217

args(X, Y, S0, S) :-
(dir(X, S0, S1),

’C’(S1, to, S2),
indir(Y, S2, S)

; indir(Y, S0, S1),
dir(X, S1, S)

).

40.1 Usage and interface (dcg)
® ©

• Library usage:

:- use_package(dcg).

or

:- module(...,...,[dcg]).

 ª

218 The Ciao Prolog System

Chapter 41: Definite clause grammars (expansion) 219

41 Definite clause grammars (expansion)

Author(s): Daniel Cabeza.

Version: 1.9#302 (2004/2/16, 18:48:1 CET)

This module implements the Definite clause grammars (expansion).

41.1 Usage and interface (dcg_expansion)
® ©

• Library usage:

:- use_module(library(dcg_expansion)).

• Exports:

− Predicates:

phrase/2, phrase/3, dcg_translation/2.

• Other modules used:

− System library modules:

terms, assertions/doc_props.

 ª

41.2 Documentation on exports (dcg_expansion)

PREDICATEphrase/2:
phrase(Phrase, List)

Like phrase(Phrase,List,[]).

Meta-predicate with arguments: phrase(goal,?).

PREDICATEphrase/3:
Meta-predicate with arguments: phrase(goal,?,?).

Usage: phrase(+Phrase, ?List, ?Remainder)

− Description: The list List is a phrase of type Phrase (according to the current
grammar rules), where Phrase is either a non-terminal or more generally a grammar
rule body. Remainder is what remains of the list after a phrase has been found.

− The following properties should hold globally:

Documentation is still incomplete: phrase(+Phrase,?List,?Remainder) may not
conform the functionality documented. (doc_props:doc_incomplete/1)

PREDICATEdcg translation/2:
Performs the code expansion of source clauses that use DCGs.

220 The Ciao Prolog System

Chapter 42: Formatted output 221

42 Formatted output

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#212 (2003/12/21, 2:18:19 CET)

The format family of predicates is due to Quintus Prolog. They act as a Prolog interface to
the C stdio function printf(), allowing formatted output.

Output is formatted according to an output pattern which can have either a format control
sequence or any other character, which will appear verbatim in the output. Control sequences
act as place-holders for the actual terms that will be output. Thus

?- format("Hello ~q!",world).

will print Hello world!.

If there is only one item to print it may be supplied alone. If there are more they have to
be given as a list. If there are none then an empty list should be supplied. There has to be as
many items as control characters.

The character ~ introduces a control sequence. To print a ~ verbatim just repeat it:

?- format("Hello ~~world!", []).

will result in Hello ~world!.

A format may be spread over several lines. The control sequence \c followed by a 〈LFD〉 will
translate to the empty string:

?- format("Hello \c
world!", []).

will result in Hello world!.

42.1 Usage and interface (format)
® ©

• Library usage:

:- use_module(library(format)).

• Exports:

− Predicates:

format/2, format/3.

− Regular Types:

format_control/1.

• Other modules used:

− System library modules:

write, assertions/doc_props.

 ª

222 The Ciao Prolog System

42.2 Documentation on exports (format)

PREDICATEformat/2:
General properties: format(C, A)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as format(C,A). (basic_
props:native/2)

Usage: format(Format, Arguments)

− Description: Print Arguments onto current output stream according to format
Format.

− Calls should, and exit will be compatible with:

Format is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

PREDICATEformat/3:
General properties: format(S, C, A)

− The following properties hold globally:

This predicate is understood natively by CiaoPP as format(S,C,A). (basic_
props:native/2)

Usage: format(+Stream, Format, Arguments)

− Description: Print Arguments onto Stream according to format Format.

− Calls should, and exit will be compatible with:

Format is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

REGTYPEformat control/1:
The general format of a control sequence is ~NC. The character C determines the type of
the control sequence. N is an optional numeric argument. An alternative form of N is *.
* implies that the next argument in Arguments should be used as a numeric argument in
the control sequence. Example:

?- format("Hello~4cworld!", [0’x]).

and

?- format("Hello~*cworld!", [4,0’x]).

both produce

Helloxxxxworld!

The following control sequences are available.

• ~a The argument is an atom. The atom is printed without quoting.

• ~Nc (Print character.) The argument is a number that will be interpreted as an
ASCII code. N defaults to one and is interpreted as the number of times to print the
character.

• ~Ne

• ~NE

• ~Nf

Chapter 42: Formatted output 223

• ~Ng

• ~NG (Print float). The argument is a float. The float and N will be passed to the C
printf() function as

printf("%.Ne", Arg)
printf("%.NE", Arg)
printf("%.Nf", Arg)
printf("%.Ng", Arg)
printf("%.NG", Arg)

If N is not supplied the action defaults to

printf("%e", Arg)
printf("%E", Arg)
printf("%f", Arg)
printf("%g", Arg)
printf("%G", Arg)

• ~Nd (Print decimal.) The argument is an integer. N is interpreted as the number of
digits after the decimal point. If N is 0 or missing, no decimal point will be printed.
Example:

?- format("Hello ~1d world!", [42]).
?- format("Hello ~d world!", [42]).

will print as

Hello 4.2 world!
Hello 42 world!

respectively.

• ~ND (Print decimal.) The argument is an integer. Identical to ~Nd except that , will
separate groups of three digits to the left of the decimal point. Example:

?- format("Hello ~1D world!", [12345]).

will print as

Hello 1,234.5 world!

• ~Nr (Print radix.) The argument is an integer. N is interpreted as a radix. N should
be >= 2 and <= 36. If N is missing the radix defaults to 8. The letters a-z will denote
digits larger than 9. Example:

?- format("Hello ~2r world!", [15]).
?- format("Hello ~16r world!", [15]).

will print as

Hello 1111 world!
Hello f world!

respectively.

• ~NR (Print radix.) The argument is an integer. Identical to ~Nr except that the
letters A-Z will denote digits larger than 9. Example:

?- format("Hello ~16R world!", [15]).

will print as

Hello F world!

• ~Ns (Print string.) The argument is a list of ASCII codes. Exactly N characters will
be printed. N defaults to the length of the string. Example:

?- format("Hello ~4s ~4s!", ["new","world"]).
?- format("Hello ~s world!", ["new"]).

will print as

224 The Ciao Prolog System

Hello new worl!
Hello new world!

respectively.

• ~i (Ignore argument.) The argument may be of any type. The argument will be
ignored. Example:

?- format("Hello ~i~s world!", ["old","new"]).

will print as

Hello new world!

• ~k (Print canonical.) The argument may be of any type. The argument will be passed
to write_canonical/2 (Chapter 35 [Term output], page 197). Example:

?- format("Hello ~k world!", [[a,b,c]]).

will print as

Hello .(a,.(b,.(c,[]))) world!

• ~p (print.) The argument may be of any type. The argument will be passed to
print/2 (Chapter 35 [Term output], page 197). Example:

suposing the user has defined the predicate

:- multifile portray/1.
portray([X|Y]) :- print(cons(X,Y)).

then

?- format("Hello ~p world!", [[a,b,c]]).

will print as

Hello cons(a,cons(b,cons(c,[]))) world!

• ~q (Print quoted.) The argument may be of any type. The argument will be passed
to writeq/2 (Chapter 35 [Term output], page 197). Example:

?- format("Hello ~q world!", [[’A’,’B’]]).

will print as

Hello [’A’,’B’] world!

• ~w (write.) The argument may be of any type. The argument will be passed to
write/2 (Chapter 35 [Term output], page 197). Example:

?- format("Hello ~w world!", [[’A’,’B’]]).

will print as

Hello [A,B] world!

• ~Nn (Print newline.) Print N newlines. N defaults to 1. Example:

?- format("Hello ~n world!", []).

will print as

Hello
world!

• ~N (Fresh line.) Print a newline, if not already at the beginning of a line.

• ~~ (Print tilde.) Prints ~

The following control sequences are also available for compatibility, but do not perform
any useful functions.

• ~N| (Set tab.) Set a tab stop at position N, where N defaults to the current position,
and advance the current position there.

• ~N+ (Advance tab.) Set a tab stop at N positions past the current position, where N
defaults to 8, and advance the current position there.

Chapter 42: Formatted output 225

• ~Nt (Set fill character.) Set the fill character to be used in the next position movement
to N, where N defaults to 〈SPC〉.

Usage: format_control(C)

− Description: C is an atom or string describing how the arguments should be formatted.
If it is an atom it will be converted into a string with name/2.

− The following properties should hold globally:

Documentation is still incomplete: format_control(C) may not conform the func-
tionality documented. (doc_props:doc_incomplete/1)

226 The Ciao Prolog System

Chapter 43: List processing 227

43 List processing

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#318 (2004/2/26, 15:46:54 CET)

This module provides a set of predicates for list processing.

43.1 Usage and interface (lists)
® ©

• Library usage:

:- use_module(library(lists)).

• Exports:

− Predicates:

nonsingle/1, append/3, reverse/2, reverse/3, delete/3, delete_non_ground/3,
select/3, length/2, nth/3, add_after/4, add_before/4, dlist/3, list_concat/2,
list_insert/2, insert_last/3, contains_ro/2, contains1/2, nocontainsx/2,
last/2, list_lookup/3, list_lookup/4, intset_insert/3, intset_delete/3,
intset_in/2, intset_sequence/3, intersection/3, union/3, difference/3,
equal_lists/2, list_to_list_of_lists/2, powerset/2, cross_product/2.

− Properties:

list1/2, sublist/2, subordlist/2.

 ª

43.2 Documentation on exports (lists)

PREDICATEnonsingle/1:
Usage: nonsingle(X)

− Description: X is not a singleton.

PREDICATEappend/3:
Usage: append(Xs, Ys, Zs)

− Description: Zs is Ys appended to Xs.

PREDICATEreverse/2:
Usage: reverse(Xs, Ys)

− Description: Reverses the order of elements in Xs.

− The following properties should hold at call time:

Xs is a list. (basic_props:list/1)

Ys is any term. (basic_props:term/1)

− The following properties should hold upon exit:

Xs is a list. (basic_props:list/1)

Ys is a list. (basic_props:list/1)

228 The Ciao Prolog System

PREDICATEreverse/3:
Usage: reverse(A, B, C)

− Description: Reverse the order of elements in A, and append it with B.

PREDICATEdelete/3:
Usage: delete(L1, E, L2)

− Description: L2 is L1 without the ocurrences of E.

PREDICATEdelete non ground/3:
Usage: delete_non_ground(L1, E, L2)

− Description: L2 is L1 without the ocurrences of E. E can be a nonground term so that
all the elements in L1 it unifies with will be deleted

PREDICATEselect/3:
Usage: select(X, Xs, Ys)

− Description: Xs and Ys have the same elements except for one occurrence of X.

PREDICATElength/2:
General properties: length(A, B)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Usage 1: length(L, N)

− Description: Computes the length of L.

− The following properties should hold at call time:

L is a list. (basic_props:list/1)

N is a free variable. (term_typing:var/1)

− The following properties hold upon exit:

L is a list. (basic_props:list/1)

N is an integer. (basic_props:int/1)

Usage 2: length(L, N)

− Description: Outputs L of length N.

− The following properties should hold at call time:

L is a free variable. (term_typing:var/1)

N is an integer. (basic_props:int/1)

− The following properties hold upon exit:

L is a list. (basic_props:list/1)

N is an integer. (basic_props:int/1)

Usage 3: length(L, N)

− Description: Checks that L is of length N.

Chapter 43: List processing 229

− The following properties should hold at call time:

L is a list. (basic_props:list/1)

N is an integer. (basic_props:int/1)

− The following properties hold upon exit:

L is a list. (basic_props:list/1)

N is an integer. (basic_props:int/1)

PREDICATEnth/3:
nth(N, List, Elem)

N is the position in List of Elem. N counts from one.

Usage 1: nth(+int, ?list, ?term)

− Description: Unifies Elem and the Nth element of List.

Usage 2: nth(-int, ?list, ?term)

− Description: Finds the positions where Elem is in List. Positions are found in as-
cending order.

PREDICATEadd after/4:
Usage: add_after(+L0, +E0, +E, -L)

− Description: Adds element E after element E0 (or at end) to list L0 returning in L the
new list (uses term comparison).

PREDICATEadd before/4:
Usage: add_before(+L0, +E0, +E, -L)

− Description: Adds element E before element E0 (or at start) to list L0 returning in
L the new list (uses term comparison).

PROPERTYlist1/2:
Meta-predicate with arguments: list1(?,pred(1)).

Usage: list1(X, Y)

− Description: X is a list of Ys of at least one element.

PREDICATEdlist/3:
Usage: dlist(List, DList, Tail)

− Description: List is the result of removing Tail from the end of DList (makes a
difference list from a list).

PREDICATElist concat/2:
Usage: list_concat(LL, L)

− Description: L is the concatenation of all the lists in LL.

− Call and exit should be compatible with:

LL is a list of lists. (basic_props:list/2)

L is a list. (basic_props:list/1)

230 The Ciao Prolog System

PREDICATElist insert/2:
Usage: list_insert(-List, +Term)

− Description: Adds Term to the end of List if there is no element in List identical to
Term.

PREDICATEinsert last/3:
Usage: insert_last(+L0, +E, -L)

− Description: Adds element E at end of list L0 returning L.

PREDICATEcontains ro/2:
Usage:

− Description: Impure membership (does not instantiate a variable in its first argument.

PREDICATEcontains1/2:
Usage:

− Description: First membership.

PREDICATEnocontainsx/2:
Usage: nocontainsx(L, X)

− Description: X is not identical to any element of L.

PREDICATElast/2:
Usage: last(L, X)

− Description: X is the last element of list L.

PREDICATElist lookup/3:
Usage: list_lookup(List, Key, Value)

− Description: Same as list_lookup/4, but use -/2 as functor.

PREDICATElist lookup/4:
Usage: list_lookup(List, Functor, Key, Value)

− Description: Look up Functor(Key,Value) pair in variable ended key-value pair list
L or else add it at the end.

PREDICATEintset insert/3:
Usage: intset_insert(A, B, Set)

− Description: Insert the element B in the ordered set of numbers A.

Chapter 43: List processing 231

PREDICATEintset delete/3:
Usage: intset_delete(A, B, Set)

− Description: Delete from the ordered set A the element B.

PREDICATEintset in/2:
Usage: intset_in(E, Set)

− Description: Succeds iff E is element of Set

PREDICATEintset sequence/3:
Usage: intset_sequence(N, L1, L2)

− Description: Generates an ordered set of numbers from 0 to N-1, and append it to
L1.

PREDICATEintersection/3:
Usage: intersection(+List1, +List2, -List)

− Description: List has the elements which are both in List1 and List2.

PREDICATEunion/3:
Usage: union(+List1, +List2, -List)

− Description: List has the elements which are in List1 followed by the elements
which are in List2 but not in List1.

PREDICATEdifference/3:
Usage: difference(+List1, +List2, -List)

− Description: List has the elements which are in List1 but not in List2.

PROPERTYsublist/2:
Usage: sublist(List1, List2)

− Description: List2 contains all the elements of List1.

− If the following properties should hold at call time:

List2 is currently a term which is not a free variable. (term_typing:nonvar/1)

PROPERTYsubordlist/2:
Usage: subordlist(List1, List2)

− Description: List2 contains all the elements of List1 in the same order.

− If the following properties should hold at call time:

List2 is currently a term which is not a free variable. (term_typing:nonvar/1)

232 The Ciao Prolog System

PREDICATEequal lists/2:
Usage: equal_lists(+List1, +List2)

− Description: List1 has all the elements of List2, and vice versa.

PREDICATElist to list of lists/2:
Usage: list_to_list_of_lists(+List, -LList)

− Description: LList is the list of one element lists with elements of List.

PREDICATEpowerset/2:
Usage: powerset(+List, -LList)

− Description: LList is the powerset of List, i.e., the list of all lists which have elements
of List. If List is ordered, LList and all its elements are ordered.

PREDICATEcross product/2:
Usage: cross_product(+LList, -List)

− Description: List is the cartesian product of the lists in LList, that is, the list of
lists formed with one element of each list in LList, in the same order.

Chapter 44: Sorting lists 233

44 Sorting lists

Author(s): Richard A. O’Keefe. All changes by UPM CLIP Group..

Version: 1.9#210 (2003/12/21, 2:12:13 CET)

This module implements some sorting list predicates.

44.1 Usage and interface (sort)
® ©

• Library usage:

:- use_module(library(sort)).

• Exports:

− Predicates:

sort/2, keysort/2.

− Regular Types:

keylist/1.

 ª

44.2 Documentation on exports (sort)

PREDICATEsort/2:
sort(List1, List2)

The elements of List1 are sorted into the standard order (see Chapter 18 [Comparing
terms], page 111) and any identical elements are merged, yielding List2. The time and
space complexity of this operation is at worst O(N lg N) where N is the length of List1.

Usage: sort(+list, ?list)

− Description: List2 is the sorted list corresponding to List1.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEkeysort/2:
keysort(List1, List2)

List1 is sorted into order according to the value of the keys of its elements, yielding the
list List2. No merging takes place. This predicate is stable, i.e., if an element A occurs
before another element B with the same key in the input, then A will occur before B also in
the output. The time and space complexity of this operation is at worst O(N lg N) where
N is the length of List1.

Usage: keysort(+keylist, ?keylist)

− Description: List2 is the (key-)sorted list corresponding to List1.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

REGTYPEkeylist/1:
Usage: keylist(L)

− Description: L is a list of pairs of the form Key-Value.

234 The Ciao Prolog System

44.3 Documentation on internals (sort)

REGTYPEkeypair/1:
Usage: keypair(P)

− Description: P is a pair of the form "K-_", where K is considered the key.

Chapter 45: compiler (library) 235

45 compiler (library)

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#176 (2002/1/14, 17:27:0 CET)

45.1 Usage and interface (compiler)
® ©

• Library usage:

:- use_module(library(compiler)).

• Exports:

− Predicates:

make_po/1, ensure_loaded/1, use_module/1, use_module/2, use_module/3,
unload/1, set_debug_mode/1, set_nodebug_mode/1, set_debug_module/1, set_
nodebug_module/1, set_debug_module_source/1, mode_of_module/2, module_of/2.

• Other modules used:

− System library modules:

compiler/c_itf.

 ª

45.2 Documentation on exports (compiler)

PREDICATEmake po/1:
No further documentation available for this predicate.

PREDICATEensure loaded/1:
No further documentation available for this predicate.

PREDICATEuse module/1:
No further documentation available for this predicate.

PREDICATEuse module/2:
No further documentation available for this predicate.

Meta-predicate with arguments: use_module(?,addmodule).

PREDICATEuse module/3:
No further documentation available for this predicate.

PREDICATEunload/1:
No further documentation available for this predicate.

236 The Ciao Prolog System

PREDICATEset debug mode/1:
No further documentation available for this predicate.

PREDICATEset nodebug mode/1:
No further documentation available for this predicate.

PREDICATEset debug module/1:
No further documentation available for this predicate.

PREDICATEset nodebug module/1:
No further documentation available for this predicate.

PREDICATEset debug module source/1:
No further documentation available for this predicate.

PREDICATEmode of module/2:
No further documentation available for this predicate.

PREDICATEmodule of/2:
No further documentation available for this predicate.

Chapter 46: Enumeration of integers inside a range 237

46 Enumeration of integers inside a range

Author(s): The CLIP Group..

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#276 (2004/1/9, 16:37:11 CET)

This modules enumerates integers between two numbers, or checks that an integer lies within
a range

46.1 Usage and interface (between)
® ©

• Library usage:

:- use_module(library(between)).

• Exports:

− Predicates:

between/3.
 ª

46.2 Documentation on exports (between)

PREDICATEbetween/3:
Usage: between(+Min, +Max, ?N)

− Description: N is an integer which is greater than or equal to Min and smaller than
or equal to Max. Both Min and Max can be either integer or real numbers.

− The following properties should hold at call time:

+Min is currently instantiated to a number. (term_typing:number/1)

+Max is currently instantiated to a number. (term_typing:number/1)

?N is an integer. (basic_props:int/1)

238 The Ciao Prolog System

Chapter 47: Operating system utilities 239

47 Operating system utilities

Author(s): Daniel Cabeza, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

This module contains predicates for invoking services which are typically provided by the
operating system. Note that the predicates which take names of files or directories as arguments
in this module expect atoms, not path aliases. I.e., generally these predicates will not call
absolute_file_name/2 on names of files or directories taken as arguments.

47.1 Usage and interface (system)
® ©

• Library usage:

:- use_module(library(system)).

• Exports:

− Predicates:

pause/1, time/1, datime/1, datime/9, getenvstr/2, setenvstr/2, extract_
paths/2, get_pid/1, current_host/1, current_executable/1, umask/2, make_
directory/2, make_directory/1, make_dirpath/2, make_dirpath/1, working_
directory/2, cd/1, shell/0, shell/1, shell/2, system/1, system/2, popen/3,
exec/4, exec/3, exec/8, wait/3, directory_files/2, mktemp/2, file_exists/1,
file_exists/2, file_property/2, file_properties/6, modif_time/2, modif_
time0/2, fmode/2, chmod/2, chmod/3, delete_file/1, delete_directory/1,
rename_file/2, cyg2win/3.

− Regular Types:

datime_struct/1, popen_mode/1.

− Multifiles:

define_flag/3.

• Other modules used:

− System library modules:

lists.
 ª

47.2 Documentation on exports (system)

PREDICATEpause/1:
pause(Seconds)

Make this thread sleep for some Seconds.

PREDICATEtime/1:
time(Time)

Time is unified with the number of seconds elapsed since January, 1, 1970 (UTC).

240 The Ciao Prolog System

PREDICATEdatime/1:
datime(Datime)

Datime is unified with a term of the
form datime(Year,Month,Day,Hour,Minute,Second) which contains the current date
and time.

PREDICATEdatime/9:
datime(Time, Year, Month, Day, Hour, Min, Sec, WeekDay, YearDay)

Time is as in time/1. WeekDay is the number of days since Sunday, in the range 0 to 6.
YearDay is the number of days since January 1, in the range 0 to 365.

Usage 1: datime(+int, ?int, ?int, ?int, ?int, ?int, ?int, ?int, ?int)

− Description: If Time is given, the rest of the arguments are unified with the date and
time to which the Time argument refers.

Usage 2: datime(-int, ?int, ?int, ?int, ?int, ?int, ?int, ?int, ?int)

− Description: Bound Time to current time and the rest of the arguments refer to
current time.

REGTYPEdatime struct/1:
A regular type, defined as follows:

datime_struct(datime(Year,Month,Day,Hour,Min,Sec)) :-
int(Year),
int(Month),
int(Day),
int(Hour),
int(Min),
int(Sec).

PREDICATEgetenvstr/2:
getenvstr(Name, Value)

The environment variable Name has Value. Fails if variable Name is not defined.

PREDICATEsetenvstr/2:
setenvstr(Name, Value)

The environment variable Name is assigned Value.

PREDICATEextract paths/2:
extract_paths(String, Paths)

Interpret String as the value of a UNIX environment variable holding a list of paths and
return in Paths the list of the paths. Paths in String are separated by colons, and an
empty path is considered a shorthand for ’.’ (current path). The most typical environment
variable with this format is PATH. For example, this is a typical use:

Chapter 47: Operating system utilities 241

?- set_prolog_flag(write_strings, on).

yes
?- getenvstr(’PATH’, PATH), extract_paths(PATH, Paths).

PATH = ":/home/bardo/bin:/home/clip/bin:/opt/bin/:/bin",
Paths = [".","/home/bardo/bin","/home/clip/bin","/opt/bin/","/bin"] ?

yes
?-

PREDICATEget pid/1:
get_pid(Pid)

Unifies Pid with the process identificator of the current process or thread.

PREDICATEcurrent host/1:
current_host(Hostname)

Hostname is unified with the fully qualified name of the host.

PREDICATEcurrent executable/1:
current_executable(Path)

Unifies Path with the path to the current executable.

PREDICATEumask/2:
umask(OldMask, NewMask)

The process file creation mask was OldMask, and it is changed to NewMask.

Usage 2: umask(OldMask, NewMask)

− Description: Gets the process file creation mask without changing it.

− The following properties should hold at call time:

OldMask is a free variable. (term_typing:var/1)

NewMask is a free variable. (term_typing:var/1)

The terms OldMask and NewMask are strictly identical. (term_compare:== /2)

− The following properties hold upon exit:

OldMask is an integer. (basic_props:int/1)

NewMask is an integer. (basic_props:int/1)

PREDICATEmake directory/2:
make_directory(DirName, Mode)

Creates the directory DirName with a given Mode. This is, as usual, operated against the
current umask value.

242 The Ciao Prolog System

PREDICATEmake directory/1:
make_directory(DirName)

Equivalent to make_directory(D,0o777).

PREDICATEmake dirpath/2:
make_dirpath(Path, Mode)

Creates the whole Path for a given directory with a given Mode. As an example, make_
dirpath(’/tmp/var/mydir/otherdir’).

PREDICATEmake dirpath/1:
make_dirpath(Path)

Equivalent to make_dirpath(D,0o777).

PREDICATEworking directory/2:
working_directory(OldDir, NewDir)

Unifies current working directory with OldDir, and then changes the working directory
to NewDir. Calling working_directory(Dir,Dir) simply unifies Dir with the current
working directory without changing anything else.

Usage 2: working_directory(OldDir, NewDir)

− Description: Gets current working directory.

− The following properties should hold at call time:

OldDir is a free variable. (term_typing:var/1)

NewDir is a free variable. (term_typing:var/1)

The terms OldDir and NewDir are strictly identical. (term_compare:== /2)

− The following properties hold upon exit:

OldDir is an atom. (basic_props:atm/1)

NewDir is an atom. (basic_props:atm/1)

PREDICATEcd/1:
cd(Path)

Changes working directory to Path.

PREDICATEshell/0:
Usage:

− Description: Execs the shell specified by the environment variable SHELL. When the
shell process terminates, control is returned to Prolog.

PREDICATEshell/1:
shell(Command)

Command is executed in the shell specified by the environment variable SHELL. It succeeds
if the exit code is zero and fails otherwise.

Chapter 47: Operating system utilities 243

PREDICATEshell/2:
shell(Command, ReturnCode)

Executes Command in the shell specified by the environment variable SHELL and stores the
exit code in ReturnCode.

PREDICATEsystem/1:
system(Command)

Executes Command using the shell /bin/sh.

PREDICATEsystem/2:
system(Command, ReturnCode)

Executes Command in the /bin/sh shell and stores the exit code in ReturnCode.

PREDICATEpopen/3:
popen(Command, Mode, Stream)

Open a pipe to process Command in a new shell with a given Mode and return a commu-
nication Stream (as in UNIX popen(3)). If Mode is read the output from the process is
sent to Stream. If Mode is write, Stream is sent as input to the process. Stream may
be read from or written into using the ordinary stream I/O predicates. Stream must be
closed explicitly using close/1, i.e., it is not closed automatically when the process dies.
Note that popen/2 is defined in ***x as using /bin/sh, which usually does not exist in
Windows systems. In this case, a sh shell which comes with Windows is used.

REGTYPEpopen mode/1:
Usage: popen_mode(M)

− Description: M is ’read’ or ’write’.

PREDICATEexec/4:
exec(Command, StdIn, StdOut, StdErr)

Starts the process Command and returns the standart I/O streams of the process in StdIn,
StdOut, and StdErr.

PREDICATEexec/3:
exec(Command, StdIn, StdOut)

Starts the process Command and returns the standart I/O streams of the process in StdIn
and StdOut. Standard error is connected to whichever the parent process had it con-
nected to.

244 The Ciao Prolog System

PREDICATEexec/8:
Usage: exec(+Command, +Arguments, ?StdIn, ?StdOut, ?StdErr, +Background,
-PID, -ErrCode)

− Description: exec/8 gives a finer control for launching external processes. Command
is the command to be executed and Arguments is a list of atoms to be passed as
arguments to the command. When called with free variables, StdIn, StdOut, and
StdErr are instantiated to streams connected to the standard output, input, and error
of the created process. Background controls whether the caller waits for Command to
finish, or if the process executing Command is completely detached (it can be waited for
using wait/3). ErrCode is the error code returned by the lower-level exec() system
call (this return code is system-dependent, but a non-zero value usually means that
something has gone wrong). If Command does not start by a slash, exec/8 uses the
environment variable PATH to search for it. If PATH is not set, /bin and /usr/bin are
searched.

− The following properties should hold at call time:

+Command is an atom. (basic_props:atm/1)

+Arguments is a list of atms. (basic_props:list/2)

?StdIn is an open stream. (streams_basic:stream/1)

?StdOut is an open stream. (streams_basic:stream/1)

?StdErr is an open stream. (streams_basic:stream/1)

+Background is an atom. (basic_props:atm/1)

-PID is an integer. (basic_props:int/1)

-ErrCode is an integer. (basic_props:int/1)

PREDICATEwait/3:
Usage: wait(+Pid, -RetCode, -Status)

− Description: wait/3 waits for the process numbered Pid. If PID equals -1, it will wait
for any children process. RetCode is usually the PID of the waited-for process, and
-1 in case in case of error. Status is related to the exit value of the process in a
system-dependent fashion.

− The following properties should hold at call time:

+Pid is an integer. (basic_props:int/1)

-RetCode is an integer. (basic_props:int/1)

-Status is an integer. (basic_props:int/1)

PREDICATEdirectory files/2:
directory_files(Directory, FileList)

FileList is the unordered list of entries (files, directories, etc.) in Directory.

PREDICATEmktemp/2:
mktemp(Template, Filename)

Returns a unique Filename based on Template: Template must be a valid file name with
six trailing X, which are substituted to create a new file name.

Chapter 47: Operating system utilities 245

PREDICATEfile exists/1:
file_exists(File)

Succeeds if File (a file or directory) exists (and is accessible).

PREDICATEfile exists/2:
file_exists(File, Mode)

File (a file or directory) exists and it is accessible with Mode, as in the Unix call access(2).
Typically, Mode is 4 for read permission, 2 for write permission and 1 for execute permis-
sion.

PREDICATEfile property/2:
file_property(File, Property)

File has the property Property. The possible properties are:

type(Type)
Type is one of regular, directory, symlink, fifo, socket or unknown.

linkto(Linkto)
If File is a symbolic link, Linkto is the file pointed to by the link (and the
other properties come from that file, not from the link itself).

mod time(ModTime)
ModTime is the time of last modification (seconds since January, 1, 1970).

mode(Protection)
Protection is the protection mode.

size(Size) Size is the size.

If Property is uninstantiated, the predicate will enumerate the properties on backtracking.

PREDICATEfile properties/6:
file_properties(Path, Type, Linkto, Time, Protection, Size)

The file Path has the following properties:

• File type Type (one of regular, directory, symlink, fifo, socket or unknown).

• If Path is a symbolic link, Linkto is the file pointed to. All other properties come
from the file pointed, not the link. Linkto is ” if Path is not a symbolic link.

• Time of last modification Time (seconds since January, 1, 1970).

• Protection mode Protection.

• Size in bytes Size.

PREDICATEmodif time/2:
modif_time(File, Time)

The file File was last modified at Time, which is in seconds since January, 1, 1970. Fails
if File does not exist.

246 The Ciao Prolog System

PREDICATEmodif time0/2:
modif_time0(File, Time)

If File exists, Time is its latest modification time, as in modif_time/2. Otherwise, if File
does not exist, Time is zero.

PREDICATEfmode/2:
fmode(File, Mode)

The file File has protection mode Mode.

PREDICATEchmod/2:
chmod(File, NewMode)

Change the protection mode of file File to NewMode.

PREDICATEchmod/3:
chmod(File, OldMode, NewMode)

The file File has protection mode OldMode and it is changed to NewMode.

Usage 2: chmod(File, OldMode, NewMode)

− Description: Equivalent to fmode(File,OldMode)

− The following properties should hold at call time:

File is an atom. (basic_props:atm/1)

OldMode is a free variable. (term_typing:var/1)

NewMode is a free variable. (term_typing:var/1)

The terms OldMode and NewMode are strictly identical. (term_compare:== /2)

− The following properties hold upon exit:

File is an atom. (basic_props:atm/1)

OldMode is an atom. (basic_props:atm/1)

NewMode is an atom. (basic_props:atm/1)

PREDICATEdelete file/1:
delete_file(File)

Delete the file File.

PREDICATEdelete directory/1:
delete_directory(File)

Delete the directory Directory.

PREDICATErename file/2:
rename_file(File1, File2)

Change the name of File1 to File2.

Chapter 47: Operating system utilities 247

PREDICATEcyg2win/3:
Usage: cyg2win(CygWinPath, WindowsPath, SwapSlash)

− Description: Converts a path in the CygWin style to a Windows-style path, rewriting
the driver part. If SwapSlash is swap, slashes are converted in to backslash. If it is
noswap, they are preserved.

− The following properties should hold at call time:

CygWinPath is a string (a list of character codes). (basic_props:string/1)

WindowsPath is a free variable. (term_typing:var/1)

SwapSlash is currently instantiated to an atom. (term_typing:atom/1)

− The following properties should hold upon exit:

CygWinPath is a string (a list of character codes). (basic_props:string/1)

WindowsPath is a string (a list of character codes). (basic_props:string/1)

SwapSlash is currently instantiated to an atom. (term_typing:atom/1)

47.3 Documentation on multifiles (system)

PREDICATEdefine flag/3:
No further documentation available for this predicate.

The predicate is multifile.

47.4 Known bugs and planned improvements (system)

•

shell/n commands have a bug in Windows: if the environment variable SHELL is instan-
tiated to some Windows shell implementation, then it is very possible that shell/{1,2} will
not work, as it is always called with the -c flag to start the user command. For example,
COMMAND.COM might need the flag /C – but there is no way to know a priori which
command line option is necessary for every shell! It does not seems usual that Windows
sets the SHELL environment variable: if it is not set, we set it up at startup time to point
to the sh.exe provided with Ciao, which is able to start Windows aplications. Therefore,
?- shell(’command.com’). just works.

• If exec/4 does not find the command to be executed, there is no visible error message: it is
sent to a error output which has already been assigned to a different stream, disconnected
from the one the user sees.

• If the arguments to cyg2win/3 are not strings, strange results appear, as a very mild type
checking is performed.

248 The Ciao Prolog System

Chapter 48: Prolog system internal predicates 249

48 Prolog system internal predicates

Author(s): Manuel Carro, Daniel Cabeza, Mats Carlsson.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#92 (2003/7/24, 8:4:39 CEST)

This module implements some miscellaneous predicates which provide access to some internal
statistics, special properties of the predicates, etc.

48.1 Usage and interface (prolog_sys)
® ©

• Library usage:

:- use_module(library(prolog_sys)).

• Exports:

− Predicates:

statistics/0, statistics/2, predicate_property/2, current_atom/1, garbage_
collect/0, new_atom/1.

 ª

48.2 Documentation on exports (prolog_sys)

PREDICATEstatistics/0:
Usage:

− Description: Prints statistics about the system.

PREDICATEstatistics/2:
Usage 1: statistics(Time_option, Time_result)

− Description: Gather information about time (either process time or wall time) since
last consult or since start of program. Results are returned in milliseconds.

− The following properties should hold at call time:

Options to get information about execution time. Time_option must be one of
runtime, walltime. (prolog_sys:time_option/1)

Time_result is any term. (basic_props:term/1)

− The following properties hold upon exit:

Options to get information about execution time. Time_option must be one of
runtime, walltime. (prolog_sys:time_option/1)

Time_result is a two-element list of integers. The first integer is the time since the
start of the execution; the second integer is the time since the previous consult to
time. (prolog_sys:time_result/1)

Usage 2: statistics(Memory_option, Memory_result)

− Description: Gather information about memory consumption.

− The following properties should hold at call time:

Options to get information about memory usage. (prolog_sys:memory_option/1)

Memory_result is any term. (basic_props:term/1)

250 The Ciao Prolog System

− The following properties hold upon exit:

Options to get information about memory usage. (prolog_sys:memory_option/1)

Result is a two-element list of integers. The first element is the space taken up by
the option selected, measured in bytes; the second integer is zero for program space
(which grows as necessary), and the amount of free space otherwise. (prolog_
sys:memory_result/1)

Usage 3: statistics(Garbage_collection_option, Gc_result)

− Description: Gather information about garbage collection.

− The following properties should hold at call time:

Options to get information about garbage collection. (prolog_sys:garbage_
collection_option/1)

Gc_result is any term. (basic_props:term/1)

− The following properties hold upon exit:

Options to get information about garbage collection. (prolog_sys:garbage_
collection_option/1)

Gc_result is a tree-element list of integers, related to garbage collection and memory
management. When stack_shifts is selected, the first one is the number of shifts
(reallocations) of the local stack; the second is the number of shifts of the trail, and
the third is the time spent in these shifts. When garbage_collection is selected, the
numbers are, respectively, the number of garbage collections performed, the number
of bytes freed, and the time spent in garbage collection. (prolog_sys:gc_result/1)

Usage 4: statistics(Symbol_option, Symbol_result)

− Description: Gather information about number of symbols and predicates.

− The following properties should hold at call time:

Option to get information about the number of symbols in the program. (prolog_
sys:symbol_option/1)

Symbol_result is any term. (basic_props:term/1)

− The following properties hold upon exit:

Option to get information about the number of symbols in the program. (prolog_
sys:symbol_option/1)

Symbol_result is a two-element list of integers. The first one is the number of atom,
functor, and predicate names in the symbol table. The second is the number of
predicates known to be defined (although maybe without clauses). (prolog_
sys:symbol_result/1)

Usage 5: statistics(Option, ?term)

− Description: If Option is unbound, it is bound to the values on the other cases.

PREDICATEpredicate property/2:
Usage: predicate_property(Head, Property)

− Description: The predicate with clause Head is Property.

− The following properties should hold at call time:

Head is any term. (basic_props:term/1)

Property is any term. (basic_props:term/1)

− The following properties hold upon exit:

Head is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Property is an atom. (basic_props:atm/1)

Chapter 48: Prolog system internal predicates 251

PREDICATEcurrent atom/1:
Usage: current_atom(Atom)

− Description: Enumerates on backtracking all the existing atoms in the system.

− The following properties should hold at call time:

Atom is a free variable. (term_typing:var/1)

− The following properties hold upon exit:

Atom is an atom. (basic_props:atm/1)

PREDICATEgarbage collect/0:
Usage:

− Description: Forces garbage collection when called.

PREDICATEnew atom/1:
Usage: new_atom(Atom)

− Description: Returns, on success, a new atom, not existing before in the system.
The entry argument must be a variable. The idea behind this atom generation is to
provide a fast source of identifiers for new objects, concurrent predicates, etc. on the
fly.

− The following properties should hold at call time:

Atom is a free variable. (term_typing:var/1)

− The following properties hold upon exit:

Atom is an atom. (basic_props:atm/1)

48.3 Documentation on internals (prolog_sys)

REGTYPEtime option/1:
Usage: time_option(M)

− Description: Options to get information about execution time. M must be one of
runtime, walltime.

REGTYPEmemory option/1:
Usage: memory_option(M)

− Description: Options to get information about memory usage.

REGTYPEgarbage collection option/1:
Usage: garbage_collection_option(M)

− Description: Options to get information about garbage collection.

REGTYPEsymbol option/1:
Usage: symbol_option(M)

− Description: Option to get information about the number of symbols in the program.

252 The Ciao Prolog System

REGTYPEtime result/1:
Usage: time_result(Result)

− Description: Result is a two-element list of integers. The first integer is the time
since the start of the execution; the second integer is the time since the previous
consult to time.

REGTYPEmemory result/1:
Usage: memory_result(Result)

− Description: Result is a two-element list of integers. The first element is the space
taken up by the option selected, measured in bytes; the second integer is zero for
program space (which grows as necessary), and the amount of free space otherwise.

REGTYPEgc result/1:
Usage: gc_result(Result)

− Description: Result is a tree-element list of integers, related to garbage collection and
memory management. When stack_shifts is selected, the first one is the number
of shifts (reallocations) of the local stack; the second is the number of shifts of the
trail, and the third is the time spent in these shifts. When garbage_collection is
selected, the numbers are, respectively, the number of garbage collections performed,
the number of bytes freed, and the time spent in garbage collection.

REGTYPEsymbol result/1:
Usage: symbol_result(Result)

− Description: Result is a two-element list of integers. The first one is the number of
atom, functor, and predicate names in the symbol table. The second is the number
of predicates known to be defined (although maybe without clauses).

48.4 Known bugs and planned improvements (prolog_sys)

• The space used by the process is not measured here: process data, code, and stack also take
up memory. The memory reported for atoms is not what is actually used, but the space
used up by the hash table (which is enlarged as needed).

Chapter 49: DEC-10 Prolog file IO 253

49 DEC-10 Prolog file IO

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#273 (2004/1/5, 20:14:41 CET)

This module implements the support for DEC-10 Prolog style file I/O.

49.1 Usage and interface (dec10_io)
® ©

• Library usage:

:- use_module(library(dec10_io)).

• Exports:

− Predicates:

see/1, seeing/1, seen/0, tell/1, telling/1, told/0, close_file/1.

 ª

49.2 Documentation on exports (dec10_io)

PREDICATEsee/1:
No further documentation available for this predicate.

PREDICATEseeing/1:
No further documentation available for this predicate.

PREDICATEseen/0:
No further documentation available for this predicate.

PREDICATEtell/1:
No further documentation available for this predicate.

PREDICATEtelling/1:
No further documentation available for this predicate.

PREDICATEtold/0:
No further documentation available for this predicate.

PREDICATEclose file/1:
No further documentation available for this predicate.

254 The Ciao Prolog System

Chapter 50: Quintus-like internal database 255

50 Quintus-like internal database

Author(s): The CLIP Group.

Version: 1.9#213 (2003/12/21, 2:20:13 CET)

The predicates described in this section were introduced in early implementations of Prolog
to provide efficient means of performing operations on large quantities of data. The introduction
of indexed dynamic predicates have rendered these predicates obsolete, and the sole purpose of
providing them is to support existing code. There is no reason whatsoever to use them in new
code.

These predicates store arbitrary terms in the database without interfering with the clauses
which make up the program. The terms which are stored in this way can subsequently be
retrieved via the key on which they were stored. Many terms may be stored on the same key,
and they can be individually accessed by pattern matching. Alternatively, access can be achieved
via a special identifier which uniquely identifies each recorded term and which is returned when
the term is stored.

50.1 Usage and interface (old_database)
® ©

• Library usage:

:- use_module(library(old_database)).

• Exports:

− Predicates:

recorda/3, recordz/3, recorded/3, current_key/2.

 ª

50.2 Documentation on exports (old_database)

PREDICATErecorda/3:
recorda(Key, Term, Ref)

The term Term is recorded in the internal database as the first item for the key Key, where
Ref is its implementation-defined identifier. The key must be given, and only its principal
functor is significant. Any uninstantiated variables in the Term will be replaced by new
private variables, along with copies of any subgoals blocked on these variables.

Usage: recorda(+Key, ?Term, -Ref)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATErecordz/3:
recordz(Key, Term, Ref)

Like recorda/3, except that the new term becomes the last item for the key Key.

Usage: recordz(+Key, ?Term, -Ref)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

256 The Ciao Prolog System

PREDICATErecorded/3:
recorded(Key, Term, Ref)

The internal database is searched for terms recorded under the key Key. These terms
are successively unified with Term in the order they occur in the database. At the same
time, Ref is unified with the implementation-defined identifier uniquely identifying the
recorded item. If the key is instantiated to a compound term, only its principal functor is
significant. If the key is uninstantiated, all terms in the database are successively unified
with Term in the order they occur.

Usage: recorded(?Key, ?Term, ?Ref)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEcurrent key/2:
current_key(KeyName, KeyTerm)

KeyTerm is the most general form of the key for a currently recorded term, and KeyName
is the name of that key. This predicate can be used to enumerate in undefined order all
keys for currently recorded terms through backtracking.

Usage: current_key(?Name, ?Key)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

Chapter 51: ttyout (library) 257

51 ttyout (library)

Version: 0.4#5 (1998/2/24)

51.1 Usage and interface (ttyout)
® ©

• Library usage:

:- use_module(library(ttyout)).

• Exports:

− Predicates:

ttyget/1, ttyget1/1, ttynl/0, ttyput/1, ttyskip/1, ttytab/1, ttyflush/0,
ttydisplay/1, ttydisplayq/1, ttyskipeol/0, ttydisplay_string/1.

 ª

51.2 Documentation on exports (ttyout)

PREDICATEttyget/1:
No further documentation available for this predicate.

PREDICATEttyget1/1:
No further documentation available for this predicate.

PREDICATEttynl/0:
− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEttyput/1:
ttyput(X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEttyskip/1:
No further documentation available for this predicate.

PREDICATEttytab/1:
No further documentation available for this predicate.

PREDICATEttyflush/0:
No further documentation available for this predicate.

258 The Ciao Prolog System

PREDICATEttydisplay/1:
No further documentation available for this predicate.

PREDICATEttydisplayq/1:
No further documentation available for this predicate.

PREDICATEttyskipeol/0:
No further documentation available for this predicate.

PREDICATEttydisplay string/1:
No further documentation available for this predicate.

Chapter 52: Enabling operators at run-time 259

52 Enabling operators at run-time

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#203 (2003/12/20, 14:32:53 CET)

This library package allows the use of the statically defined operators of a module for the
reading performed at run-time by the program that uses the module. Simply by using this
package the operator definitions appearing in the module are enabled during the execution of
the program.

52.1 Usage and interface (runtime_ops)
® ©

• Library usage:

:- use_package(runtime_ops).

or

:- module(...,...,[runtime_ops]).

• Other modules used:

− System library modules:

operators.

 ª

260 The Ciao Prolog System

PART V - Annotated Prolog library (assertions) 261

PART V - Annotated Prolog library (assertions)

® ©

Author(s): The CLIP Group.

Ciao allows annotating the program code with assertions. Such assertions include type and
instantiation mode declarations, but also more general properties as well as comments in the
style of the literate programming. These assertions document predicates (and modules and
whole applications) and can be used by the Ciao preprocessor/compiler while debugging and
optimizing the program or library, and by the Ciao documenter to build the program or library
reference manual.

 ª

262 The Ciao Prolog System

Chapter 53: The Ciao assertion package 263

53 The Ciao assertion package

Author(s): Manuel Hermenegildo, Francisco Bueno, German Puebla.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#8 (1999/12/9, 21:1:11 MET)

The assertions package adds a number of new declaration definitions and new operator
definitions which allow including program assertions in user programs. Such assertions can be
used to describe predicates, properties, modules, applications, etc. These descriptions can be
formal specifications (such as preconditions and post-conditions) or machine-readable textual
comments.

This module is part of the assertions library. It defines the basic code-related assertions,
i.e., those intended to be used mainly by compilation-related tools, such as the static analyzer
or the run-time test generator.

Giving specifications for predicates and other program elements is the main functionality
documented here. The exact syntax of comments is described in the autodocumenter (lpdoc
[Knu84,Her99]) manual, although some support for adding machine-readable comments in as-
sertions is also mentioned here.

There are two kinds of assertions: predicate assertions and program point assertions. All
predicate assertions are currently placed as directives in the source code, i.e., preceded by “:-”.
Program point assertions are placed as goals in clause bodies.

53.1 More info

The facilities provided by the library are documented in the description of its component
modules. This documentation is intended to provide information only at a “reference manual”
level. For a more tutorial introduction to the subject and some more examples please see the
document “An Assertion Language for Debugging of Constraint Logic Programs (Technical
Report CLIP2/97.1)”. The assertion language implemented in this library is modeled after this
design document, although, due to implementation issues, it may differ in some details. The
purpose of this manual is to document precisely what the implementation of the library supports
at any given point in time.

53.2 Some attention points

• Formatting commands within text strings: many of the predicates defined in these mod-
ules include arguments intended for providing textual information. This includes titles,
descriptions, comments, etc. The type of this argument is a character string. In order for
the automatic generation of documentation to work correctly, this character string should
adhere to certain conventions. See the description of the docstring/1 type/grammar for
details.

• Referring to variables: In order for the automatic documentation system to work correctly,
variable names (for example, when referring to arguments in the head patterns of pred dec-
larations) must be surrounded by an @var command. For example, @var{VariableName}
should be used for referring to the variable “VariableName”, which will appear then for-
matted as follows: VariableName. See the description of the docstring/1 type/grammar
for details.

264 The Ciao Prolog System

53.3 Usage and interface (assertions)
® ©

• Library usage:

The recommended procedure in order to make use of assertions in user programs is to include
the assertions syntax library, using one of the following declarations, as appropriate:

:- module(...,...,[assertions]).
:- include(library(assertions)).
:- use_package([assertions]).

• Exports:

− Predicates:

check/1, trust/1, true/1, false/1.

• New operators defined:

=>/2 [975,xfx], ::/2 [978,xfx], decl/1 [1150,fx], decl/2 [1150,xfx], pred/1 [1150,fx], pred/2
[1150,xfx], prop/1 [1150,fx], prop/2 [1150,xfx], modedef/1 [1150,fx], calls/1 [1150,fx],
calls/2 [1150,xfx], success/1 [1150,fx], success/2 [1150,xfx], comp/1 [1150,fx], comp/2
[1150,xfx], entry/1 [1150,fx].

• New declarations defined:

pred/1, pred/2, calls/1, calls/2, success/1, success/2, comp/1, comp/2, prop/1,
prop/2, entry/1, modedef/1, decl/1, decl/2, comment/2.

• Other modules used:

− System library modules:

assertions/assertions_props.

 ª

53.4 Documentation on new declarations (assertions)

DECLARATIONpred/1:
This assertion provides information on a predicate. The body of the assertion (its only
argument) contains properties or comments in the formats defined by assrt_body/1.

More than one of these assertions may appear per predicate, in which case each one
represents a possible “ mode” of use (usage) of the predicate. The exact scope of the
usage is defined by the properties given for calls in the body of each assertion (which
should thus distinguish the different usages intended). All of them together cover all
possible modes of usage.

For example, the following assertions describe (all the and the only) modes of usage of
predicate length/2 (see lists):

:- pred length(L,N) : list * var => list * integer
"Computes the length of L.".
:- pred length(L,N) : var * integer => list * integer
"Outputs L of length N.".
:- pred length(L,N) : list * integer => list * integer
"Checks that L is of length N.".

Usage: :- pred(AssertionBody).

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

Chapter 53: The Ciao assertion package 265

DECLARATIONpred/2:
This assertion is similar to a pred/1 assertion but it is explicitely qualified. Non-qualified
pred/1 assertions are assumed the qualifier check.

Usage: :- pred(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONcalls/1:
This assertion is similar to a pred/1 assertion but it only provides information about the
calls to a predicate. If one or several calls assertions are given they are understood to
describe all possible calls to the predicate.

For example, the following assertion describes all possible calls to predicate is/2 (see
arithmetic):

:- calls is(term,arithexpression).

Usage: :- calls(AssertionBody).

− The following properties should hold at call time:

AssertionBody is a call assertion body. (assertions_props:c_assrt_body/1)

DECLARATIONcalls/2:
This assertion is similar to a calls/1 assertion but it is explicitely qualified. Non-qualified
calls/1 assertions are assumed the qualifier check.

Usage: :- calls(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is a call assertion body. (assertions_props:c_assrt_body/1)

DECLARATIONsuccess/1:
This assertion is similar to a pred/1 assertion but it only provides information about the
answers to a predicate. The described answers might be conditioned to a particular way
of calling the predicate.

For example, the following assertion specifies the answers of the length/2 predicate if it
is called as in the first mode of usage above (note that the previous pred assertion already
conveys such information, however it also compelled the predicate calls, while the success
assertion does not):

:- success length(L,N) : list * var => list * integer.

Usage: :- success(AssertionBody).

− The following properties should hold at call time:

AssertionBody is a predicate assertion body. (assertions_props:s_assrt_body/1)

266 The Ciao Prolog System

DECLARATIONsuccess/2:
This assertion is similar to a success/1 assertion but it is explicitely qualified. Non-
qualified success/1 assertions are assumed the qualifier check.

Usage: :- success(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is a predicate assertion body. (assertions_props:s_assrt_body/1)

DECLARATIONcomp/1:
This assertion is similar to a pred/1 assertion but it only provides information about the
global execution properties of a predicate (note that such kind of information is also con-
veyed by pred assertions). The described properties might be conditioned to a particular
way of calling the predicate.

For example, the following assertion specifies that the computation of append/3 (see
lists) will not fail if it is called as described (but does not compel the predicate to be
called that way):

:- comp append(Xs,Ys,Zs) : var * var * var + not_fail.

Usage: :- comp(AssertionBody).

− The following properties should hold at call time:

AssertionBody is a comp assertion body. (assertions_props:g_assrt_body/1)

DECLARATIONcomp/2:
This assertion is similar to a comp/1 assertion but it is explicitely qualified. Non-qualified
comp/1 assertions are assumed the qualifier check.

Usage: :- comp(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is a comp assertion body. (assertions_props:g_assrt_body/1)

DECLARATIONprop/1:
This assertion is similar to a pred/1 assertion but it flags that the predicate being docu-
mented is also a “ property.”

Properties are standard predicates, but which are guaranteed to terminate for any possible
instantiation state of their argument(s), do not perform side-effects which may interfere
with the program behaviour, and do not further instantiate their arguments or add new
constraints.

Provided the above holds, properties can thus be safely used as run-time checks. The
program transformation used in ciaopp for run-time checking guarantees the third re-
quirement. It also performs some basic checks on properties which in most cases are
enough for the second requirement. However, it is the user’s responsibility to guarantee
termination of the properties defined. (See also Chapter 55 [Declaring regular types],
page 277 for some considerations applicable to writing properties.)

Chapter 53: The Ciao assertion package 267

The set of properties is thus a strict subset of the set of predicates. Note that properties
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.

Usage: :- prop(AssertionBody).

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONprop/2:
This assertion is similar to a prop/1 assertion but it is explicitely qualified. Non-qualified
prop/1 assertions are assumed the qualifier check.

Usage: :- prop(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONentry/1:
This assertion provides information about the external calls to a predicate. It is identical
syntactically to a calls/1 assertion. However, they describe only external calls, i.e., calls
to the exported predicates of a module from outside the module, or calls to the predicates
in a non-modular file from other files (or the user).

These assertions are trusted by the compiler. As a result, if their descriptions are erroneous
they can introduce bugs in programs. Thus, entry/1 assertions should be written with
care.

An important use of these assertions is in providing information to the compiler which it
may not be able to infer from the program. The main use is in providing information on
the ways in which exported predicates of a module will be called from outside the module.
This will greatly improve the precision of the analyzer, which otherwise has to assume
that the arguments that exported predicates receive are any arbitrary term.

Usage: :- entry(AssertionBody).

− The following properties should hold at call time:

AssertionBody is a call assertion body. (assertions_props:c_assrt_body/1)

DECLARATIONmodedef/1:
This assertion is used to define modes. A mode defines in a compact way a set of call
and success properties. Once defined, modes can be applied to predicate arguments in
assertions. The meaning of this application is that the call and success properties defined
by the mode hold for the argument to which the mode is applied. Thus, a mode is
conceptually a “property macro”.

The syntax of mode definitions is similar to that of pred declarations. For example, the
following set of assertions:

:- modedef +A : nonvar(A) # "A is bound upon predicate entry.".

:- pred p(+A,B) : integer(A) => ground(B).

is equivalent to:

268 The Ciao Prolog System

:- pred p(A,B) : (nonvar(A),integer(A)) => ground(B)
"A is bound upon predicate entry.".

Usage: :- modedef(AssertionBody).

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONdecl/1:
This assertion is similar to a pred/1 assertion but it is used for declarations instead than
for predicates.

Usage: :- decl(AssertionBody).

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONdecl/2:
This assertion is similar to a decl/1 assertion but it is explicitely qualified. Non-qualified
decl/1 assertions are assumed the qualifier check.

Usage: :- decl(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONcomment/2:
Usage: :- comment(Pred, Comment).

− Description: This assertion gives a text Comment for a given predicate Pred.

− The following properties should hold at call time:

Pred is a head pattern. (assertions_props:head_pattern/1)

Comment is a text comment with admissible documentation commands. The
usual formatting commands that are applicable in comment strings are defined
by stringcommand/1. See the lpdoc manual for documentation on comments.
(assertions_props:docstring/1)

53.5 Documentation on exports (assertions)

PREDICATEcheck/1:
Usage: check(PropertyConjunction)

− Description: This assertion provides information on a clause program point (position
in the body of a clause). Calls to a check/1 assertion can appear in the body of a
clause in any place where a literal can normally appear. The property defined by
PropertyConjunction should hold in all the run-time stores corresponding to that
program point. See also Chapter 59 [Run-time checking of assertions], page 297.

Chapter 53: The Ciao assertion package 269

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions_props:property_conjunction/1)

PREDICATEtrust/1:
Usage: trust(PropertyConjunction)

− Description: This assertion also provides information on a clause program point. It is
identical syntactically to a check/1 assertion. However, the properties stated are not
taken as something to be checked but are instead trusted by the compiler. While the
compiler may in some cases detect an inconsistency between a trust/1 assertion and
the program, in all other cases the information given in the assertion will be taken
to be true. As a result, if these assertions are erroneous they can introduce bugs in
programs. Thus, trust/1 assertions should be written with care.

An important use of these assertions is in providing information to the compiler which
it may not be able to infer from the program (either because the information is not
present or because the analyzer being used is not precise enough). In particular,
providing information on external predicates which may not be accessible at the time
of compiling the module can greatly improve the precision of the analyzer. This can
be easily done with trust assertion.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions_props:property_conjunction/1)

PREDICATEtrue/1:
Usage: true(PropertyConjunction)

− Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved to hold by the analyzer. Thus, these assertions
often represent the analyzer output.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions_props:property_conjunction/1)

PREDICATEfalse/1:
Usage: false(PropertyConjunction)

− Description: This assertion is identical syntactically to a check/1 assertion. However,
the properties stated have been proved not to hold by the analyzer. Thus, these
assertions often represent the analyzer output.

− The following properties should hold at call time:

PropertyConjunction is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The
first argument of each such term is a variable which appears as a head argument.
(assertions_props:property_conjunction/1)

270 The Ciao Prolog System

Chapter 54: Types and properties related to assertions 271

54 Types and properties related to assertions

Author(s): Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#156 (2001/11/24, 13:23:30 CET)

This module is part of the assertions library. It provides the formal definition of the
syntax of several forms of assertions and describes their meaning. It does so by defining types
and properties related to the assertions themselves. The text describes, for example, the overall
fields which are admissible in the bodies of assertions, where properties can be used inside these
bodies, how to combine properties for a given predicate argument (e.g., conjunctions) , etc. and
provides some examples.

54.1 Usage and interface (assertions_props)
® ©

• Library usage:

:- use_module(library(assertions_props)).

• Exports:

− Properties:

head_pattern/1, nabody/1, docstring/1.

− Regular Types:

assrt_body/1, complex_arg_property/1, property_conjunction/1, property_
starterm/1, complex_goal_property/1, dictionary/1, c_assrt_body/1, s_assrt_
body/1, g_assrt_body/1, assrt_status/1, assrt_type/1, predfunctor/1,
propfunctor/1.

• Other modules used:

− System library modules:

dcg_expansion.

 ª

54.2 Documentation on exports (assertions_props)

REGTYPEassrt body/1:
This predicate defines the different types of syntax admissible in the bodies of pred/1,
decl/1, etc. assertions. Such a body is of the form:

Pr [:: DP] [: CP] [=> AP] [+ GP] [# CO]

where (fields between [...] are optional):

• Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

• DP is a (possibly empty) complex argument property (complex_arg_property/1)
which expresses properties which are compatible with the predicate, i.e., instantiations
made by the predicate are compatible with the properties in the sense that applying
the property at any point to would not make it fail.

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

272 The Ciao Prolog System

• AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

• GP is a (possibly empty) complex goal property (complex_goal_property/1) which
applies to the whole execution of a call to the predicate. These only apply if the
(possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

See the lpdoc manual for documentation on assertion comments.

Usage: assrt_body(X)

− Description: X is an assertion body.

PROPERTYhead pattern/1:
A head pattern can be a predicate name (functor/arity) (predname/1) or a term. Thus,
both p/3 and p(A,B,C) are valid head patterns. In the case in which the head pattern is
a term, each argument of such a term can be:

• A variable. This is useful in order to be able to refer to the correspond-
ing argument positions by name within properties and in comments. Thus,
p(Input,Parameter,Output) is a valid head pattern.

• A ground term. In this case this term determines a property of the corresponding
argument. The actual property referred to is that given by the term but with one
more argument added at the beginning, which is a new variable which, in a rewriting
of the head pattern, appears at the argument position occupied by the term. Unless
otherwise stated (see below), the property built this way is understood to hold for both
calls and answers. For example, the head pattern p(Input,list(integer),Output)
is valid and equivalent for example to having the head pattern p(Input,A,Output)
and stating that the property list(A,integer) holds for the calls and successes of
the predicate.

• Finally, it can also be a variable or a ground term, as above, but preceded by a “
mode.” This mode determines in a compact way certain call or answer properties.
For example, the head pattern p(Input,+list(integer),Output) is valid, as long
as +/1 is declared as a mode.

Acceptable modes are documented in library(modes). User defined modes are doc-
umented in modedef/1.

Usage: head_pattern(Pr)

− Description: Pr is a head pattern.

REGTYPEcomplex arg property/1:
complex_arg_property(Props)

Props is a (possibly empty) complex argument property. Such properties can appear in
two formats, which are defined by property_conjunction/1 and property_starterm/1
respectively. The two formats can be mixed provided they are not in the same field of an
assertion. I.e., the following is a valid assertion:

:- pred foo(X,Y) : nonvar * var => (ground(X),ground(Y)).

Usage: complex_arg_property(Props)

− Description: Props is a (possibly empty) complex argument property

Chapter 54: Types and properties related to assertions 273

REGTYPEproperty conjunction/1:
This type defines the first, unabridged format in which properties can be expressed in the
bodies of assertions. It is essentially a conjunction of properties which refer to variables.
The following is an example of a complex property in this format:

• (integer(X),list(Y,integer)): X has the property integer/1 and Y has the prop-
erty list/2, with second argument integer.

Usage: property_conjunction(Props)

− Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. The first
argument of each such term is a variable which appears as a head argument.

REGTYPEproperty starterm/1:
This type defines a second, compact format in which properties can be expressed in the
bodies of assertions. A property_starterm/1 is a term whose main functor is */2 and,
when it appears in an assertion, the number of terms joined by */2 is exactly the arity of
the predicate it refers to. A similar series of properties as in property_conjunction/1
appears, but the arity of each property is one less: the argument position to which they
refer (first argument) is left out and determined by the position of the property in the
property_starterm/1. The idea is that each element of the */2 term corresponds to a
head argument position. Several properties can be assigned to each argument position by
grouping them in curly brackets. The following is an example of a complex property in
this format:

• integer * list(integer): the first argument of the procedure (or function, or ...)
has the property integer/1 and the second one has the property list/2, with second
argument integer.

• {integer,var} * list(integer): the first argument of the procedure (or function,
or ...) has the properties integer/1 and var/1 and the second one has the property
list/2, with second argument integer.

Usage: property_starterm(Props)

− Description: Props is either a term or several terms separated by */2. The main
functor of each of those terms corresponds to that of the definition of a property, and
the arity should be one less than in the definition of such property. All arguments of
each such term are ground.

REGTYPEcomplex goal property/1:
complex_goal_property(Props)

Props is a (possibly empty) complex goal property. Such properties can be either a term
or a conjunction of terms. The main functor and arity of each of those terms corresponds
to the definition of a property. Such properties apply to all executions of all goals of the
predicate which comply with the assertion in which the Props appear.

The arguments of the terms in Props are implicitely augmented with a first argument
which corresponds to a goal of the predicate of the assertion in which the Props appear.
For example, the assertion

:- comp var(A) + not_further_inst(A).

has property not_further_inst/1 as goal property, and establishes that in all executions
of var(A) it should hold that not_further_inst(var(A),A).

Usage: complex_goal_property(Props)

274 The Ciao Prolog System

− Description: Props is either a term or a conjunction of terms. The main functor
and arity of each of those terms corresponds to the definition of a property. A first
implicit argument in such terms identifies goals to which the properties apply.

PROPERTYnabody/1:
Usage: nabody(ABody)

− Description: ABody is a normalized assertion body.

REGTYPEdictionary/1:
Usage: dictionary(D)

− Description: D is a dictionary of variable names.

REGTYPEc assrt body/1:
This predicate defines the different types of syntax admissible in the bodies of call/1,
entry/1, etc. assertions. The following are admissible:

Pr : CP [# CO]

where (fields between [...] are optional):

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.

Usage: c_assrt_body(X)

− Description: X is a call assertion body.

REGTYPEs assrt body/1:
This predicate defines the different types of syntax admissible in the bodies of pred/1,
func/1, etc. assertions. The following are admissible:

Pr : CP => AP # CO
Pr : CP => AP
Pr => AP # CO
Pr => AP

where:

• Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• AP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the answers to the predicate (if the predicate succeeds). These only
apply if the (possibly empty) properties given for calls in the assertion hold.

Chapter 54: Types and properties related to assertions 275

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.

Usage: s_assrt_body(X)

− Description: X is a predicate assertion body.

REGTYPEg assrt body/1:
This predicate defines the different types of syntax admissible in the bodies of comp/1
assertions. The following are admissible:

Pr : CP + GP # CO
Pr : CP + GP
Pr + GP # CO
Pr + GP

where:

• Pr is a head pattern (head_pattern/1) which describes the predicate or property
and possibly gives some implicit call/answer information.

• CP is a (possibly empty) complex argument property (complex_arg_property/1)
which applies to the calls to the predicate.

• GP contains (possibly empty) complex goal property (complex_goal_property/1)
which applies to the whole execution of a call to the predicate. These only apply if
the (possibly empty) properties given for calls in the assertion hold.

• CO is a comment string (docstring/1). This comment only applies if the (possibly
empty) properties given for calls in the assertion hold. The usual formatting com-
mands that are applicable in comment strings can be used (see stringcommand/1).

The format of the different parts of the assertion body are given by n_assrt_body/5 and
its auxiliary types.

Usage: g_assrt_body(X)

− Description: X is a comp assertion body.

REGTYPEassrt status/1:
The types of assertion status. They have the same meaning as the program-point asser-
tions, and are as follows:

assrt_status(true).
assrt_status(false).
assrt_status(check).
assrt_status(checked).
assrt_status(trust).

Usage: assrt_status(X)

− Description: X is an acceptable status for an assertion.

276 The Ciao Prolog System

REGTYPEassrt type/1:
The admissible kinds of assertions:

assrt_type(pred).
assrt_type(prop).
assrt_type(decl).
assrt_type(func).
assrt_type(calls).
assrt_type(success).
assrt_type(comp).
assrt_type(entry).
assrt_type(modedef).

Usage: assrt_type(X)

− Description: X is an admissible kind of assertion.

REGTYPEpredfunctor/1:
Usage: predfunctor(X)

− Description: X is a type of assertion which defines a predicate.

REGTYPEpropfunctor/1:
Usage: propfunctor(X)

− Description: X is a type of assertion which defines a property.

PROPERTYdocstring/1:
Usage: docstring(String)

− Description: String is a text comment with admissible documentation commands.
The usual formatting commands that are applicable in comment strings are defined
by stringcommand/1. See the lpdoc manual for documentation on comments.

Chapter 55: Declaring regular types 277

55 Declaring regular types

Author(s): Manuel Hermenegildo, Pedro Lopez, Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#9 (1999/12/9, 21:57:42 MET)

This library package adds some new declaration definitions and new operator definitions to
user programs. These new declarations and operators provide some very simple syntactic sugar
to support regular type definitions in source code. Regular types are just properties which have
the additional characteristic of being regular types (basic_props:regtype/1).

For example, this library package allows writing:

:- regtype tree(X) # "X is a tree.".

instead of the more combersome:

:- prop tree(X) + regtype # "X is a tree.".

Regular types can be used as properties to describe predicates and play an essential role in
program debugging (see the Ciao Prolog preprocessor (ciaopp) manual).

In this chapter we explain some general considerations worth taking into account when writing
properties in general, not just regular types. The exact syntax of regular types is also described.

55.1 Defining properties

Given the classes of assertions in the Ciao assertion language, there are two fundamental
classes of properties. Properties used in assertions which refer to execution states (i.e., calls/1,
success/1, and the like) are called properties of execution states. Properties used in asser-
tions related to computations (i.e., comp/1) are called properties of computations. Different
considerations apply when writing a property of the former or of the later kind.

Consider a definition of the predicate string_concat/3 which concatenates two character
strings (represented as lists of ASCII codes):

string_concat([],L,L).
string_concat([X|Xs],L,[X|NL]):- string_concat(Xs,L,NL).

Assume that we would like to state in an assertion that each argument “is a list of inte-
gers.” However, we must decide which one of the following two possibilities we mean exactly:
“the argument is instantiated to a list of integers” (let us call this property instantiated_
to_intlist/1), or “if any part of the argument is instantiated, this instantiation must be
compatible with the argument being a list of integers” (we will call this property compatible_
with_intlist/1). For example, instantiated_to_intlist/1 should be true for the terms []
and [1,2], but should not for X, [a,2], and [X,2]. In turn, compatible_with_intlist/1
should be true for [], X, [1,2], and [X,2], but should not be for [X|1], [a,2], and 1. We
refer to properties such as instantiated_to_intlist/1 above as instantiation properties and
to those such as compatible_with_intlist/1 as compatibility properties (corresponding to the
traditional notions of “instantiation types” and “compatibility types”).

It turns out that both of these notions are quite useful in practice. In the example above, we
probably would like to use compatible_with_intlist/1 to state that on success of string_
concat/3 all three argument must be compatible with lists of integers in an assertion like:

:- success string_concat(A,B,C) => (compatible_with_intlist(A),
compatible_with_intlist(B),
compatible_with_intlist(C)).

278 The Ciao Prolog System

With this assertion, no error will be flagged for a call to string_concat/3 such
as string_concat([20],L,R), which on success produces the resulting atom string_
concat([20],L,[20|L]), but a call string_concat([],a,R) would indeed flag an error.

On the other hand, and assuming that we are running on a Prolog system, we would probably
like to use instantiated_to_intlist/1 for sumlist/2 as follows:

:- calls sumlist(L,N) : instantiated_to_intlist(L).

sumlist([],0).
sumlist([X|R],S) :- sumlist(R,PS), S is PS+X.

to describe the type of calls for which the program has been designed, i.e., those in which the
first argument of sumlist/2 is indeed a list of integers.

The property instantiated_to_intlist/1 might be written as in the following (Prolog)
definition:

:- prop instantiated_to_intlist/1.

instantiated_to_intlist(X) :-
nonvar(X), instantiated_to_intlist_aux(X).

instantiated_to_intlist_aux([]).
instantiated_to_intlist_aux([X|T]) :-

integer(X), instantiated_to_intlist(T).

(Recall that the Prolog builtin integer/1 itself implements an instantiation check, failing if
called with a variable as the argument.)

The property compatible_with_intlist/1 might in turn be written as follows (also in
Prolog):

:- prop compatible_with_intlist/1.

compatible_with_intlist(X) :- var(X).
compatible_with_intlist(X) :-

nonvar(X), compatible_with_intlist_aux(X).

compatible_with_intlist_aux([]).
compatible_with_intlist_aux([X|T]) :-

int_compat(X), compatible_with_intlist(T).

int_compat(X) :- var(X).
int_compat(X) :- nonvar(X), integer(X).

Note that these predicates meet the criteria for being properties and thus the prop/1 decla-
ration is correct.

Ensuring that a property meets the criteria for “not affecting the computation” can sometimes
make its coding somewhat tedious. In some ways, one would like to be able to write simply:

intlist([]).
intlist([X|R]) :- int(X), intlist(R).

(Incidentally, note that the above definition, provided that it suits the requirements for being a
property and that int/1 is a regular type, meets the criteria for being a regular type. Thus, it
could be declared :- regtype intlist/1.)

But note that (independently of the definition of int/1) the definition above is not the
correct instantiation check, since it would succeed for a call such as intlist(X). In fact, it is
not strictly correct as a compatibility property either, because, while it would fail or succeed

Chapter 55: Declaring regular types 279

as expected, it would perform instantiations (e.g., if called with intlist(X) it would bind X to
[]). In practice, it is convenient to provide some run-time support to aid in this task.

The run-time support of the Ciao system (see Chapter 59 [Run-time checking of assertions],
page 297) ensures that the execution of properties is performed in such a way that properties
written as above can be used directly as instantiation checks. Thus, writing:

:- calls sumlist(L,N) : intlist(L).

has the desired effect. Also, the same properties can often be used as compatibility checks by
writing them in the assertions as compat(Property) (basic_props:compat/1). Thus, writing:

:- success string_concat(A,B,C) => (compat(intlist(A)),
compat(intlist(B)),
compat(intlist(C))).

also has the desired effect.

As a general rule, the properties that can be used directly for checking for compatibility should
be downwards closed, i.e., once they hold they will keep on holding in every state accessible in
forwards execution. There are certain predicates which are inherently instantiation checks and
should not be used as compatibility properties nor appear in the definition of a property that
is to be used with compat. Examples of such predicates (for Prolog) are ==, ground, nonvar,
integer, atom, >, etc. as they require a certain instantiation degree of their arguments in order
to succeed.

In contrast with properties of execution states, properties of computations refer to the entire
execution of the call(s) that the assertion relates to. One such property is, for example, not_
fail/1 (note that although it has been used as in :- comp append(Xs,Ys,Zs) + not_fail,
it is in fact read as not_fail(append(Xs,Ys,Zs)); see assertions_props:complex_goal_
property/1). For this property, which should be interpreted as “execution of the predicate
either succeeds at least once or loops,” we can use the following predicate not_fail/1 for run-
time checking:

not_fail(Goal):-
if(call(Goal),

true, %% then
warning(Goal)). %% else

where the warning/1 (library) predicate simply prints a warning message.

In this simple case, implementation of the predicate is not very difficult using the (non-
standard) if/3 builtin predicate present in many Prolog systems.

However, it is not so easy to code predicates which check other properties of the computation
and we may in general need to program a meta-interpreter for this purpose.

280 The Ciao Prolog System

55.2 Usage and interface (regtypes)
® ©

• Library usage:

:- use_package(regtypes).

or

:- module(...,...,[regtypes]).

• New operators defined:

regtype/1 [1150,fx], regtype/2 [1150,xfx].

• New declarations defined:

regtype/1, regtype/2.

• Other modules used:

− System library modules:

assertions/assertions_props.

 ª

55.3 Documentation on new declarations (regtypes)

DECLARATIONregtype/1:
This assertion is similar to a pred assertion but it flags that the predicate being documented
is also a “ regular type.” This allows for example checking whether it is in the class of types
supported by the type checking and inference modules. Currently, types are properties
whose definitions are regular programs.

A regular program is defined by a set of clauses, each of the form:

p(x, v_1, ..., v_n) :- body_1, ..., body_k.

where:

1. x is a term whose variables (which are called term variables) are unique, i.e., it is not
allowed to introduce equality constraints between the variables of x.

For example, p(f(X, Y)) :- ... is valid, but p(f(X, X)) :- ... is not.

2. in all clauses defining p/n+1 the terms x do not unify except maybe for one single
clause in which x is a variable.

3. n >= 0 and p/n is a parametric type functor (whereas the predicate defined by the
clauses is p/n+1).

4. v_1, ..., v_n are unique variables, which are called parametric variables.

5. Each body_i is of the form:

1. t(z) where z is one of the term variables and t is a regular type expression;

2. q(y, t_1, ..., t_m) where m >= 0, q/m is a parametric type functor, not in the
set of functors =/2, ^/2, ./3.

t_1, ..., t_m are regular type expressions, and y is a term variable.

6. Each term variable occurs at most once in the clause’s body (and should be as the
first argument of a literal).

A regular type expression is either a parametric variable or a parametric type functor
applied to some of the parametric variables (but regular type abstractions might also be
used in some cases, see 〈undefined〉 [Meta-properties], page 〈undefined〉).

A parametric type functor is a regular type, defined by a regular program, or a basic type.
Basic types are defined in Chapter 15 [Basic data types and properties], page 99.

Chapter 55: Declaring regular types 281

The set of types is thus a well defined subset of the set of properties. Note that types
can be used to describe characteristics of arguments in assertions and they can also be
executed (called) as any other predicates.

Usage: :- regtype(AssertionBody).

− The following properties should hold at call time:

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

DECLARATIONregtype/2:
This assertion is similar to a regtype/1 assertion but it is explicitely qualified. Non-
qualified regtype/1 assertions are assumed the qualifier check. Note that checking regular
type definitions should be done with the ciaopp preprocessor.

Usage: :- regtype(AssertionStatus, AssertionBody).

− The following properties should hold at call time:

AssertionStatus is an acceptable status for an assertion. (assertions_
props:assrt_status/1)

AssertionBody is an assertion body. (assertions_props:assrt_body/1)

282 The Ciao Prolog System

Chapter 56: Properties which are native to analyzers 283

56 Properties which are native to analyzers

Author(s): Francisco Bueno, Manuel Hermenegildo, Pedro Lopez.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#86 (2003/7/17, 16:59:29 CEST)

This library contains a set of properties which are natively understood by the different pro-
gram analyzers of ciaopp. They are used by ciaopp on output and they can also be used as
properties in assertions.

56.1 Usage and interface (native_props)
® ©

• Library usage:

:- use_module(library(’assertions/native_props’))

or also as a package :- use_package(nativeprops).

Note the different names of the library and the package.

• Exports:

− Properties:

covered/2, linear/1, mshare/1, nonground/1, fails/1, not_fails/1, possibly_
fails/1, covered/1, not_covered/1, is_det/1, non_det/1, possibly_nondet/1,
mut_exclusive/1, not_mut_exclusive/1, size_lb/2, size_ub/2, steps_lb/2,
steps_ub/2, steps/2, finite_solutions/1, terminates/1.

• Other modules used:

− System library modules:

andprolog/andprolog_rt, terms_check, terms_vars, sort, lists.

 ª

56.2 Documentation on exports (native_props)

PROPERTYcovered/2:
covered(X, Y)

All variables occuring in X occur also in Y.

Usage: covered(X, Y)

− Description: X is covered by Y.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYlinear/1:
linear(X)

X is bound to a term which is linear, i.e., if it contains any variables, such variables appear
only once in the term. For example, [1,2,3] and f(A,B) are linear terms, while f(A,A)
is not.

Usage: linear(X)

− Description: X is instantiated to a linear term.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

284 The Ciao Prolog System

PROPERTYmshare/1:
mshare(X)

X contains all sharing sets [JL88,MH89] which specify the possible variable occurrences in
the terms to which the variables involved in the clause may be bound. Sharing sets are a
compact way of representing groundness of variables and dependencies between variables.
This representation is however generally difficult to read for humans. For this reason, this
information is often translated to ground/1, indep/1 and indep/2 properties, which are
easier to read.

Usage: mshare(X)

− Description: The sharing pattern is X.

− The following properties should hold globally:

This predicate is understood natively by CiaoPP as sharing(X). (basic_
props:native/2)

PROPERTYnonground/1:
Usage: nonground(X)

− Description: X is not ground.

− The following properties should hold globally:

This predicate is understood natively by CiaoPP as not_ground(X). (basic_
props:native/2)

PROPERTYfails/1:
fails(X)

Calls of the form X fail.

Usage: fails(X)

− Description: Calls of the form X fail.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYnot fails/1:
not_fails(X)

Calls of the form X produce at least one solution, or not terminate [DLGH97].

Usage: not_fails(X)

− Description: All the calls of the form X do not fail.

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYpossibly fails/1:
possibly_fails(X)

Non-failure is not ensured for any call of the form X [DLGH97]. In other words, nothing
can be ensured about non-failure nor termination of such calls.

Usage: possibly_fails(X)

− Description: Non-failure is not ensured for calls of the form X.

Chapter 56: Properties which are native to analyzers 285

PROPERTYcovered/1:
covered(X)

For any call of the form X there is at least one clause whose test succeeds (i.e. all the calls
of the form X are covered.) [DLGH97].

Usage: covered(X)

− Description: All the calls of the form X are covered.

PROPERTYnot covered/1:
not_covered(X)

There is some call of the form X for which there is not any clause whose test succeeds
[DLGH97].

Usage: not_covered(X)

− Description: Not all of the calls of the form X are covered.

PROPERTYis det/1:
is_det(X)

All calls of the form X are deterministic, i.e. produce at most one solution, or not terminate.

Usage: is_det(X)

− Description: All calls of the form X are deterministic.

PROPERTYnon det/1:
non_det(X)

All calls of the form X are not deterministic, i.e., produce several solutions.

Usage: non_det(X)

− Description: All calls of the form X are not deterministic.

PROPERTYpossibly nondet/1:
possibly_nondet(X)

Non-determinism is not ensured for all calls of the form X. In other words, nothing can
be ensured about determinacy nor termination of such calls.

Usage: possibly_nondet(X)

− Description: Non-determinism is not ensured for calls of the form X.

PROPERTYmut exclusive/1:
mut_exclusive(X)

For any call of the form X at most one clause succeeds, i.e. clauses are pairwise exclusive.

Usage: mut_exclusive(X)

− Description: For any call of the form X at most one clause succeeds.

286 The Ciao Prolog System

PROPERTYnot mut exclusive/1:
not_mut_exclusive(X)

Not for all calls of the form X at most one clause succeeds. I.e. clauses are not disjoint for
some call.

Usage: not_mut_exclusive(X)

− Description: Not for all calls of the form X at most one clause succeeds.

PROPERTYsize lb/2:
size_lb(X, Y)

The minimum size of the terms to which the argument Y is bound to is given by the
expression Y. Various measures can be used to determine the size of an argument, e.g.,
list-length, term-size, term-depth, integer-value, etc. [DL93].

Usage: size_lb(X, Y)

− Description: Y is a lower bound on the size of argument X.

PROPERTYsize ub/2:
size_ub(X, Y)

The maximum size of the terms to which the argument Y is bound to is given by the
expression Y. Various measures can be used to determine the size of an argument, e.g.,
list-length, term-size, term-depth, integer-value, etc. [DL93].

Usage: size_ub(X, Y)

− Description: Y is a upper bound on the size of argument X.

PROPERTYsteps lb/2:
steps_lb(X, Y)

The minimum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DLGHL97,LGHD96]

Usage: steps_lb(X, Y)

− Description: Y is a lower bound on the cost of any call of the form X.

PROPERTYsteps ub/2:
steps_ub(X, Y)

The maximum computation time (in resolution steps) spent by any call of the form X is
given by the expression Y [DL93,LGHD96]

Usage: steps_ub(X, Y)

− Description: Y is a upper bound on the cost of any call of the form X.

PROPERTYsteps/2:
steps(X, Y)

The time (in resolution steps) spent by any call of the form X is given by the expression Y

Usage: steps(X, Y)

− Description: Y is the cost (number of resolution steps) of any call of the form X.

Chapter 56: Properties which are native to analyzers 287

PROPERTYfinite solutions/1:
finite_solutions(X)

Calls of the form X produce a finite number of solutions [DLGH97].

Usage: finite_solutions(X)

− Description: All the calls of the form X have a finite number of solutions.

PROPERTYterminates/1:
terminates(X)

Calls of the form X always terminate [DLGH97].

Usage: terminates(X)

− Description: All the calls of the form X terminate.

PROPERTYindep/1:
Usage: indep(X)

− Description: The variables in pairs in X are pairwise independent.

− The following properties hold globally:

This predicate is understood natively by CiaoPP as indep(X). (basic_
props:native/2)

PROPERTYindep/2:
Usage: indep(X, Y)

− Description: X and Y do not have variables in common.

− The following properties hold globally:

This predicate is understood natively by CiaoPP as indep([[X,Y]]). (basic_
props:native/2)

PROPERTYground/1:
Usage: ground(X)

− Description: X is currently ground (it contains no variables).

− The following properties hold upon exit:

X is ground. (basic_props:gnd/1)

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PROPERTYnonvar/1:
General properties: nonvar(X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

This predicate is understood natively by CiaoPP as not_free(X). (basic_
props:native/2)

288 The Ciao Prolog System

Usage: nonvar(X)

− Description: X is currently a term which is not a free variable.

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

PROPERTYvar/1:
General properties: var(X)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

This predicate is understood natively by CiaoPP as free(X). (basic_
props:native/2)

var(X) is side-effect hard. (basic_props:sideff/2)

Usage: var(X)

− Description: X is a free variable.

− The following properties hold globally:

X is not further instantiated. (basic_props:not_further_inst/2)

(UNDOC REEXPORT)regtype/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)native/2:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)native/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)sideff/2:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)term/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)int/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)nnegint/1:
Imported from basic_props (see the corresponding documentation for details).

Chapter 56: Properties which are native to analyzers 289

(UNDOC REEXPORT)flt/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)num/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)atm/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)struct/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)gnd/1:
Imported from basic_props (see the corresponding documentation for details).

(UNDOC REEXPORT)instance/2:
Imported from terms_check (see the corresponding documentation for details).

290 The Ciao Prolog System

Chapter 57: ISO-Prolog modes 291

57 ISO-Prolog modes

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#292 (2004/2/16, 14:52:52 CET)

This file defines the “ modes” used in the documentation of the ISO-Prolog standard. See
also Chapter 58 [Classical Prolog modes], page 293 for an alternative set of modes.

57.1 Usage and interface (isomodes)
® ©

• Library usage:

:- use_package([assertions,isomodes]).

• New operators defined:

?/1 [200,fy], @/1 [200,fy].

• New modes defined:

+/1, @/1, -/1, ?/1, */1, +/2, @/2, -/2, ?/2, */2.

 ª

57.2 Documentation on new modes (isomodes)

MODE+/1:
Usage: + A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term_typing:nonvar/1)

MODE@/1:
Usage: @ A

− The following properties are added globally:

A is not further instantiated. (basic_props:not_further_inst/2)

MODE-/1:
Usage: - A

− The following properties are added at call time:

A is a free variable. (term_typing:var/1)

MODE?/1:
Unspecified argument.

MODE*/1:
Unspecified argument.

292 The Ciao Prolog System

MODE+/2:
Usage: A + X

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

MODE@/2:
Usage: @(A, X)

− The following properties are added at call time:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

− The following properties are added globally:

A is not further instantiated. (basic_props:not_further_inst/2)

MODE-/2:
Usage: A - X

− The following properties are added at call time:

A is a free variable. (term_typing:var/1)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

MODE?/2:
Usage: ?(A, X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

undefined:call(X,A) (undefined property)

MODE*/2:
Usage: A * X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

Chapter 58: Classical Prolog modes 293

58 Classical Prolog modes

Author(s): Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 0.8#43 (1999/3/6, 18:39:38 CET)

This file defines a number of very simple “ modes” which are frequently useful in programs.
These correspond to the modes used in classical Prolog texts with some simple addtions. Note
that some of these modes use the same symbol as one of the ISO-modes (see Chapter 57 [ISO-
Prolog modes], page 291) but with subtly different meaning.

58.1 Usage and interface (basicmodes)
® ©

• Library usage:

:- use package([assertions,basicmodes]).

• New operators defined:

^/1 [25,fy], ?/1 [500,fx], @/1 [500,fx].

• New modes defined:

+/1, -/1, ?/1, @/1, in/1, out/1, go/1, +/2, -/2, ?/2, @/2, in/2, out/2, go/2.

 ª

58.2 Documentation on new modes (basicmodes)

MODE+/1:
Input value in argument.

Usage: + A

− The following properties are added at call time:

A is currently a term which is not a free variable. (term_typing:nonvar/1)

MODE-/1:
No input value in argument.

Usage: - A

− The following properties are added at call time:

A is a free variable. (term_typing:var/1)

MODE?/1:
Unspecified argument.

MODE@/1:
No output value in argument.

Usage: @ A

− The following properties are added globally:

A is not further instantiated. (basic_props:not_further_inst/2)

294 The Ciao Prolog System

MODEin/1:
Input argument.

Usage: in(A)

− The following properties are added at call time:

A is currently ground (it contains no variables). (term_typing:ground/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term_typing:ground/1)

MODEout/1:
Output argument.

Usage: out(A)

− The following properties are added at call time:

A is a free variable. (term_typing:var/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term_typing:ground/1)

MODEgo/1:
Ground output (input/output argument).

Usage: go(A)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term_typing:ground/1)

MODE+/2:
Usage: A + X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is currently a term which is not a free variable. (term_typing:nonvar/1)

MODE-/2:
Usage: A - X

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is a free variable. (term_typing:var/1)

MODE?/2:
Usage: ?(A, X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

Chapter 58: Classical Prolog modes 295

MODE@/2:
Usage: @(A, X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added globally:

A is not further instantiated. (basic_props:not_further_inst/2)

MODEin/2:
Usage: in(A, X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is currently ground (it contains no variables). (term_typing:ground/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term_typing:ground/1)

MODEout/2:
Usage: out(A, X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added at call time:

A is a free variable. (term_typing:var/1)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term_typing:ground/1)

MODEgo/2:
Usage: go(A, X)

− Call and exit are compatible with:

undefined:call(X,A) (undefined property)

− The following properties are added upon exit:

A is currently ground (it contains no variables). (term_typing:ground/1)

296 The Ciao Prolog System

Chapter 59: Run-time checking of assertions 297

59 Run-time checking of assertions

Author(s): German Puebla.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#283 (2004/2/13, 15:39:33 CET)

This library package allows the use of run-time checks for the assertions introduced in a
program.

The recommended way of performing run-time checks of predicate assertions in a program is
via the Ciao preprocessor (see ciaopp manual), which performs the required program transfor-
mation. However, this package can also be used to perform checking of program-point assertions.

59.1 Usage and interface (rtchecks)
® ©

• Library usage:

:- use_package(rtchecks).

or

:- module(...,...,[rtchecks]).

• Exports:

− Regular Types:

expr/1.

• Other modules used:

− System library modules:

rtchecks/rtchecks_sys.

 ª

59.2 Documentation on exports (rtchecks)

REGTYPEexpr/1:
Usage:

− Description: A property formula.

59.3 Documentation on internals (rtchecks)

PREDICATEcheck/1:
check(Property)

Checks whether the property defined by Property holds. Otherwise, a warning message
is issued. It corresponds to a program-point check assertion (see Chapter 53 [The Ciao
assertion package], page 263).

Usage: check(Property)

− The following properties should hold at call time:

A property formula. (user(... /rtchecks_doc):expr/1)

298 The Ciao Prolog System

59.4 Known bugs and planned improvements (rtchecks)

• All the code in this package is included in the user program when it is used, ant there is a
lot of it! A module should be used instead.

• check/1 uses lists instead of "proper" properties.

PART VI - Ciao Prolog library miscellanea 299

PART VI - Ciao Prolog library miscellanea

® ©

Author(s): The CLIP Group.

This part documents several Ciao libraries which provide different useful additional function-
alities. Such functionalities include performing operating system calls, gathering statistics from
the Prolog engine, file and file name manipulation, error and exception handling, fast reading
and writing of terms (marshalling and unmarshalling), file locking, program reporting messages,
pretty-printing programs and assertions, a browser of the system libraries, additional expansion
utilities, concurrent aggregates, graph visualization, etc.

 ª

300 The Ciao Prolog System

Chapter 60: Structured stream handling 301

60 Structured stream handling

Version: 1.9#332 (2004/3/29, 19:20:32 CEST)

60.1 Usage and interface (streams)
® ©

• Library usage:

:- use_module(library(streams)).

• Exports:

− Predicates:

open_null_stream/1, open_input/2, close_input/1, open_output/2, close_
output/1.

 ª

60.2 Documentation on exports (streams)

PREDICATEopen null stream/1:
No further documentation available for this predicate.

PREDICATEopen input/2:
No further documentation available for this predicate.

PREDICATEclose input/1:
No further documentation available for this predicate.

PREDICATEopen output/2:
No further documentation available for this predicate.

PREDICATEclose output/1:
No further documentation available for this predicate.

302 The Ciao Prolog System

Chapter 61: Dictionaries 303

61 Dictionaries

Author(s): The CLIP Group.

Version: 1.9#240 (2003/12/22, 18:52:17 CET)

This module provides predicates for implementing dictionaries. Such dictionaries are cur-
rently implemented as ordered binary trees of key-value pairs.

61.1 Usage and interface (dict)
® ©

• Library usage:

:- use_module(library(dict)).

• Exports:

− Predicates:

dictionary/5, dic_node/2, dic_lookup/3, dic_lookup/4, dic_get/3, dic_
replace/4.

− Properties:

dictionary/1.

 ª

61.2 Documentation on exports (dict)

PROPERTYdictionary/1:
Usage: dictionary(D)

− Description: D is a dictionary.

PREDICATEdictionary/5:
Usage: dictionary(D, K, V, L, R)

− Description: The dictionary node D has key K, value V, left child L, and right child R.

PREDICATEdic node/2:
Usage: dic_node(D, N)

− Description: N is a sub-dictionary of D.

− Calls should, and exit will be compatible with:

D is a dictionary. (dict:dictionary/1)

N is a dictionary. (dict:dictionary/1)

PREDICATEdic lookup/3:
Usage: dic_lookup(D, K, V)

− Description: D contains value V at key K. If it was not already in D it is added.

− Calls should, and exit will be compatible with:

D is a dictionary. (dict:dictionary/1)

304 The Ciao Prolog System

PREDICATEdic lookup/4:
Usage: dic_lookup(D, K, V, O)

− Description: Same as dic_lookup(D,K,V). O indicates if it was already in D (old)
or not (new).

− Calls should, and exit will be compatible with:

D is a dictionary. (dict:dictionary/1)

PREDICATEdic get/3:
Usage: dic_get(D, K, V)

− Description: D contains value V at key K. Fails if it is not already in D.

− Calls should, and exit will be compatible with:

D is a dictionary. (dict:dictionary/1)

PREDICATEdic replace/4:
Usage: dic_replace(D, K, V, D1)

− Description: D and D1 are identical except for the element at key K, which in D1
contains value V, whatever has (or whether it is) in D.

− Calls should, and exit will be compatible with:

D is a dictionary. (dict:dictionary/1)

D1 is a dictionary. (dict:dictionary/1)

Chapter 62: String processing 305

62 String processing

Author(s): Daniel Cabeza.

Version: 0.4#5 (1998/2/24)

This module provides predicates for doing input/output with strings (character code lists)
and for including in grammars defining strings.

62.1 Usage and interface (strings)
® ©

• Library usage:

:- use_module(library(strings)).

• Exports:

− Predicates:

get_line/2, get_line/1, write_string/2, write_string/1, whitespace/2,
whitespace0/2, string/3.

 ª

62.2 Documentation on exports (strings)

PREDICATEget line/2:
get_line(Stream, Line)

Reads from Stream a line of text and unifies Line with it. The end of the line can have
UNIX [10] or MS-DOS [13 10] termination, which is not included in Line. At EOF, the
term end of file is returned.

PREDICATEget line/1:
get_line(Line)

Behaves like current_input(S), get_line(S,Line).

PREDICATEwrite string/2:
write_string(Stream, String)

Writes String onto Stream.

PREDICATEwrite string/1:
write_string(String)

Behaves like current_input(S), write_string(S, String).

PREDICATEwhitespace/2:
whitespace(String, Rest)

In a grammar rule, as whitespace/0, represents whitespace (a positive number of space
(32), tab (9), newline (10) or return (13) characters). Thus, Rest is a proper suffix of
String with one or more whitespace characters removed. An example of use would be:

306 The Ciao Prolog System

attrs([]) --> ""
attrs([N|Ns]) -->

whitespace,
attr(N),
attrs(Ns).

PREDICATEwhitespace0/2:
whitespace0(String, Rest)

In a grammar rule, as whitespace0/0, represents possible whitespace (any number of
space (32), tab (9), newline (10) or return (13) characters). Thus, Rest is String or a
proper suffix of String with one or more whitespace characters removed. An example of
use would be:

assignment(N,V) -->
variable_name(N), whitespace0, "=", whitespace0, value(V).

PREDICATEstring/3:
string(String, Head, Tail)

In a grammar rule, as string/1, represents literally String. An example of use would
be:

double(A) -->
string(A),
string(A).

62.3 Documentation on internals (strings)

PROPERTYline/1:
A property, defined as follows:

line(L) :-
string(L).

line(end_of_file).

Chapter 63: Printing status and error messages 307

63 Printing status and error messages

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#282 (2004/2/13, 15:20:28 CET)

This is a very simple library for printing status and error messages to the console.

63.1 Usage and interface (messages)
® ©

• Library usage:

:- use_module(library(messages)).

• Exports:

− Predicates:

error_message/1, error_message/2, error_message/3, warning_message/1,
warning_message/2, warning_message/3, note_message/1, note_message/2,
note_message/3, simple_message/1, simple_message/2, optional_message/2,
optional_message/3, debug_message/1, debug_message/2, debug_goal/2, debug_
goal/3.

− Multifiles:

issue_debug_messages/1.

• Other modules used:

− System library modules:

format, lists, filenames.

 ª

63.2 Documentation on exports (messages)

PREDICATEerror message/1:
Meta-predicate with arguments: error_message(addmodule).

Usage: error_message(Text)

− Description: The text provided in Text is printed as an ERROR message.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic_props:string/1)

PREDICATEerror message/2:
Meta-predicate with arguments: error_message(?,addmodule).

Usage: error_message(Text, ArgList)

− Description: The text provided in Text is printed as an ERROR message, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

308 The Ciao Prolog System

PREDICATEerror message/3:
Meta-predicate with arguments: error_message(?,?,addmodule).

Usage: error_message(Lc, Text, ArgList)

− Description: The text provided in Text is printed as an ERROR message, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text, and reporting error location Lc (file and line numbers).

− The following properties should hold at call time:

Identifies a program source line. (messages:location/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

PREDICATEwarning message/1:
Meta-predicate with arguments: warning_message(addmodule).

Usage: warning_message(Text)

− Description: The text provided in Text is printed as a WARNING message.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic_props:string/1)

PREDICATEwarning message/2:
Meta-predicate with arguments: warning_message(?,addmodule).

Usage: warning_message(Text, ArgList)

− Description: The text provided in Text is printed as a WARNING message, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

PREDICATEwarning message/3:
Meta-predicate with arguments: warning_message(?,?,addmodule).

Usage: warning_message(Lc, Text, ArgList)

− Description: The text provided in Text is printed as a WARNING message, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text, and reporting error location Lc (file and line numbers).

− The following properties should hold at call time:

Identifies a program source line. (messages:location/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

Chapter 63: Printing status and error messages 309

PREDICATEnote message/1:
Meta-predicate with arguments: note_message(addmodule).

Usage: note_message(Text)

− Description: The text provided in Text is printed as a NOTE.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic_props:string/1)

PREDICATEnote message/2:
Meta-predicate with arguments: note_message(?,addmodule).

Usage: note_message(Text, ArgList)

− Description: The text provided in Text is printed as a NOTE, using the arguments in
ArgList to interpret any variable-related formatting commands embedded in Text.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

PREDICATEnote message/3:
Meta-predicate with arguments: note_message(?,?,addmodule).

Usage: note_message(Lc, Text, ArgList)

− Description: The text provided in Text is printed as a NOTE, using the arguments in
ArgList to interpret any variable-related formatting commands embedded in Text,
and reporting error location Lc (file and line numbers).

− The following properties should hold at call time:

Identifies a program source line. (messages:location/1)

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

PREDICATEsimple message/1:
Usage: simple_message(Text)

− Description: The text provided in Text is printed.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic_props:string/1)

PREDICATEsimple message/2:
Usage: simple_message(Text, ArgList)

− Description: The text provided in Text is printed as a message, using the arguments
in ArgList.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

310 The Ciao Prolog System

PREDICATEoptional message/2:
Usage: optional_message(Text, Opts)

− Description: The text provided in Text is printed as a message, but only if the atom
-v is a member of Opts. These predicates are meant to be used for optional messages,
which are only to be printed when verbose output is requested explicitly.

− The following properties should hold at call time:

Text is a string (a list of character codes). (basic_props:string/1)

Opts is a list of atms. (basic_props:list/2)

PREDICATEoptional message/3:
Usage: optional_message(Text, ArgList, Opts)

− Description: The text provided in Text is printed as a message, using the arguments
in ArgList, but only if the atom -v is a member of Opts. These predicates are meant
to be used for optional messages, which are only to be printed when verbose output
is requested explicitly.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

Opts is a list of atms. (basic_props:list/2)

PREDICATEdebug message/1:
Meta-predicate with arguments: debug_message(addmodule).

Usage: debug_message(Text)

− Description: The text provided in Text is printed as a debugging message. These
messages are turned on by defining a fact of issue_debug_messages/1 with the
module name as argument.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

PREDICATEdebug message/2:
Meta-predicate with arguments: debug_message(?,addmodule).

Usage: debug_message(Text, ArgList)

− Description: The text provided in Text is printed as a debugging message, using
the arguments in ArgList to interpret any variable-related formatting commands
embedded in Text. These messages are turned on by defining a fact of issue_debug_
messages/1 which the module name as argument.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

Chapter 63: Printing status and error messages 311

PREDICATEdebug goal/2:
Meta-predicate with arguments: debug_goal(goal,addmodule).

Usage: debug_goal(Goal, Text)

− Description: Goal is called. The text provided in Text is then printed as a debugging
message. The whole process (including running Goal) is turned on by defining a fact
of issue_debug_messages/1 with the module name as argument.

PREDICATEdebug goal/3:
Meta-predicate with arguments: debug_goal(goal,?,addmodule).

Usage: debug_goal(Goal, Text, ArgList)

− Description: Goal is called. The text provided in Text is then printed as a debugging
message, using the arguments in ArgList to interpret any variable-related formatting
commands embedded in Text. Note that the variables in ArgList can be computed
by Goal. The whole process (including running Goal) is turned on by defining a fact
of issue_debug_messages/1 with the module name as argument.

63.3 Documentation on multifiles (messages)

PREDICATEissue debug messages/1:
The predicate is multifile.

The predicate is of type data.

Usage: issue_debug_messages(Module)

− Description: Printing of debugging messages is enabled for module Module.

− The following properties should hold upon exit:

Module is currently instantiated to an atom. (term_typing:atom/1)

63.4 Documentation on internals (messages)

REGTYPElocation/1:
Usage:

− Description: Identifies a program source line.

63.5 Known bugs and planned improvements (messages)

• Debug message switching should really be done with an expansion, for performance.

312 The Ciao Prolog System

Chapter 64: Accessing and redirecting the stream aliases 313

64 Accessing and redirecting the stream aliases

Author(s): Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#52 (2001/1/26, 15:34:13 CET)

This library allows the redefinition of the files to which the special streams user_input,
user_output, and user_error point to. On startup they point to the standard input, standard
output, and standard error, in Unix style (Windows users may find that standard error stream
does not work properly). Changing the file pointed to is useful for, e.g., redirecting the place to
which the Prolog’s standard error stream goes from within Prolog (e.g., to start a log file).

64.1 Usage and interface (io_alias_redirection)
® ©

• Library usage:

:- use_module(library(io_alias_redirection)).

• Exports:

− Predicates:

set_stream/3, get_stream/2.

 ª

64.2 Documentation on exports (io_alias_redirection)

PREDICATEset stream/3:
Usage: set_stream(+StreamAlias, +NewStream, ?OldStream)

− Description: Associate StreamAlias with an open stream newStream. Returns in
OldStream the stream previusly associated with the alias. The mode of NewStream
must match the intended use of StreamAlias.

− The following properties should hold at call time:

+StreamAlias is the alias of an open stream, i.e., an atom which represents a stream
at Prolog level. (streams_basic:stream_alias/1)

+NewStream is an open stream. (streams_basic:stream/1)

?OldStream is an open stream. (streams_basic:stream/1)

PREDICATEget stream/2:
Usage: get_stream(+StreamAlias, ?Stream)

− Description: Return in Stream the stream associated with StreamAlias.

− The following properties should hold at call time:

+StreamAlias is the alias of an open stream, i.e., an atom which represents a stream
at Prolog level. (streams_basic:stream_alias/1)

?Stream is an open stream. (streams_basic:stream/1)

314 The Ciao Prolog System

Chapter 65: Atom to term conversion 315

65 Atom to term conversion

Author(s): Francisco Bueno, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#215 (2003/12/21, 2:27:2 CET)

This module implements the predicates involved in the atom to term conversion.

65.1 Usage and interface (atom2term)
® ©

• Library usage:

:- use_module(library(atom2term)).

• Exports:

− Predicates:

atom2term/2, string2term/2, parse_term/3.

 ª

65.2 Documentation on exports (atom2term)

PREDICATEatom2term/2:
Usage: atom2term(+Atom, -Term)

− Description: Convert an atom into a term. Atom is an atom, but must have term
syntax. Term is a term resulting from parsing Atom char by char.

PREDICATEstring2term/2:
Usage: string2term(+String, -Term)

− Description: Same as atom2term/2 but first argument is a string (containing a term).

PREDICATEparse term/3:
Usage: parse_term(+String, -Term, ?Dummy)

− Description: String is parsed into Term upto Dummy (which is the non-parsed rest of
the list).

65.3 Known bugs and planned improvements (atom2term)

• This is just a quick hack written mainly for parsing daVinci’s messages. There should be a
call to the standard reader to do this!

316 The Ciao Prolog System

Chapter 66: ctrlcclean (library) 317

66 ctrlcclean (library)

Version: 0.4#5 (1998/2/24)

66.1 Usage and interface (ctrlcclean)
® ©

• Library usage:

:- use_module(library(ctrlcclean)).

• Exports:

− Predicates:

ctrlc_clean/1, delete_on_ctrlc/2, ctrlcclean/0.

• Other modules used:

− System library modules:

system.

 ª

66.2 Documentation on exports (ctrlcclean)

PREDICATEctrlc clean/1:
No further documentation available for this predicate.

Meta-predicate with arguments: ctrlc_clean(goal).

PREDICATEdelete on ctrlc/2:
No further documentation available for this predicate.

PREDICATEctrlcclean/0:
No further documentation available for this predicate.

318 The Ciao Prolog System

Chapter 67: errhandle (library) 319

67 errhandle (library)

Version: 0.4#5 (1998/2/24)

67.1 Usage and interface (errhandle)
® ©

• Library usage:

:- use_module(library(errhandle)).

• Exports:

− Predicates:

error_protect/1, handle_error/2.

 ª

67.2 Documentation on exports (errhandle)

PREDICATEerror protect/1:
No further documentation available for this predicate.

Meta-predicate with arguments: error_protect(goal).

PREDICATEhandle error/2:
No further documentation available for this predicate.

320 The Ciao Prolog System

Chapter 68: Fast reading and writing of terms 321

68 Fast reading and writing of terms

Author(s): Daniel Cabeza, Oscar Portela Arjona.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#16 (2000/8/29, 13:44:18 CEST)

This library provides predicates to support reading / writing of terms on a format designed
to be handled on read faster than standard representation.

68.1 Usage and interface (fastrw)
® ©

• Library usage:

:- use_module(library(fastrw)).

• Exports:

− Predicates:

fast_read/1, fast_write/1, fast_read/2, fast_write/2,
fast_write_to_string/3.

• Other modules used:

− System library modules:

dict.
 ª

68.2 Documentation on exports (fastrw)

PREDICATEfast read/1:
fast_read(Term)

The next term is read from current standard input and is unified with Term. The syntax
of the term must agree with fast read / fast write format. If the end of the input has
been reached, Term is unified with the term ’end of file’. Further calls to fast_read/1
will then cause an error.

PREDICATEfast write/1:
fast_write(Term)

Output Term in a way that fast_read/1 and fast_read/2 will be able to read it back.

PREDICATEfast read/2:
fast_read(Stream, Term)

The next term is read from Stream and unified with Term. The syntax of the term must
agree with fast read / fast write format. If the end of the input has been reached, Term is
unified with the term ’end of file’. Further calls to fast_read/2 will then cause an error.

PREDICATEfast write/2:
fast_write(Stream, Term)

Output Term to Stream in a way that fast_read/1 and fast_read/2 will be able to read
it back.

322 The Ciao Prolog System

PREDICATEfast write to string/3:
No further documentation available for this predicate.

68.3 Known bugs and planned improvements (fastrw)

• Both fast_read/2 and fast_write/2 simply set the current output/input and call fast_
read/1 and fast_write/1. Therefore, in the event an error hapens during its execution,
the current input / output streams may be left pointing to the Stream

Chapter 69: File name manipulation 323

69 File name manipulation

Author(s): Daniel Cabeza, Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.3#51 (1999/9/9, 16:28:44 MEST)

This library provides some small utilities to handle file name syntax.

69.1 Usage and interface (filenames)
® ©

• Library usage:

:- use_module(library(filenames)).

• Exports:

− Predicates:

no_path_file_name/2, file_name_extension/3, basename/2, extension/2.

• Other modules used:

− System library modules:

lists.
 ª

69.2 Documentation on exports (filenames)

PREDICATEno path file name/2:
This predicate will extract the last item (usually the file name) from a given path.

The first argument must be instantiated to a string or atom. Whenever the first argument
is an atom, the second argument will be an atom. Whenever the first argument is a string,
the second argument will be a string.

This predicate will fail under any of the following conditions:

• First argument is not an atom, nor a string.

• Second argument is not the last given path item (given path is the first argument).

Those are the most usual usages of no path file name/2:

?- no_path_file_name_("/home/nexusV/somefile.txt",K).

K = "somefile.txt" ?

yes
?- no_path_file_name(’/home/nexusV/somefile.txt’,K).

K = ’somefile.txt’ ?

yes
?-

Usage: no_path_file_name(Path, FileName)

− Description: FileName is the file corresponding to the given Path.

− Call and exit should be compatible with:

Path is an atom or a string (filenames:atom_or_str/1)

FileName is an atom or a string (filenames:atom_or_str/1)

324 The Ciao Prolog System

PREDICATEfile name extension/3:
This predicate may be used in two ways:

• To create a file name from its components: name and extension. For instance:

?- file_name_extension(File,mywork,’.txt’).

File = ’mywork.txt’ ?

yes
?-

• To split a file name into its name and extension. For Instance:

?- file_name_extension(’mywork.txt’,A,B).

A = mywork,
B = ’.txt’ ?

yes
?-

Any other usage of file name extension/3 will cause the predicate to fail. Notice that valid
arguments are accepted both as atoms or strings.

Usage: file_name_extension(FileName, BaseName, Extension)

− Description: Splits a FileName into its BaseName and Extension.

− Call and exit should be compatible with:

FileName is an atom or a string (filenames:atom_or_str/1)

BaseName is an atom or a string (filenames:atom_or_str/1)

Extension is an atom or a string (filenames:atom_or_str/1)

PREDICATEbasename/2:
basename(FileName, BaseName)

BaseName is FileName without extension. Equivalent
to file_name_extension(FileName,BaseName,_). Useful to extract the base name of
a file using functional syntax.

Usage:

− Calls should, and exit will be compatible with:

FileName is an atom or a string (filenames:atom_or_str/1)

BaseName is an atom or a string (filenames:atom_or_str/1)

PREDICATEextension/2:
extension(FileName, Extension)

Extension is the extension (suffix) of FileName. Equivalent to file_name_
extension(FileName,_,Extension). Useful to extract the extension of a file using func-
tional syntax.

Usage:

− Calls should, and exit will be compatible with:

FileName is an atom or a string (filenames:atom_or_str/1)

Extension is an atom or a string (filenames:atom_or_str/1)

Chapter 70: Symbolic filenames 325

70 Symbolic filenames

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#9 (2002/5/28, 19:11:29 CEST)

This module provides a predicate for file opening which can use any term as an alias for
the filename (i.e., symbolic filenames) instead of the usual constants which are file system path
names of the actual files.

The correspondence between an alias and the actual file path is done dynamically, without
having to recompile the program. It is possible to define the correspondence via facts for
file_alias/2 in a file declared with multifile:alias_file/1 in the program: those facts will
be dynamically loaded when running the program. Alternatively, the correspondence can be
defined via shell environment variables, by defining the value of a variable by the (symbolic)
name of the file to be the path of the actual file.

70.1 Usage and interface (symfnames)
® ©

• Library usage:

:- use_module(library(symfnames)).

• Exports:

− Predicates:

open/3.

− Multifiles:

alias_file/1, file_alias/2.

• Other modules used:

− System library modules:

read, system.

 ª

70.2 Documentation on exports (symfnames)

PREDICATEopen/3:
open(File, Mode, Stream)

Open File with mode Mode and return in Stream the stream associated with the file. It
is like streams_basic:open/3, but File is considered a symbolic name: either defined
by user:file_alias/2 or as an environment variable. Predicate user:file_alias/2 is
inspected before the environment variables.

70.3 Documentation on multifiles (symfnames)

PREDICATEalias file/1:
alias_file(File)

Declares File to be a file defining symbolic names via file_alias/2. Anything else in
File is simply ignored.

The predicate is multifile.

326 The Ciao Prolog System

PREDICATEfile alias/2:
file_alias(Alias, File)

Declares Alias as a symbolic name for File, the real name of an actual file (or directory).

The predicate is multifile.

The predicate is of type data.

70.4 Other information (symfnames)

The example discussed here is included in the distribution files. There is a main application
file which uses module mm. This module reads a line from a file; the main predicate in the main
file then prints this line. The important thing is that the file read is named by a symbolic name
"file". The main application file declares another file where the symbolic names are assigned
actual file names:

:- use_module(mm).

:- multifile alias_file/1.
alias_file(myfiles).

main :- p(X), display(X), nl.

Now, the file myfiles.pl can be used to change the file you want to read from without
having to recompile the application. The current assignment is:

%:- use_package([]).
file_alias(file,’mm.pl’).

so the execution of the application will show the first line of mm.pl. However, you can change
to:

file_alias(file,’main.pl’).

and then execution of the same executable will show the first line of main.pl.

Chapter 71: File I/O utilities 327

71 File I/O utilities

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#216 (2003/12/21, 2:30:59 CET)

This module implements the file I/O utilities.

71.1 Usage and interface (file_utils)
® ©

• Library usage:

:- use_module(library(file_utils)).

• Exports:

− Predicates:

file_terms/2, copy_stdout/1, file_to_string/2, stream_to_string/2.

• Other modules used:

− System library modules:

read, streams.

 ª

71.2 Documentation on exports (file_utils)

PREDICATEfile terms/2:
Usage 1: file_terms(@File, ?Terms)

− Description: Transform a file File to/from a list of terms Terms.

− The following properties should hold upon exit:

@File is a source name. (streams_basic:sourcename/1)

?Terms is a list. (basic_props:list/1)

Usage 2: file_terms(File, Terms)

− Description: Unifies Terms with the list of all terms in File.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

Terms is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

File is a source name. (streams_basic:sourcename/1)

Terms is a list. (basic_props:list/1)

Usage 3: file_terms(File, Terms)

− Description: Writes the terms in list Terms (including the ending ’.’) onto file File.

− The following properties should hold at call time:

File is a source name. (streams_basic:sourcename/1)

Terms is a list. (basic_props:list/1)

− The following properties should hold upon exit:

File is a source name. (streams_basic:sourcename/1)

Terms is a list. (basic_props:list/1)

328 The Ciao Prolog System

PREDICATEcopy stdout/1:
Usage: copy_stdout(+File)

− Description: Copies file File to standard output.

− The following properties should hold upon exit:

+File is a source name. (streams_basic:sourcename/1)

PREDICATEfile to string/2:
Usage: file_to_string(+FileName, -String)

− Description: Reads all the characters from the file FileName and returns them in
String.

− Call and exit should be compatible with:

+FileName is a source name. (streams_basic:sourcename/1)

-String is a string (a list of character codes). (basic_props:string/1)

PREDICATEstream to string/2:
Usage: stream_to_string(+Stream, -String)

− Description: Reads all the characters from Stream and returns them in String.

− Call and exit should be compatible with:

+Stream is an open stream. (streams_basic:stream/1)

-String is a string (a list of character codes). (basic_props:string/1)

Chapter 72: File locks 329

72 File locks

Author(s): J. Gomez, D. Cabeza, M. Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#159 (2001/11/27, 11:58:24 CET)

This module implements file locks: the ability to lock a fiel so that other processes cannot
access it until the file is unlocked. It is, however, not working. The predicates do nothing.
Proper implementation is planned for a near future.

72.1 Usage and interface (file_locks)
® ©

• Library usage:

:- use_module(library(file_locks)).

• Exports:

− Predicates:

lock_file/3, unlock_file/2.

 ª

72.2 Documentation on exports (file_locks)

PREDICATElock file/3:
Usage: lock_file(File, LockType, Result)

− Description: Tries to lock File with LockType and returns the result (either true or
false) in Result.

− The following properties should hold at call time:

File is an atom. (basic_props:atm/1)

LockType is an atom. (basic_props:atm/1)

Result is an atom. (basic_props:atm/1)

PREDICATEunlock file/2:
Usage: unlock_file(File, Result)

− Description: Tries to unlock File the result (either true or false) in Result.

− The following properties should hold at call time:

File is an atom. (basic_props:atm/1)

Result is an atom. (basic_props:atm/1)

72.3 Known bugs and planned improvements (file_locks)

• No doing anything helpful.

330 The Ciao Prolog System

Chapter 73: Term manipulation utilities 331

73 Term manipulation utilities

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#218 (2003/12/21, 18:44:51 CET)

This module implements some utils to do term manipulation.

73.1 Usage and interface (terms)
® ©

• Library usage:

:- use_module(library(terms)).

• Exports:

− Predicates:

copy_args/3, arg/2, atom_concat/2.

 ª

73.2 Documentation on exports (terms)

PREDICATEcopy args/3:
Usage: copy_args(N, Term, Copy)

− Description: Term and Copy have the same first N arguments.

− The following properties should hold at call time:

N is a non-negative integer. (basic_props:nnegint/1)

PREDICATEarg/2:
Usage: arg(Term, Arg)

− Description: Arg is an argument of Term. Gives each of the arguments on backtrack-
ing.

PREDICATEatom concat/2:
atom_concat(Atms, Atm)

Atm is the atom resulting from concatenating all atoms in the list Atms in the order in
which they appear.

332 The Ciao Prolog System

Chapter 74: Term checking utilities 333

74 Term checking utilities

Author(s): The CLIP Group.

Version: 1.9#219 (2003/12/21, 18:51:46 CET)

This module implements the term checking utilities.

74.1 Usage and interface (terms_check)
® ©

• Library usage:

:- use_module(library(terms_check)).

• Exports:

− Predicates:

ask/2, variant/2, most_general_instance/3, most_specific_generalization/3.

− Properties:

instance/2.
 ª

74.2 Documentation on exports (terms_check)

PREDICATEask/2:
ask(Term1, Term2)

Term1 and Term2 unify without producing bindings for the variables of Term1. I.e.,
instance(Term1,Term2) holds.

PROPERTYinstance/2:
instance(Term1, Term2)

Term1 is an instance of Term2.

Usage: instance(A, B)

− The following properties hold globally:

This predicate is understood natively by CiaoPP. (basic_props:native/1)

PREDICATEvariant/2:
variant(Term1, Term2)

Term1 and Term2 are identical up to renaming.

PREDICATEmost general instance/3:
most_general_instance(Term1, Term2, Term)

Term satisfies instance(Term,Term1) and instance(Term,Term2) and there is no term
more general than Term (modulo variants) that satisfies it.

334 The Ciao Prolog System

PREDICATEmost specific generalization/3:
most_specific_generalization(Term1, Term2, Term)

Term satisfies instance(Term1,Term) and instance(Term2,Term) and there is no term
less general than Term (modulo variants) that satisfies it.

74.3 Other information (terms_check)

Currently, ask/2 and instance/2 are exactly the same. However, ask/2 is more general,
since it is also applicable to constraint domains (although not yet implemented): for the par-
ticular case of Herbrand terms, it is just instance/2 (which is the only ask check currently
implemented).

Chapter 75: Sets of variables in terms 335

75 Sets of variables in terms

Author(s): The CLIP Group.

Version: 1.9#220 (2003/12/21, 18:58:25 CET)

This module implements predicates to handle sets of variables in terms.

75.1 Usage and interface (terms_vars)
® ©

• Library usage:

:- use_module(library(terms_vars)).

• Exports:

− Predicates:

varset/2, varsbag/3, varset_in_args/2.

• Other modules used:

− System library modules:

idlists, sort.

 ª

75.2 Documentation on exports (terms_vars)

PREDICATEvarset/2:
varset(Term, Xs)

Xs is the sorted list of all the variables in Term.

PREDICATEvarsbag/3:
varsbag(Term, Vs, Xs)

Vs is the list of all the variables in Term ordered as they appear in Term right-to-left
depth-first (including duplicates) plus Xs.

PREDICATEvarset in args/2:
Usage: varset_in_args(T, LL)

− Description: Each list of LL contains the variables of an argument of T, for each
argument, and in left to right order.

− The following properties should hold at call time:

T is currently a term which is not a free variable. (term_typing:nonvar/1)

− The following properties should hold upon exit:

LL is a list of list(var)s. (basic_props:list/2)

336 The Ciao Prolog System

Chapter 76: A simple pretty-printer for Ciao programs 337

76 A simple pretty-printer for Ciao programs

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#248 (2003/12/30, 21:52:0 CET)

This library module writes out to standard output a clause or a list of clauses.

76.1 Usage and interface (pretty_print)
® ©

• Library usage:

:- use_module(library(pretty_print)).

• Exports:

− Predicates:

pretty_print/2, pretty_print/3.

• Other modules used:

− System library modules:

operators, vndict, write.

 ª

76.2 Documentation on exports (pretty_print)

PREDICATEpretty print/2:
Usage: pretty_print(Cls, Flags)

− Description: Prints each clause in the list Cls after numbering its variables.

− The following properties should hold at call time:

pretty_print:clauses(Cls) (pretty_print:clauses/1)

Flags is a list of flags. (basic_props:list/2)

PREDICATEpretty print/3:
Usage: pretty_print(Cls, Flags, Ds)

− Description: Prints each clause in the list Cls after using the corresponding variable
names dictionary in Ds to name its variables.

− The following properties should hold at call time:

pretty_print:clauses(Cls) (pretty_print:clauses/1)

Flags is a list of flags. (basic_props:list/2)

Ds is a dictionary of variable names. (vndict:varnamedict/1)

338 The Ciao Prolog System

76.3 Documentation on internals (pretty_print)

REGTYPEclauses/1:
A regular type, defined as follows:

clauses([]).
clauses([_1|_2]) :-

clause(_1),
clauses(_2).

clauses(_1) :-
clause(_1).

REGTYPEclause/1:
A regular type, defined as follows:

clause(_1) :-
clterm(_1).

clause((_1,_2)) :-
clterm(_1),
term(_2).

REGTYPEclterm/1:
A regular type, defined as follows:

clterm(clause(_1,_2)) :-
callable(_1),
body(_2).

clterm(directive(_1)) :-
body(_1).

clterm((_1:-_2)) :-
callable(_1),
body(_2).

clterm(_1) :-
callable(_1).

REGTYPEbody/1:
A well formed body, including cge expressions and &-concurrent expressions. The atomic
goals may or may not have a key in the form ^(goal:any), and may or may not be module
qualified, but if they are it has to be in the form ^(^(moddesc:goal):any).

Usage: body(X)

− Description: X is a printable body.

Chapter 76: A simple pretty-printer for Ciao programs 339

REGTYPEflag/1:
A keyword ask/1 flags whether to output asks or whens and nl/1 whether to separate
clauses with a blank line or not.

Usage: flag(X)

− Description: X is a flag for the pretty-printer.

340 The Ciao Prolog System

Chapter 77: Pretty-printing assertions 341

77 Pretty-printing assertions

Author(s): Francisco Bueno Carrillo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#320 (2004/3/3, 18:29:59 CET)

This module defines some predicates which are useful for writing assertions in a readable
form.

77.1 Usage and interface (assrt_write)
® ©

• Library usage:

:- use_module(library(assrt_write)).

• Exports:

− Predicates:

write_assertion/6, write_assertion_as_comment/6.

• Other modules used:

− System library modules:

format, assertions/assrt_lib, messages, assertions/assertions_props.

 ª

77.2 Documentation on exports (assrt_write)

PREDICATEwrite assertion/6:
Usage: write_assertion(Goal, Status, Type, Body, Dict, Flag)

− Description: Writes the (normalized) assertion to current output.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions_props:assrt_
status/1)

Type is an admissible kind of assertion. (assertions_props:assrt_type/1)

Body is a normalized assertion body. (assertions_props:nabody/1)

Dict is a dictionary of variable names. (assertions_props:dictionary/1)

Flag is status or nostatus. (assrt_write:status_flag/1)

PREDICATEwrite assertion as comment/6:
Usage: write_assertion_as_comment(Goal, Status, Type, Body, Dict, Flag)

− Description: Writes the (normalized) assertion to current output as a Prolog com-
ment.

− Call and exit should be compatible with:

Status is an acceptable status for an assertion. (assertions_props:assrt_
status/1)

Type is an admissible kind of assertion. (assertions_props:assrt_type/1)

Body is a normalized assertion body. (assertions_props:nabody/1)

Dict is a dictionary of variable names. (assertions_props:dictionary/1)

Flag is status or nostatus. (assrt_write:status_flag/1)

342 The Ciao Prolog System

Chapter 78: The Ciao library browser 343

78 The Ciao library browser

Author(s): Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#21 (2000/9/26, 13:37:17 CEST)

librowser library provides a set of predicates wich enables the user to interactively find
Ciao/Prolog libraries and/or any predicate exported by them.

This is a simple example:

?- apropos(’*find*’).
persdbrt_sql: dbfindall/4
persdbrtsql: dbfindall/4
conc_aggregates: findall/3
linda: rd_findall/3
vndict: find_name/4
internals: $find_file/8
aggregates: findall/4,findall/3

yes
?-

Librowser is specially usefull when using inside GNU Emacs, just place the cursor over a
librowser response and press C-cTAB in order to get help on the related predicate. Refer to the
"Using Ciao inside GNU Emacs" chapter for further information.

78.1 Usage and interface (librowser)
® ©

• Library usage:

It is not necesary to use this library at user programs. It was designed to be used at the
Ciao toplevel shell: ciaosh. In order to do so, just make use of use_module/1 as follows:

use_module(library(librowser)).

Then, the library interface must be read. This is automatically done when calling any
predicate at librowser, and the entire process will take a little moment.So, you should want
to perform such a process after loading the Ciao toplevel:

Ciao 0.9 #75: Fri Apr 30 19:04:24 MEST 1999
?- use_module(library(librowser)).

yes
?- update.

Whether you want this process to be automatically performed when loading ciaosh, you
may include those lines in your .ciaorc personal initialization file.

• Exports:

− Predicates:

update/0, browse/2, where/1, describe/1, system_lib/1, apropos/1.

• Other modules used:

− System library modules:

filenames, read, fastrw, system, streams, patterns, lists.

 ª

344 The Ciao Prolog System

78.2 Documentation on exports (librowser)

PREDICATEupdate/0:
This predicate will scan the Ciao system libraries for predicate definitions. This may be
done once time before calling any other predicate at this library.

update/0 will also be automatically called (once) when calling any other predicate at
librowser.

Usage:

− Description: Creates an internal database of modules at Ciao system libraries.

PREDICATEbrowse/2:
This predicate is fully reversible, and is provided to inspect concrete predicate specifica-
tions. For example:

?- browse(M,findall/A).

A = 3,
M = conc_aggregates ? ;

A = 4,
M = aggregates ? ;

A = 3,
M = aggregates ? ;

no
?-

Usage: browse(Module, Spec)

− Description: Asocciates the given Spec predicate specification with the Module which
exports it.

− The following properties should hold at call time:

Module is a module name (an atom) (librowser:module_name/1)

Spec is a Functor/Arity predicate specification (librowser:pred_spec/1)

PREDICATEwhere/1:
This predicate will print at the screen the module needed in order to import a given
predicate specification. For example:

?- where(findall/A).
findall/3 exported at module conc_aggregates
findall/4 exported at module aggregates
findall/3 exported at module aggregates

yes
?-

Usage: where(Spec)

− Description: Display what module to load in order to import the given Spec.

− The following properties should hold at call time:

Spec is a Functor/Arity predicate specification (librowser:pred_spec/1)

Chapter 78: The Ciao library browser 345

PREDICATEdescribe/1:
This one is used to find out which predicates were exported by a given module. Very
usefull when you know the library, but not the concrete predicate. For example:

?- describe(librowser).
Predicates at library librowser :

apropos/1
system_lib/1
describe/1
where/1
browse/2
update/0

yes
?-

Usage: describe(Module)

− Description: Display a list of exported predicates at the given Module

− The following properties should hold at call time:

Module is a module name (an atom) (librowser:module_name/1)

PREDICATEsystem lib/1:
It retrieves on backtracking all Ciao system libraries stored in the internal database.
Certainly, those which were scanned at update/0 calling.

Usage: system_lib(Module)

− Description: Module variable will be successively instantiated to the system libaries
stored in the internal database.

− The following properties should hold at call time:

Module is a module name (an atom) (librowser:module_name/1)

PREDICATEapropos/1:
This tool makes use of regular expresions in order to find predicate specifications. It is
very usefull whether you can’t remember the full name of a predicate. Regular expresions
take the same format as described in library patterns. Example:

?- apropos(’atom_*’).

terms: atom_concat/2
concurrency: atom_lock_state/2
atomic_basic: atom_concat/3,atom_length/2,atom_codes/2
iso_byte_char: atom_chars/2

yes
?-

Usage: apropos(RegSpec)

− Description: This will search any predicate specification Spec which matches the
given RegSpec incomplete predicate specification.

− The following properties should hold at call time:

RegSpec is a Pattern/Arity specification. (librowser:apropos_spec/1)

346 The Ciao Prolog System

78.3 Documentation on internals (librowser)

REGTYPEapropos spec/1:
Defined as:

apropos_spec(_1).
apropos_spec(Pattern/Arity) :-

pattern(Pattern),
int(Arity).

Usage: apropos_spec(S)

− Description: S is a Pattern/Arity specification.

Chapter 79: Code translation utilities 347

79 Code translation utilities

Author(s): Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#40 (2001/1/5, 19:7:40 CET)

This library offers a general way to perform clause body expansions. Goal, fact and spec trans-
lation predicates are authomatically called when needed, while this utility navigates through the
meta-argument specification of the body itself. All predicates within this library must be called
at second-pass expansions, since it uses information stored at c_itf library.

79.1 Usage and interface (expansion_tools)
® ©

• Library usage:

This library is provided as a tool for those modules which performs source-to-source code
translation, usually known as code expanders. It may be loaded as other modules using a
use_module/1. Nothing special needs to be done.

• Exports:

− Predicates:

imports_meta_pred/3, body_expander/6, arg_expander/6.

• Other modules used:

− System library modules:

compiler/c_itf.

 ª

79.2 Documentation on exports (expansion_tools)

PREDICATEimports meta pred/3:
Macro provided in order to know meta-predicate specifications accessible from a module.

Usage: imports_meta_pred(Module, MetaSpec, AccessibleAt)

− Description: Tells whether MetaSpec meta-predicate specification is accessible from
Module. AccessibleAt will be binded to ’-’ whether meta-predicate is a builtin one.
If not, it will be unified with the module which defines the meta-predicate.

− The following properties should hold at call time:

Module is an atom. (basic_props:atm/1)

MetaSpec is any term. (basic_props:term/1)

AccessibleAt is a free variable. (term_typing:var/1)

PREDICATEbody expander/6:
This predicate is the main translation tool. It navigates through a clause body, when a
single goal appears, user-code is called in order to perform a translation. Whether user-
code fails to translate the involved goal, it remains the same. Regardless that goal is
translated or not, an argument expansion will be performed over all goals if applicable
(see arg_expander/6 predicate).

Variable (unknown at compile time) goals will also be attempt to translate.

348 The Ciao Prolog System

Meta-predicate with arguments: body_expander(pred(3),pred(3),pred(3),?,?,?).

Usage: body_expander(GoalTrans, FactTrans, SpecTrans, Module, Body,
ExpandedBody)

− Description: Translates Body to ExpandedBody by the usage of user-defined trans-
lators GoalTrans, FactTrans and SpecTrans. The module where the original body
appears must be unified with Module argument.

− The following properties should hold at call time:

GoalTrans is a user-defined predicate which performs goal meta-type translation
(expansion_tools:goal_expander/1)

FactTrans is a user-defined predicate which performs fact meta-type translation
(expansion_tools:fact_expander/1)

SpecTrans is a user-defined predicate which performs spec meta-type translation
(expansion_tools:spec_expander/1)

Module is an atom. (basic_props:atm/1)

Body is currently a term which is not a free variable. (term_typing:nonvar/1)

ExpandedBody is a free variable. (term_typing:var/1)

PREDICATEarg expander/6:
This predicate is an auxiliary translation tool, which is used by body_expander/6 predi-
cate. It remains exported as a macro. The predicate navigates through the meta-argument
specification of a goal. Whether a goal,fact or spec argument appears, user-code is called
in order to perform a translation. Whether user-code fails to translate the involved argu-
ment, it remains the same. Builtins as ’,’/2 or ’;’/2 are treated as meta-predicates defining
goal meta-arguments. When a goal meta-argument is located, body_expander/6 will be
called in order to navigate through it. Notice that a goal meta-argument may be unified
with another goal defining another meta-argument, so navigation is required. If arguments
are not known to arg expander/6, translation will not occur. This is posible whether goal
or qualifing module are variables.

Meta-predicate with arguments: arg_expander(pred(3),pred(3),pred(3),?,?,?).

Usage: arg_expander(GoalTrans, FactTrans, SpecTrans, Module, Goal,
ExpandedGoal)

− Description: Translates Goal to ExpandedGoal by applying user-defined translators
(GoalTrans, FactTrans and SpecTrans) to each meta-argument present at such goal.
The module where the original goal appears must be unified with Module argument.

− The following properties should hold at call time:

GoalTrans is a user-defined predicate which performs goal meta-type translation
(expansion_tools:goal_expander/1)

FactTrans is a user-defined predicate which performs fact meta-type translation
(expansion_tools:fact_expander/1)

SpecTrans is a user-defined predicate which performs spec meta-type translation
(expansion_tools:spec_expander/1)

Module is an atom. (basic_props:atm/1)

Goal is currently a term which is not a free variable. (term_typing:nonvar/1)

ExpandedBody is a free variable. (term_typing:var/1)

Chapter 79: Code translation utilities 349

79.3 Documentation on internals (expansion_tools)

PROPERTYexpander pred/1:
Usage: expander_pred(Pred)

− Description: Pred is a user-defined predicate used to perform code translations. First
argument will be binded to the corresponding term to be translated. Second argument
must be binded to the corresponding translation. Third argument will be binded to
the current module were first argument appears. Additional arguments will be user-
defined.

79.4 Known bugs and planned improvements (expansion_tools)

• pred(N) meta-arguments are not supported at this moment.

350 The Ciao Prolog System

Chapter 80: Low-level concurrency/multithreading primitives 351

80 Low-level concurrency/multithreading primitives

Author(s): Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#138 (2001/11/8, 19:50:32 CET)

This module provides basic mechanisms for using concurrency and implementing multi-goal
applications. It provides a means for arbitrary goals to be specified to be run in a separate stack
set; in that case, they are assigned a goal identifier with which further accesses (e.g., asking for
more solutions) to the goal can be made. Additionally, in some architectures, these goals can
be assigned an O.S. thread, separate from the one which made the initial call, thus providing
concurrency and, in multiprocessors, parallelism capabilities.

As for now, the memory space of the threads (c.f., stack sets) is separate in the sense that
goals are copied to the new stack set, and bindings of variables are not seen among stack sets
which allows forward and backward execution to proceed independently in each stack set, at the
cost of the initial goal copy. However, the program space (including, specially, the concurrent
predicates) are shared and seen by all the goals and threads, and should be used as the primary
means of communication and synchronization. Higer level libraries can be built using these basic
blocks.

Additionally, a small set of lock primitives are provided. Locks are associated with atom
names. Whereas the concurrent database facilities are enough to implement locks, semaphores,
messages, etc., the predicates implementing atom-based locks are faster than the ones accessing
the concurrent database (but they are less powerful).

80.1 Usage and interface (concurrency)
® ©

• Library usage:

:- use_module(library(concurrency)).

• Exports:

− Predicates:

eng_call/4, eng_call/3, eng_backtrack/2, eng_cut/1, eng_release/1, eng_
wait/1, eng_kill/1, eng_killothers/0, eng_self/1, goal_id/1, eng_goal_id/1,
eng_status/0, lock_atom/1, unlock_atom/1, atom_lock_state/2, concurrent/1.

• Other modules used:

− System library modules:

prolog_sys.

 ª

80.2 Documentation on exports (concurrency)

PREDICATEeng call/4:
Meta-predicate with arguments: eng_call(goal,?,?,?).

Usage: eng_call(+Goal, +EngineCreation, +ThreadCreation, -GoalId)

− Description: Calls Goal in a new engine (stack set), possibly using a new thread,
and returns a GoalId to designate this new goal henceforth. EngineCreation can
be either wait or create; the distinction is not yet meaningful. ThreadCreation
can be one of self, wait, or create. In the first case the creating thread is used

352 The Ciao Prolog System

to execute Goal, and thus it has to wait until its first result or failure. The call
will fail if Goal fails, and succeed otherwise. However, the call will always suceed
when a remote thread is started. The space and identifiers reclaimed for the thread
must be explicitly deallocated by calling eng_release/1. GoalIds are unique in each
execution of a Ciao Prolog program.

− The following properties should hold at call time:

+Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

+EngineCreation is an atom. (basic_props:atm/1)

+ThreadCreation is an atom. (basic_props:atm/1)

-GoalId is an integer. (basic_props:int/1)

PREDICATEeng call/3:
Meta-predicate with arguments: eng_call(goal,?,?).

Usage: eng_call(+Goal, +EngineCreation, +ThreadCreation)

− Description: Similar to eng_call/4, but the thread (if created) and stack areas are
automatically released upon success or failure of the goal. No GoalId is provided for
further interaction with the goal.

− The following properties should hold at call time:

+Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

+EngineCreation is an atom. (basic_props:atm/1)

+ThreadCreation is an atom. (basic_props:atm/1)

PREDICATEeng backtrack/2:
Usage: eng_backtrack(+GoalId, +ThreadCreation)

− Description: Performs backtracking on the goal designed by GoalId. A new thread
can be used to perform backtracking, according to ThreadCreation (same as in eng_
call/4). Fails if the goal is backtracked over by the local thread, and there are no
more solutions. Always succeeds if executed by a remote thread. The engine is not
automatically released up upon failure: eng_release/1 must be called to that end.

− The following properties should hold at call time:

+GoalId is an integer. (basic_props:int/1)

+ThreadCreation is an atom. (basic_props:atm/1)

PREDICATEeng cut/1:
Usage: eng_cut(+GoalId)

− Description: Performs a cut in the execution of the goal GoalId. The next call to
eng_backtrack/2 will therefore backtrack all the way and fail.

− The following properties should hold at call time:

+GoalId is an integer. (basic_props:int/1)

Chapter 80: Low-level concurrency/multithreading primitives 353

PREDICATEeng release/1:
Usage: eng_release(+GoalId)

− Description: Cleans up and releases the engine executing the goal designed by GoalId.
The engine must be idle, i.e., currently not exedcuting any goal. eng_wait/1 can be
used to ensure this.

− The following properties should hold at call time:

+GoalId is an integer. (basic_props:int/1)

PREDICATEeng wait/1:
Usage: eng_wait(+GoalId)

− Description: Waits for the engine executing the goal denoted by GoalId to finish
the computation (i.e., it has finished searching for a solution, either with success or
failure).

− The following properties should hold at call time:

+GoalId is an integer. (basic_props:int/1)

PREDICATEeng kill/1:
Usage: eng_kill(+GoalId)

− Description: Kills the thread executing GoalId (if any), and frees the memory used up
by the stack set. Usually one should wait (eng_wait/1) for a goal, and then release
it, but killing the thread explicitly allows recovering from error states. A goal cannot
kill itself. This feature should be used with caution, because there are situations
where killing a thread might render the system in an unstable state. Threads should
cooperate in their killing, but if the killed thread is blocked in a I/O operation, or
inside an internal critical region, this cooperation is not possible and the system,
although stopped, might very well end up in a incosistent state.

− The following properties should hold at call time:

+GoalId is an integer. (basic_props:int/1)

PREDICATEeng killothers/0:
Usage:

− Description: Kills threads and releases stack sets of all active goals, but the one calling
eng_killothers. Again, a safety measure. The same cautions as with eng_kill/1
should be taken.

PREDICATEeng self/1:
Usage: eng_self(?GoalId)

− Description: GoalId is unified with the identifier of the goal within which eng_self/1
is executed. eng_self/1 is deprecated, and eng goal id/1 should be used instead.

− The following properties should hold at call time:

?GoalId is an integer. (basic_props:int/1)

354 The Ciao Prolog System

PREDICATEgoal id/1:
Usage: goal_id(?GoalId)

− Description: GoalId is unified with the identifier of the goal within which goal_id/1
is executed. goal_id/1 is deprecated, and eng goal id/1 should be used instead.

− The following properties should hold at call time:

?GoalId is an integer. (basic_props:int/1)

PREDICATEeng goal id/1:
Usage: eng_goal_id(?GoalId)

− Description: GoalId is unified with the identifier of the goal within which eng_goal_
id/1 is executed.

− The following properties should hold at call time:

?GoalId is an integer. (basic_props:int/1)

PREDICATEeng status/0:
Usage:

− Description: Prints to standard output the current status of the stack sets.

PREDICATElock atom/1:
Usage: lock_atom(+Atom)

− Description: The semaphore associated to Atom is accessed; if its value is nonzero,
it is atomically decremented and the execution of this thread proceeds. Otherwise,
the goal waits until a nonzero value is reached. The semaphore is then atomically
decremented and the execution of this thread proceeds.

− The following properties should hold at call time:

+Atom is an atom. (basic_props:atm/1)

PREDICATEunlock atom/1:
Usage: unlock_atom(+Atom)

− Description: The semaphore associated to Atom is atomically incremented.

− The following properties should hold at call time:

+Atom is an atom. (basic_props:atm/1)

PREDICATEatom lock state/2:
Usage 1: atom_lock_state(+Atom, +Value)

− Description: Sets the semaphore associated to Atom to Value. This is usually done
at the beginning of the execution, but can be executed at any time. If not called,
semaphore associated to atoms are by default inited to 1. It should be used with cau-
tion: arbitrary use can transform programs using locks in a mess of internal relations.
The change of a semaphore value in a place other than the initialization stage of a
program is not among the allowed operations as defined by Dijkstra [Dij65,BA82].

Chapter 80: Low-level concurrency/multithreading primitives 355

− The following properties should hold at call time:

+Atom is an atom. (basic_props:atm/1)

+Value is an integer. (basic_props:int/1)

Usage 2: atom_lock_state(+Atom, -Value)

− Description: Consults the Value of the semaphore associated to Atom. Use sparingly
and mainly as a medium to check state correctness. Not among the operations on
semaphore by Djikstra.

− The following properties should hold at call time:

+Atom is an atom. (basic_props:atm/1)

-Value is an integer. (basic_props:int/1)

PREDICATEconcurrent/1:
concurrent F/A

The predicate named F with arity A is made concurrent in the current module at runtime
(useful for predicate names generated on-the-fly). This difficults a better compile-time
analysis, but in turn offers more flexibility to applications. It is also faster for some
applications: if several agents have to share data in a stuctured fashion (e.g., the generator
knows and wants to restrict the data generated to a set of other threads), a possibility
is to use the same concurrent fact and emply a field within the fact to distinguish the
receiver/sender. This can cause many threads to access and wait on the same fact, which
in turns can create contention problems. It is much better to create a new concurrent
fact and to use that new name as a channel to communicate the different threads.
concurrent/1 can either be given a predicate spec in the form Name/Arity, with Name
and Arity bound, or to give a value only to Arity, and let the system choose a new,
unused Name for the fact.

80.3 Known bugs and planned improvements (concurrency)

• Available only for Windows 32 environments and for architectures implementing POSIX
threads.

• Some implementation of threads have a limit on the total number of threads that can be
created by a process. Thread creation, in this case, just hangs. A better solution is planned
for the future.

• Creating many concurrent facts may fill up the atom table, causing Ciao Prolog to abort.

356 The Ciao Prolog System

Chapter 81: All solutions concurrent predicates 357

81 All solutions concurrent predicates

Author(s): Concurrent-safe (and incomplete) version of the aggregates predicates, based on
the regular versions by Richard A. O’Keefe and David H.D. Warren. Concurrency-safeness
provided by Manuel Carro..

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#221 (2003/12/21, 20:6:33 CET)

This module implements thread-safe aggregation predicates. Its use and results should be
the same as those in the aggregates library, but several goals can use them concurrently without
the interference and wrong results (due to implementation reasons) aggregates might lead to.
This particular implementation is completely based on the one used in the aggregates library.

81.1 Usage and interface (conc_aggregates)
® ©

• Library usage:

:- use_module(library(conc_aggregates)).

• Exports:

− Predicates:

findall/3.

• Other modules used:

− System library modules:

prolog_sys.

 ª

81.2 Documentation on exports (conc_aggregates)

PREDICATEfindall/3:
Meta-predicate with arguments: findall(?,goal,?).

Usage: findall(?Template, +Generator, ?List) 〈 • ISO • 〉

− Description: A special case of bagof, where all free variables in the Generator are
taken to be existentially quantified. Safe in concurrent applications.

− The following properties should hold upon exit:

Template is any term. (basic_props:term/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Set is a list. (basic_props:list/1)

81.3 Known bugs and planned improvements (conc_aggregates)

• Thread-safe setof/3 is not yet implemented.

• Thread-safe bagof/3 is not yet implemented.

358 The Ciao Prolog System

Chapter 82: The socket interface 359

82 The socket interface

Author(s): Manuel Carro, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#58 (2001/2/8, 11:46:41 CET)

This module defines primitives to open sockets, send, and receive data from them. This allows
communicating with other processes, on the same machine or across the Internet. The reader
should also consult standard bibliography on the topic for a proper use of these primitives.

82.1 Usage and interface (sockets)
® ©

• Library usage:

:- use_module(library(sockets)).

• Exports:

− Predicates:

connect_to_socket/3, socket_recv/2, hostname_address/2, socket_shutdown/2,
socket_recv_code/3, socket_send/2, select_socket/5, socket_accept/2, bind_
socket/3, connect_to_socket_type/4.

− Regular Types:

socket_type/1, shutdown_type/1.

• Other modules used:

− System library modules:

sockets/sockets_c.
 ª

82.2 Documentation on exports (sockets)

PREDICATEconnect to socket/3:
Usage: connect_to_socket(+Host, +Port, -Stream)

− Description: Calls connect_to_socket_type/4 with SOCK STREAM connection
type. This is the connection type you want in order to use the write/2 and read/2
predicates (and other stream IO related predicates).

− Call and exit should be compatible with:

+Host is an atom. (basic_props:atm/1)

+Port is an integer. (basic_props:int/1)

-Stream is an open stream. (streams_basic:stream/1)

PREDICATEsocket recv/2:
Usage: socket_recv(+Stream, ?String)

− Description: As socket_recv_code/3, but the return code is ignored.

− Call and exit should be compatible with:

+Stream is an open stream. (streams_basic:stream/1)

?String is a string (a list of character codes). (basic_props:string/1)

360 The Ciao Prolog System

REGTYPEsocket type/1:
Defines the atoms which can be used to specify the socket type recognized by connect_
to_socket_type/4. Defined as follows:

socket_type(stream).
socket_type(dgram).
socket_type(raw).
socket_type(seqpacket).
socket_type(rdm).

Usage: socket_type(T)

− Description: T is a valid socket type.

REGTYPEshutdown type/1:
Usage: shutdown_type(T)

− Description: T is a valid shutdown type.

PREDICATEhostname address/2:
Usage: hostname_address(+Hostname, ?Address)

− Description: Address is unified with the atom representing the address (in AF INET
format) corresponding to Hostname.

− Call and exit should be compatible with:

+Hostname is an atom. (basic_props:atm/1)

?Address is an atom. (basic_props:atm/1)

PREDICATEsocket shutdown/2:
Usage: socket_shutdown(+Stream, +How)

− Description: Shut down a duplex communication socket with which Stream is asso-
ciated. All or part of the communication can be shutdown, depending on the value
of How. The atoms read, write, or read_write should be used to denote the type of
closing required.

− Call and exit should be compatible with:

+Stream is an open stream. (streams_basic:stream/1)

+How is a valid shutdown type. (sockets:shutdown_type/1)

PREDICATEsocket recv code/3:
Usage: socket_recv_code(+Stream, ?String, ?Length)

− Description: Receives a String from the socket associated to Stream, and returns its
Length. If Length is -1, no more data is available.

− Call and exit should be compatible with:

+Stream is an open stream. (streams_basic:stream/1)

?String is a string (a list of character codes). (basic_props:string/1)

?Length is an integer. (basic_props:int/1)

Chapter 82: The socket interface 361

PREDICATEsocket send/2:
Usage: socket_send(+Stream, +String)

− Description: Sends String to the socket associated to Stream. The socket has to
be in connected state. String is not supposed to be NULL terminated, since it is a
Prolog string. If a NULL terminated string is needed at the other side, it has to be
explicitly created in Prolog.

− Call and exit should be compatible with:

+Stream is an open stream. (streams_basic:stream/1)

+String is a string (a list of character codes). (basic_props:string/1)

PREDICATEselect socket/5:
Usage: select_socket(+Socket, -NewStream, +TO_ms, +Streams, -ReadStreams)

− Description: Wait for data available in a list of Streams and in a Socket. Streams
is a list of Prolog streams which will be tested for reading. Socket is a socket (i.e.,
an integer denoting the O.S. port number) or a free variable. TO_ms is a number
denoting a timeout. Within this timeout the Streams and the Socket are checked
for the availability of data to be read. ReadStreams is the list of streams belonging
to Streams which have data pending to be read. If Socket was a free variable, it is
ignored, and NewStream is not checked. If Socket was instantiated to a port number
and there are connections pending, a connection is accepted and connected with the
Prolog stream in NewStream.

− Call and exit should be compatible with:

+Socket is an integer. (basic_props:int/1)

-NewStream is an open stream. (streams_basic:stream/1)

+TO_ms is an integer. (basic_props:int/1)

+Streams is a list of streams. (basic_props:list/2)

-ReadStreams is a list of streams. (basic_props:list/2)

PREDICATEsocket accept/2:
Usage: socket_accept(+Sock, -Stream)

− Description: Creates a new Stream connected to Sock.

− Call and exit should be compatible with:

+Sock is an integer. (basic_props:int/1)

-Stream is an open stream. (streams_basic:stream/1)

PREDICATEbind socket/3:
Usage: bind_socket(?Port, +Length, -Socket)

− Description: Returs an AF INET Socket bound to Port (which may be assigned by
the OS or defined by the caller), and listens to it (hence no listen call in this set of
primitives). Length specifies the maximum number of pending connections.

− Call and exit should be compatible with:

?Port is an integer. (basic_props:int/1)

+Length is an integer. (basic_props:int/1)

-Socket is an integer. (basic_props:int/1)

362 The Ciao Prolog System

PREDICATEconnect to socket type/4:
Usage: connect_to_socket_type(+Host, +Port, +Type, -Stream)

− Description: Returns a Stream which connects to Host. The Type of connection can
be defined. A Stream is returned, which can be used to write/2 to, to read/2, to
socket_send/2 to, or to socket_recv/2 from the socket.

− Call and exit should be compatible with:

+Host is currently instantiated to an atom. (term_typing:atom/1)

+Port is an integer. (basic_props:int/1)

+Type is a valid socket type. (sockets:socket_type/1)

-Stream is an open stream. (streams_basic:stream/1)

Chapter 83: Sockets I/O 363

83 Sockets I/O

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#241 (2003/12/22, 18:56:7 CET)

This module provides two useful predicates for programming with sockets.

83.1 Usage and interface (sockets_io)
® ©

• Library usage:

:- use_module(library(sockets_io)).

• Exports:

− Predicates:

serve_socket/3, safe_write/2.

• Other modules used:

− System library modules:

lists, file_utils, sockets/sockets.

 ª

83.2 Documentation on exports (sockets_io)

PREDICATEserve socket/3:
Meta-predicate with arguments: serve_socket(?,pred(1),pred(1)).

Usage: serve_socket(Socket, Server, Handler)

− Description: Handles the streams associated to Socket calling Server on one request
of each stream (as Server(Stream)), and Handler(Stream) if the stream is empty
(connection closed).

− The following properties should hold at call time:

Socket is a socket id. (sockets_io:socket/1)

Server is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Handler is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEsafe write/2:
Usage: safe_write(Stream, Term)

− Description: Writes Term to Stream in a way that it is safe for a socket connection
on Stream.

− The following properties should hold at call time:

Stream is an open stream. (streams_basic:stream/1)

Term is any term. (basic_props:term/1)

364 The Ciao Prolog System

Chapter 84: The Ciao Make Package 365

84 The Ciao Make Package

Author(s): Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#222 (2003/12/21, 20:8:53 CET)

This package is used mainly in two main ways:

• When writing Makefiles for lpmake.

• When writing applications which use the make library.

In both cases, this is the package that defines the syntax and meaning of the dependency rules
used.

84.1 Usage and interface (make)
® ©

• Library usage:

• When writing Makefiles for lpmake, such makefiles start with:

:- module(_,_,[make]).

or

:- make(_,_).

(The latter uses the feature that an undefined declaration at the beginning of a file is
interpreted by Ciao as a use_module/3 including as third argument a package with the
same name, in this case make.)

• When writing applications which use the make package, then it is loaded as any other
package within the application.

Note: it is often useful to use the functions package inside a Makefile (or when when
using the make library in other applications). If both make and functions are used, then
make should appear before functions in the list of packages.

• New operators defined:

::/2 [1050,xfy], <=/2 [1050,xfy], <-/2 [1050,xfy], <-/1 [1050,yf].

• Other modules used:

− System library modules:

make/make_rt.
 ª

84.2 Other information (make)

84.2.1 The Dependency Rules

The package allows defining the following types of rules:

TargetSuffix <= SourceSuffix :: SourceRoot :- BodyLiterals.
A rule of this form declares that in order to produce the file with suffix TargetSuf-
fix from a source file with the suffix SourceSuffix and root name SourceRoot the
commands in BodyLiterals must be executed. BodyLiterals is a standard Ciao Pro-
log clause body, i.e., a comma-separated conjunction of literals. When writing the
script, SourceRoot is typically left as a variable, to be instantiated by lpmake when
the script is run to the root of name of the file to be processed. This allows using
the value of SourceRoot in BodyLiterals. For example, the following rule:

366 The Ciao Prolog System

:- use_module(library(terms),[atom_concat/2]).

dvi <= tex :: FileRoot :-
atom_concat([’latex ’,FileRoot,’.tex’],Command),
system(Command).

states that we can generate a file File.dvi if we have a file named File.tex and
that the command to do so is latex File.tex. Thus, if this rule appears in file
Makefile.pl and we issue the command lpmake paper.dvi the following occurs:

• If paper.dvi does not exist and paper.tex exists, then paper.dvi is generated
from paper.tex by issuing the system command latex paper.tex.

• If paper.dvi already exists, nothing is done.

• If paper.tex does not exist, an error is reported.

Target <- :- BodyLiterals.
A rule of this form declares that in order to produce the file Target the commands
in BodyLiterals must be executed. Target need not be a real file: it can also be
simply the name of the rule, which is used to invoke it (as a procedure name). For
example, the following rule, when the command lpmake realclean is issued, deletes
temporary files in the LaTeX application:

:- use_module(library(’make/system_extra’)).

clean <- :-
ls(’*aux|*log|*~’,Files)
delete_files(Files).

Target <- Deps :- BodyLiterals.
A rule of this form declares that in order to produce the file Target, first targets
Deps will be called (i.e., the elements of Deps are either other targets with rules
defined for them, or a file or files which are already present or which can –and will
be– generated from other available files using other rules). Then, the commands
in BodyLiterals will be executed. Deps may be one target or a list of targets. For
example, the following rule, when the command lpmake realclean is issued, cleans
all the temporary files in the LaTeX application (including .dvi and .ps files). It
requires that clean be executed first:

:- use_package(functions).
:- use_module(library(’make/system_extra’)).

realclean <- clean :-
delete_files(~ls(’*dvi|*ps’)).

The following rule states that in order to meet the target view, target paper.ps
must be available or generated. For example, lpmake view can be used to call the
ghostview visualizer on paper.ps. Note the use of a globally defined predicate
main which is called in two places in the rule, and could be used in other rules
in the same file (main := paper. is equivalent to the fact main(paper). –see the
functions library):

:- use_package(functions).
:- use_module(library(’make/system_extra’)).
:- use_module(library(terms),[atom_concat/2]).

main := paper.

view <- ~atom_concat([~main,’.ps’]) :-

Chapter 84: The Ciao Make Package 367

system(~atom_concat([’ghostview ’,~main,’.ps’])).

In addition to these rules, the configuration file can define normal predicates in the usual
way, or import predicates from other modules, all of which can be called from the bodies of the
dependency rules. For example, the system_extra library (an extension of the system library)
defines many system predicates in a form which makes them very useful inside Makefiles,
specially if the functions package is used (see the examples below).

If lpmake is called without an explicit target as argument, then the first target rule in the
Makefile is used. This is useful in that the first rule can be seen as the default rule.

84.2.2 Specifying Paths

Using the vpath/1 predicate it is possible in configuration files to define several paths in
which files related to the rules can be located. In this way, not all files need to be in the same
directory as the configuration file. For example:

:- use_package(functions).

vpath := ’/home/clip/Systems/ciao/lib’.
vpath := ’/home/clip/Systems/ciao/library’.
vpath := ’/home/clip/Systems/lpdoc/lib’.

84.2.3 Documenting Rules

It is also possible to define documentation for the rules:

target_comment(Target) :- BodyLiterals.
A rule of this form allows documenting the actions related to the target. The body
(BodyLiterals) will be called in two circumstances:

• If Target is called during execution of ’lpmake commands’.

• When calling ’lpmake -h’.

Using noun forms (generation of foo instead of generating foo) in comments helps
this dual purpose. For example, the following rule:

target_comment(realclean) :-
display(’Cleanup of all generated files.’).

will produce output in the two cases pointed out above.

dependency_comment(SourceSuffix,TargetSuffix,SourceRoot) :- BodyLiterals.
Same as the previous rule, but for suffix rules. See, for example, the following generic
rule:

:- use_module(library(terms),[atom_concat/2]).

dependency_comment(SSuffix,TSuffix,FileBase) :-
display(~atom_concat([’Generation of ’,FileBase,’.’,TSuffix,

’ from ’,FileBase,’.’,SSuffix])).

84.2.4 An Example of a Makefile

The following is a simple example of a Makefile showing some basic functionality (this is
MakefileExample.pl in the example_simple directory in the make library.):

%% ---
:- module(_,_,[make,functions]).
:- use_module(library(’make/system_extra’)).

368 The Ciao Prolog System

:- use_module(library(lists),[append/3,list_concat/2]).
:- use_module(library(terms),[atom_concat/2]).

:- discontiguous(comment/2).

%% ---
%% A simple target. Defines how to produce file ’hw’.

hw <- [] :-
writef("Hello world", hw).

%% A comment describing this target (see below):
comment(hw,[’Generation of file hw’]).

%% ---
%% A target with a dependency. ’hwhw’ requires ’hw’.

hwhw <- [hw] :-
readf(hw,Content),
append(Content,[0’\n|Content],DoubleContent),
writef(DoubleContent,hwhw).

comment(hwhw,[’Generation of file hwhw’]).

%% ---
%% A simple target. Defines how to produce file ’datafile.simple’.

’datafile.simple’ <- :-
writef("Hello world", ’datafile.simple’).

comment(’datafile.simple’,[’Generation of file datafile.simple’]).

%% ---
%% A dependency based on suffixes:
%% <file>.double is generated always from <file>.simple

double <= simple :: Name :-
readf(~atom_concat([Name,’.simple’]),Content),
append(Content,[0’\n|Content],DoubleContent),
writef(DoubleContent,~atom_concat([Name,’.double’])).

%% ---
%% A dependency based on suffixes with a precondition.
%% <file>.double is generated always from <file>.simple, once precond is done

boo <- :-
display((double <= simple :: name <- precond :- body1, body2)).

%% ---
%% Example using library predicates

Chapter 84: The Ciao Make Package 369

clean <- :-
delete_files(~ls(’*~|*.asr|*.itf|*.po’)).

comment(clean,[’Cleanup of temporary files’]).

realclean <- clean :-
delete_files(~ls(’hw|hwhw|*simple|*double’)).

comment(realclean,[’Cleanup of all generated files’]).

%% ---
%% Reporting progress and documenting commands:
%% If target_comment/1 is defined it can be used to produce user-defined
%% output when targets are processed and/or documentation on what each
%% target does (used for example when lpmake is called with -h). Using
%% ’generation of foo’ instead of ’generating foo’ in comments helps in this
%% dual purpose.
%% ---

%% Make calls target_comment/1 for simple targets:
target_comment(Target) :-

comment(Target,Comment),
display(~atom_concat([~atom_concat(Comment), ’\n’])).

%% Similarly, make calls dependency_comment/3 for dependencies (only
%% during execution, not when documenting -h).
dependency_comment(SSuffix,TSuffix,FileBase) :-

display(~atom_concat([’Generation of ’,FileBase,’.’,TSuffix,
’ from ’,FileBase,’.’,SSuffix])).

%% ---

The following are a few commands that can be used on the previous file (see file
CommandsToTry in the example_simple directory in the make library):

lpmake -m MakefileExample.pl hwhw
(Generate file hwhw --needs to generate file hw first)

lpmake -m MakefileExample.pl datafile.double
(Generate file datafile.double --needs to generate file datafile.simple first)

lpmake -m MakefileExample.pl realclean
(Cleanup)

lpmake -h -m MakefileExample.pl
(Help on general use of lpmake and commands available in MakefileExample.pl)

See also the LaTeX example in the example_latex directory in the make library.

370 The Ciao Prolog System

Chapter 85: Predicates Available When Using The Make Package 371

85 Predicates Available When Using The Make
Package

Author(s): Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#251 (2003/12/30, 22:8:3 CET)

This is the run-time module which implements the predicates which are provided when using
the make library package in a given application. For example, they are used internally by
lpmake.

85.1 Usage and interface (make_rt)
® ©

• Library usage:

This module is loaded automatically when the make library package is used.

• Exports:

− Predicates:

make/1, make_option/1, verbose_message/2, call_unknown/1, dyn_load_cfg_
module_into_make/1.

− Regular Types:

target/1.

• Other modules used:

− System library modules:

compiler/compiler, filenames, terms, system, messages, format.

 ª

85.2 Documentation on exports (make_rt)

PREDICATEmake/1:
Usage: make(TargetList)

− Description: This is the main entry point to the make library. Makes the list of targets
one by one and any needed intermediate targets as dictated by the dependency rules.

− The following properties should hold at call time:

TargetList is a list of targets. (basic_props:list/2)

REGTYPEtarget/1:
Usage: target(T)

− Description: T is a Makefile target.

PREDICATEmake option/1:
The predicate is of type data.

Usage: make_option(Option)

− Description: Asserting/retracting facts of this predicate sets/clears library options.
Default is no options (i.e., the predicate is undefined). The following values are
supported:

372 The Ciao Prolog System

make_option(’-v’). % Verbose: prints progress messages (for debugging rules).

− The following properties should hold at call time:

Option is an atom. (basic_props:atm/1)

PREDICATEverbose message/2:
Usage: verbose_message(Text, ArgList)

− Description: The text provided in Text is printed as a message, using the arguments
in ArgList, if make_option(’-v’) is defined. Otherwise nothing is printed.

− The following properties should hold at call time:

Text is an atom or string describing how the arguments should be formatted. If it is
an atom it will be converted into a string with name/2. (format:format_control/1)

ArgList is a list. (basic_props:list/1)

PREDICATEcall unknown/1:
call_unknown(G)

This is a local copy, to make package independent. Complication is so that flags are left
as they were also upon failure.

PREDICATEdyn load cfg module into make/1:
Usage: dyn_load_cfg_module_into_make(ConfigFile)

− Description: Used to load dynamically a module (typically, a Makefile) into the
make library from the application using the library.

− The following properties should hold at call time:

ConfigFile is a source name. (streams_basic:sourcename/1)

Chapter 86: system extra (library) 373

86 system extra (library)

Author(s): M. Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#329 (2004/3/25, 16:25:36 CET)

This is a (temporary) extension to library system (which it reexports). It implements func-
tionality that is often convenient in Makefiles. Much of this should probably end up eventually
in system, but once we have worked out the best interface and, in some cases, the proper im-
plementation (the implementations in here are in some cases just calls to Un*x shell primitives
or commands).

86.1 Usage and interface (system_extra)
® ©

• Library usage:

:- use_module(library(system_extra)).

• Exports:

− Predicates:

del_dir_if_empty/1, move_files/2, move_file/2, copy_files/2, copy_file/2,
cat/2, cat_append/2, convert_permissions/4, symbolic_link/2, symbolic_
link/3, delete_files/1, del_file_nofail/1, del_file_nofail/2, del_endings_
nofail/2, ls/3, ls/2, filter_alist_pattern/3, do/2, set_perms/2, readf/2,
datime_string/1, datime_string/2, all_values/2, no_tr_nl/2, call_unknown/1,
replace_strings_in_file/3, writef/3, writef/2.

• Other modules used:

− System library modules:

system, patterns, filenames, messages, terms, lists, sort, aggregates.

 ª

86.2 Documentation on exports (system_extra)

PREDICATEdel dir if empty/1:
No further documentation available for this predicate.

PREDICATEmove files/2:
move_files(Files, Dir)

Move Files to directory Dir (note that to move only one file to a directory, rename_
file/2 can be used).

PREDICATEmove file/2:
No further documentation available for this predicate.

374 The Ciao Prolog System

PREDICATEcopy files/2:
copy_files(Files, Dir)

Copy Files to directory Dir (note that to move only one file to a directory, rename_
file/2 can be used).

PREDICATEcopy file/2:
No further documentation available for this predicate.

PREDICATEcat/2:
No further documentation available for this predicate.

PREDICATEcat append/2:
No further documentation available for this predicate.

PREDICATEconvert permissions/4:
No further documentation available for this predicate.

PREDICATEsymbolic link/2:
Usage: symbolic_link(Source, Dir)

− Description: Create a symbolic link in Dir pointing to file or directory Source (per-
forms a copy in Windows).

PREDICATEsymbolic link/3:
Usage: symbolic_link(Source, Dir, NewName)

− Description: Create a symbolic link in Dir pointing to file or directory Source and
give it name NewName (performs a copy in Windows).

PREDICATEdelete files/1:
No further documentation available for this predicate.

PREDICATEdel file nofail/1:
No further documentation available for this predicate.

PREDICATEdel file nofail/2:
No further documentation available for this predicate.

Chapter 86: system extra (library) 375

PREDICATEdel endings nofail/2:
No further documentation available for this predicate.

PREDICATEls/3:
ls(Directory, Pattern, FileList)

FileList is the unordered list of entries (files, directories, etc.) in Directory whose
names match Pattern.If Directory does not exist FileList is empty.

PREDICATEls/2:
ls(Pattern, FileList)

FileList is the unordered list of entries (files, directories, etc.) in the current directory
whose names match Pattern (same as ls(’.’,Pattern,FileList)).

PREDICATEfilter alist pattern/3:
filter_alist_pattern(UnFiltered, Pattern, Filtered)

Filtered contains the elements of UnFiltered which match with Pattern.

PREDICATE-/1:
No further documentation available for this predicate.

Meta-predicate with arguments: -goal.

PREDICATEdo/2:
No further documentation available for this predicate.

PREDICATEset perms/2:
No further documentation available for this predicate.

PREDICATEreadf/2:
No further documentation available for this predicate.

PREDICATEdatime string/1:
No further documentation available for this predicate.

PREDICATEdatime string/2:
No further documentation available for this predicate.

376 The Ciao Prolog System

PREDICATEall values/2:
No further documentation available for this predicate.

Meta-predicate with arguments: all_values(pred(1),?).

PREDICATEno tr nl/2:
No further documentation available for this predicate.

PREDICATEcall unknown/1:
No further documentation available for this predicate.

Meta-predicate with arguments: call_unknown(goal).

PREDICATEreplace strings in file/3:
No further documentation available for this predicate.

PREDICATEwritef/3:
No further documentation available for this predicate.

PREDICATEwritef/2:
No further documentation available for this predicate.

(UNDOC REEXPORT)cyg2win/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)rename file/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)delete file/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)chmod/3:
Imported from system (see the corresponding documentation for details).

Chapter 86: system extra (library) 377

(UNDOC REEXPORT)chmod/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)fmode/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time0/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)modif time/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file properties/6:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file property/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)file exists/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)mktemp/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)directory files/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)wait/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/8:
Imported from system (see the corresponding documentation for details).

378 The Ciao Prolog System

(UNDOC REEXPORT)exec/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)exec/4:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen mode/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)popen/3:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)system/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)shell/0:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)cd/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)working directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make dirpath/1:
Imported from system (see the corresponding documentation for details).

Chapter 86: system extra (library) 379

(UNDOC REEXPORT)make dirpath/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)make directory/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)umask/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current executable/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)current host/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)get pid/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)extract paths/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)setenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)getenvstr/2:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime struct/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)datime/9:
Imported from system (see the corresponding documentation for details).

380 The Ciao Prolog System

(UNDOC REEXPORT)datime/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)time/1:
Imported from system (see the corresponding documentation for details).

(UNDOC REEXPORT)pause/1:
Imported from system (see the corresponding documentation for details).

PART VII - Ciao Prolog extensions 381

PART VII - Ciao Prolog extensions

® ©

Author(s): The CLIP Group.

The libraries documented in this part extend the Ciao language in several different ways.
The extensions include:

• pure Prolog programming (well, this can be viewed more as a restriction than an extension);

• feature terms or records (i.e., structures with names for each field);

• parallel programming (e.g., &-Prolog style);

• functional syntax;

• higher-order library;

• global variables;

• setarg and undo;

• delaying predicate execution;

• active modules;

• breadth-first execution;

• iterative deepening-based execution;

• constraint logic programming;

• object oriented programming.

 ª

382 The Ciao Prolog System

Chapter 87: Pure Prolog package 383

87 Pure Prolog package

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#224 (2003/12/21, 20:16:18 CET)

This library package allows the use of pure Prolog in a Ciao module/program. It is based on
the fact that if an engine module is imported explicitly then all of them have to be imported
explicitly. The engine modules are:

• engine(arithmetic)

Chapter 20 [Arithmetic], page 119.

• engine(atomic_basic)

Chapter 19 [Basic predicates handling names of constants], page 115.

• engine(attributes)

Chapter 28 [Attributed variables], page 157.

• engine(basic_props)

Chapter 15 [Basic data types and properties], page 99.

• engine(basiccontrol)

Chapter 13 [Control constructs/predicates], page 93.

• engine(data_facts)

Chapter 25 [Fast/concurrent update of facts], page 145.

• engine(exceptions)

Chapter 23 [Exception handling], page 137.

• engine(io_aux)

Chapter 27 [Message printing primitives], page 153.

• engine(io_basic)

Chapter 22 [Basic input/output], page 131.

• engine(prolog_flags)

Chapter 24 [Changing system behaviour and various flags], page 141.

• engine(streams_basic)

Chapter 21 [Basic file/stream handling], page 123.

• engine(system_info)

Chapter 29 [Gathering some basic internal info], page 161.

• engine(term_basic)

Chapter 17 [Basic term manipulation], page 109.

• engine(term_compare)

Chapter 18 [Comparing terms], page 111.

• engine(term_typing)

Chapter 16 [Extra-logical properties for typing], page 105.

Note that if any of these modules is explicitely imported in a program then the language
defaults to Pure Prolog, plus the functionality added by the modules explicitely imported.

It is recommended that if you explicitely import an engine module you also use this package,
which will guarantee that the predicate true/0 is defined (note that this is the only Ciao builtin
which cannot be redefined).

384 The Ciao Prolog System

87.1 Usage and interface (pure)
® ©

• Library usage:

:- use_package(pure).

or

:- module(...,...,[pure]).

 ª

87.2 Known bugs and planned improvements (pure)

• Currently, the following builtin predicates/program constructs cannot be redefined, in ad-
dition to true/0: (->)/2 (,)/2 (+)/1 if/3

Chapter 88: Multiple Argument Indexing 385

88 Multiple Argument Indexing

Author(s): Tom Howland (http://home.pacbell.net/tomjdnh/pd.html), derived from work
by Anil Nair, F. Bueno (for the Ciao package).

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#225 (2003/12/21, 20:20:39 CET)

This package is an extension of the idea of Prolog indexing, usually performed, in a limited
way, on the first argument. This package provides more powerful indexing schemes. It lets you
pick different arguments to index on, and provides for different combinations of arguments to
index on. E.g., it will let you index on the first and third argument or the second and the third
argument of a predicate.

88.1 Usage and interface (indexer)
® ©

• Library usage:

This facility is used as a package, thus either including indexer in the package list of the
module, or by using the use_package/1 declaration. The facility predicate hash_term/2,
documented here, is defined in library module hash.

• Other modules used:

− System library modules:

assertions/native_props.

 ª

88.2 Documentation on internals (indexer)

DECLARATIONindex/1:
Usage: :- index(IndexSpecs).

− Description: Declares an indexing scheme for a predicate. All specs of IndexSpecs
must be terms for the same predicate. Each spec declares an indexing on a com-
bination of the arguments. Indexing will be performed using any of the specs in
IndexSpecs (being thus interpreted as an or).

You should use a * in an argument position if you wish to hash on the entire term in
that argument. If a + is used only one level of the term in the argument is used for
hashing. An i is used to indicate that argument is already an integer, and therefore
its own value will be used for hashing. The argspec ? simply indicates not to use the
argument for indexing.

For example, the index specification:

:- index foo(+,?,*,i), foo(?,?,?,i).

declares indexing for foo/4 either on a combination of the first, third, and fourht
arguments, or only on the last argument, which is an integer. In the first case, only
the principal functor of the first argument will be used for hashing; the third argument
will be used in its entirety.

The argspec n is a pragmatic extension and can not be used in conjunction with the
other specifiers aside from ?. It stands for "nonvar" and implies that the argument will
not be used for hashing, since only ground terms can effectively be used in hashing.
Thus, it can not be used in combination with other specifiers within a particular index
specification. It is often the fastest thing to use.

386 The Ciao Prolog System

− The following properties should hold upon exit:

IndexSpecs is an index specification. (indexer_doc:indexspecs/1)

REGTYPEindexspecs/1:
An index specification is defined as follows:

indexspecs(Spec) :-
indexspec(Spec).

indexspecs((Spec,Specs)) :-
indexspec(Spec),
indexspecs(Specs).

indexspec(Spec) :-
Spec=..[_F|Args],
list(Args,argspec).

Usage: indexspecs(IndexSpecs)

− Description: IndexSpecs is an index specification.

REGTYPEargspec/1:
An argument hash specification is defined as follows:

argspec(+).
argspec(*).
argspec(i).
argspec(n).
argspec(?).

Usage: argspec(Spec)

− Description: Spec is an argument hash specification.

PREDICATEhash term/2:
hash_term(Term, HashValue)

Provides an efficient way to calculate an integer HashValue for a ground Term.

Usage 1: hash_term(T, N)

− Description: N is a hashing index for T.

− The following properties should hold at call time:

T is currently ground (it contains no variables). (term_typing:ground/1)

N is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

N is an integer. (basic_props:int/1)

Usage 2: hash_term(T, N)

− The following properties should hold at call time:

T is not ground. (native_props:nonground/1)

N is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

N is a free variable. (term_typing:var/1)

Chapter 89: Higher-order 387

89 Higher-order

Author(s): Daniel Cabeza Gras.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#226 (2003/12/22, 16:47:31 CET)

This module is a wrapper to the implementation defined predicate call/2

89.1 Usage and interface (hiord_rt)
® ©

• Library usage:

:- use_module(library(hiord_rt)).

• Exports:

− Predicates:

call/2.
 ª

89.2 Documentation on exports (hiord_rt)

PREDICATEcall/2:
call(Pred, Arg1)

There exists a set of builtin predicates of the form call/N with N > 1 which execute
predicate Pred given arguments Arg1 ... ArgX. If Pred has already arguments Arg1 is
added to the start, the rest to the end. This predicate, when Pred is a variable, can be
written using the special Ciao syntax Pred(Arg1,...,ArgX).

388 The Ciao Prolog System

Chapter 90: Higher-order predicates 389

90 Higher-order predicates

Author(s): Daniel Cabeza, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#208 (2002/4/23, 19:9:14 CEST)

This library implements a few basic higher-order predicates. These add functionality to the
basic higher-order functionality of Ciao. Examples of the latter are:

Using pred(1):

list(L, functor(_,2))
list(L, >(0))

Using pred(2):

90.1 Usage and interface (hiordlib)
® ©

• Library usage:

:- use_module(library(hiordlib)).

• Exports:

− Predicates:

map/3, foldl/4, minimum/3.

 ª

90.2 Documentation on exports (hiordlib)

PREDICATEmap/3:
Meta-predicate with arguments: map(?,pred(2),?).

Usage: map(LList, Op, RList)

− Description: Examples of use:

map([1,3,2], arg(f(a,b,c,d)), [a,c,b]) or
map([1,3,2], nth([a,b,c,d]), [a,c,b])
map(["D","C"], append("."), ["D.","C."])

PREDICATEfoldl/4:
Meta-predicate with arguments: foldl(?,?,pred(3),?).

Usage: foldl(List, Seed, Op, Result)

− Description: Example of use:

?- foldl(["daniel","cabeza","gras"], "",
(’’(X,Y,Z) :- append(X, " "||Y, Z)), R).

R = "daniel cabeza gras " ?

390 The Ciao Prolog System

PREDICATEminimum/3:
Meta-predicate with arguments: minimum(?,pred(2),?).

Usage: minimum(?List, +SmallerThan, ?Minimum)

− Description: Minimum is the smaller in the nonempty list List according to the
relation SmallerThan: SmallerThan(X, Y) succeeds iff X is smaller than Y.

− The following properties should hold at call time:

?List is a list. (basic_props:list/1)

+SmallerThan is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

?Minimum is any term. (basic_props:term/1)

Chapter 91: Terms with named arguments -records/feature terms 391

91 Terms with named arguments -records/feature
terms

Author(s): Daniel Cabeza and Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#118 (2001/8/28, 15:7:22 CEST)

This library package provides syntax which allows accessing term arguments by name (these
terms are sometimes also referred to as records, and are also similar to feature terms [AKPS92]).

91.1 Usage and interface (argnames)
® ©

• Library usage:

:- use_package(argnames).

or

:- module(...,...,[argnames]).

• New operators defined:

$/2 [150,xfx], =>/2 [950,xfx], argnames/1 [1150,fx].

• New declarations defined:

argnames/1.

 ª

91.2 Documentation on new declarations (argnames)

DECLARATIONargnames/1:
Usage: :- argnames(ArgNamedPredSpec).

− Description: An argnames/1 declaration assigns names to the argument positions
of terms (or literal/goals) which use a certain functor/arity. This allows referring to
these arguments by their name rather than by their argument position. Sometimes,
argument names may be clearer and easier to remember than argument positions,
specially for predicates with many arguments. Also, in some cases this may allow
adding arguments to certain predicates without having to change the code that uses
them. These terms with named arguments are sometimes also referred to as records,
and are also similar to feature terms [AKPS92]. For example, in order to write a
program for the zebra puzzle we might declare:

:- use_package([argnames]).
:- argnames house(color, nation, pet, drink, car).

which first includes the package and then assigns a name to each of the arguments of
any term (or literal/goal) with house/5 as the main functor.

For convenience the package extends the built-in data/1 declaration so that names
to arguments can be asigned as with the argnames/1 declaration, as for example:

:- data product(id, description, brand, quantity).

Once an argnames/1 is given, is possible to use the names to refer to the arguments
of any term (or literal/goal) which has the same main functor as that of the term
which appears in the argnames/1 declaration. This is done by first writing the functor
name, then the infix operator $, and then, between curly brackets, zero, one, or more
pairs argument-name=>argument-value, separated by commas (i.e., the infix operator
=> is used between the name and the value). Again, argument names must be atomic.

392 The Ciao Prolog System

Argument values can be any term. Arguments which are not specified are assumed
to have a value of “_” (i.e., they are left unconstrained).

Thus, after the declaration for house/5 in the example above, any ocurrence in that
code of, for example, house${nation=>Owns_zebra,pet=>zebra} is exactly equiva-
lent to house(_,Owns_zebra,zebra,_,_). Also, house${} is equivalent to house(_
,_,_,_,_). The actual zebra puzzle specification might include a clause such as:

zebra(Owns_zebra, Drinks_water, Street) :-
Street = [house${},house${},house${},house${},house${}],
member(house${nation=>Owns_zebra,pet=>zebra}, Street),
member(house${nation=>Drinks_water,drink=>water}, Street),
member(house${drink=>coffee,color=>green}, Street),
left_right(house${color=>ivory}, house${color=>green}, Street),
member(house${car=>porsche,pet=>snails}, Street),

...

Another syntax supported, useful mainly in declarations, to avoid specify the arity is
house${/}, which is equivalent in our example to house/5 (but for data declarations
there is a special syntax as we have seen).

Any number of argnames/1 declarations can appear in a file, one for each functor
whose arguments are to be accessed by name. As with other packages, argument name
declarations are local to the file in which they appear. The argnames/1 declarations
affect only program text which appears after the declaration. It is easy to make a
set of declarations affect several files for example by putting such declarations in a
sepatate file which is included by all such files.

An argnames/1 declaration does not change in any way the internal representation
of the associated terms and does not affect run-time efficiency. It is simply syntactic
sugar.

91.3 Other information (argnames)

Two simple examples of the use of the argnames library package follow.

91.3.1 Using argument names in a toy database

:- module(simple_db,_,[argnames,assertions,regtypes]).
:- use_module(library(aggregates)).

:- comment(title,"A simple database application using argument names").

:- pred product/4 :: int * string * string * int.

:- argnames
product(id, description, brand, quantity).
% --
product(1, "Keyboard", "Logitech", 6).
product(2, "Mouse", "Logitech", 5).
product(3, "Monitor", "Philips", 3).
product(4, "Laptop", "Dell", 4).

% Compute the stock of products from a given brand.
% Note call to findall is equivalent to: findall(Q,product(_,_,Brand,Q),L).
brand_stock(Brand,Stock) :-

Chapter 91: Terms with named arguments -records/feature terms 393

findall(Q,product${brand=>Brand,quantity=>Q},L),
sumlist(L,Stock).

sumlist([],0).
sumlist([X|T],S) :-

sumlist(T,S1),
S is X + S1.

91.3.2 Complete code for the zebra example

:- module(_,zebra/3,[argnames]).

/* There are five consecutive houses, each of a different
color and inhabited by men of different nationalities. They each
own a different pet, have a different favorite drink, and drive a
different car.

1. The Englishman lives in the red house.
2. The Spaniard owns the dog.
3. Coffee is drunk in the green house.
4. The Ukrainian drinks tea.
5. The green house is immediately to the right of the ivory

house.
6. The Porsche driver owns snails.
7. The Masserati is driven by the man who lives in the yellow

house.
8. Milk is drunk in the middle house.
9. The Norwegian lives in the first house on the left.
10. The man who drives a Saab lives in the house next to the man

with the fox.
11. The Masserati is driven by the man in the house next to the

house where the horse is kept.
12. The Honda driver drinks orange juice.
13. The Japanese drives a Jaguar.
14. The Norwegian lives next to the blue house.

The problem is: Who owns the Zebra? Who drinks water?
*/

:- argnames house(color, nation, pet, drink, car).

zebra(Owns_zebra, Drinks_water, Street) :-
Street = [house${},house${},house${},house${},house${}],
member(house${nation => Owns_zebra, pet => zebra}, Street),
member(house${nation => Drinks_water, drink => water}, Street),
member(house${nation => englishman, color => red}, Street),
member(house${nation => spaniard, pet => dog}, Street),
member(house${drink => coffee, color => green}, Street),
member(house${nation => ukrainian, drink => tea}, Street),
left_right(house${color => ivory}, house${color => green}, Street),
member(house${car => porsche, pet => snails}, Street),

394 The Ciao Prolog System

member(house${car => masserati, color => yellow}, Street),
Street = [_, _, house${drink => milk}, _, _],
Street = [house${nation => norwegian}|_],
next_to(house${car => saab}, house${pet => fox}, Street),
next_to(house${car => masserati}, house${pet => horse}, Street),
member(house${car => honda, drink => orange_juice}, Street),
member(house${nation => japanese, car => jaguar}, Street),
next_to(house${nation => norwegian}, house${color => blue}, Street).

member(X,[X|_]).
member(X,[_|Y]) :- member(X,Y).

left_right(L,R,[L,R|_]).
left_right(L,R,[_|T]) :- left_right(L,R,T).

next_to(X,Y,L) :- left_right(X,Y,L).
next_to(X,Y,L) :- left_right(Y,X,L).

91.4 Known bugs and planned improvements (argnames)

• It would be nice to add a mechanism to portray terms with named arguments in a special
(user definable) way.

Chapter 92: Functional notation 395

92 Functional notation

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#291 (2004/2/13, 20:46:8 CET)

This library package allows the use of functional notation in a Ciao module/program.

It should be made clear that this package just provides a kind of syntactic sugar for defining
and using predicates as if they were functions, and thus any function definition is in fact defining
a predicate, and any predicate can be used as a function. The predicate associated to a function
has the same name and one more argument, added to the right, to hold the result of the function.

Any term preceded by the operator ~ is a function application, as in write(~arg(1,T)),
which is equivalent to the sequence arg(1,T,A), write(A). Functors can be declared as evalu-
able by using the declaration function/1, and thus avoiding the need to use the operator ~, as
in

:- function(arg/2).

Note that this declaration, as is customary in Ciao Prolog, is local to the source code where
it is included. In addition, the package defines several functors as evaluable by default, those
being:

• All the functors understood by is/2. This feature can be disabled by a declaration :-
function(arith(false)) (and reverted by using true instead of false).

• The functors used for disjunctive and conditional expressions, (|)/2 and (?)/2. A dis-
junctive expression has the form (V1|V2), and its value when first evaluated is V1, and on
re-execution V2. A conditional expression has the form (Cond ? V1), or more commonly
(Cond ? V1 | V2), and its value, if the execution of Cond as a goal succeeds, is V1, other-
wise in the first form it causes backtracking, and on the second form its value is V2. Note
that due to the operator precedences, these expressions need normally to be surrounded by
parenthesis.

A functional clause is written using the binary operator :=, as in

opposite(red) := green.

Functional clauses can also have a body, which is executed before the result value is computed.
It can serve as a guard for the clause or to provide the equivalent of a where-clause in a functional
language:

fact(0) := 1.
fact(N) := N * ~fact(--N) :- N > 0.

Note that often a guard can be better defined using a conditional expression:

fact(N) := N = 0 ? 1
| N > 0 ? N * ~fact(--N).

In clause heads (either defined as predicates or functions) functors can be prevented from
being evaluated by using the (^)/1 prefix operator, as in

pair(A,B) := ^(A-B).

Note that this just prevents the evaluation of the principal functor of the enclosed term,
not the possible occurrences of other evaluable functors inside. The operator is by now ignored
outside clause heads, due to the recurrent nature of the goal translations used.

When using function applications inside the goal arguments of meta-predicates, there is an
ambiguity as they could be evaluated either in the scope of the outer execution or the in the
scope of the inner execution. The chosen behavior is by default to evaluate function applications
in the scope of the outer execution, and if they should be evaluated in the inner scope, the goal
containing the function application needs to be escaped with the (^^)/1 prefix operator, as in
findall(X, (d(Y), ^^(X = Y+1)), L) (which could also be written as findall(X, ^^ (d(Y),
X = Y+1), L)).

396 The Ciao Prolog System

92.1 Usage and interface (functions)
® ©

• Library usage:

:- use_package(functions).

or

:- module(...,...,[functions]).

 ª

92.2 Known bugs and planned improvements (functions)

• The (^)/1 operator only works in clause heads.

• Assumes that is/2 is imported.

Chapter 93: global (library) 397

93 global (library)

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#185 (2003/12/9, 17:18:19 CET)

93.1 Usage and interface (global)
® ©

• Library usage:

:- use_module(library(global)).

• Exports:

− Predicates:

set_global/2, get_global/2, push_global/2, pop_global/2, del_global/1.

 ª

93.2 Documentation on exports (global)

PREDICATEset global/2:
No further documentation available for this predicate.

PREDICATEget global/2:
No further documentation available for this predicate.

PREDICATEpush global/2:
No further documentation available for this predicate.

PREDICATEpop global/2:
No further documentation available for this predicate.

PREDICATEdel global/1:
No further documentation available for this predicate.

398 The Ciao Prolog System

Chapter 94: Independent and-parallel execution 399

94 Independent and-parallel execution

Author(s): Manuel Carro, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#160 (2001/11/27, 12:35:53 CET)

Note: This is just a partial first shot. The real library still needs to be written. Not difficult,
just no time...

This library will eventually allow and-parallel execution of goals in (Herbrand-)independent
fashion. It resembles the execution rules of &-Prolog [HG90]. Basically, goals are run in and-
parallel provided that their arguments do not share bindings, i.e., are not bound to terms which
contain a common variable.

94.1 Usage and interface (andprolog)
® ©

• Library usage:

:- use_package(andprolog).

or

:- module(...,...,[andprolog]).

• New operators defined:

&/2 [950,xfy].

 ª

94.2 Documentation on internals (andprolog)

PREDICATE&/2:
&(GoalA, GoalB)

GoalA and GoalB are run in independent and-parallel fashion. This is just a first sketch,
and valid only for deterministic independent goals. The use is as

q:- a & b.

which would start a and b in separate threads (possibly in parallalel, if the machine
architecture and operating system allows that), and continue when both have finished.
This type of execution is safe only when a and b are independent in the sense of variable
sharing. This condition can be tested with the indep/2 predicate.

PREDICATEactive agents/1:
active_agents(NumberOfAgents)

Tests/sets the NumberOfAgents which are active looking for goals to execute. As for now,
those agents are resource-consuming, even when they are just looking for work, and not
executing any user goals.

PREDICATEindep/2:
indep(X, Y)

X and Y are independent, i.e., they are bound to terms which have no variables in common.
For example, indep(X,Y) holds for X=f(Z),Y=g(K) and also for X=f(a),Y=X (since both
X and Y are bound to ground terms). It does not hold for X=f(Z),Y=g(Z) and for X=Y.

400 The Ciao Prolog System

PREDICATEindep/1:
indep(X)

X is a list of lists of length two, i.e., a list of the form [[T1, T2], [T3, T4], ...]. The
variables in each pair of the list X are tested for independence using indep/2. This list-
of-pairs format is the output of several independdnce analyzers for pair sharing.

94.3 Known bugs and planned improvements (andprolog)

• Beware: the current code is just a partial first shot. It is provided for the sole purpose of
experimentation and development.

• The fact that only the first solution is returned for the conjunction is due to performance
issues (and lack of time), and we expect to remove it in a near future.

• CGEs (i.e., =>) are not supported.

• The indep/1, indep/2, and ground/1 tests are not very efficient; they will be replaced by
native versions (taken from the &-Prolog code) in the future.

Chapter 95: Andorra execution 401

95 Andorra execution

Author(s): Claudio Vaucheret, Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#144 (2001/11/12, 17:57:47 CET)

This package allows the execution under the Basic Andorra Model [War88]. The model
classifies goals as a determinate goal, if at most one clause matches the goal, or nondeterminate
goal, otherwise. In this model a goal is delayed until either it becomes determinate or it becomes
the leftmost goal and no determinate goal is available. The implementation of this selection rule
is based on the use of attributed variables [Hol92,Hol90].

In order to test determinacy we verify only the heads of clauses and builtins in the bodies of
clauses before the first cut, if any. By default, determinacy of a goal is detected dynamically:
when called, if at most one clause matches, it is executed; otherwise, it is delayed. For goals
delayed the test is repeated each time a variable appearing in the goal is instantiated. In addition,
efficiency can be improved by using declarations that specify the determinacy conditions. These
will be considered for testing instead of the generic test on all clauses that can match.

As with any other Ciao package, the andorra computation rule affects only the module
that uses the package. If execution passes across two modules that use the computation rule,
determinate goals are run in advance within one module and also within the other module. But
determinate goals of one module do not run ahead of goals of the other module.

It is however possible to preserve the computation rule for calls to predicates defined in other
modules. These modules should obviously also use this package. In addition all predicates from
such modules should imported, i.e., the directive :- use_module(module), should be used in
this case instead of :- use_module(module,[...]). Otherwise calls to predicates outside the
module will only be called when they became the leftmost goal.

95.1 Usage and interface (andorra)
® ©

• Library usage:

:- use_package(andorra).

or

:- module(...,...,[andorra]).

• Exports:

− Regular Types:

detcond/1, path/1.

• New operators defined:

?\=/2 [700,xfx], ?=/2 [700,xfx].

• New declarations defined:

determinate/2.
 ª

95.2 Documentation on new declarations (andorra)

DECLARATIONdeterminate/2:
:- determinate(Pred, Cond).

Declares determinacy conditions for a predicate. Conditions Cond are on variables of
arguments of Pred. For example, in:

402 The Ciao Prolog System

:- determinate(member(A,B,C), (A ?= term(B,[1]) ; C?=[_|_])).

member(A,[A|B],B).
member(A,[B|C],[B|D]) :-

A==B,
member(A,C,D).

the declaration states that a call member(A,B,C) is determinate when either A doesn’t
unify with the first argument of B or C doesn’t unify with [_|_].

Usage: :- determinate(Pred, Cond).

− Description: States that the predicate Pred is determinate when Cond holds.

− The following properties should hold at call time:

Pred is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

Cond is a determinacy condition. (user(... /andorra_doc):detcond/1)

95.3 Documentation on exports (andorra)

REGTYPEdetcond/1:
Defined by:

detcond(ground(X)) :-
var(X).

detcond(nonvar(X)) :-
var(X).

detcond(instatiated(A,Path)) :-
var(A),
list(Path,int).

detcond(?\=(Term1,Term2)) :-
path(Term1),
path(Term2).

detcond(?=(Term1,Term2)) :-
path(Term1),
path(Term2).

detcond(Test) :-
test(Test).

• ground/1 and nonvar/1 have the usual meaning.

• instatiated(A,Path) means that the subterm of A addressed by Path is not a vari-
able. Path is a list of integer numbers describing a path to the subterm regarding the
whole term A as a tree. For example, instantiated(f(g(X),h(i(Z),Y)),[2,1])
tests whether i(Z) is not a variable.

• Term1 ?\= Term2 means “terms Term1 and Term2 do not unify (when instantiated)”.
Term1 and Term2 can be either an argument of the predicate or a term term(V,Path),
which refers to the subterm of V addressed by Path.

• Term1 ?= Term2 means “terms Term1 and Term2 unify (when instantiated)”. The
same considerations above apply to Term1 and Term2.

• any other test that does not unify variables can also be used (==/2, \==/2, atomic/1).

Chapter 95: Andorra execution 403

Usage: detcond(X)

− Description: X is a determinacy condition.

REGTYPEpath/1:
Defined by:

path(X) :-
var(X).

path(X) :-
list(X,int).

95.4 Other information (andorra)

The andorra transformation will include the following predicates into the code of the module
that uses the package. Be careful not to define predicates by these names:

• detcond_andorra/4

• path_andorra/4

• detcond_susp/4

• path_susp/4

• list_andorra2/5

• test_andorra2/4

404 The Ciao Prolog System

Chapter 96: Call on determinate 405

96 Call on determinate

Author(s): José Morales, Manuel Carro.

Version: 1.7#149 (2001/11/19, 19:17:51 CET)

Offers an enriched variant of call and cut !!/0 which executes pending goals when the
computation has no more alternatives.

This library is useful to, for example, get rid of external connections once the necessary data
has been obtained.

96.1 Usage and interface (det_hook_rt)
® ©

• Library usage:

:- use_module(library(det_hook_rt)).

in which case, !!/0 is not available.

Typically, this library is used as a package:

:- use_package(det_hook).

• Exports:

− Predicates:

det_try/3.

 ª

96.2 Documentation on exports (det_hook_rt)

PREDICATEdet try/3:
Meta-predicate with arguments: det_try(goal,goal,goal).

Usage: det_try(Goal, OnCut, OnFail)

− Description: Action is called, and OnCut and OnFail are goals to be executed when
Goal is cut or when it finitely fails, respectively. In order for this to work, cutting
must be performed in a special way, by using the !!/0 predicate, also provided by
this module.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

OnCut is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

OnFail is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

96.3 Documentation on internals (det_hook_rt)

PREDICATE!!/0:
Usage:

− Description: Performs a special cut which prunes alternatives away, as the usual cut,
but which also executes the goals specified as OnCut for any call in the scope of the
cut.

406 The Ciao Prolog System

96.4 Other information (det_hook_rt)

As an example, the program

:- module(_, _, [det_hook]).

enumerate(X):-
display(enumerating), nl,
OnCut = (display(’goal cut’), nl),
OnFail = (display(’goal failed’), nl),
det_try(enum(X), OnCut, OnFail).

enum(1).
enum(2).
enum(3).

behaves as follows:

?- enumerate(X).
enumerating

X = 1 ? ;

X = 2 ? ;

X = 3 ? ;
goal failed

(note the message inserted on failure). The execution can be cut as follows:

?- use_package(det_hook).
{Including /home/clip/lib/ciao/ciao-1.7/library/det_hook/det_hook.pl
}

yes
?- enumerate(X), ’!!’.
enumerating
goal cut

X = 1 ? ;

no

96.5 Known bugs and planned improvements (det_hook_rt)

• If the started goals do not exhaust their solutions, and ’ !!’/0 is not used, the database will
populate with facts which will be consulted the next time a ’ !!’/0 is used. This could cause
incorrect executions.

Chapter 97: Miscellaneous predicates 407

97 Miscellaneous predicates

Author(s): Manuel Carro, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.3#95 (1999/11/8, 18:37:30 MET)

This module implements some miscellaneous non-logical (but sometimes very useful) predi-
cates.

97.1 Usage and interface (odd)
® ©

• Library usage:

:- use_module(library(odd)).

• Exports:

− Predicates:

setarg/3, undo/1.

 ª

97.2 Documentation on exports (odd)

PREDICATEsetarg/3:
Usage: setarg(Index, Term, NewArg)

− Description: Replace destructively argument Index in Term by NewArg. The assign-
ment is undone on backtracking. This is a major change to the normal behavior of
data assignment in Ciao Prolog.

− The following properties should hold at call time:

Index is currently instantiated to an integer. (term_typing:integer/1)

Term is a compound term. (basic_props:struct/1)

NewArg is any term. (basic_props:term/1)

− The following properties hold upon exit:

Index is currently instantiated to an integer. (term_typing:integer/1)

Term is a compound term. (basic_props:struct/1)

NewArg is any term. (basic_props:term/1)

PREDICATEundo/1:
Meta-predicate with arguments: undo(goal).

Usage: undo(Goal)

− Description: call(Goal) is executed on backtracking. This is a major change to the
normal control of Ciao Prolog execution.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

− The following properties hold upon exit:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

408 The Ciao Prolog System

Chapter 98: Delaying predicates (freeze) 409

98 Delaying predicates (freeze)

Author(s): Manuel Carro, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#72 (2000/3/19, 19:9:14 CET)

This library offers a
simple implementation of freeze/2, frozen/2, etc. [Col82,Nai85,Nai91,Car87] based on the
use of attributed variables [Hol92,Hol90].

98.1 Usage and interface (freeze)
® ©

• Library usage:

:- use_module(library(freeze)).

• Exports:

− Predicates:

freeze/2, frozen/2.

 ª

98.2 Documentation on exports (freeze)

PREDICATEfreeze/2:
Meta-predicate with arguments: freeze(?,goal).

Usage: freeze(X, Goal)

− Description: If X is free delay Goal until X is non-variable.

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEfrozen/2:
Meta-predicate with arguments: frozen(?,goal).

Usage: frozen(X, Goal)

− Description: Goal is currently delayed until variable X becomes bound.

− The following properties should hold upon exit:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

410 The Ciao Prolog System

Chapter 99: Delaying predicates (when) 411

99 Delaying predicates (when)

Author(s): Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#3 (2000/7/21, 11:54:59 CEST)

when/2 delays a predicate until some condition in its variable is met. For example, we
may want to find out the maximum of two numbers, but we are not sure when they will be
instantiated. We can write the standard max/3 predicate (but changing its name to gmax/3 to
denote that the first and second arguments must be ground) as

gmax(X, Y, X):- X > Y, !.
gmax(X, Y, Y):- X =< Y.

and then define a ’safe’ max/3 as

max(X, Y, Z):-
when((ground(X),ground(Y)), gmax(X, Y, Z)).

which can be called as follows:

?- max(X, Y, Z) , Y = 0, X = 8.

X = 8,
Y = 0,
Z = 8 ?

yes

Alternatively, max/3 could have been defined as

max(X, Y, Z):-
when(ground((X, Y)), gmax(X, Y, Z)).

with the same effects as above. More complex implementations are possible. Look, for exam-
ple, at the max.pl implementation under the when library directory, where a max/3 predicate is
implemented which waits on all the arguments until there is enough information to determine
their values:

?- use_module(library(’when/max’)).

yes
?- max(X, Y, Z), Z = 5, Y = 4.

X = 5,
Y = 4,
Z = 5 ?

yes

412 The Ciao Prolog System

99.1 Usage and interface (when)
® ©

• Library usage:

:- use_module(library(when)).

• Exports:

− Predicates:

when/2.

− Regular Types:

wakeup_exp/1.

• Other modules used:

− System library modules:

terms_vars, sort, sets.

 ª

99.2 Documentation on exports (when)

PREDICATEwhen/2:
Meta-predicate with arguments: when(?,goal).

Usage: when(WakeupCond, Goal)

− Description: Delays / executes Goal according to WakeupCond given. The
WakeupConds now acceptable are ground(T) (Goal is delayed until T is ground),
nonvar(T) (Goal is delayed until T is not a variable), and conjunctions and disjunc-
tions of conditions:

wakeup_exp(ground(_1)).
wakeup_exp(nonvar(_1)).
wakeup_exp((C1,C2)) :-

wakeup_exp(C1),
wakeup_exp(C2).

wakeup_exp((C1;C2)) :-
wakeup_exp(C1),
wakeup_exp(C2).

when/2 only fails it the WakeupCond is not legally formed. If WakeupCond is met at
the time of the call no delay mechanism is involved — but there exists a time penalty
in the condition checking.

In case that an instantiation fires the execution of several predicates, the order in
which these are executed is not defined.

− The following properties should hold at call time:

WakeupCond is a legal expression for delaying goals. (when:wakeup_exp/1)

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

REGTYPEwakeup exp/1:
Usage: wakeup_exp(T)

− Description: T is a legal expression for delaying goals.

Chapter 99: Delaying predicates (when) 413

99.3 Known bugs and planned improvements (when)

• Redundant conditions are not removed.

• Floundered goals are not appropriately printed.

414 The Ciao Prolog System

Chapter 100: Active modules (high-level distributed execution) 415

100 Active modules (high-level distributed
execution)

Author(s): Manuel Hermenegildo, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#2 (2002/5/23, 17:48:34 CEST)

Active modules [CH95] provide a high-level model of inter-process communication and
distributed execution (note that this is also possible using Ciao’s communication and concur-
rency primitives, such as sockets, concurrent predicates, etc., but at a lower level of abstraction).
An active module (or an active object) is an ordinary module to which computational resources
are attached, and which resides at a given location on the network. Compiling an active module
produces an executable which, when running, acts as a server for a number of predicates: the
predicates exported by the module. Predicates exported by an active module can be accessed
by a program on the network by simply “using” the module, which then imports such “remote
predicates.” The process of “using” an active module does not involve transferring any code,
but rather setting up things so that calls in the module using the active module are executed
as remote procedure calls to the active module. This occurs in the same way independently
of whether the active module and the using module are in the same machine or in different
machines across the network.

Except for having to compile it in a special way (see below), an active module is identical
from the programmer point of view to an ordinary module. A program using an active module
imports it and uses it in the same way as any other module, except that it uses “ use_active_
module” rather than “ use_module” (see below). Also, an active module has an address (network
address) which must be known in order to use it. In order to use an active module it is necessary
to know its address: different “protocols” are provided for this purpose (see below).

1

From the implementation point of view, active modules are essentially daemons: executables
which are started as independent processes at the operating system level. Communication with
active modules is implemented using sockets (thus, the address of an active module is an IP
socket address in a particular machine). Requests to execute goals in the module are sent
through the socket by remote programs. When such a request arrives, the process running the
active module takes it and executes it, returning through the socket the computed answers.
These results are then taken and used by the remote processes. Backtracking over such remote
calls works as usual and transparently. The only limitation (this may change in the future, but
it is currently done for efficiency reasons) is that all alternative answers are precomputed (and
cached) upon the first call to an active module and thus an active module should not export a
predicate which has an infinite number of answers.

The first thing to do is to select a method whereby the client(s) (the module(s) that will use
the active module) can find out in which machine/port (IP address/socket number) the server
(i.e., the active module) will be listening once started, i.e., a “protocol” to communicate with
the active module. The easiest way to do this is to make use of the redezvous methods which are
provided in the Ciao distribution in the library/actmods directory; currently, tmpbased...,
filebased..., and webbased....

The first one is based on saving the IP address and socket number of the server in a file
in a predefined directory (generally /tmp, but this can be changed by changing tmpbased_
common.pl).

The second one is similar but saves the info in the directory in which the server is started
(as <module name>.addr), or in the directory that a .addr file, if it exists, specifies. The

1 It is also possible to provide active modules via a WWW address. However, we find it more
straightforward to simply use socket addresses. In any case, this is generally hidden inside
the access method and can be thus made transparent to the user.

416 The Ciao Prolog System

clients must be started in the same directory (or have access to a file .addr specifying the same
directory). However, they can be started in different machines, provided this directory is shared
(e.g., by NFS or Samba), or the file can be moved to an appropriate directory on a different
machine –provided the full path is the same.

The third one is based on a name server for active modules. When an active module is
started, it communicates its address to the name server. When the client of the active module
wants to communicate with it, it asks the name server the active module address. This is all
done transparently to the user. The name server must be running when the active module is
started (and, of course, when the application using it is executed). The location of the name
server for an application must be specified in an application file named webbased_common.pl
(see below).

These rendezvous methods are encoded in two modules: a first one, called ...publish.pl,
is used by the server to publish its info. The second one, called ...locate.pl, is used by
the client(s) to locate the server info. For efficiency, the client methods maintain a cache of
addresses, so that the server information only needs to be read from the file system the first
time the active module is accessed.

Active modules are compiled using the -a option of the Ciao compiler (this can also be done
from the interactive top-level shell using make_actmod/2). For example, issuing the following
command:

ciaoc -a ’actmods/filebased_publish’ simple_server

compiles the simple server example that comes with the distribution (in the actmods/example
directory). The simple_client_with_main example (in the same directory) can be compiled
as usual:

ciaoc simple_client_with_main

Note that the client uses the actmods package, specifies the rendezvous method by import-
ing library(’actmods/filebased_locate’), and explicitely imports the “remote” predicates
(implicit imports will not work). Each module using the actmods package should only use one
of the rendezvous methods.

Now, if the server is running (e.g., simple_server & in Un*x or double-clicking on it in
Win32) when the client is executed it will connect with the server to access the predicate(s) that
it imports from it.

A simpler even client simple_client.pl can be loaded into the top level and its predicates
called as usual (and they will connect with the server if it is running).

100.0.1 Active module name servers

An application using a name server for active modules must have a file named webbased_
common.pl that specifies where the name server resides. It must have the URL and the path
which corresponds to that URL in the file system of the server machine (the one that hosts the
URL) of the file that will hold the name server address.

The current distribution provides a file webbased_common.pl that can be used (after proper
setting of its contents) for a server of active modules for a whole installation. Alternatively,
particular servers for each application can be set up (see below).

The current distribution also provides a module that can be used as name server by any
application. It is in file examples/webbased_server/webbased_server.pl.

To set up a name server edit webbased_common.pl to change its contents appropriately as
described above (URL and corresponding complete file path). Then recompile this library module:

Chapter 100: Active modules (high-level distributed execution) 417

ciaoc -c webbased_common

The name server has to be compiled as an active module itself:

ciaoc -a actmods/webserver_publish webbased_server

It has to be started in the server machine before the application and its active modules are
compiled.

Alternatively, you can copy webbased_common.pl and use it to set up name servers for
particular applications. Currently, this is a bit complicated. You have to ensure that the name
server, the application program, and all its active modules are compiled and executed with the
same webbased_common.pl module. One way to do this is to create a subdirectory actmods
under the directory of your application, copy webbased_common.pl to it, modify it, and then
compile the name server, the application program, and its active modules using a library path
that guarantees that your actmods directory is located by the compiler before the standard Ciao
library. The same applies for when running all of them if the library loading is dynamic.

One way to do the above is using the -u compiler option. Assume the following file:

:- module(paths,[],[]).
:- multifile library_directory/1.
:- dynamic library_directory/1.
:- initialization(asserta_fact(

library_directory(’/root/path/to/my/particular/application’))).

then you have file webbased_common.pl in a subdirectory actmods of the above cited path.
You have to compile the name server, the active modules, and the rest of the application with:

ciaoc -u paths -s ...

to use your particular webbased_common.pl and to make executables statically link libraries.
If they are dynamic, then you have to provide for the above library directory path to be set
up upon execution. This can be done, for example, by including module paths into your
executables.

Addresses of active modules are saved by the name server in a subdirectory webbased_db of
the directory where you start it —see examples/webbased_server/webbased_db/webbased_
server). This allows to restart the server right away if it dies (since it saves its state). This
directory should be cleaned up regularly of addresses of active modules which are no more active.
To do this, stop the server —by killing it (its pid is in PATH/FILE), and restart it after cleaning
up the files in the above mentioned directory.

100.0.2 Active modules as agents

It is rather easy to turn Ciao active modules into agents for some kind of applications. The
directory examples/agents contains a (hopefully) self-explanatory example.

418 The Ciao Prolog System

100.1 Usage and interface (actmods)
® ©

• Library usage:

:- use_package(actmods).

or

:- module(...,...,[actmods]).

• New declarations defined:

use_active_module/2.
 ª

100.2 Documentation on new declarations (actmods)

DECLARATIONuse active module/2:
Usage: :- use_active_module(AModule, Imports).

− Description: Specifies that this code imports from the active module defined in
AModule the predicates in Imports. The imported predicates must be exported by
the active module.

− The following properties should hold at call time:

AModule is a source name. (streams_basic:sourcename/1)

Imports is a list of prednames. (basic_props:list/2)

100.3 Known bugs and planned improvements (actmods)

• The package provides no means for security: the accessing application must take care of
this (?).

• It can happen that there is a unique process for an active module serving calls from several
different simultaneous executions of the same application. In this case, there might be
unwanted interactions (e.g., if the active module has state).

• Applications may fail if the name server or an active module is restarted during execution of
the application (since they restart at a different port than the one cached by the application).

• One may want name servers to reside at a fixed and known machine and port number (this
is known as a service and is defined in /etc/services in a Un*x machine). Currently, the
port number changes in each invocation of the server.

• One may want to have one name server dedicated to a single application. Currently, there
is no easy way to do this.

Chapter 101: Breadth-first execution 419

101 Breadth-first execution

Author(s): Daniel Cabeza, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#143 (2000/5/12, 13:54:34 CEST)

This package implements breadth-first execution of predicates. Predicates written with op-
erators ’<-’/1 (facts) and ’<-’/2 (clauses) are executed using breadth-first search. This may
be useful in search problems when a complete proof procedure is needed. An example of code
would be:

:- module(chain, _, [bf]).

test(bf) :- bfchain(a,d).
test(df) :- chain(a,d). % loops!

bfchain(X,X) <- .
bfchain(X,Y) <- arc(X,Z), bfchain(Z,Y).

chain(X,X).
chain(X,Y) :- arc(X,Z), chain(Z,Y).

arc(a,b).
arc(a,d).
arc(b,c).
arc(c,a).

There is another version, called bf/af, which ensures AND-fairness by goal shuffling. This
version correctly says “no” executing the following test:

:- module(sublistapp, [test/0,sublistapp/2], [’bf/af’]).

test :- sublistapp([a],[b]).

sublistapp(S,L) <- append(_,S,Y), append(Y,_,L).

append([], L, L) <- .
append([X|Xs], L, [X|Ys]) <- append(Xs, L, Ys).

101.1 Usage and interface (bf)
® ©

• Library usage:

:- use_package(bf).

or

:- module(...,...,[bf]).

• New operators defined:

<-/2 [1200,xfx], <-/1 [1200,xf].

 ª

420 The Ciao Prolog System

101.2 Known bugs and planned improvements (bf)

• Does not correctly work in user files.

Chapter 102: Iterative-deepening execution 421

102 Iterative-deepening execution

Author(s): Claudio Vaucheret, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#119 (2001/8/28, 15:39:1 CEST)

This package applies a compiling control technique to implement depth first iterative deepen-
ing execution [Kor85]. It changes the usual depth-first computation rule by iterative-deepening
on those predicates specifically marked. This is very useful in search problems when a complete
proof procedure is needed.

When this computation rule is used, first all goals are expanded only up to a given depth. If
no solution is found or more solutions are needed by backtracking, the depth limit is incremented
and the whole goal is repeated. Although it might seem that this approach is very inefficient
because all higher levels are repeated for the deeper ones, it has been shown that is performs only
about b/(b - 1) times as many operations than the corresponding breadth-first search, (where b
is the branching factor of the proof tree) while the waste of memory is the same as depth first.

The usage is by means of the following directive:

:- iterative(Name, FirstCut, Formula).

which states than the predicate ’Name’ given in functor/arity form will be executed using
iterative deepening rule starting at the depth ’FirstCut’ with depth being incremented by the
predicate ’Formula’. This predicate compute the new depth using the previous one. It must
implement a dilating function i.e. the new depth must be greater. For example, to start with
depth 5 and increment by 10 you can write:

:- iterative(p/1,5,f).

f(X,Y) :- Y is X + 10.

or if you prefer,

:- iterative(p/1,5,(_(X,Y):- Y is X + 10)).

You can also use a fourth parameter to set a limiting depth. All goals below the given depth
limit simply fail. Thus, with the following directive:

:- iterative(p/1,5,(_(X,Y):- Y is X + 10),100).

all goals deeper than 100 will fail.

An example of code using this package would be:

:- module(example_id, _,[id]).

test(id) :-
idchain(a,d).

test(df) :-
chain(a,d). % loops!

:- iterative(idchain/2, 3, (_(X,Z) :- Z is X + 1)).

idchain(X,X).
idchain(X,Y) :-

arc(X,Z),
idchain(Z,Y).

chain(X,X).
chain(X,Y) :-

arc(X,Z),
chain(Z,Y).

422 The Ciao Prolog System

arc(a,b).
arc(a,d).
arc(b,c).
arc(c,a).

The order of solutions are first the shallower and then the deeper. Solutions which are
between two cutoff are given in the usual left to right order. For example,

% OLD EXAMPLE - Won’t work!

:- module(_, _, [det_hook]).

:- use_module(engine(internals)).

pr(I, X, Y) :-
display(open(I)), nl,
’$metachoice’(C),
det_try(pr2(X, Y, C), (display(close_done(I)), nl), (display(close_abort(I)), nl)).

pr2(X, _, _) :- X =< 0, !, fail.
pr2(2, 2, C) :- ’$metacut’(C).
pr2(X, Y, C) :- (X = Y ; X1 is X - 1, pr2(X1, Y, C)).

test1 :-
pr(x, 4, X), pr(y, 4, Y), display(X), display(Y), nl, X = 1, Y = 3, !.

It is possible to preserve the iterative-deepening behavior for calls to predicates defined in
other modules. These modules should obviously also use this package. In addition all predicates
from such modules should imported, i.e., the directive :- use_module(module), should be used
in this case instead of :- use_module(module,[...]). Otherwise calls to predicates outside
the module will be treated in the usual way i.e. by depth-first computation.

Another complete proof procedure implemented is the bf package (breadth first execution).

102.1 Usage and interface (id)
® ©

• Library usage:

:- use_package(id).

or

:- module(...,...,[id]).

 ª

Chapter 103: Constraint programming over rationals 423

103 Constraint programming over rationals

Author(s): Christian Holzbaur, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#184 (2003/12/5, 14:7:53 CET)

Note: This package is currently being adapted to the new characteristics of the Ciao mod-
ule system. This new version now works right now to some extent, but it is under further
development at the moment. Use with (lots of) caution.

103.1 Usage and interface (clpq)
® ©

• Library usage:

:- use_package(clpq).

or

:- module(...,...,[clpq]).

 ª

103.2 Other information (clpq)

103.2.1 Some CLP(Q) examples

(Other examples can be found in the source and library directories.)

• ’Reversible’ Fibonacci (clpq):

:- module(_, [fib/2], []).
:- use_package(clpq).

fib(X,Y):- X .=. 0, Y .=. 0.
fib(X,Y):- X .=. 1, Y .=. 1.
fib(N,F) :-

N .>. 1,
N1 .=. N - 1,
N2 .=. N - 2,
fib(N1, F1),
fib(N2, F2),
F .=. F1+F2.

• Matrix multiplication (clpq):

:- use_package(clpq).
:- use_module(library(write)).

mmultiply([],_,[]).
mmultiply([V0|Rest], V1, [Result|Others]):-

mmultiply(Rest, V1, Others),
multiply(V1,V0,Result).

multiply([],_,[]).

424 The Ciao Prolog System

multiply([V0|Rest], V1, [Result|Others]):-
multiply(Rest, V1, Others),

vmul(V0,V1,Result).

vmul([],[],0).
vmul([H1|T1], [H2|T2], Result):-

vmul(T1,T2, Newresult),
Result .=. H1*H2+Newresult.

matrix(1,[[1,2,3,4,5],[4,0,-1,5,6],[7,1,-2,8,9],[-1,0,1,3,2],[1,5,-3,2,4]]).
matrix(2,[[3,2,1,0,-1],[-2,1,3,0,2],[1,2,0,-1,5],[1,3,2,4,5],[-5,1,4,2,2]]).

%% Call with: ?- go(M).

go(M):-
matrix(1,M1),
matrix(2,M2),
mmultiply(M1, M, M2).

• Queens (clpq):

:- use_package(clpq).

queens(N, Qs) :- constrain_values(N, N, Qs), place_queens(N, Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]) :-

N .>. 0, X .>. 0, X .=<. Range,
N1 .=. N - 1,
constrain_values(N1, Range, Xs), no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb) :-

Queen .<>. Y+Nb,
Queen .<>. Y-Nb,
Nb1 .=. Nb + 1,
no_attack(Ys, Queen, Nb1).

place_queens(0, _).
place_queens(N, Q) :-

N > 0, member(N, Q), N1 is N-1, place_queens(N1, Q).

103.3 Known bugs and planned improvements (clpq)

• clp(Q) and clp(R) cannot be used simultaneously in the same program, or even within the
same toplevel session.

Chapter 104: Constraint programming over reals 425

104 Constraint programming over reals

Author(s): Christian Holzbaur, Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#227 (2003/12/22, 16:55:52 CET)

Note: This package is currently being adapted to the new characteristics of the Ciao module
system. This new version now works right now to some extent, but it under further development
at the moment. Use with (lots of) caution.

104.1 Usage and interface (clpr)
® ©

• Library usage:

:- use_package(clpr).

or

:- module(...,...,[clpr]).

 ª

104.2 Other information (clpr)

104.2.1 Some CLP(R) examples

(Other examples can be found in the source and library directories.)

• ’Reversible’ Fibonacci (clpr):

:- module(_, [fib/2], []).
:- use_package(clpr).

fib(X,Y):- X .=. 0, Y .=. 0.
fib(X,Y):- X .=. 1, Y .=. 1.
fib(N,F) :-

N .>. 1,
N1 .=. N - 1,
N2 .=. N - 2,
fib(N1, F1),
fib(N2, F2),
F .=. F1+F2.

• Dirichlet problem for Laplace’s equation (clpr):

%
% Solve the Dirichlet problem for Laplace’s equation using
% Leibman’s five-point finit-differenc approximation.
% The goal ?- go1 is a normal example, while the goal ?- go2
% shows output constraints for a small region where the boundary conditions
% are not specified.
%

426 The Ciao Prolog System

:- use_package(clpq).
:- use_module(library(format)).

laplace([_, _]).
laplace([H1, H2, H3|T]):-

laplace_vec(H1, H2, H3),
laplace([H2, H3|T]).

laplace_vec([_, _], [_, _], [_, _]).
laplace_vec([_TL, T, TR|T1], [ML, M, MR|T2], [_BL, B, BR|T3]):-

B + T + ML + MR - 4 * M .=. 0,
laplace_vec([T, TR|T1], [M, MR|T2], [B, BR|T3]).

printmat([]).
printmat([H|T]):-

printvec(H),
printmat(T).

printvec([]):- nl.
printvec([H|T]):-

printrat(H),
printvec(T).

printrat(rat(N,D)) :- !,
X is N/D,
format(" ~2f",X).

printrat(N) :-
X is N*100,
format(" ~2d",X).

go1:-
X = [

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, _, _, _, _, _, _, _, _, _, 100],
[100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
],

laplace(X),
printmat(X).

% Answer:
% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
% 100.00 51.11 32.52 24.56 21.11 20.12 21.11 24.56 32.52 51.11 100.00
% 100.00 71.91 54.41 44.63 39.74 38.26 39.74 44.63 54.41 71.91 100.00

Chapter 104: Constraint programming over reals 427

% 100.00 82.12 68.59 59.80 54.97 53.44 54.97 59.80 68.59 82.12 100.00
% 100.00 87.97 78.03 71.00 66.90 65.56 66.90 71.00 78.03 87.97 100.00
% 100.00 91.71 84.58 79.28 76.07 75.00 76.07 79.28 84.58 91.71 100.00
% 100.00 94.30 89.29 85.47 83.10 82.30 83.10 85.47 89.29 94.30 100.00
% 100.00 96.20 92.82 90.20 88.56 88.00 88.56 90.20 92.82 96.20 100.00
% 100.00 97.67 95.59 93.96 92.93 92.58 92.93 93.96 95.59 97.67 100.00
% 100.00 98.89 97.90 97.12 96.63 96.46 96.63 97.12 97.90 98.89 100.00
% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

go2([B31, M32, M33, B34, B42, B43, B12, B13, B21, M22, M23, B24]) :-
laplace([

[_B11, B12, B13, _B14],
[B21, M22, M23, B24],
[B31, M32, M33, B34],
[_B41, B42, B43, _B44]

]).

% Answer:
%
% B34.=. -4*M22+B12+B21+4*M33-B43,
% M23.=.4*M22-M32-B12-B21,
% B31.=. -M22+4*M32-M33-B42,
% B24.=.15*M22-4*M32-4*B12-4*B21-M33-B13 ?

104.3 Known bugs and planned improvements (clpr)

• clp(Q) and clp(R) cannot be used simultaneously in the same program, or even within the
same toplevel session.

428 The Ciao Prolog System

Chapter 105: Fuzzy Prolog 429

105 Fuzzy Prolog

Author(s): Claudio Vaucheret, Sergio Guadarrama, Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#339 (2004/4/22, 7:49:9 CEST)

This package impements an extension of prolog to deal with uncertainty. We implement a
fuzzy prolog that models interval-valued fuzzy logic. This approach is more general than other
fuzzy prologs in two aspects:

1. Truth values are sub-intervals on [0,1]. In fact, it could be a finite union of sub-intervals, as
we will see below. Having a unique truth value is a particular case modeled with a unitary
interval.

2. Truth values are propagated through the rules by means of a set of aggregation operators.
The definition of an aggregation operator is a generalization that subsumes conjunctive
operators (triangular norms as min, prod, etc.), disjunctive operators (triangular co-norms
as max, sum, etc.), average operators (averages as arithmetic average, cuasi-linear average,
etc.) and hybrid operators (combinations of previous operators).

We add uncertainty using CLP(R) instead of implementing a new fuzzy resolution as other
fuzzy prologs. In this way, we use the original inference mechanism of Prolog, and we use the
constraints and its operations provided by CLP(R) to handle the concept of partial truth. We
represent intervals as constrains over real numbers and aggregation operators as operations with
constraints.

Each fuzzy predicate has an additional argument which represents its truth value. We use
“:~” instead of “:-” to distinguish fuzzy clauses from prolog clauses. In fuzzy clauses, truth
values are obtained via an aggregation operator. There is also some syntactic sugar for defining
fuzzy predicates with certain membership functions, the fuzzy counterparts of crisp predicates,
and the fuzzy negation of a fuzzy predicate.

105.1 Usage and interface (fuzzy)
® ©

• Library usage:

:- use_package(fuzzy).

or

:- module(...,...,[fuzzy]).

• Exports:

− Predicates:

:#/2, fuzzy_predicate/1, fuzzy/1, fnot/1, :~/2, =>/4.

− Properties:

fuzzybody/1.

− Regular Types:

faggregator/1.

• New operators defined:

:~/2 [1200,xfx], :~/1 [1200,xf], :=/2 [1200,xfx], :=/1 [1200,xf], :#/2 [1200,xfx], =>/1
[1175,fx], fnot/1 [1150,fx], aggr/1 [1150,fx], ##/2 [1120,xfy], <#/2 [1120,xfy], #>/2
[1120,xfy], fuzzy/1 [1150,fx], fuzzy_predicate/1 [1190,fx], fuzzy_discrete/1 [1190,fx].

• New declarations defined:

aggr/1.

 ª

430 The Ciao Prolog System

105.2 Documentation on new declarations (fuzzy)

DECLARATIONaggr/1:
Usage: :- aggr(Name).

− Description: Declares Name an aggregator. Its binary definition has to be provided.
For example:

:- aggr myaggr.

myaggr(X,Y,Z):- Z .=. X*Y.

defines an aggregator identical to prod.

− The following properties hold at call time:

Name is an atomic term (an atom or a number). (basic_props:constant/1)

105.3 Documentation on exports (fuzzy)

PREDICATE:#/2:
Usage: :#(Name, Decl)

− Description: Defines fuzzy predicate Name from the declaration Decl.

− The following properties hold upon exit:

Name is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

Decl is one of the following three:

fuzzydecl(fuzzy_predicate(_1)).
fuzzydecl(fuzzy(_1)).
fuzzydecl(fnot(_1)).

(user(... /fuzzy_doc):fuzzydecl/1)

PREDICATEfuzzy predicate/1:
Usage: fuzzy_predicate(Domain)

− Description: Defines a fuzzy predicate with piecewise linear continuous membership
function. This is given by Domain, which is a list of pairs of domain-truth values, in
increasing order and exhaustive. For example:

young :# fuzzy_predicate([(0,1),(35,1),(45,0),(120,0)]).

defines the predicate:

young(X,1):- X .>=. 0, X .<. 35.
young(X,M):- X .>=. 35, X .<. 45, 10*M .=. 45-X.
young(X,0):- X .>=. 45, X .=<. 120.

− The following properties should hold at call time:

Domain is a list. (basic_props:list/1)

Chapter 105: Fuzzy Prolog 431

PREDICATEfuzzy/1:
Usage: fuzzy(Name)

− Description: Defines a fuzzy predicate as the fuzzy counterpart of a crisp predicate
Name. For example,

p_f :# fuzzy p/2

defines a new fuzzy predicate p_f/3 (the last argument is the truth value) with truth
value equal to 0 if p/2 fails and 1 otherwise.

− The following properties should hold at call time:

Name is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

PREDICATEfnot/1:
Usage: fnot(Name)

− Description: Defines a fuzzy predicate as the fuzzy negation of another fuzzy predicate
Name. For example,

notp_f :# fnot p_f/3

defines the predicate:

notp_f(X,Y,M) :-
p_f(X,Y,Mp),
M .=. 1 - Mp.

− The following properties should hold at call time:

Name is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

PREDICATE:~/2:
Usage: :~(Head, Body)

− Description: Defines a fuzzy clause for a fuzzy predicate. The clause contains calls to
either fuzzy or crisp predicates. Calls to crisp predicates are automatically fuzzified.
The last argument of Head is the truth value of the clause, which is obtained as the
aggregation of the truth values of the body goals. An example:

:- module(young2,_,[fuzzy]).

young_couple(X,Y,Mu) :~ min
age(X,X1),
age(Y,Y1),
young(X1,MuX),
young(Y1,MuY).

age(john,37).

432 The Ciao Prolog System

age(rose,39).

young :# fuzzy_predicate([(0,1),(35,1),(45,0),(120,0)]).

so that:

?- young_couple(john,rose,M).

M .=. 0.6 ?

− The following properties should hold at call time:

Head is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Body is a clause body plus an optional aggregation operator. (user(...
/fuzzy_doc):fuzzybody/1)

PROPERTYfuzzybody/1:
A clause body, optionally prefixed by the name of an aggregation operator. The agregators
currently provided are listed under faggregator/1. By default, the aggregator used is
min.

Usage: fuzzybody(B)

− Description: B is a clause body plus an optional aggregation operator.

REGTYPEfaggregator/1:
The first three are, respectively, the T-norms: minimum, product, and Lukasiewicz’s. The
last three are their corresponding T-conorms. Aggregators can be defined by the user, see
aggr/1.

faggregator(min).
faggregator(prod).
faggregator(luka).
faggregator(max).
faggregator(dprod).
faggregator(dluka).

Usage: faggregator(Aggr)

− Description: Aggr is an aggregator which is cumulative, i.e., its application to several
values by iterating pairwise the binary operation is safe.

PREDICATE=>/4:
Usage: =>(Aggr, A, B, Truth)

− Description: The fuzzy implication A => B defined by aggregator Aggr, resulting in
the truth value Truth.

− The following properties should hold at call time:

Aggr is an aggregator which is cumulative, i.e., its application to several values by
iterating pairwise the binary operation is safe. (user(...
/fuzzy_doc):faggregator/1)

A is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Chapter 105: Fuzzy Prolog 433

B is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Truth is a free variable. (term_typing:var/1)

105.4 Other information (fuzzy)

An example program:

:- module(dicesum5,_,[fuzzy]).

% this example tries to measure which is the possibility
% that a couple of values, obtained throwing two loaded dice, sum 5. Let
% us suppose we only know that one die is loaded to obtain a small value
% and the other is loaded to obtain a large value.
%
% the query is ? sum(5,M)
%

small :# fuzzy_predicate([(1,1),(2,1),(3,0.7),(4,0.3),(5,0),(6,0)]).
large :# fuzzy_predicate([(1,0),(2,0),(3,0.3),(4,0.7),(5,1),(6,1)]).

die1(X,M) :~
small(X,M).

die2(X,M) :~
large(X,M).

two_dice(X,Y,M):~ prod
die1(X,M1),
die2(Y,M2).

sum(2,M) :~
two_dice(1,1,M1).

sum(5,M) :~ dprod
two_dice(4,1,M1),
two_dice(1,4,M2),
two_dice(3,2,M3),
two_dice(2,3,M4).

There are more examples in the subdirectory fuzzy/examples of the distribution.

105.5 Known bugs and planned improvements (fuzzy)

• General aggregations defined by users.

• Inconsistent behaviour of meta-calls in fuzzy clauses.

• Some meta-predicate constructions need be added, specially for ’disjunctive’ fuzzy clauses,
e.g., sum/2 in the dice example.

434 The Ciao Prolog System

Chapter 106: Object oriented programming 435

106 Object oriented programming

Author(s): Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.3#63 (1999/9/29, 19:54:17 MEST)

O’Ciao is a set of libraries which allows object-oriented programming in Ciao Prolog. It
extends the Ciao Prolog module system by introducing two new concepts:

• Inheritance.

• Instantiation.

Polymorphism is the third fundamental concept provided by object oriented programming.
This concept is not mentioned here since traditional PROLOG systems are polymorphic by
nature.

Classes are declared in the same way as modules. However, they may be enriched with inher-
itance declarations and other object-oriented constructs. For an overview of the fundamentals
of O’Ciao, see http://www.clip.dia.fi.upm.es/~clip/papers/ociao-tr.ps.gz. However,
we will introduce the concepts in a tutorial way via examples.

106.1 Early examples

The following one is a very simple example which declares a class – a simple stack. Note
that if you replace class/1 declaration with a module/1 declaration, it will compile correctly,
and can be used as a normal Prolog module.

%%--%%
%% A class for stacks. %%
%%--%%

%% Class declaration: the current source defines a class.
:- class(stack,[],[]).

% State declaration: storage/1 is an attribute.
:- dynamic storage/1.

% Interface declaration: the following predicates will
% be available at run-time.
:- export(push/1).
:- export(pop/1).
:- export(top/1).
:- export(is_empty/0).

% Methods

push(Item) :-
nonvar(Item),
asserta_fact(storage(Item)).

pop(Item) :-
var(Item),
retract_fact(storage(Item)).

top(Top) :-

436 The Ciao Prolog System

storage(Top), !.

is_empty :-
storage(_), !, fail.

is_empty.

If we load this code at the Ciao toplevel shell:

?- use_package(objects).

yes
?- use_class(library(’class/examples/stack’)).

yes
?-

we can create two stack instances :

?- St1 new stack,St2 new stack.

St1 = stack(’9254074093385163’),
St2 = stack(’9254074091’) ? ,

and then, we can operate on them separately:

1 ?- St1:push(8),St2:push(9).

St1 = stack(’9254074093385163’),
St2 = stack(’9254074091’) ?

yes
1 ?- St1:top(I),St2:top(K).

I = 8,
K = 9,
St1 = stack(’9254074093385163’),
St2 = stack(’9254074091’) ?

yes
1 ?-

The interesting point is that there are two stacks. If the previous example had been a normal
module, we would have a stack , but only one stack.

The next example introduces the concepts of inheritable predicate, constructor, destructor
and virtual method. Refer to the following sections for further explanation.

%%--%%
%% A generic class for item storage. %%
%%--%%
:- class(generic).

% Public interface declaration:
:- export([set/1,get/1,callme/0]).

% An attribute
:- data datum/1.

Chapter 106: Object oriented programming 437

% Inheritance declaration: datum/1 will be available to
% descendant classes (if any).
:- inheritable(datum/1).

% Attribute initialization: attributes are easily initialized
% by writing clauses for them.
datum(none).

% Methods

set(X) :-
type_check(X),
set_fact(datum(X)).

get(X) :-
datum(X).

callme :-
a_virtual(IMPL),
display(IMPL),
display(’ implementation of a_virtual/0 ’),
nl.

% Constructor: in this case, every time an instance
% of this class is created, it will display a message.
generic :-

display(’ generic class constructor ’),
nl.

% Destructor: analogous to the previous constructor,
% it will display a message every time an instance
% of this class is eliminated.
destructor :-

display(’ generic class destructor ’),
nl.

% Predicates:
% cannot be called as messages (X:method)

% Virtual declaration: tells the system to use the most
% descendant implementation of a_virtual/1 when calling
% it from inside this code (see callme/0).
% If there is no descendant implementation for it,
% the one defined bellow will be used.
:- virtual a_virtual/1.

a_virtual(generic).

:- virtual type_check/1.

type_check(X) :-

438 The Ciao Prolog System

nonvar(X).

And the following example, is an extension of previous class. This is performed by establishing
an inheritance relationship:

%%--%%
%% This class provides additional functionality %%
%% to the "generic" class. %%
%%--%%
:- class(specific).

% Establish an inheritance relationship with class "generic".
:- inherit_class(library(’class/examples/generic’)).

% Override inherited datum/1.
% datum/1 is said to be overriden because there are both an
% inherited definition (from class "generic") and a local one,
% which overrides the one inherited.
:- data datum/1.
:- inheritable datum/1.

% Extend the public interface inherited from "generic".
% note that set/1 and a_virtual/0 are also overriden.
% undo/0 is a new functionality added.
:- export([set/1,undo/0]).

% Methods

set(Value) :-
inherited datum(OldValue),
!,
inherited set(Value),
asserta_fact(datum(OldValue)).

set(Value) :-
inherited set(Value).

undo :-
retract_fact(datum(Last)), !,
asserta_fact(inherited(datum(Last))).

undo :-
retractall_fact(inherited(datum(_))).

% Constructor
specific :-

generic,
retractall_fact(inherited(datum(_))),
display(’ specific class constructor ’),
nl.

% Destructor
destructor :-

display(’ specific class destructor ’),

Chapter 106: Object oriented programming 439

nl.

% Predicates

% New implementation of a_virtual/1.
% Since this predicate was declared virtual, the
% implementation below will be called from the inherited
% method callme/0 instead of the version defined at "generic".
a_virtual(specific).

Additional examples may be found on the library/class/examples directory relative to your
Ciao Prolog instalation.

106.2 Recommendations on when to use objects

We would like to give some advice in the use of object oriented programming, in conjunction
with the declarative paradigm.

You should reconsider using O’Ciao in the following cases:

• The pretended "objects" have no state,i.e., no data or dynamic predicates. In this case, a
normal module will suffice.

• There is state, but there will be only one instance of a pretended class. Again, a module
suffices.

• The "objects" are data structures (list,trees,etc) already supported by Prolog. However, it
does make sense to model, using objects, data structures whose change implies a side-effect
such as drawing a particular window on the screen.

We recommend the usage of O’Ciao in the following cases:

• You feel you will need to have several copies of a "module".

• Local copies of a module are needed instead of a global module beeing modified by several
ones.

• The "classes" are a representation of external entities to Prolog. For example: the X-
Window system.

• There is state or code outside the Prolog system which needs to be manipulated. For
example: interfaces to Java or Tcl/Tk code.

• You are not familiar with Prolog, but you know about object oriented programming. O’Ciao
may be used as a learning tool to introduce yourself on the declarative programming
paradigm.

106.3 Limitations on object usage

O’Ciao run-time speed is limited by the usage of meta-programming structures, for instance:
X = (Object:mymethod(25)), call(X). O’Ciao will optimize static manipulation of objects
(those that can be determined at compile time).

440 The Ciao Prolog System

Chapter 107: Declaring classes and interfaces 441

107 Declaring classes and interfaces

Author(s): Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#162 (2001/12/4, 16:2:58 CET)

O’Ciao classes are declared in the same way as traditional prolog modules. The general
mechanism of source expansion will translate object-oriented declarations to normal prolog code.
This is done transparently to the user.

Abstract interfaces are restricted classes which declare exported predicates with no imple-
mentation. The implementation itselt will be provided by some class using an implements/1
declaration. Only export/1 and data/1 declarations are allowed when declaring an interface.
Normal classes may treated as interfaces just ignoring all exported predicate implementations.

107.1 Usage and interface (class)
® ©

• Library usage:

To declare a class the compiler must be told to use the class source expansion. To do so,
source code must start with a module declaration which loads the class package:

:- class(ClassName).

or a module/3 declaration, as follows:

:- module(ClassName,[],[class]).

interfaces are declared in a similar way:

:- interface(InterfaceName).

Please, do not use SICStus-like module declaration, with a non-empty export list. In other
case, some non-sense errors will be reported by normal Ciao module system.

Most of the regular Ciao declarations may be used when defining a class, such as
concurrent/1, dynamic/1, discontiguous/1, multifile/1, and so on.

However, there are some restrictions wich apply to those declarations:

• meta_predicate/1 declaration is not allowed to hold addmodule and pred(N) meta-
arguments, except for previously declared multifiles.

• Attribute and multifile predicates must be declared before any clause of the related
predicate.

• There is no sense in declaring an attribute as meta predicate.

It is a good practique to put all your declarations at the very begining of the file, just before
the code itself.

• Exports:

− Predicates:

inherited/1, self/1, constructor/0, destructor/0.

• New declarations defined:

export/1, public/1, inheritable/1, data/1, dynamic/1, concurrent/1, inherit_
class/1, implements/1, virtual/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

442 The Ciao Prolog System

107.2 Documentation on new declarations (class)

DECLARATIONexport/1:
Declares a method or attribute to be part of the public interface.

The public interface is the set of predicates wich will be accesible from any code estab-
lishing an usage relationship with this class (see use_class/1 for further information).

Publishing an attribute or method is very similar to exporting a predicate in a Prolog
module.

Whether an inherited and exported predicate is overriden, it must be explicitly exported
again.

An inherited (but not exported) predicate may become exported, without overriding it by
the usage of this declaration.

Usage: :- export(Spec).

− Description: Spec will be part of the public (exported) interface.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects_rt:method_spec/1)

DECLARATIONpublic/1:
Just an alias for export/1.

Usage: :- public(Spec).

− Description: This declaration may be used instead of export/1.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects_rt:method_spec/1)

DECLARATIONinheritable/1:
Declares a method or attribute to be inherited by descendant classes. Notice that all public
predicates are inheritable by default. There is no need to mark them as inheritable.

Traditionaly, object oriented languages makes use of the protected concept. Inheritable/1
may be used as the same concept.

The set of inheritable predicates is called the inheritable interface.

Usage: :- inheritable(MethodSpec).

− Description: MethodSpec is accessible to descendant classes.

− The following properties should hold at call time:

MethodSpec is a method or attribute specification. (objects_rt:method_spec/1)

DECLARATIONdata/1:
Declares an attribute at current class. Attributes are used to build the internal state of
instances. So, each instance will own a particular copy of those attribute definitions. In
this way, one instance may have different state from another.

O’Ciao attributes are restricted to hold simple facts. It is not possible to hold a Head :-
Body clause at an instance attribute.

Notice that attributes are multi-evaluated by nature, and may be manipulated by the
habitual assert/retract family of predicates.

Chapter 107: Declaring classes and interfaces 443

Attributes may also be initialized. In order to do so, simply put some clauses after the
attribute definition. Each time an instance is created, its initial state will be built from
those initialization clauses.

Note: whether a data/1 declaration appears inside an interface, it will be automatically
exported.

Usage: :- data Spec.

− Description: Spec is an attribute.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects_rt:method_spec/1)

DECLARATIONdynamic/1:
Just an alias for data/1.

Usage: :- dynamic Spec.

− Description: You may use this declaration instead of data/1.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects_rt:method_spec/1)

DECLARATIONconcurrent/1:
Declares a concurrent attribute at current class. Concurrent attributes are just the same
as normal attributes, those declared using data/1, except for they may freeze the calling
thread instead of failing when no more choice points are remaining on the concurrent
attribute.

In order to get more information about concurrent behavior take a look to the concurrent/1
built-in declaration on Ciao Prolog module system.

Usage: :- concurrent Spec.

− Description: Declares Spec to be a concurrent attribute.

− The following properties should hold at call time:

Spec is a method or attribute specification. (objects_rt:method_spec/1)

DECLARATIONinherit class/1:
Makes any public and/or inheritable predicate at inherited class to become accesible by
any instance derived from current class.

Inherited class is also called the super class.

Only one inherit class/1 declaration is allowed to be present at current source.

Notice that inheritance is public by default. Any public and/or inheritable declaration
will remain the same to descendant classes. However, any inherited predicate may be
overriden (redefined).

A predicate is said to be overriden when it has been inherited from super class, but there
are clauses (or a data/1 declaration) present at current class for such a predicate.

Whether a public predicate is overriden, the local definition must also be exported, oth-
erwise an error is reported.

Whether an inheritable predicate (not public) is overriden, the local definition must also
be marked as inheritable or exported, otherwise an error is also reported.

Note: whether inherit class/1 appears inside an interface, it will be used as an
implements/1 declaration.

Usage: :- inherit_class(Source).

444 The Ciao Prolog System

− Description: Establish an inheritance relationship between current class and the class
defined at Source file.

− The following properties should hold at call time:

Source is a valid path to a prolog file containing a class declaration (without .pl
extension). (objects_rt:class_source/1)

DECLARATIONimplements/1:
Forces current source to provide an implementation for the given interface file. Such
interface file may declare another class or a specific interface.

Every public predicate present at given interface file will be automatically declared as
public at current source, so you must provide an implementation for such predicates.

The effect of this declaration is called interface inheritance,and there is no restriction on
the number of implements/1 declarations present at current code.

Usage: :- implements(Interface).

− Description: Current source is supposed to provide an implementation for Interface.

− The following properties should hold at call time:

Interface is a valid path to a prolog file containing a class declaration or an interface
declaration (without .pl extension). (objects_rt:interface_source/1)

DECLARATIONvirtual/1:
This declaration may be used whenever descendant classes are to implement different
versions of a given predicate.

virtual predicates give a chance to handle, in an uniform way, different implementations
of the same functionality.

Whether a virtual predicate is declared as a method, there must be at least one clause of it
present at current source. Whenever no special implementation is needed at current class,
a never-fail/allways-fail clause may be defined (depending on your needs). For example:

:- virtual([test1/1 , test2/2]).
test1(_).
test2(_,_) :- fail.

This kind of virtual methods are also known as abstract methods, since implementation is
fully delegated to descendant classes.

An attribute may be also declared as a virtual one, but there is no need to write clauses
for it.

Usage: :- virtual(VirtualMethodSpec).

− Description: All calls to VirtualMethodSpec predicate in current source will use the
most descendant implementation of it.

− The following properties should hold at call time:

VirtualMethodSpec is a method specification. (objects_rt:virtual_method_
spec/1)

Chapter 107: Declaring classes and interfaces 445

107.3 Documentation on exports (class)

PREDICATEinherited/1:
This predicate qualificator may be used whenever you need to reference an attribute or
method on the super class.

Since methods and attributes may be redefined, this qualificator is need to distinguish
between a locally declared predicate and the inherited one, which has the same name.

There is no need to use inherited/1 if a particular inherited predicate has not been redefined
at current class.

Usage: inherited(Goal)

− Description: References a given Goal at the super class

− The following properties should hold at call time:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEself/1:
Determines which instance is currently executing self/1 goal.

Predicate will fail if argument is not a free variable. Otherwise, it will allways succeed,
retrieving the instance identifier which is executing current code.

This functionality is very usefull since an object must have knowledge of other object’s
identifier in order to send messages to it.For example:

:- concurrent ack/0.

send data to object(Data,Obj) :- self(X), Obj:take this(Data,X), current fact(ack).

acknowledge :- asserta fact(ack).

take this(Data,Sender) :- validate data(Data), Sender:acknowledge.

Usage: self(Variable)

− Description: Retrieves current instance identifier in Variable

− The following properties should hold at call time:

Variable is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

Variable is an unique term which identifies an object. (objects_rt:instance_
id/1)

PREDICATEconstructor/0:
A constructor is a special case of method which complains the following conditions:

• The constructor functor matches the current class name.

• A constructor may hold any number of arguments.

• If an inheritance relationship was defined, an inherited constructor must be manually
called (see below).

• When instance creation takes place, any of the declared constructors are implicitly
called. The actual constructor called depends on the new/2 goal specified by the user.

This is a simple example of constructor declaration for the foo class:

446 The Ciao Prolog System

foo :-
display(’an instance was born’).

Constructor declaration is not mandatory, and there may be more than one constructor
declarations (with different arity) at the source code.

This functionality is usefull when some computation is needed at instance creation. For
example: opening a socket, clearing the screen, etc.

Whenever an inheritance relationship is established, and there is any constructor defined
at the super class, you must call manually an inherited constructor. Here is an example:

:- class(foo).
:- inherit_class(myclass).

foo :-
myclass(0),
display(’an instance was born’).

foo(N) :- myclass(N).

Consequences may be unpredictable, if you forget to call an inherited constructor. You
should also take care not to call an inherited constructor twice.

All defined constructors are inheritable by default. A constructor may also be declared as
public (by the user), but it is not mandatory.

Usage:

− Description: Constructors are implicitly declared

PREDICATEdestructor/0:
A destructor is a special case of method which will be automatically called when instance
destruction takes place.

A destructor will never be wanted to be part of the public interface, and there is no need to
mark them as inheritable, since all inherited destructors are called by O’Ciao just before
yours.

This is a simple example of destructor declaration:

destructor :-
display(’goodbye, cruel world!!!’).

Destructor declaration is not mandatory. Failure or sucess of destructors will be ignored
by O’Ciao, and they will be called only once.

This functionality is useful when some computation is need at instance destruction. For
example: closing an open file.

Usage:

− Description: Destructors are implicitly declared

107.4 Other information (class)

This describes the errors reported when declaring a class or an interface. The first section
will explain compile-time errors, this is, any semantic error which may be determined at compile
time. The second section will explain run-time errors, this is, any exception that may be raisen
by the incorrect usage of O’Ciao. Some of those errors may be not reported at compile time,
due to the use of meta-programational structures. For example:

functor(X,my_method,0),call(X).

O’Ciao is not able to check whether my method/0 is a valid method or not. So, this kind of
checking is left to run time.

Chapter 107: Declaring classes and interfaces 447

107.4.1 Class and Interface error reporting at compile time

• ERROR : multiple inheritance not allowed.

There are two or more inherit class/1 declarations found at your code. Only one declaration
is allowed, since there is no multiple code inheritance support.

• ERROR : invalid inheritance declaration.

The given parameter to inherit class/1 declaration is not a valid path to a Prolog source.

• ERROR : sorry, addmodule meta-arg is not allowed at F/A.

You are trying to declare F/A as meta-predicate, and one of the meta-arguments is ad-
dmodule. This is not allowed in O’Ciao due to implementation restrictions. For example:

:- meta_predicate example(addmodule).

example(X,FromModule) :- call(FromModule:X).

• ERROR : invalid attribute declaration for Arg.

Argument to data/1 or dynamic/1 declaration is not a valid predicate specification of the
form Functor/Arity. For example:

:- data attr.

:- dynamic attr(_).

:- data attr/m.

etc,etc...

• ERROR : pretended attribute F/A was assumed to be a method.

You put some clauses of F/A before the corresponding data/1 or dynamic/1 declaration.
For example:

attr(initial_value).

:- data attr/1.

It is a must to declare attributes before any clause of the given predicate.

• ERROR : destructor/0 is not allowed to be an attribute.

There is a :- data(destructor/0) or :- dynamic(destructor/0). declaration in your code. This
is not allowed since destructor/0 is a reserved predicate, and must be allways a method.

• ERROR : Constructor is not allowed to be an attribute.

As the previos error, you are trying to declare a constructor as an attribute. A constructor
must be allways a method.

• ERROR : invalid multifile: destructor/0 is a reserved predicate.

There is a :- multifile(destructor/0). declaration in your code. This is not allowed since
destructor/0 is a reserved predicate, and must be allways a method.

• ERROR : invalid multifile: Constructor is a reserved predicate.

As the previos error, you are trying to declare a constructor as a multifile. Any constructor
must allways be a method.

• ERROR : multifile declaration of F/A ignored: it was assumed to be a method.

You put some clauses of F/A before the corresponding multifile/1 declaration. For example:

example(a,b).

:- multifile example/2.

Multifile predicates must be declared before any clause of the given predicate.

• ERROR : invalid multifile declaration: multifile(Arg).

Given argument to multifile/1 declaration is not a valid predicate specification, of the form
Functor/Arity.

448 The Ciao Prolog System

• ERROR : invalid public declaration: Arg.

Given argument Arg to public/1 or export/1 declaration is not a valid predicate specifica-
tion, of the form Functor/Arity.

• ERROR : invalid inheritable declaration: inheritable(Arg).

Given argument Arg to inheritable/1 declaration is not a valid predicate specification, of
the form Functor/Arity.

• ERROR : destructor/0 is not allowed to be virtual.

There is a :- virtual(destructor/0) declaration present at your code. Destructors and/or
constructors are not allowed to be virtual.

• ERROR : Constructor is not allowed to be virtual.

As the previous error, you are trying to declare a constructor as virtual. This is not allowed.

• ERROR : invalid virtual declaration: virtual(Arg).

Given argument to virtual/1 declaration is not a valid predicate specification, of the form
Functor/Arity.

• ERROR : clause of F/A ignored : only facts are allowed as initial state.

You declared F/A as an attribute, then you put some clauses of that predicate in the form
Head :- Body. For example:

:- data my_attribute/1.

my_attribute(X) :- X>=0 , X<=2.

This is not allowed since attributes are assumed to hold simple facts. The correct usage for
those initialization clauses is:

:- data my_attribute/1.

my_attribute(0).

my_attribute(1).

my_attribute(2).

• ERROR : multifile F/A is not allowed to be public.

The given F/A predicate is both present at multifile/1 and public/1 declarations. For
example:

:- public(p/1).

:- multifile(p/1).

This is not allowed since multifile predicates are not related to Object Oriented Program-
ming.

• ERROR : multifile F/A is not allowed to be inheritable.

Analogous to previous error.

• ERROR : multifile F/A is not allowed to be virtual.

Analogous to previous error.

• ERROR : virtual F/A must be a method or attribute defined at this class.

There is a virtual/1 declaration for F/A, but there is not any clause of that predicate nor a
data/1 declaration. You must declare at least one clause for every virtual method. Virtual
attributes does not require any clause but a data/1 declaration must be present.

• ERROR : implemented interface Module is not a valid interface.

There is an implements/1 declaration present at your code where given Module is not
declared as class nor interface.

• ERROR : predicate F/A is required both as method (at Itf1 interface) and attribute (at
Itf2 interface).

There is no chance to give a correct implementation for F/A predicate since Itf1 and Itf2
interfaces require different definitions. To avoid this error, you must remove one of the
related implements/1 declaration.

Chapter 107: Declaring classes and interfaces 449

• ERROR : inherited Source must be a class.

There is an :- inherit class(Source) declaration, but that source was not declared as a class.

• ERROR : circular inheritance: Source is not a valid super-class.

Establishing an inheritance relationship with Source will cause current class to be present
twice in the inheritance line. This is not allowed. The cause of this is error is simple : There
is some inherited class from Source which also establishes an inheritance relationship with
current source.

• ERROR : method/attribute F/A must be implemented.

Some of the implemented interfaces requires F/A to be defined, but there is no definition
for such predicate, even an inherited one.

• ERROR : local implementation of F/A hides inheritable/public definition.

There is an inherited definition for F/A which is been redefined at current class, but there is
no valid inheritable/public declaration for the last one. Overriden public predicates must be
also declared as public. Overriden inheritable predicates must be declared either as public
or inheritable.

• ERROR : public predicate F/A was not defined nor inherited.

There is a public/1 declaration for F/A, but there is no definition for it at current class
nor an inherited one.

• ERROR : argument to self/1 must be a free variable.

Argument to self/1 is not a variable, for example: self(abc).

• ERROR : unknown inherited attribute in Goal.

Goal belongs to assert/retract family of predicates, and given argument is not a valid
inherited attribute. The most probable causes of this error are:

• The given predicate is defined at super-class, but you forgot to mark it as inheritable
(or public), at such class.

• The given predicate was not defined (at super-class) as an attribute, just as a method.

• ERROR : unknown inherited goal: Goal.

The given Goal was not found at super-class, or it is not accessible. Check whether Goal
was marked as inheritable (or public) at super-class.

• ERROR : invalid argument: F/A is not an attribute.

You are trying to pass a method as an argument to any predicate which expect a fact
predicate.

• ERROR : unknown inherited fact: Fact.

There is a call to any predicate which expects a fact argument (those declared as data or
dynamic),but the actual argument is not an inherited attribute.For example:

asserta_fact(inherited(not_an_attribute(8)))

where not an attribute/1 was not declared as data or dynamic by the super-class (or cor-
responding ascendant).

• ERROR : unknown inherited spec: F/A.

There is a reference to an inherited predicate specification, but the involved predicate has
not been inherited.

• WARNING : meta-predicate specification of F/A ignored since this is an attribute.

You declared F/A both as an attribute and a meta-predicate. For example:

:- meta_predicate attr(goal).

:- data attr/1.

There is no sense in declaring an attribute as meta-predicate.

450 The Ciao Prolog System

• WARNING : class destructor is public

There is a :- public(destructor/0) declaration present at your code. Marking a destructor
as public is a very bad idea since anybody may destroy or corrupt an instance before the
proper time.

• WARNING : class destructor is inheritable

Analogous to previous error.

• WARNING : There is no call to inherited constructor/s

You have not declared any constructor at your class, but there is any inherited constructor
that should be called. Whenever you do not need constructors, but there is an inheri-
tance relationship (where super-class declares a constructor), you should write a simple
constructor as the following example:

:- class(myclass).
:- inherit_class(other_class).

myclass :-
other_class.

• WARNING : multifile F/A hides inherited predicate.

You declared as multifle a predicate which matches an inherited predicate name. Any
reference to the inherited predicate must be done by the ways of the inherited/1 qualificator.

107.4.2 Class and Interface error reporting at run time

• EXCEPTION : error(existence error(object goal,Goal),Mod).

Called Goal from module (or class) Mod is unknown or has not been published.

107.4.3 Normal Prolog module system interaction

O’Ciao works in conjunction with the Ciao Prolog module system, which also reports its
own error messages. This will cause Ciao to report a little criptic error messages due to the
general mechanism of source-to-source expansion. Those are some tips you must consider when
compiling a class:

• Any error relative to method ’m’ with arity A will be reported for predicate ’obj$m’/A+1.
For example :

WARNING: (lns 28-30) [Item,Itema] - singleton variables in obj$remove/2

This error is relative to method remove/1.

• set_prolog_flag/1 declaration will be usefull when declaring multiple constructors. It
will avoid some awful warnings. Example:

:- class(myclass).

%% Use this declaration whenever several constructors are needed.

:- set_prolog_flag(multi_arity_warnings,off).

myclass(_).

myclass(_,_).

:- set_prolog_flag(multi_arity_warnings,on).

Chapter 107: Declaring classes and interfaces 451

107.5 Known bugs and planned improvements (class)

• addmodule and pred(N) meta-arguments are not allowed on meta-predicates.

452 The Ciao Prolog System

Chapter 108: Compile-time usage of objects 453

108 Compile-time usage of objects

Author(s): Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#32 (2000/11/14, 13:13:15 CET)

This package is required to enable user code to create objects and manipulate them, as well
as loading any needed class.

108.1 Usage and interface (objects)
® ©

• Library usage:

Any code which needs to use objects must include the objects package:

:- module(ModuleName,Exports,[objects]).

You can use objects even if your code is a class. Note that declaring a class does not
automatically enables the code to create instances.

:- class(ModuleName,[],[objects]).

This package enables both static and dynamic usage of objects.

• New declarations defined:

use_class/1, instance_of/2, new/2.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

108.2 Documentation on new declarations (objects)

DECLARATIONuse class/1:
It establishes an usage relationship between the given file (which is supposed to declare a
class) and current source. Usage relationships are needed in order to enable code to create
instances of the given class, and to make calls to instances derived from such class.

Since an interface is some kind of class, they may be used within this declaration but only
for semantic checking porpouses. Instances will not be derived from interfaces.

use class/1 is used in the same way as use_module/1.

Usage: :- use_class(ClassSource).

− Description: Establish usage relationship with ClassSource.

− The following properties should hold at call time:

ClassSource is a valid path to a prolog file containing a class declaration (without
.pl extension). (objects_rt:class_source/1)

DECLARATIONinstance of/2:
Statically declares an identifier to be an instance of a given class.

It may be used as new/2 predicate except for:

454 The Ciao Prolog System

• The instance identifier will not be a variable, it must be provided by the user, and
must be unique.

• Instance creation will never fail, even if the constructor fails.

For every statically declared object the given constructor will be called at program startup.
Those instances may be destroyed manually, but it is not recommended.

When reloading the involved class from the Ciao toplevel shell. It may destroy statically
declared instances, and create them again.

Statically declared instances must be called using a specifically designed module-
qualification: ClassName(Object):Goal. For example:

:- module(example,[main/0],[objects]).
:- use_class(library(counter)).
:- cnt instance_of counter(10).

main :-
counter(cnt):decrease(1),
counter(cnt):current_value(X),
display(X).

But statically written code (only) is allowed to use module-style qualifications as a macro:

main :-
cnt:decrease(1),
cnt:current_value(X),
display(X).

Notice that dynamically expanded goals such as X=cnt,X:decrease(1) will not work, use
X=counter(cnt),X:decrease(1) instead.

Usage: :- instance_of(Object, Constructor).

− Description: Declares Object to be an instance of the class denoted by Constructor.

− The following properties should hold at call time:

Object is an unique term which identifies an object. (objects_rt:instance_id/1)

Constructor is a term whose functor matches a class name. (objects_
rt:constructor/1)

DECLARATIONnew/2:
This declaration has the same effect as instance_of/2.

Usage: :- new(Object, Constructor).

− Description: Just an alias for instance_of/2.

− The following properties should hold at call time:

Object is an unique term which identifies an object. (objects_rt:instance_id/1)

Constructor is a term whose functor matches a class name. (objects_
rt:constructor/1)

108.3 Other information (objects)

Compile-time errors are restricted to some local analysis. Since there is no type declaration
in the Prolog language, there is no posibility to determine whenever a given variable will hold
an instance of any class.

Chapter 108: Compile-time usage of objects 455

However, little semantic analysis is performed. User may aid to perform such an analysis by
the usage of run time checks (which are also detected at compile time), or static declarations.
For example:

clause(Obj) :- Obj:a_method(334).

O’Ciao may be not able to determine whenever a method/1 is a valid method for instance
Obj, unless some help is provided:

clause(Obj) :- Obj instance_of myclass,Obj:a_method(334).

In such case, O’Ciao will report any semantic error at compile-time.

Most of the run-time errors are related to normal Ciao Prolog module system. Since objects
are treated as normal Prolog modules at run time, there is no further documentation here about
that stuff.

108.3.1 Error reporting at compile time (objects)

• ERROR : invalid instance identifier ID : must be an atom

There is a instance_of/2 or new/2 declaration where first argument ID must be an unique
atom, but currently it is not. Statically declared instances needs an identifier to be provided
by the user.

• ERROR : instance identifier ID already in use

There are two or more instance_of/2 declarations with the same first argument ID. In-
stance identifiers must be unique.

• ERROR : invalid use class/1 declaration: SourceFile is not a class

Those are the causes for this error:

• The given SourceFile does not exist, or is not accesible.

• The given SourceFile is not a Prolog source.

• The given SourceFile is a valid Prolog source, but it does not declare a class.

• ERROR : unknown class on ID instance declaration

The class defined on the instance_of/2 declaration for ID instance has not been loaded
by a use_class/1 declaration.

• ERROR : instance identifier ID is an exisisting Prolog module

There is an statically declared instance whose identifier may cause interference with the
Ciao Prolog module system. Use another instance identifier.

• ERROR : unknown constructor on ID instance declaration

The given constructor on the instance_of/2 declaration for ID has not been defined at
the corresponding class.

• ERROR : constructor is needed on ID instance declaration

No constructor was defined on the instance_of/2 declaration for ID and default construc-
tor is not allowed. You must provide a constructor.

• ERROR : static instance ID was derived from a different constructor at AnotherModule

ID has been declared to be an static instance both on AnotherModule and current source,
but different constructors were used. The most probable causes for this error are:

• Occasionally, there is another module using the same instance identifier and it was not
noticed by you. Another different identifier may be used instead.

• It was you intention to use the same object as declared by the other module. In this
case, the same constructor must be used.

• ERROR : invalid first argument in call to new(Arg,)

There is a new/1 goal in your code where first argument is not a free variable. For example:

456 The Ciao Prolog System

myobj new myclass

First argument must be a variable in order to receive a run-time generated object identifier.

• ERROR : unknown class in call to new(?,Constructor)

The given Constructor in call to new/2 does not correspond to any used class at current
code. The most probable cause of this may be:

• You forgot to include a use_class/1 declaration in your code.

• There is a spelling mistake in the constructor.For example:

:- use class(myclass).

foo(X) :- X new mclass.

• ERROR : can not create an instance from an interface: new(?,Constructor)

Given Constructor references an interface rather than a class. Instances can not be derived
from interface-expanded code.

• ERROR : unknown constructor in call to new(?,Constructor)

As the previous error, there is a mistake in the given Constructor. This error is reported
when you are trying to call a constructor which was not defined at the corresponding class.
Check the class definition to find what is going on.

Another cause for this error is the incorrect usage of the default constructor. Whenever
there are one or more constructors defined at the involved class, you are restricted to chose
one of them. This seems that default constructor will be available, if and only if, there are
no constructors defined at the involved class.

• ERROR : call to non-public ID:Goal

You are trying to call a method which was not declared as public by the class specified in
instance_of/2 declaration for ID.

• ERROR : call to inaccessible predicate at instance ID:Goal

There is a call to Goal at statically declared instance ID which is unknown or was not
declared as public.

• ERROR : unknown instance ID of class Class at Goal

There is a call to Goal where involved statically declared instance ID is unknown or is not
derived from Class. Check whether it was declared by a instance_of/2 declaration.

• ERROR : inaccessible attribute Fact at instance ID

There is an attempt to use ID:Fact but it was not declared as public.

• ERROR : unknown attribute Fact at instance ID

There is an attempt to use ID:Fact but it is unknown or it is not an attribute (may be a
method).

• WARNING : invalid call to new(?,)

There is a call to new/2 in you code where first argument variable has been determined to
hold any other instance. For example:

foo :- X new myclass,X new otherclass.

or

foo(X) :- X instance_of myclass, X new myclass.

The related call to new/2 will allways fail.

• WARNING : called Goal is not public at any used class

There is a call to Var :Goal where Var has not been determined to be compatible with any
class. However, Goal is not public at any class specified by the use_class/1 declaration.

This is a warning (not an error) since Var :Goal may be not related to Object Oriented
Programing.

Chapter 108: Compile-time usage of objects 457

108.3.2 Error reporting at run time (objects)

• EXCEPTION : instantiation error(’1st argument must be free variable’)

Calling to new/1 requieres first argument to be a free variable. For example:

X = this_will_raise_an_exception,X new myclass.

• EXCEPTION : instantiation error(’class not given’)

You called new/2 using a free variable as second argument.

• EXCEPTION : instantiation error(inaccesible class(Class), from(Module))

Module tried to create an instance of Class by the ways of new/2, but there is no usage
relationship between Module and Class.

• EXCEPTION : instantiation error(invalid constructor(Constructor))

Constructor was not defined by the corresponding class.

458 The Ciao Prolog System

Chapter 109: Run time usage of objects 459

109 Run time usage of objects

Author(s): Angel Fernandez Pineda, Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#51 (2001/1/25, 21:33:0 CET)

This library provides run-time support for object creation and manipulation. Objects are
also called class instances, or simply instances.

Objects in Ciao are treated as normal modules. This is, an object is a run-time generated
Prolog module, which may be identified by an unique term across the whole application.

This is a very simple example of how to create an instance, and how to make calls to it:

AnObj new myclass,
AnObj:mymethod.

In order to make any object accessible from code, an usage relationship must be established
between the class (from which instances are derived) and the code itself. Refer to use_class/1
predicate or use_class/1 declaration in order to do so.

109.1 Usage and interface (objects_rt)
® ©

• Library usage:

This library is automatically loaded when using the objects package:

:- module(ModuleName,Exports,[objects]).

Nothing special needs to be done.

• Exports:

− Predicates:

new/2, instance_of/2, derived_from/2, interface/2, instance_codes/2,
destroy/1, use_class/1.

− Properties:

constructor/1, class_name/1, interface_name/1,
instance_id/1, class_source/1, interface_source/1, method_spec/1, virtual_
method_spec/1.

• Other modules used:

− System library modules:

aggregates, between, compiler/compiler, dec10_io, dynamic, format, lists, old_
database, operators, prolog_sys, read, sort, system, ttyout, write, iso_byte_
char, iso_misc.

 ª

109.2 Documentation on exports (objects_rt)

PREDICATEnew/2:
Dynamic instance creation takes place by the ways of this predicate.

It takes a free variable as first argument which will be instantiated to an internal object
identifier.

460 The Ciao Prolog System

Second argument must be instantiated to a class constructor. Class constructors are
designed to perform an initialization on the new created instance. Notice that instance
initialization may involve some kind of computation, not only state initialization.

A class constructor is made by a functor, which must match the intended class name, and
any number of parameters. For example:

Obj new myclass(1500,’hello, world!!!’)

Those parameters depends (obviously) on the constructors defined at the class source.
If no constructors where defined, no parameters are needed. This is called the default
constructor. An example:

Obj new myclass

The default constructor can not be called if there is any constructor available at the class
source.

Instantiation will raise an exception and fail whenever any of this conditions occur:

• First argument is not a free variable.

• Second argument functor is a class, but there is no usage relationship with it.

• Second argument functor is not a class.

• The given constructor is unknown.

• The given constructor fails (notice that default constructor never fails).

Objects may also be statically declared, refer to instance_of/2 declaration.

Usage: new(InstanceVar, Constructor)

− Description: Creates a new instance of the class specified by Constructor returning
its identifier in InstanceVar

− The following properties should hold at call time:

InstanceVar is a free variable. (term_typing:var/1)

Constructor is a term whose functor matches a class name. (objects_
rt:constructor/1)

− The following properties should hold upon exit:

InstanceVar is an unique term which identifies an object. (objects_rt:instance_
id/1)

PREDICATEinstance of/2:
This predicate is used to perform dynamic type checking. You may check whether a
particular instance belongs to a particular class or related descendants.

instance of/2 is used to perform static semantic analisys over object oriented code con-
structions.

By the use of instance of/2 you may help to perform such analisys.

Usage 1: instance_of(Instance, Class)

− Description: Test whether Instance was derived from any descendant of Class, or
that class itself

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

Class is an atom denoting a class. (objects_rt:class_name/1)

Chapter 109: Run time usage of objects 461

Usage 2: instance_of(Instance, Class)

− Description: Retrieves, on backtracking, the inheritance line of Instance commenc-
ing on the creation class (that specified on call to new/2) and continuing on the rest
of ascendant classes, if any.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

Class is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

Class is an atom denoting a class. (objects_rt:class_name/1)

PREDICATEderived from/2:
Test whether an object identifier was derived directly from a class, by the usage of new/2
or a static instance declaration (instance_of/2).

Usage 1: derived_from(Instance, Class)

− Description: Test derivation of Instance from Class

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

Class is an atom denoting a class. (objects_rt:class_name/1)

Usage 2: derived_from(Instance, Class)

− Description: Retrieves the Class responsable of the derivation of Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

Class is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

Class is an atom denoting a class. (objects_rt:class_name/1)

PREDICATEinterface/2:
This predicate is used to ensure a given interface to be implemented by a given instance.

Usage 1: interface(Instance, Interface)

− Description: Check whether Instance implements the given Interface.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

Interface is an unique atom which identifies a public interface. (objects_
rt:interface_name/1)

Usage 2: interface(Instance, Interfaces)

− Description: Retrieves on backtracking all the implemented Interfaces of Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

Interfaces is a free variable. (term_typing:var/1)

462 The Ciao Prolog System

− The following properties should hold upon exit:

Interfaces is an unique atom which identifies a public interface. (objects_
rt:interface_name/1)

PREDICATEinstance codes/2:
Retrieves a character string representation from an object identifier and vice-versa.

Usage 1: instance_codes(Instance, String)

− Description: Retrieves a String representation of given Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

String is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

String is a string (a list of character codes). (basic_props:string/1)

Usage 2: instance_codes(Instance, String)

− Description: Reproduces an Instance from its String representation. Such an in-
stance must be alive across the application: this predicate will fail whether the in-
volved instance has been destroyed.

− The following properties should hold at call time:

Instance is a free variable. (term_typing:var/1)

String is a string (a list of character codes). (basic_props:string/1)

− The following properties should hold upon exit:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

PREDICATEdestroy/1:
As well as instances are created, they must be destroyed when no longer needed in order
to release system resources.

Unfortunately, current O’Ciao implementation does not support automatic instance de-
struction, so user must manually call destroy/1 in order to do so.

The programmer must ensure that no other references to the involved object are left in
memory when destroy/1 is called. If not, unexpected results may be obtained.

Usage: destroy(Instance)

− Description: Destroys the object identified by Instance.

− The following properties should hold at call time:

Instance is an unique term which identifies an object. (objects_rt:instance_
id/1)

PREDICATEuse class/1:
The behaviour of this predicate is identical to that provided by the declaration of the
same name use_class/1. It allows user programs to dynamically load classes. Whether
the given source is not a class it will perform a use_module/1 predicate call.

Usage: use_class(ClassSource)

Chapter 109: Run time usage of objects 463

− Description: Dynamically loads the given ClassSource

− The following properties should hold at call time:

ClassSource is a valid path to a prolog file containing a class declaration (without
.pl extension). (objects_rt:class_source/1)

PROPERTYconstructor/1:
Usage: constructor(Cons)

− Description: Cons is a term whose functor matches a class name.

PROPERTYclass name/1:
Usage: class_name(ClassName)

− Description: ClassName is an atom denoting a class.

PROPERTYinterface name/1:
Usage: interface_name(Interface)

− Description: Interface is an unique atom which identifies a public interface.

PROPERTYinstance id/1:
Usage: instance_id(ID)

− Description: ID is an unique term which identifies an object.

PROPERTYclass source/1:
Usage: class_source(Source)

− Description: Source is a valid path to a prolog file containing a class declaration
(without .pl extension).

PROPERTYinterface source/1:
Usage: interface_source(Source)

− Description: Source is a valid path to a prolog file containing a class declaration or
an interface declaration (without .pl extension).

PROPERTYmethod spec/1:
There is no difference between method or attribute specifications, and habitual predicate
specifications. It is just a Functor/Arity term.

Usage: method_spec(Spec)

− Description: Spec is a method or attribute specification.

PROPERTYvirtual method spec/1:
Usage: virtual_method_spec(Spec)

− Description: Spec is a method specification.

464 The Ciao Prolog System

109.3 Known bugs and planned improvements (objects_rt)

• Usage of objects from the user module does not work properly. It is better to use the
objects package in a (proper) module.

• Not really a bug: when loading code which declares static instances from the toplevel shell,
predicate use_module/1) will not work properly: those instances may be not correctly
created, and predicates will fail whenever they are not supposed to do. This may be
avoided by reloading again the involved module, but make sure it is modified and saved to
disk before doing so.

Chapter 110: The Ciao Remote Services Package 465

110 The Ciao Remote Services Package

Author(s): Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#228 (2003/12/22, 17:9:36 CET)

Module for The Ciao Remote Services Package

110.1 Usage and interface (remote)
® ©

• Library usage:

:- use_module(library(remote)).

• Other modules used:

− System library modules:

remote/ciao_client_rt.
 ª

110.2 Documentation on exports (remote)

(UNDOC REEXPORT)@/2:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)@/2:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)server stop/1:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)server stop/1:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)server trace/1:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)server trace/1:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)server notrace/1:
Imported from ciao_client_rt (see the corresponding documentation for details).

(UNDOC REEXPORT)server notrace/1:
Imported from ciao_client_rt (see the corresponding documentation for details).

466 The Ciao Prolog System

110.3 Known bugs and planned improvements (remote)

• Dynamic loading of code not yet implemented.

• :- remote/1 predicate declaration not yet implemented.

• Remote use of modules (http, ftp, ciaotp) not yet implemented.

• Remote creation of objects not yet implemented.

• Code migration not yet implemented (several algorithms possible).

• Evaluation of impact of marshalling and/or attribute encoding not yet done.

• Secure transactions not yet implemented.

PART VIII - Interfaces to other languages and systems 467

PART VIII - Interfaces to other languages and
systems

® ©

Author(s): The CLIP Group.

The following interfaces to/from Ciao Prolog are documented in this part:

• External interface (e.g., to C).

• Socket interface.

• Tcl/tk interface.

• Web interface (http, html, xml, etc.);

• Persistent predicate databases (interface between the Prolog internal database and the
external file system).

• SQL-like database interface (interface between the Prolog internal database and external
SQL/ODBC systems).

• Java interface.

• Calling emacs from Prolog.

 ª

468 The Ciao Prolog System

Chapter 111: Foreign Language Interface 469

111 Foreign Language Interface

Author(s): Jose Morales, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#47 (2003/1/7, 14:22:36 CET)

Ciao Prolog includes a high-level, flexible way to interface C and Prolog, based on the use
of assertions to declare what are the expected types and modes of the arguments of a Prolog
predicate, and which C files contain the corresponding code. To this end, the user provides:

• A set of C files, or a precompiled shared library,

• A Ciao Prolog module defining whith predicates are implemented in the C files and the
types and modes of their arguments, and

• an (optional) set of flags required for the compilation of the files.

The Ciao Prolog compiler analyzes the Prolog code written by the user and gathers this
information in order to generate automatically C "glue" code implementing the data translation
between Prolog and C, and to compile the C code into dynamically loadable C object files, which
are linked automatically when needed.

111.1 Declaration of Types

Each predicate implemented as a foreign C function must have accompanying declarations
in the Ciao Prolog associated file stating the types and modes of the C function. A sample
declaration for prolog_predicate which is implemented as foreign_function_name is:

:- true pred prolog_predicate(m1(Arg1), ... mN(ArgN)) ::
type1 * ... * typeN +
(foreign(foreign_function_name), returns(ArgR)).

where m1, ..., mN and type1, ..., typeN are respectively the modes and types of the arguments.
foreign_function_name is the name of the C function implementing prolog_predicate/N, and
the result of this function is unified with ArgR, which must be one of Arg1 ... ArgN.

This notation can be simplified in several ways. If the name of the foreign function is the same
as the name of the Ciao Prolog predicate, foreign(foreign_function_name) can be replaced
by foreign/0. returns(ArgR) specifies that the result of the function corresponds to the ArgR
argument of the Ciao Prolog predicate. If the foreign function does not return anything (or if
its value is ignored), then returns(ArgR) must be removed. Note that returns cannot be used
without foreign. A simplified, minimal form is thus:

:- true pred prolog_predicate(m1(Arg1), ... mN(ArgN)) ::
type1 * ... * typeN + foreign.

111.2 Equivalence between Ciao Prolog and C types

The automatic translation between Ciao Prolog and C types is defined (at the moment) only
for some simple but useful types. The translation to be performed is solely defined by the types
of the arguments in the Ciao Prolog file (i.e., no inspection of the corresponding C file is done).
The names (and meaning) of the types known for performing that translation are to be found in
Chapter 112 [Foreign Language Interface Properties], page 479; they are also summarized below
(Prolog types are on the left, and the corresponding C types on the right):

• num <-> double

• int <-> int

470 The Ciao Prolog System

• atm <-> char *

• string <-> char * (with trailing zero)

• byte list <-> char * (a buffer of bytes, with associated length)

• int list <-> int * (a buffer of integers, with associated length)

• address <-> void *

Strings, atoms, and lists of bytes are passed to (and from) C as dynamically (ciao_malloc)
created arrays of characters (bytes). Those arrays are freed by Ciao Prolog upon return of the
foreign function unless the property do_not_free/2 is specified (see examples below). This
caters for the case in which the C files save in a private state (either by themselves, or by a
library function being called by them) the values passed on from Prolog. The type byte_list/1
requires an additional property, size_of/2, to indicate which argument represents its size.

Empty lists of bytes and integers are converted into C NULL pointers, and vice versa. Empty
strings ([]) and null atoms (”) are converted into zero-length, zero-ended C strings (""). C
NULL strings and empty buffers (i.e., buffers with zero length) are transformed into the empty
list or the null atom (’’).

Most of the work is performed by the predicates in the Chapter 114 [Foreign Language
Interface Builder], page 487, which can be called explicitly by the user. Doing that is not
usually needed, since the Ciao Prolog Compiler takes care of building glue code files an of
compiling and linking whatever is necessary.

111.3 Equivalence between Ciao Prolog and C modes

The (prefix) +/1 ISO mode (or, equivalently, the in/1 mode) states that the corresponding
Prolog argument is ground at the time of the call, and therefore it is an input argument in the
C part; this groundness is automatically checked upon entry. The (prefix) -/1 ISO mode (or,
equivalently, the go/1 mode) states that Prolog expects the C side to generate a (ground) value
for that argument. Arguments with output mode should appear in C functions as pointers to the
corresponding base type (as it is usual with C), i.e., an argument which is an integer generated
by the C file, declared as

:- true pred get_int(go(ThisInt)) :: int + foreign

or as

:- true pred get_int(-ThisInt) :: int + foreign

should appear in the C code as

void get_int(int *thisint)
{

....
}

Note the type of the (single) argument of the function. Besides, the return value of a function
can always be used as an output argument, just by specifying to which Prolog arguments it
corresponds, using the foreing/1 property. The examples below illustrate this point, and the
use of several assertions to guide the compilation.

111.4 Custom access to Prolog from C

Automatic type conversions does not cover all the possible cases. When the automatic type
conversion is not enough (or if the user, for any reason, does not want to go through the automatic
conversion), it is possible to instruct Ciao Prolog not to make implicit type conversion. The
strategy in that case is to pass the relevant argument(s) with a special type (a ciao_term)
which can represent any term which can be built in Prolog. Operations to construct, traverse,

Chapter 111: Foreign Language Interface 471

and test this data abstraction from C are provided. The prototypes of these operations are
placed on the "ciao_prolog.h" file, under the include subdirectory of the installation directory
(the Ciao Prolog compiler knowns where it has been installed, and gives the C compiler the
appropriate flags). This non direct correspondence mode is activated whenever a Ciao Prolog
type unknown to the foreign interface (i.e., none of these in Chapter 112 [Foreign Language
Interface Properties], page 479) or the type any_term (which is explicitly recognised by the
foreign language interface) is found. The latter is preferred, as it is much more informative, and
external tools, as the the CiaoPP preprocessor, can take advantage of them.

111.4.1 Term construction

All term construction primitives return an argument of type ciao_term, which is the result
of constructing a term. All Ciao Prolog terms can be built using the interface operations ciao_
var(), ciao_structure(), ciao_integer(), and ciao_float(). There are, however, variants
and specialized versions of these operations which can be freely intermixed. Using one version
or another is a matter of taste and convenience. We list below the prototypes of the primitives
in order of complexity.

Throughout this section, true, when referred to a boolean value, correspond to the integer
value 1, and false correspond to the integer value 0, as is customary in C boolean expressions.
These values also available as the (predefined) constants ciao_true and ciao_false, both of
type ciao_bool.

• ciao_term ciao_var();

Returns a fresh, unbound variable.

• ciao_term ciao_integer(int i);

Creates a term, representing an integer from the Prolog point of view, from a C integer.

• ciao_term ciao_float(double i);

Creates a term, representing a floating point number, from a floating point number.

• ciao_term ciao_put_number_chars(char *number_string);

It converts number_string (which must a string representing a syntactically valid number)
into a ciao_term.

• ciao_term ciao_atom(char *name);

Creates an atom whose printable name is given as a C string.

• ciao_term ciao_structure_a(char *name, int arity, ciao_term *args);

Creates a structure with name ’name’ (i.e., the functor name), arity ’arity’ and the com-
ponents of the array ’args’ as arguments: args[0] will be the first argument, args[1] the
second, and so on. The ’args’ array itself is not needed after the term is created, and can
thus be a variable local to a procedure. An atom can be represented as a 0-arity struc-
ture (with ciao_structure(name, 0)), and a list cell can be constructed using the ’.’/2
structure name. The _a suffix stands for array.

• ciao_term ciao_structure(char *name, int arity, ...);

Similar to ciao structure a, but the C arguments after the arity are used to fill in the
arguments of the structure.

• ciao_term ciao_list(ciao_term head, ciao_term tail);

Creates a list from a head and a tail. It is equivalent to ciao_structure(".", 2, head,
tail).

• ciao_term ciao_empty_list();

Creates an empty list. It is equivalent to ciao_atom("[]").

• ciao_term ciao_listn_a(int len, ciao_term *args);

Creates a list with ’len’ elements from the array args. The nth element of the list (starting
at 1) is args[n-1] (starting at zero).

472 The Ciao Prolog System

• ciao_term ciao_listn(int length, ...);

Like ciao_listn_a(), but the list elements appear explicitly as arguments in the call.

• ciao_term ciao_dlist_a(int len, ciao_term *args, ciao_term base);

Like ciao_listn_a, but a difference list is created. base whill be used as the tail of the
list, instead of the empty list.

• ciao_term ciao_dlist(int length, ...);

Similar to ciao_dlist_a() with a variable number of arguments. The last one is the tail
of the list.

• ciao_term ciao_copy_term(ciao_term src_term);

Returns a new copy of the term, with fresh variables (as copy_term/2 does).

111.4.2 Testing the Type of a Term

A ciao_term can contain any Prolog term, and its implementation is opaque to the C code.
Therefore the only way to know reliably what data is passed on is using explicit functions to
test term types. Below, ciao_bool is a type defined in "ciao_prolog.h" which can take the
values 1 (for true) and 0 (for false).

• ciao_bool ciao_is_variable(ciao_term term);

Returns true if term is currently an uninstantiated variable.

• ciao_bool ciao_is_number(ciao_term term);

Returns true if term is an integer (of any length) or a floating point number.

• ciao_bool ciao_is_integer(ciao_term term);

Returns true if term is instantiated to an integer.

• ciao_bool ciao_fits_in_int(ciao_term term);

Returns true if term is instantiated to an integer which can be stored in an int, and false
otherwise.

• ciao_bool ciao_is_atom(ciao_term atom);

Returns true if term is an atom.

• ciao_bool ciao_is_list(ciao_term term);

Returns true if term is a list (actually, a cons cell).

• ciao_bool ciao_is_empty_list(ciao_term term);

Returns true if term is the atom which represents the empty list (i.e., []).

• ciao_bool ciao_is_structure(ciao_term term);

Returns true if term is a structure of any arity. This includes atoms (i.e., structures of arity
zero) and lists, but excludes variables and numbers.

111.4.3 Term navigation

The functions below can be used to recover the value of a ciao_term into C variables, or to
inspect Prolog structures.

• int ciao_to_integer(ciao_term term);

Converts term to an integer. ciao_is_integer(term) must hold.

• ciao_bool ciao_to_integer_check(ciao_term term, int *result);

Checks whether term fits into the size of an integer. If so, true is returned and *result is
unified with the integer term represents. Otherwise, false is returned and *result is not
touched.

Chapter 111: Foreign Language Interface 473

• double ciao_to_float(ciao_term term);

Converts term to a float value. ciao_is_number(term) must hold.

• char *ciao_get_number_chars(ciao_term term);

It converts ciao_term (which must be instantiated to a number) into a C string representing
the number in the current radix. The string returned is a copy, which must (eventually) be
explicitly deallocated by the user C code using the operation ciao_free()

• char *ciao_atom_name(ciao_term atom);

Returns the name of the atom. The returned string is the one internally used by Ciao
Prolog, and should not be deallocated, changed or altered in any form. The advantage of
using it is that it is fast, as no data copying is needed.

• char *ciao_atom_name_dup(ciao_term atom);

Obtains a copy of the name of the atom. The string can be modified, and the programmer
has the responsibility of deallocating it after being used. Due to the copy, it is slower than
calling char *ciao_atom_name().

• ciao_term ciao_list_head(ciao_term term);

Extracts the head of the list term. Requires term to be a list.

• ciao_term ciao_list_tail(ciao_term term);

Extracts the tail of the list term. Requires term to be a list.

• char *ciao_structure_name(ciao_term term);

Extracts the name of the structure term. Requires term to be a structure.

• int ciao_structure_arity(ciao_term term);

Extracts the arity of the structure term.

Requires term to be a structure.

• ciao_term ciao_structure_arg(ciao_term term, int n);

Extracts the nth argument of the structure term. It behaves like arg/3, so the first argument
has index 1. Requires term to be a structure.

111.4.4 Testing for Equality and Performing Unification

Variables of type ciao_term cannot be tested directly for equality: they are (currently)
implemented as a sort of pointers which may be aliased (two different pointers may refer to the
same object). The interface provides helper functions for testing term equality and to perform
unification of terms.

• ciao_bool ciao_unify(ciao_term x, ciao_term y);

Performs the unification of the terms x and y, and returns true if the unification was
successful. This is equivalent to calling the (infix) Prolog predicate =/2. The bindings are
trailed and undone on backtracking.

• ciao_bool ciao_equal(ciao_term x, ciao_term y);

Performs equality testing of terms, and returns true if the test was successful. This is
equivalent to calling the (infix) Prolog predicate ==/2. Equality testing does not modify
the terms compared.

111.4.5 Raising Exceptions

The following functions offers a way of throwing exceptions from C that can be caught in
Prolog with catch/3. The term that reaches Prolog is exactly the same which was thrown by
C. The execution flow is broken at the point where ciao_raise_exception() is executed, and
it returns to Prolog.

• void ciao_raise_exception(ciao_term ball);

Raises an exception an throws the term ball.

474 The Ciao Prolog System

111.4.6 Creating and disposing of memory chunks

Memory to be used solely by the user C code can be reserved/disposed of using, e.g., the well-
known malloc()/free() functions (or whatever other functions the user may have available).
However, memory explicitly allocated by Ciao Prolog and passed to C code, or allocated by C
code and passed on to Ciao Prolog (and subject to garbage collection by it) should be allotted
and freed (when necessary) by using the functions:

• void *ciao_malloc(int size);

• void ciao_free(void *pointer);

whose behavior is similar to malloc()/free(), but which will cooordinate properly with Ciao
Prolog’s internal memory management.

111.4.7 Calling Prolog from C

It is also possible to make arbitraty calls to Prolog predicates from C. There are two basic
ways of make a query, depending on whether only one solution is needed (or if the predicate to
be called is known to generate only one solution), or if several solutions are required.

When only one solution is needed ciao_commit_call obtains it (the solution obtained will
obviously be the first one) and discards the resources used for finding it:

• ciao_bool ciao_commit_call(char *name, int arity, ...);

Makes a call to a predicate and returns true or false depending on whether the query has
succedeed or not. In case of success, the (possibly) instantiated variables are reachable from
C.

• ciao_bool ciao_commit_call_term(ciao_term goal);

Like ciao_commit_call() but uses the previously built term goal as goal.

If more than one solution is needed, it is necessary to use the ciao_query operations. A
consult begins with a ciao_query_begin which returns a ciao_query object. Whenever an
additional solution is required, the ciao_query_next function can be called. The query ends
by calling ciao_query_end and all pending search branches are pruned.

• ciao_query *ciao_query_begin(char *name, int arity, ...);

The predicate with the given name, arity and arguments (similar to the ciao_structure()
operation) is transformed into a ciao_query object which can be used to make the actual
query.

• ciao_query *ciao_query_begin_term(ciao_term goal);

Like ciao query begin but using the term goal instead.

• ciao_bool ciao_query_ok(ciao_query *query);

Determines whether the query may have pending solutions. A false return value means
that there are no more solutions; a true return value means that there are more possible
solutions.

• void ciao_query_next(ciao_query *query);

Ask for a new solution.

• void ciao_query_end(ciao_query *query);

Ends the query and frees the used resources.

111.5 Examples

Chapter 111: Foreign Language Interface 475

111.5.1 Mathematical functions

In this example, the standard mathematical library is accessed to provide the sin, cos, and
fabs functions. Note that the library is specified simply as

:- use_foreign_library([m]).

The foreign interface adds the -lm at compile time. Note also how some additional options
are added to optimize the compiled code (only glue code, in this case) and mathematics (only
in the case of Linux in an Intel processor).

File math.pl :

:- module(math, [sin/2, cos/2, fabs/2], [foreign interface]).

:- true pred sin(in(X),go(Y)) :: num * num + (foreign,returns(Y)). :- true pred
cos(in(X),go(Y)) :: num * num + (foreign,returns(Y)). :- true pred fabs(in(X),go(Y)) :: num
* num + (foreign,returns(Y)).

:- extra compiler opts([’-O2’]). :- extra compiler opts(’LINUXi86’,[’-ffast-math’]). :-
use foreign library(’LINUXi86’, m).

111.5.2 Addresses and C pointers

The address type designates any pointer, and provides a means to deal with C pointers in
Prolog without interpreting them whatsoever. The C source file which implements the operations
accessed from Prolog is declared with the

:- use_foreign_source(objects_c).

directive.

File objects.pl :

:- module(objects, [object/2, show object/1], [foreign interface]).

:- true pred object(in(N),go(Object)) :: int * address + (foreign,returns(Object)).

:- true pred show object(in(Object)) :: address + foreign.

:- use foreign source(objects c). :- extra compiler opts(’-O2’).

File objects c.c:

#include <stdio.h>

struct object { char *name; char *colour; };

#define OBJECTS 3

struct object objects[OBJECTS] = { {"ring","golden"}, {"table","brown"}, {"bot-
tle","green"} };

struct object *object(int n) { return &objects[n % OBJECTS]; }

void show object(struct object *o) { printf("I show you a %s %s\n", o->colour, o->name); }

111.5.3 Lists of bytes and buffers

A list of bytes (c.f., a list of ints) corresponds to a byte buffer in C. The length of the buffer
is associated to that of the list using the property size_of/2. The returned buffer is freed
by Ciao Prolog upon its recepction, unless the do_not_free/1 property is specified (see later).
Conversely, a list of natural numbers in the range 0 to 255 can be passed to C as a buffer.

File byte lists.pl :

:- module(byte lists, [obtain list/3, show list/2], [foreign interface]).

:- true pred obtain list(in(N),go(Length),go(List)) :: int * int * byte list + (for-
eign,size of(List,Length)). :- true pred show list(in(Length),in(List)) :: int * byte list + (for-
eign,size of(List,Length)).

476 The Ciao Prolog System

:- use foreign source(bytes op).

File bytes op.c:

#include <stdlib.h> #include <stdio.h>

void obtain list(int n, int *l, char **s) { int i; int c; if (n < 0) n = 0; *l = n; *s = (char
*)malloc(*l); for (i = 0; i < *l; i++) { (*s)[i] = i; } }

void show list(int l, char *s) { if (s) { int n; printf("From C:"); for (n = 0; n < l; n++) {
printf(" %d", s[n]); } printf(".\n"); } else { printf("From C: []\n"); } }

111.5.4 Lists of integers

File int lists.pl :

:- module(int lists, [obtain list/3, show list/2], [foreign interface]).

:- true pred obtain list(in(N),go(Length),go(List)) :: int * int * int list + (for-
eign,size of(List,Length)). :- true pred show list(in(Length),in(List)) :: int * int list + (for-
eign,size of(List,Length)).

:- use foreign source(ints op).

File ints op.c:

#include <stdlib.h> #include <stdio.h>

void obtain list(int n, int *l, int **s) { int i; int c; if (n < 0) n = 0; *l = n; *s = (int
*)malloc((*l) * sizeof(int)); for (i = 0; i < *l; i++) { (*s)[i] = i; } }

void show list(int l, int *s) { if (s) { int n; printf("From C:"); for (n = 0; n < l; n++) { printf("
%d", s[n]); } printf(".\n"); } else { printf("From C: []\n"); } }

111.5.5 Strings and atoms

A C string can be seen as a buffer whose end is denoted by the trailing zero, and therefore
stating its length is not needed. Two translations are possible into Ciao Prolog: as a Prolog
string (list of bytes, with no trailing zero) and as an atom. These are selected automatically
just by choosing the corresponding type (look at the examples below).

Note how the do_not_free/1 property is specified in the a_string/1 predicate: the string
returned by C is static, and therefore it should not be freed by Prolog.

File strings and atoms.pl :

:- module(strings and atoms, [lookup string/2, lookup atom/2, a string/1, show string/1,
show atom/1], [foreign interface]).

:- true pred a string(go(S)) :: string + (foreign(get static str),returns(S),do not free(S)).

:- true pred lookup string(in(N),go(S)) :: int * string + (foreign(get str),returns(S)). :- true
pred lookup atom(in(N),go(S)) :: int * atm + (foreign(get str),returns(S)).

:- true pred show string(in(S)) :: string + foreign(put str). :- true pred show atom(in(S)) ::
atm + foreign(put str).

:- use foreign source(str op).

File str op.c:

#include <stdlib.h> #include <stdio.h>

char *get static str() { return "this is a string Prolog should not free"; }

char *get str(int n) { char *s; int size; int i; int c; if (n < 0) n = -n; size = (n%4) + 5; s =
(char *)malloc(size+1); for (i = 0, c = ((i + n) % (’z’ - ’a’ + 1)) + ’a’; i < size; i++,c++) { if (c >
’z’) c = ’a’; s[i] = c; } s[i] = 0; return s; }

void put str(char *s) { if (s) { printf("From C: \"%s\"\n", s); } else { printf("From C:
null\n"); } }

Chapter 111: Foreign Language Interface 477

111.5.6 Arbitrary Terms

This example shows how data Prolog can be passed untouched to C code, and how it can be
manipulated there.

File any term.pl :

:- module(any term, [custom display term/1, custom create term/2], [foreign interface]).

:- true pred custom display term(in(X)) :: any term + foreign. :- true pred cus-
tom create term(in(L), go(X)) :: int * any term + (foreign,returns(X)).

:- use foreign source(any term c). :- extra compiler opts(’-O2’).

File any term c.c:

#include <stdio.h> #include "ciao prolog.h"

ciao term custom create term(int n) { ciao term t; t = ciao empty list(); while (n > 0) { t =
ciao list(ciao integer(n), t); n–; } return t; }

void custom display term(ciao term term) { if (ciao is atom(term)) { printf("<atom
name=\"%s\"/>", ciao atom name(term)); } else if (ciao is structure(term)) { int i;
int a; a = ciao structure arity(term); printf("<structure name=\"%s\" arity=\"%d\">",
ciao structure name(term), a); for (i = 1; i <= a; i++) { printf("<argument num-
ber=\"%d\">", i); custom display term(ciao structure arg(term, i)); printf("</argument>"); }
printf("</structure>"); } else if (ciao is list(term)) { printf("<list>"); printf("<head>"); cus-
tom display term(ciao list head(term)); printf("</head>");
printf("<tail>"); custom display term(ciao list tail(term)); printf("</tail>"); printf("</list>");
} else if (ciao is empty list(term)) { printf("<empty list/>"); } else if (ciao is integer(term)) {
printf("<integer value=\"%d\"/>", ciao to integer(term)); } else if (ciao is number(term)) {
printf("<float value=\"%f\"/>", ciao to float(term)); } else { printf("<unknown/>"); } }

111.5.7 Exceptions

The following example defines a predicate in C that converts a list of codes into a number
using strtol(). If this conversion fails, then a exception is raised.

File exceptions example.pl :

:- module(exceptions example, [codes to number c/2, safe codes to number/2], [for-
eign interface]).

:- use module(library(format)).

% If the string is not a number raises an exception. :- true pred codes to number c(in(X),
go(Y)) :: string * int + (foreign, returns(Y)).

safe codes to number(X, Y) :- catch(codes to number c(X, Y), Error,
handle exception(Error)).

handle exception(Error) :- format("Exception caught ~w~n", [Error]).

:- use foreign source(exceptions c). :- extra compiler opts(’-O2’).

File exceptions c.c:

#include <string.h> #include "ciao prolog.h"

int codes to number c(char *s) { char *endptr; int n; n = strtol(s, &endptr, 10); if (endptr ==
NULL || *endptr != ’\0’) { ciao raise exception(ciao structure("codes to number exception",
1, ciao atom(s))); } return n; }

478 The Ciao Prolog System

111.5.8 Testing number types and using unbound length integers

Unbound length integers (and, in general, any number) can be converted to/from ciao_terms
by using strings. The following examples show two possibilities: one which tries to be as smart
as possible (checking whether numbers fit into a machine int or not), and being lazy and simpler
-and probably slower.

File bigints.pl :

:- module(bigints, [make smart conversion/3, % Checks and uses convenient format
force string conversion/2 % Passes around using strings], [foreign interface]).

:- true pred make smart conversion c(in(X), go(Y), go(How)):: any term * any term *
any term + foreign # "Given a number @var{X}, it is unified with @var{Y} by using the most
specific internal representation (short integer, float, or long integer). @var{How} returns how
the conversion was done. It behaves unpredictably if @var{X} is not a number.".

:- true pred force string conversion c(in(X), go(Y)):: any term * any term + foreign # "Given
a number @var{X}, it is unified with @var{Y} by using the most general internal representation
(a string of characters). It behaves unpredictably if @var{X} is not a number.".

:- use foreign source(bigints c).

make smart conversion(A, B, C):- number(A), % Safety test make smart conversion c(A, B,
C).

force string conversion(A, B):- number(A), % Safety test force string conversion c(A, B).

File bigints c.c:

#include "ciao prolog.h"

void make smart conversion c(ciao term number in, ciao term *number out, ciao term
*how converted) { int inter int; double inter float; char * inter str;

if (ciao fits in int(number in)) {/* Includes the case of being a float */ inter int
= ciao to integer(number in); *number out = ciao integer(inter int); *how converted =
ciao atom("machine integer"); } else if (ciao is integer(number in)) { /* Big number */ in-
ter str = ciao get number chars(number in); *number out = ciao put number chars(inter str);
ciao free(inter str); *how converted = ciao atom("string"); } else { /* Must be a float */ in-
ter float = ciao to float(number in); *number out = ciao float(inter float); *how converted =
ciao atom("float"); } }

void force string conversion c(ciao term number in, ciao term
*number out) { char *inter str; inter str = ciao get number chars(number in); *number out
= ciao put number chars(inter str); ciao free(inter str); }

111.6 Usage and interface (foreign_interface)
® ©

• Library usage:

The foreign interface is used by including foreign_interface in the include list of a module,
or by means of an explicit :- use_package(foreign_interface).

 ª

Chapter 112: Foreign Language Interface Properties 479

112 Foreign Language Interface Properties

Author(s): Jose Morales, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#229 (2003/12/22, 17:34:59 CET)

The foreign language interface uses some properties to specify linking regimes, foreign files
to be compiled, types of data available, memory allocation policies, etc.

112.1 Usage and interface (foreign_interface_properties)
® ©

• Library usage:

:- use_module(library(foreign_interface_properties)).

• Exports:

− Properties:

native/1, native/2, size_of/3, foreign/1, foreign/2, returns/2, do_not_free/2.

− Regular Types:

int_list/1, byte_list/1, byte/1, null/1, address/1, any_term/1.

 ª

112.2 Documentation on exports (foreign_interface_
properties)

REGTYPEint list/1:
Usage: int_list(List)

− Description: List is a list of integers.

REGTYPEbyte list/1:
Usage: byte_list(List)

− Description: List is a list of bytes.

REGTYPEbyte/1:
Usage: byte(Byte)

− Description: Byte is a byte.

REGTYPEnull/1:
Usage: null(Address)

− Description: Address is a null adress.

REGTYPEaddress/1:
Usage: address(Address)

− Description: Address is a memory address.

480 The Ciao Prolog System

REGTYPEany term/1:
Usage: any_term(X)

− Description: X is any term. The foreign interface passes it to C functions as a general
term.

PROPERTYnative/1:
Usage: native(Name)

− Description: The Prolog predicate Name is implemented using the function Name.
The implementation is not a common C one, but it accesses directly the internal Ciao
Prolog data structures and functions, and therefore no glue code is generated for it.

PROPERTYnative/2:
Usage: native(PrologName, ForeignName)

− Description: The Prolog predicate PrologName is implemented using the function
ForeignName. The same considerations as above example are to be applied.

PROPERTYsize of/3:
Usage: size_of(Name, ListVar, SizeVar)

− Description: For predicate Name, the size of the argument of type byte_list/1,
ListVar, is given by the argument of type integer SizeVar.

PROPERTYforeign/1:
Usage: foreign(Name)

− Description: The Prolog predicate Name is implemented using the foreign function
Name.

PROPERTYforeign/2:
Usage: foreign(PrologName, ForeignName)

− Description: The Prolog predicate PrologName is implemented using the foreign func-
tion ForeignName.

PROPERTYreturns/2:
Usage: returns(Name, Var)

− Description: The result of the foreign function that implements the Prolog predicate
Name is unified with the Prolog variable Var. Cannot be used without foreign/1 or
foreign/2.

PROPERTYdo not free/2:
Usage: do_not_free(Name, Var)

− Description: For predicate Name, the C argument passed to (returned from) the
foreign function will not be freed after calling the foreign function.

Chapter 112: Foreign Language Interface Properties 481

112.3 Documentation on internals (foreign_interface_
properties)

DECLARATIONuse foreign source/1:
Usage: :- use_foreign_source(Files).

− Description: Files is the (list of) foreign file(s) that will be linked with the glue-code
file.

− The following properties hold at call time:

Files is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONuse foreign source/2:
Usage: :- use_foreign_source(OsArch, Files).

− Description: Files are the OS and architecture dependant foreign files. This allows
compiling and linking different files depending on the O.S. and architecture.

− The following properties hold at call time:

OsArch is an atom. (basic_props:atm/1)

Files is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONuse foreign library/1:
Usage: :- use_foreign_library(Libs).

− Description: Libs is the (list of) external library(es) needed to link the C files. Only
the short name of the library (i.e., what would follow the -l in the linker is needed.

− The following properties hold at call time:

Libs is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONuse foreign library/2:
Usage: :- use_foreign_library(OsArch, Libs).

− Description: Libs are the OS and architecture dependant libraries.

− The following properties hold at call time:

OsArch is an atom. (basic_props:atm/1)

Libs is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONextra compiler opts/1:
Usage: :- extra_compiler_opts(Opts).

− Description: Opts is the list of additional compiler options (e.g., optimization options)
that will be used during the compilation.

− The following properties hold at call time:

Opts is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

482 The Ciao Prolog System

DECLARATIONextra compiler opts/2:
Usage: :- extra_compiler_opts(OsArch, Opts).

− Description: Opts are the OS and architecture dependant additional compiler options.

− The following properties hold at call time:

OsArch is an atom. (basic_props:atm/1)

Opts is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONuse compiler/1:
Usage: :- use_compiler(Compiler).

− Description: Compiler is the compiler to use in this file. When this option is used,
the default (Ciao-provided) compiler options are not used; those specified in extra_
compiler_options are used instead.

− The following properties hold at call time:

Compiler is an atom. (basic_props:atm/1)

DECLARATIONuse compiler/2:
Usage: :- use_compiler(OsArch, Compiler).

− Description: Compiler is the compiler to use in this file when compiling for the
architecture OsArch. The option management is the same as in use_compiler/2.

− The following properties hold at call time:

OsArch is an atom. (basic_props:atm/1)

Compiler is an atom. (basic_props:atm/1)

DECLARATIONextra linker opts/1:
Usage: :- extra_linker_opts(Opts).

− Description: Opts is the list of additional linker options that will be used during the
linkage.

− The following properties hold at call time:

Opts is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONextra linker opts/2:
Usage: :- extra_linker_opts(OsArch, Opts).

− Description: Opts are the OS and architecture dependant additional linker options.

− The following properties hold at call time:

OsArch is an atom. (basic_props:atm/1)

Opts is an atom or a list of atoms. (basic_props:atm_or_atm_list/1)

DECLARATIONuse linker/1:
Usage: :- use_linker(Linker).

− Description: Linker is the linker to use in this file. When this option is used, the
default (Ciao-provided) linker options are not used; those specified in extra_linker_
options/1 are used instead.

Chapter 112: Foreign Language Interface Properties 483

− The following properties hold at call time:

Linker is an atom. (basic_props:atm/1)

DECLARATIONuse linker/2:
Usage: :- use_linker(OsArch, Linker).

− Description: Compiler is the linker to use in this file when compiling for the archi-
tecture OsArch. The option management is the same as in use_compiler/2.

− The following properties hold at call time:

OsArch is an atom. (basic_props:atm/1)

Linker is an atom. (basic_props:atm/1)

112.4 Known bugs and planned improvements (foreign_
interface_properties)

• The size_of/3 property has an empty definition

484 The Ciao Prolog System

Chapter 113: Utilities for on-demand compilation of foreign files 485

113 Utilities for on-demand compilation of foreign
files

Author(s): Manuel Carro, Jose Morales.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.3#36 (1999/7/20, 10:37:31 MEST)

This module provides two predicates which give the user information regarding how to com-
pile external (C) files in order to link them with the Ciao Prolog engine at runtime.

These predicates are not intended to be called directly by the end-user. Instead, a tool
or module whose aim is generating dynamically loadable files from source files should use the
predicates in this file in order to find out what are the proper compiler and linker to use, and
which options must be passed to them in the current architecture.

113.1 Usage and interface (foreign_compilation)
® ©

• Library usage:

:- use_module(library(foreign_compilation)).

• Exports:

− Predicates:

compiler_and_opts/2, linker_and_opts/2.

• Other modules used:

− System library modules:

system.

 ª

113.2 Documentation on exports (foreign_compilation)

PREDICATEcompiler and opts/2:
Usage: compiler_and_opts(?Compiler, ?Opts)

− Description: If you want to compile a foreign language file for dynamic linking in the
current operating system and architecture, you have to use the compiler Compiler
and give it the options Opts. A variable in Opts means that no special option is
needed.

− The following properties should hold at call time:

?Compiler is currently instantiated to an atom. (term_typing:atom/1)

?Opts is a list of atoms. (basic_props:list/2)

PREDICATElinker and opts/2:
Usage: linker_and_opts(?Linker, ?Options)

− Description: If you want to link a foreign language file for dynamic linking in the
current operating system and architecture, you have to use the linker Compiler and
gite it the options Opts. A variable in Opts means that no special option is needed.

− The following properties should hold at call time:

?Linker is currently instantiated to an atom. (term_typing:atom/1)

?Options is a list of atoms. (basic_props:list/2)

486 The Ciao Prolog System

Chapter 114: Foreign Language Interface Builder 487

114 Foreign Language Interface Builder

Author(s): Jose Morales, Manuel Carro.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#252 (2003/12/30, 22:15:50 CET)

Low-level utilities for building foreign interfaces. End-users should not need to use them, as
the Ciao Prolog Compiler reads the user assertions and calls appropriately the predicates in this
module.

114.1 Usage and interface (build_foreign_interface)
® ©

• Library usage:

:- use_module(library(build_foreign_interface)).

• Exports:

− Predicates:

build_foreign_interface/1, rebuild_foreign_interface/1, build_foreign_
interface_explicit_decls/2, rebuild_foreign_interface_explicit_decls/2,
build_foreign_interface_object/1, rebuild_foreign_interface_object/1, do_
interface/1.

• Other modules used:

− System library modules:

write_c/write_c, streams, terms, lists, llists, aggregates, system,
format, messages, assertions/assrt_lib, foreign_compilation, compiler/c_itf,
ctrlcclean, errhandle.

 ª

114.2 Documentation on exports (build_foreign_interface)

PREDICATEbuild foreign interface/1:
Usage: build_foreign_interface(in(File))

− Description: Reads assertions from File, generates the gluecode for the Ciao Prolog
interface, compiles the foreign files and the gluecode file, and links everything in a
shared object. Checks modification times to determine automatically which files must
be generated/compiled/linked.

− Call and exit should be compatible with:

in(File) is a source name. (streams_basic:sourcename/1)

PREDICATErebuild foreign interface/1:
Usage: rebuild_foreign_interface(in(File))

− Description: Like build_foreign_interface/1, but it does not check the modifica-
tion time of any file.

− Call and exit should be compatible with:

in(File) is a source name. (streams_basic:sourcename/1)

488 The Ciao Prolog System

PREDICATEbuild foreign interface explicit decls/2:
Usage: build_foreign_interface_explicit_decls(in(File), in(Decls))

− Description: Like build_foreign_interface/1, but use declarations in Decls in-
stead of reading the declarations from File.

− Call and exit should be compatible with:

in(File) is a source name. (streams_basic:sourcename/1)

in(Decls) is a list of terms. (basic_props:list/2)

PREDICATErebuild foreign interface explicit decls/2:
Usage: rebuild_foreign_interface_explicit_decls(in(File), in(Decls))

− Description: Like build_foreign_interface_explicit_decls/1, but it does not
check the modification time of any file.

− Call and exit should be compatible with:

in(File) is a source name. (streams_basic:sourcename/1)

in(Decls) is a list of terms. (basic_props:list/2)

PREDICATEbuild foreign interface object/1:
Usage: build_foreign_interface_object(in(File))

− Description: Compiles the gluecode file with the foreign source files producing an
unique object file.

− Call and exit should be compatible with:

in(File) is a source name. (streams_basic:sourcename/1)

PREDICATErebuild foreign interface object/1:
Usage: rebuild_foreign_interface_object(in(File))

− Description: Compiles (again) the gluecode file with the foreign source files producing
an unique object file.

− Call and exit should be compatible with:

in(File) is a source name. (streams_basic:sourcename/1)

PREDICATEdo interface/1:
Usage: do_interface(in(Decls))

− Description: Given the declarations in Decls, this predicate succeeds if these decla-
rations involve the creation of the foreign interface

− Call and exit should be compatible with:

in(Decls) is a list of terms. (basic_props:list/2)

Chapter 115: Interface to daVinci 489

115 Interface to daVinci

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#76 (2003/4/14, 18:31:46 CEST)

This library allows connecting a Ciao Prolog application with daVinci V2.X.

The communication is based on a two-way channel: after daVinci is started, messages are
sent in to it and read in from it on demand by different Prolog predicates. Messages are
sent via writing the term as text; messages are received by reading text and returning an atom.
Commands sent and answers received are treated as terms from the Prolog side, since for daVinci
they are text but have term syntax; the only difficulty lies in strings, for which special Prolog
syntax is provided.

See accompanying file library(’davinci/commands’) for examples on the use of this library.

daVinci is developed by U. of Bremen, Germany.

115.1 Usage and interface (davinci)
® ©

• Library usage:

:- use_module(library(davinci)).

• Exports:

− Predicates:

davinci/0, topd/0, davinci_get/1, davinci_get_all/1, davinci_put/1, davinci_
quit/0, davinci_ugraph/1, davinci_lgraph/1, ugraph2term/2, formatting/2.

• Other modules used:

− System library modules:

aggregates, prompt, errhandle, format, read, graphs/ugraphs, write, system,
sets, sort.

 ª

115.2 Documentation on exports (davinci)

PREDICATEdavinci/0:
Start up a daVinci process.

PREDICATEtopd/0:
A toplevel to send to daVinci commands from standard input.

PREDICATEdavinci get/1:
Usage: davinci_get(Term)

− Description: Get a message from daVinci. Term is a term corresponding to daVinci’s
message.

490 The Ciao Prolog System

PREDICATEdavinci get all/1:
Usage: davinci_get_all(List)

− Description: Get all pending messages. List is a list of terms as in davinci_get/1.

− The following properties should hold upon exit:

List is a list. (basic_props:list/1)

PREDICATEdavinci put/1:
Usage: davinci_put(Term)

− Description: Send a command to daVinci.

− The following properties should hold at call time:

davinci:davinci_command(Term) (davinci:davinci_command/1)

PREDICATEdavinci quit/0:
Exit daVinci process. All pending answers are lost!

PREDICATEdavinci ugraph/1:
Usage: davinci_ugraph(Graph)

− Description: Send a graph to daVinci.

− The following properties should hold at call time:

davinci:ugraph(Graph) (davinci:ugraph/1)

PREDICATEdavinci lgraph/1:
Usage: davinci_lgraph(Graph)

− Description: Send a labeled graph to daVinci.

− The following properties should hold at call time:

davinci:lgraph(Graph) (davinci:lgraph/1)

PREDICATEugraph2term/2:
No further documentation available for this predicate.

PREDICATEformatting/2:
No further documentation available for this predicate.

Chapter 115: Interface to daVinci 491

115.3 Documentation on internals (davinci)

PROPERTYdavinci command/1:
Syntactically, a command is a term. Semantically, it has to correspond to a command
understood by daVinci. Two terms are interpreted in a special way: string/1 and
text/1: string(Term) is given to daVinci as "Term"; text(List) is given as "Term1
Term2 ...Term " for each Term in List. If your term has functors string/1 and text/1
that you don’t want to be interpreted this way, use it twice, i.e., string(string(Term))
is given to daVinci as string(Term’) where Term’ is the interpretation of Term.

PROPERTYugraph/1:
ugraph(Graph)

Graph is a term which denotes an ugraph as in library(ugraphs). Vertices of the form
node/2 are interpreted in a special way: node(Term,List) is interpreted as a vertex Term
with attributes List. List is a list of terms conforming the syntax of davinci_put/1 and
corresponding to daVinci’s graph nodes attributes. If your vertex has functor node/2 and
you don’t want it to be interpreted this way, use it twice, i.e., node(node(T1,T2),[])
is given to daVinci as vertex node(T1,T2). A vertex is used both as label and name of
daVinci’s graph node. daVinci’s graph edges have label V1-V2 where V1 is the source and
V2 the sink of the edge. There is no support for multiple edges between the same two
vertices.

PROPERTYlgraph/1:
lgraph(Graph)

Graph is a term which denotes a wgraph as in library(’graphs/wgraphs’), except that
the weights are labels, i.e., they do not need to be integers. Vertices of the form node/2 are
interpreted in a special way. Edge labels are converted into special intermediate vertices.
Duplicated labels are solved by adding dummy atoms ’’. There is no support for multiple
edges between the same two vertices.

492 The Ciao Prolog System

Chapter 116: The Tcl/Tk interface 493

116 The Tcl/Tk interface

Author(s): Montse Iglesias Urraca, http://www.clip.dia.fi.upm.es/, The CLIP Group,
Facultad de Informática, Universidad Politécnica de Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#314 (2004/2/25, 18:27:47 CET)

The tcltk library package is a bidirectional interface to the Tcl language and the Tk toolkit.
Tcl is an interpreted scripting language with many extension packages, particularly the graph-
ical interface toolkit, Tk. The interaction between both languages is expressed in terms of an
interface between the Tcl/Tk process and the Prolog process. This approach allows the devel-
opment of mixed applications where both sides, Tcl/Tk and Prolog, can be combined in order
to exploit their respective capabilities.

This library uses two sockets to connect both the Tcl and the Prolog processes: event socket
and term socket. There are also two Tcl global variables: prolog variables and terms. The value
of any of the bound variables in a goal will be stored in the array prolog_variables with the
variable name as index. Terms is the string which contains the printed representation of prolog
terms.

Prolog to Tcl

The Tcl/Tk side waits for requests from the Prolog side, and executes the Tcl/Tk code
received. Also, the Tcl/Tk side handles the events and exceptions which may be raised on its
side, passing on control to the Prolog side in case it is necessary.

To use Tcl, you must create a Tcl interpreter object and send commands to it. A Tcl
command is specified as follows:

Command --> Atom { other than [] }
| Number
| chars(PrologString)
| write(Term)
| format(Fmt,Args)
| dq(Command)
| br(Command)
| sqb(Command)
| min(Command)
| ListOfCommands

ListOfCommands --> []
|[Command|ListOfCommands]

where:

Atom denotes the printed representation of the atom.

Number denotes their printed representations.

chars(PrologString)
denotes the string represented by PrologString (a list of character codes).

write(Term)
denotes the string that is printed by the corresponding built-in predicate.

format(Term)
denotes the string that is printed by the corresponding built-in predicate.

dq(Command)
denotes the string specified by Command, enclosed in double quotes.

br(Command)
denotes the string specified by Command, enclosed in braces.

494 The Ciao Prolog System

sqb(Command)
denotes the string specified by Command, enclosed in square brackets.

min(Command)
denotes the string specified by Command, immediately preceded by a hyphen.

ListOfCommands
denotes the strings denoted by each element, separated by spaces.

The predicates to use Tcl from Prolog are tcl_new/1, tcl_delete/1, tcl_eval/3, and
tcl_event/3.

An example of use with Prolog as master and Tcl as slave, consisting of a GUI to a program
which calculates the factorial of a number:

:- use_module(library(tcltk)).

go :-
tcl_new(X),
tcl_eval(X,[button,’.b’,min(text),dq(’Compute!’)],_),
tcl_eval(X,[button,’.c’,’-text’,dq(’Quit’)],_),
tcl_eval(X,[entry,’.e1’,min(textvariable),’inputval’],_),
tcl_eval(X,[label,’.l1’,min(text),dq(’The factorial of ’)],_),
tcl_eval(X,[pack, ’.l1’,’.e1’],_),
tcl_eval(X,[entry,’.e2’,min(textvariable),’outputval’],_),
tcl_eval(X,[label,’.l2’,min(text),dq(’is ’)],_),
tcl_eval(X,[pack, ’.l2’,’.e2’],_),
tcl_eval(X,[pack,’.b’,’.c’,min(side),’left’],_),
tcl_eval(X,[bind,’.b’,’<ButtonPress-1>’,

br([set,’inputval’,’$inputval’,’\n’,
prolog_one_event,dq(write(execute(tk_test_aux:factorial(’$inputval’,’Outputval’)))),’\n’,
set, ’outputval’,’$prolog_variables(Outputval)’])],_),

tcl_eval(X,[bind,’.c’,’<ButtonPress-1>’,
br([prolog_one_event,dq(write(execute(exit_tk_event_loop)))])],_),

tk_event_loop(X).

Tcl to Prolog

This is the usual way to build a GUI application. The slave, Prolog, behaves as a server that
fulfills eventual requests from the master side, Tcl. At some point, during the user interaction
with the GUI, an action may take place that triggers the execution of some procedure on the
slave side (a form submit, for example). Thus, the slave is invoked, performs a service, and
returns the result to the GUI through the socket connection.

This library includes two main specific Tcl commands:

prolog Goal
Goal is a string containing the printed representation of a Prolog goal. The goal
will be called in the user module unless it is prefixed with another module name.
The call is always deterministic and its can be either of the following:

1, in case of success
The value of any of the variables in the goal that is bound to a term
will be returned to Tcl in the array prolog variables with the variable
name as index.

0, if the execution fails
The Prolog exception Tcl exception is raised. The error message will
be "Prolog Exception: " appended with a string representation of such
exception.

Chapter 116: The Tcl/Tk interface 495

prolog_event Term
Adds the new term to the terms queue. These can be later retrieved through
predicates tcl_event/3 and tk_next_event/2.

Additionally, seven extra Tcl commands are defined.

prolog_delete_event
Deletes the first term of the terms queue.

prolog_list_events
Sends all the terms of the terms queue through the event socket. The last element
is end of event list.

prolog_cmd Command
Receives as an argument the Tcl/Tk code, evaluates it and returns through the
term socket the term tcl error in case of error or the term tcl result with the result
of the command executed. If the command is prolog, upon return, the goal run on
the prolog side is received. In order to get the value of the variables, predicates are
compared using the unify term command. Returns 0 when the sript runs without
errors, and 1 if there is an error.

prolog_one_event Term
Receives as an argument the term associated to one of the Tk events. Sends the term
through the event socket and waits for its unification. Then unify term command
is called to update the prolog variables array.

prolog_thread_event Term
Receives as an argument the term associated to one of the Tk events. Sends the term
through the event socket and waits for its unification. Then unify term command
is called to update the prolog variables array. In this case the term socket is non
blocking.

convert_variables String
Its argument is a string containing symbols that can not be sent through the sockets.
This procedure deletes them from the input string and returns the new string.

unify_term Term1 Term2
Unifies Term1 and Term2 and updates the the prolog variables array.

The predicates to use Prolog from Tcl are tk_event_loop/1, tk_main_loop/1, tk_new/2,
and tk_next_event/2.

An example of use with Tcl as master and Prolog as slave, implementing the well known "Hello,
world!" dummy program (more can be seen in directory examples):

Prolog side:

:- use_module(library(tcltk)).
:- use_package(classic).

hello(’Hello, world!’).

go :-
tk_new([name(’Simple’)], Tcl),
tcl_eval(Tcl, ’source simple.tcl’, _),
tk_main_loop(Tcl),
tcl_delete(Tcl).

Tcl side (simple.tcl):

label .l -textvariable tvar

496 The Ciao Prolog System

button .b -text "Go!" -command {run}
pack .l .b -side top

proc run {} {

global prolog_variables
global tvar

prolog hello(X)
set tvar $prolog_variables(X)

}

116.1 Usage and interface (tcltk)
® ©

• Library usage:

:- use_module(library(tcltk)).

• Exports:

− Predicates:

tcl_new/1, tcl_eval/3, tcl_delete/1, tcl_event/3, tk_event_loop/1, tk_main_
loop/1, tk_new/2, tk_next_event/2.

− Regular Types:

tclInterpreter/1, tclCommand/1.

• Other modules used:

− System library modules:

tcltk/tcltk_low_level, iso_misc, write, strings, lists.

 ª

116.2 Documentation on exports (tcltk)

PREDICATEtcl new/1:
Usage: tcl_new(-TclInterpreter)

− Description: Creates a new interpreter, initializes it, and returns a handle to it in
TclInterpreter.

− Call and exit should be compatible with:

-TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

PREDICATEtcl eval/3:
Meta-predicate with arguments: tcl_eval(?,?,addmodule).

Usage: tcl_eval(+TclInterpreter, +Command, -Result)

− Description: Evaluates the commands given in Command in the Tcl interpreter
TclInterpreter. The result will be stored as a string in Result. If there is an
error in Command an exception is raised. The error messages will be Tcl Exception:
if the error is in the syntax of the Tcl/Tk code or Prolog Exception:, if the error is in
the prolog term.

Chapter 116: The Tcl/Tk interface 497

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

+Command is a Tcl command. (tcltk:tclCommand/1)

-Result is a string (a list of character codes). (basic_props:string/1)

PREDICATEtcl delete/1:
Usage: tcl_delete(+TclInterpreter)

− Description: Given a handle to a Tcl interpreter in variable TclInterpreter, it
deletes the interpreter from the system.

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

PREDICATEtcl event/3:
Usage: tcl_event(+TclInterpreter, +Command, -Events)

− Description: Evaluates the commands given in Command in the Tcl interpreter whose
handle is provided in TclInterpreter. Events is a list of terms stored from Tcl by
prolog event. Blocks until there is something on the event queue

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

+Command is a Tcl command. (tcltk:tclCommand/1)

-Events is a list. (basic_props:list/1)

REGTYPEtclInterpreter/1:
Usage: tclInterpreter(I)

− Description: I is a reference to a Tcl interpreter.

REGTYPEtclCommand/1:
Usage: tclCommand(C)

− Description: C is a Tcl command.

PREDICATEtk event loop/1:
Usage: tk_event_loop(+TclInterpreter)

− Description: Waits for an event and executes the goal associated to it. Events are
stored from Tcl with the prolog command. The unified term is sent to the Tcl
interpreter in order to obtain the value of the tcl array of prolog variables. If the
term received does not have the form execute(Goal), the predicate silently exits. If
the execution of Goal raises a Prolog error, the interpreter is deleted and an error
message is given.

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

498 The Ciao Prolog System

PREDICATEtk main loop/1:
Usage: tk_main_loop(+TclInterpreter)

− Description: Passes control to Tk until all windows are gone.

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

PREDICATEtk new/2:
Usage: tk_new(+Options, -TclInterpreter)

− Description: Performs basic Tcl and Tk initialization and creates the main window
of a Tk application.Options is a list of optional elements according to:

name(+ApplicationName)
Sets the Tk main window title to ApplicationName. It is also used for
communicating between Tcl/Tk applications via the Tcl send command.
Default name is an empty string.

display(+Display)
Gives the name of the screen on which to create the main window. Default
is normally determined by the DISPLAY environment variable.

file Opens the sript file. Commands will not be read from standard input
and the execution returns back to Prolog only after all windows (and the
interpreter) have been deleted.

− Call and exit should be compatible with:

+Options is a list. (basic_props:list/1)

-TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

PREDICATEtk next event/2:
Usage: tk_next_event(+TclInterpreter, -Event)

− Description: Processes events until there is at least one Prolog event associated with
TclInterpreter. Event is the term correspondig to the head of a queue of events
stored from Tcl with the prolog event command.

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk:tclInterpreter/1)

-Event is a string (a list of character codes). (basic_props:string/1)

Chapter 117: Low level interface library to Tcl/Tk 499

117 Low level interface library to Tcl/Tk

Author(s): Montse Iglesias Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#315 (2004/2/25, 18:28:19 CET)

The tcltk_low_level library defines the low level interface used by the tcltk library. Es-
sentially it includes all the code related directly to the handling of sockets and processes. This
library should normally not be used directly by user programs, which use tcltk instead. On
the other hand in some cases it may be useful to undertand how this library works in order to
understand possible problems in programs that use the tcltk library.

117.1 Usage and interface (tcltk_low_level)
® ©

• Library usage:

:- use_module(library(tcltk_low_level)).

• Exports:

− Predicates:

new_interp/1, new_interp/2, new_interp_file/2, tcltk/2, tcltk_raw_code/2,
receive_result/2, send_term/2, receive_event/2, receive_list/2, receive_
confirm/2, delete/1.

• Other modules used:

− System library modules:

terms, sockets/sockets, system, write, read, strings, lists, format.

 ª

117.2 Documentation on exports (tcltk_low_level)

PREDICATEnew interp/1:
Usage: new_interp(-TclInterpreter)

− Description: Creates two sockets to connect to the wish process, the term socket and
the event socket, and opens a pipe to process wish in a new shell.

− Call and exit should be compatible with:

-TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEnew interp/2:
Usage: new_interp(-TclInterpreter, +Options)

− Description: Creates two sockets, the term socket and the event socket, and opens a
pipe to process wish in a new shell invoked with the Options.

− Call and exit should be compatible with:

-TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

+Options is currently instantiated to an atom. (term_typing:atom/1)

500 The Ciao Prolog System

PREDICATEnew interp file/2:
Usage: new_interp_file(+FileName, -TclInterpreter)

− Description: Creates two sockets, the term socket and the event socket, and opens a
pipe to process wish in a new shell invoked with a FileName. FileName is treated as
a name of a sript file

− Call and exit should be compatible with:

+FileName is a string (a list of character codes). (basic_props:string/1)

-TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEtcltk/2:
Usage: tcltk(+Code, +TclInterpreter)

− Description: Sends the Code converted to string to the TclInterpreter

− Call and exit should be compatible with:

+Code is a Tcl command. (tcltk_low_level:tclCommand/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEtcltk raw code/2:
Usage: tcltk_raw_code(+String, +TclInterpreter)

− Description: Sends the tcltk code items of the Stream to the TclInterpreter

− Call and exit should be compatible with:

+String is a string (a list of character codes). (basic_props:string/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEreceive result/2:
Usage: receive_result(-Result, +TclInterpreter)

− Description: Receives the Result of the last TclCommand into the TclInterpreter.
If the TclCommand is not correct the wish process is terminated and a message
appears showing the error

− Call and exit should be compatible with:

-Result is a string (a list of character codes). (basic_props:string/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEsend term/2:
Usage: send_term(+String, +TclInterpreter)

− Description: Sends the goal executed to the TclInterpreter. String has the pred-
icate with unified variables

− Call and exit should be compatible with:

+String is a string (a list of character codes). (basic_props:string/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

Chapter 117: Low level interface library to Tcl/Tk 501

PREDICATEreceive event/2:
Usage: receive_event(-Event, +TclInterpreter)

− Description: Receives the Event from the event socket of the TclInterpreter.

− Call and exit should be compatible with:

-Event is a list. (basic_props:list/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEreceive list/2:
Usage: receive_list(-List, +TclInterpreter)

− Description: Receives the List from the event socket of the TclInterpreter.The
List has all the predicates that have been inserted from Tcl/Tk with the command
prolog event. It is a list of terms.

− Call and exit should be compatible with:

-List is a list. (basic_props:list/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEreceive confirm/2:
Usage: receive_confirm(-String, +TclInterpreter)

− Description: Receives the String from the event socket of the TclInterpreter when
a term inserted into the event queue is managed.

− Call and exit should be compatible with:

-String is a string (a list of character codes). (basic_props:string/1)

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

PREDICATEdelete/1:
Usage: delete(+TclInterpreter)

− Description: Terminates the wish process and closes the pipe, term socket and event
socket. Deletes the interpreter TclInterpreter from the system

− Call and exit should be compatible with:

+TclInterpreter is a reference to a Tcl interpreter. (tcltk_low_
level:tclInterpreter/1)

117.3 Documentation on internals (tcltk_low_level)

PREDICATEcore/1:
Usage: core(+String)

− Description: core/1 is a set of facts which contain Strings to be sent to the Tcl/Tk
interpreter on startup. They implement miscelaneous Tcl/Tk procedures which are
used by the Tcl/Tk interface.

− Call and exit should be compatible with:

+String is a string (a list of character codes). (basic_props:string/1)

502 The Ciao Prolog System

Chapter 118: The Tcl/Tk Class Interface 503

118 The Tcl/Tk Class Interface

Author(s): Montserrat Urraca, Montserrat Iglesias Urraca,
http://www.clip.dia.fi.upm.es/, The CLIP Group, Facultad de Informática, Universidad
Politécnica de Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#152 (2003/12/4, 17:35:17 CET)

This library implements an object-orented graphical library with a number of predefined
objects, using the Prolog Tcl/Tk interface. This interface allows creating and destroying objects
and modifying their properties. The window_class contains three clases: widget class, menu
class, and canvas class. The constructor class is window class.

Note: This library (and the documentation) are still under development.

118.1 Usage and interface (window_class)
® ©

• Library usage:

:- use_module(library(window_class)).

• Exports:

− Predicates:

window_class/0, window_class/3, destructor/0, show/0, hide_/0, title/1,
maxsize/2, minsize/2, withdraw/0, event_loop/0.

− Regular Types:

widget/1, option/1, menu/1, canvas/1.

• Other modules used:

− System library modules:

objects/objects_rt, system, strings, lists, tcltk/tcltk, tcltk/tcltk_low_
level, aggregates.

 ª

118.2 Documentation on exports (window_class)

REGTYPEwidget/1:
Each Widget type is characterized in two ways: first, the form of the create command
used to create instances of the type; and second, a set of configuration options for items
of that type, which may be used in the create and itemconfigure widget commands.

Usage: widget(W)

− Description: W is a reference to one type of the widget widgets.

REGTYPEoption/1:
Usage: option(O)

− Description: O is hidden if the Widget is not visible or shown if its visible.

504 The Ciao Prolog System

REGTYPEmenu/1:
Usage: menu(M)

− Description: M is a reference to one type of the menu.

REGTYPEcanvas/1:
Usage: canvas(C)

− Description: C is a reference to one type of the canvas.

PREDICATEwindow class/0:
Usage:

− Description: Creates a new interpreter, asserting the predicate interp(I), and the
widgets, menus and canvases objects.

PREDICATEwindow class/3:
Usage: window_class(+WidgetList, +MenusList, +CanvasList)

− Description: Adds the widgets, menus and canvases in the list to the window object.

− Call and exit should be compatible with:

+WidgetList is a list. (basic_props:list/1)

+MenusList is a list. (basic_props:list/1)

+CanvasList is a list. (basic_props:list/1)

PREDICATEdestructor/0:
Usage:

− Description: Deletes the widgets, menus and canvases of the window object and the
window object.

PREDICATEshow/0:
Usage:

− Description: Adds widgets, menus and canvas to the window object.

PREDICATEhide /0:
Usage:

− Description: Removes widgets, menus and canvas from the window object.

PREDICATEtitle/1:
Usage: title(+X)

− Description: X specifies the title for window. The default window title is the name of
the window.

− Call and exit should be compatible with:

+X is a string (a list of character codes). (basic_props:string/1)

Chapter 118: The Tcl/Tk Class Interface 505

PREDICATEmaxsize/2:
Usage: maxsize(+X, +Y)

− Description: X specifies the maximum width and Y the maximum height for the
window.

− Call and exit should be compatible with:

+X is an integer. (basic_props:int/1)

+Y is an integer. (basic_props:int/1)

PREDICATEminsize/2:
Usage: minsize(+X, +Y)

− Description: X specifies the minimum width and Y the minimum height for the win-
dow.

− Call and exit should be compatible with:

+X is an integer. (basic_props:int/1)

+Y is an integer. (basic_props:int/1)

PREDICATEwithdraw/0:
Usage:

− Description: Arranges for window to be withdrawn from the screen.

PREDICATEevent loop/0:
Usage:

− Description: Waits for a Tcl/Tk event.

506 The Ciao Prolog System

Chapter 119: widget class (library) 507

119 widget class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#150 (2003/12/4, 17:35:4 CET)

119.1 Usage and interface (widget_class)
® ©

• Library usage:

:- use_module(library(widget_class)).

• Exports:

− Predicates:

text_characters/1, font_type/1, background_color/1, borderwidth_value/1,
foreground_color/1, highlightbackground_color/1, highlight_color/1, width_
value/1,
relief_type/1, side_type/1, expand_value/1, fill_type/1, padx_value/1, pady_
value/1, row_value/1, rowspan_value/1, column_value/1, columnspan_value/1,
event_type_widget/1, action_widget/3, action_widget/1, creation_options/1,
creation_position/1, creation_position_grid/1, creation_bind/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

119.2 Documentation on exports (widget_class)

PREDICATEtext characters/1:
Usage 1: text_characters(+Text)

− Description: Indicates the Text to be displayed in the widget.

− Call and exit should be compatible with:

+Text is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: text_characters(-Text)

− Description: Text which is displayed in the widget.

− Call and exit should be compatible with:

-Text is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEfont type/1:
Usage 1: font_type(+Font)

− Description: Indicates the Font of the widget’s text.

− Call and exit should be compatible with:

+Font is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: font_type(-Font)

− Description: Gets the Font of the widget’s text.

508 The Ciao Prolog System

− Call and exit should be compatible with:

-Font is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEbackground color/1:
Usage 1: background_color(+Background)

− Description: Indicates the Background color. Default to gray.

− Call and exit should be compatible with:

+Background is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: background_color(-Background)

− Description: Returns the Background color.

− Call and exit should be compatible with:

-Background is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEborderwidth value/1:
Usage 1: borderwidth_value(+BorderWidth)

− Description: Indicates the width’s border. Default to 2.

− Call and exit should be compatible with:

+BorderWidth is a number. (basic_props:num/1)

Usage 2: borderwidth_value(-BorderWidth)

− Description: Gets the width’s border.

− Call and exit should be compatible with:

-BorderWidth is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEforeground color/1:
Usage 1: foreground_color(+Foreground)

− Description: Indicates the Foreground color. Default to black

− Call and exit should be compatible with:

+Foreground is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: foreground_color(-Foreground)

− Description: Gets the Foreground color.

− Call and exit should be compatible with:

-Foreground is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEhighlightbackground color/1:
Usage 1: highlightbackground_color(+Color)

− Description: Color specifies the highlight background color. Default to white

− Call and exit should be compatible with:

+Color is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: highlightbackground_color(-Color)

− Description: Gets the Color of the highlight background.

− Call and exit should be compatible with:

-Color is currently instantiated to an atom. (term_typing:atom/1)

Chapter 119: widget class (library) 509

PREDICATEhighlight color/1:
Usage 1: highlight_color(+Color)

− Description: Color specifies the highlight color. Default to white

− Call and exit should be compatible with:

+Color is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: highlight_color(-Color)

− Description: Gets the Color of the highlight.

− Call and exit should be compatible with:

-Color is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEwidth value/1:
Usage 1: width_value(+Width)

− Description: Specifies the Width for the widget. Default to 0

− Call and exit should be compatible with:

+Width is an integer. (basic_props:int/1)

Usage 2: width_value(+Width)

− Description: Gets the Width specified for the widget.

− Call and exit should be compatible with:

+Width is an integer. (basic_props:int/1)

PREDICATErelief type/1:
Usage 1: relief_type(+Relief)

− Description: Specifies a desired Relief for the widget. Default to sunken

− Call and exit should be compatible with:

+Relief is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: relief_type(-Relief)

− Description: Gets the Relief of the widget.

− Call and exit should be compatible with:

-Relief is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEside type/1:
Usage 1: side_type(+Side)

− Description: Specifies which Side of the master, the slave(s) will be packed against.
Must be left, right, top or bottom. Defaults to top

− Call and exit should be compatible with:

+Side is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: side_type(-Side)

− Description: Gets the position of the canvas.

− Call and exit should be compatible with:

-Side is currently instantiated to an atom. (term_typing:atom/1)

510 The Ciao Prolog System

PREDICATEexpand value/1:
Usage 1: expand_value(+Value)

− Description: Specifies whether the slaves should be expanded to consume extra space
in their master. Value may have any proper boolean value, such as 1 or 0. Defaults
to 0

− Call and exit should be compatible with:

+Value is an integer. (basic_props:int/1)

Usage 2: expand_value(-Value)

− Description: Gets the boolean value which indicates if the slaves should be expanded
or no.

− Call and exit should be compatible with:

-Value is an integer. (basic_props:int/1)

PREDICATEfill type/1:
Usage 1: fill_type(+Option)

− Description: If a slave’s parcel is larger than its requested dimensions, this option
may be used to stretch the slave. Option must have one of the following values: none
(this is the default), x, y, both

− Call and exit should be compatible with:

+Option is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: fill_type(-Option)

− Description: Gets the fill value of the canvas

− Call and exit should be compatible with:

-Option is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEpadx value/1:
Usage 1: padx_value(+Amount)

− Description: Amount specifies how much horizontal external padding to leave on each
side of the slave(s). Amount defaults to 0

− Call and exit should be compatible with:

+Amount is an integer. (basic_props:int/1)

Usage 2: padx_value(-Amount)

− Description: Gets the Amount which specifies how much horizontal external padding
to leave on each side of the slaves.

− Call and exit should be compatible with:

-Amount is an integer. (basic_props:int/1)

PREDICATEpady value/1:
Usage 1: pady_value(+Amount)

− Description: Amount specifies how much vertical external padding to leave on each
side of the slave(s). Amount defaults to 0

− Call and exit should be compatible with:

+Amount is an integer. (basic_props:int/1)

Chapter 119: widget class (library) 511

Usage 2: pady_value(-Amount)

− Description: Gets the Amount which specifies how much vertical external padding to
leave on each side of the slaves.

− Call and exit should be compatible with:

-Amount is an integer. (basic_props:int/1)

PREDICATErow value/1:
Usage 1: row_value(+Row)

− Description: Indicates the Row in which the widget should be allocated.

− Call and exit should be compatible with:

+Row is an integer. (basic_props:int/1)

Usage 2: row_value(-Row)

− Description: Gets the Row in which the widget is allocated.

− Call and exit should be compatible with:

-Row is an integer. (basic_props:int/1)

PREDICATErowspan value/1:
Usage 1: rowspan_value(+Row)

− Description: Indicates the number of Row which are going to be occupied in the grid.

− Call and exit should be compatible with:

+Row is an integer. (basic_props:int/1)

Usage 2: rowspan_value(-Row)

− Description: Gets the number of Row which are occupied by the widget in the grid.

− Call and exit should be compatible with:

-Row is an integer. (basic_props:int/1)

PREDICATEcolumn value/1:
Usage 1: column_value(+Column)

− Description: Indicates the Column in which the widget should be allocated.

− Call and exit should be compatible with:

+Column is an integer. (basic_props:int/1)

Usage 2: column_value(-Column)

− Description: Gets the Column in which the widget is allocated.

− Call and exit should be compatible with:

-Column is an integer. (basic_props:int/1)

PREDICATEcolumnspan value/1:
Usage 1: columnspan_value(+Column)

− Description: Indicates the number of Column which are going to be occupied in the
grid.

512 The Ciao Prolog System

− Call and exit should be compatible with:

+Column is an integer. (basic_props:int/1)

Usage 2: columnspan_value(-Column)

− Description: Gets the number of Column which are occupied by the widget in the
grid.

− Call and exit should be compatible with:

-Column is an integer. (basic_props:int/1)

PREDICATEevent type widget/1:
Usage 1: event_type_widget(+EventType)

− Description: The event EventType is going to be manage by the interface.

− Call and exit should be compatible with:

+EventType is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: event_type_widget(-EventType)

− Description: Gets the event EventType which is going to be manage by the interface.

− Call and exit should be compatible with:

-EventType is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEaction widget/3:
Usage 1: action_widget(+Input, +Output, +Term)

− Description: Executes Term with Input value and Output variable.

− Call and exit should be compatible with:

+Input is currently instantiated to an atom. (term_typing:atom/1)

+Output is currently instantiated to an atom. (term_typing:atom/1)

+Term is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: action_widget(+Input, +Output, -Term)

− Description: Term is associated to the action of the object indicated with the opera-
cion event type widget.

− Call and exit should be compatible with:

+Input is currently instantiated to an atom. (term_typing:atom/1)

+Output is currently instantiated to an atom. (term_typing:atom/1)

-Term is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEaction widget/1:
Usage 1: action_widget(+Term)

− Description: Term is going to be associated to the action of the object indicated with
the operacion event type widget.

− Call and exit should be compatible with:

+Term is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: action_widget(-Term)

Chapter 119: widget class (library) 513

− Description: Term is associated to the action of the object indicated with the opera-
cion event type widget.

− Call and exit should be compatible with:

-Term is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEcreation options/1:
Usage: creation_options(-OptionsList)

− Description: Creates a list with the options supported by the widget.

− Call and exit should be compatible with:

-OptionsList is a list. (basic_props:list/1)

PREDICATEcreation position/1:
Usage: creation_position(-OptionsList)

− Description: Creates a list with the options supported by the pack command.

− Call and exit should be compatible with:

-OptionsList is a list. (basic_props:list/1)

PREDICATEcreation position grid/1:
Usage: creation_position_grid(-OptionsList)

− Description: Creates a list with the options supported by the grid command.

− Call and exit should be compatible with:

-OptionsList is a list. (basic_props:list/1)

PREDICATEcreation bind/1:
Usage: creation_bind(-BindList)

− Description: Creates a list with the event to be manage and the action associated to
this event.

− Call and exit should be compatible with:

-BindList is a list. (basic_props:list/1)

514 The Ciao Prolog System

Chapter 120: menu class (library) 515

120 menu class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#133 (2003/12/4, 17:33:46 CET)

120.1 Usage and interface (menu_class)
® ©

• Library usage:

:- use_module(library(menu_class)).

• Exports:

− Predicates:

name_menu/1, menu_data/1, label_value/1, tearoff_value/1, tcl_name/1,
creation_options/1, creation_options_entry/1, creation_menu_name/1.

• Other modules used:

− System library modules:

objects/objects_rt, tcltk_obj/window_class, tcltk_obj/menu_entry_class,
tcltk/tcltk, tcltk/tcltk_low_level, lists.

 ª

120.2 Documentation on exports (menu_class)

PREDICATEname menu/1:
Usage: name_menu(+Name)

− Description: Indicates the Name of the menubutton associated.

− Call and exit should be compatible with:

+Name is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEmenu data/1:
Usage 1: menu_data(+Menu)

− Description: Menu posted when cascade entry is invoked.

− Call and exit should be compatible with:

+Menu is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: menu_data(-Menu)

− Description: Gets the Menu asociated to the cascade entry.

− Call and exit should be compatible with:

-Menu is currently instantiated to an atom. (term_typing:atom/1)

PREDICATElabel value/1:
Usage 1: label_value(+Value)

− Description: Value specifies a string to be displayed as an identifying label in the
menu entry.

516 The Ciao Prolog System

− Call and exit should be compatible with:

+Value is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: label_value(-Value)

− Description: Gets the string which identify the menu entry.

− Call and exit should be compatible with:

-Value is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEtearoff value/1:
Usage 1: tearoff_value(+Tearoff)

− Description: Tearoff must have a proper boolean value, which specifies wheter or
not the menu should include a tear-off entry at the top. Defaults to 1.

− Call and exit should be compatible with:

+Tearoff is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: tearoff_value(-Tearoff)

− Description: Gets the Tearoff value

− Call and exit should be compatible with:

-Tearoff is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEtcl name/1:
Usage: tcl_name(-Widget)

− Description: Specifies the name of the Widget. In this case is menu.

− Call and exit should be compatible with:

-Widget is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEcreation options/1:
Usage: creation_options(-OptionsList)

− Description: Creates a list with the options supported by the menu.

− Call and exit should be compatible with:

-OptionsList is a list. (basic_props:list/1)

PREDICATEcreation options entry/1:
Usage: creation_options_entry(-OptionsList)

− Description: Creates a list with the options of the menu entry.

− Call and exit should be compatible with:

-OptionsList is a list. (basic_props:list/1)

PREDICATEcreation menu name/1:
Usage: creation_menu_name(-OptionsList)

− Description: Creates a list with the name of the menu.

− Call and exit should be compatible with:

-OptionsList is a list. (basic_props:list/1)

Chapter 121: canvas class (library) 517

121 canvas class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#123 (2003/12/4, 17:32:57 CET)

121.1 Usage and interface (canvas_class)
® ©

• Library usage:

:- use_module(library(canvas_class)).

• Other modules used:

− System library modules:

class/class_rt, class/virtual, objects/objects_rt, tcltk_obj/window_class,
tcltk_obj/shape_class, system, strings, lists, tcltk/tcltk, tcltk/tcltk_low_
level.

 ª

121.2 Documentation on multifiles (canvas_class)

PREDICATE$class$/1:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$super/2:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$initial state/3:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$virtual/6:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$attr template/4:
No further documentation available for this predicate.

The predicate is multifile.

518 The Ciao Prolog System

PREDICATEclass$default cons/1:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$constructor/4:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$destructor/3:
No further documentation available for this predicate.

The predicate is multifile.

PREDICATEclass$implements/2:
No further documentation available for this predicate.

The predicate is multifile.

Chapter 122: button class (library) 519

122 button class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#122 (2003/12/4, 17:32:36 CET)

122.1 Usage and interface (button_class)
® ©

• Library usage:

:- use_module(library(button_class)).

• Exports:

− Predicates:

command_button/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

122.2 Documentation on exports (button_class)

PREDICATEcommand button/1:
Usage 1: command_button(+Command)

− Description: Sets a Tcl Command to be associated with the button. This Command is
typically invoked when mouse button 1 is released over the button window.

− Call and exit should be compatible with:

+Command is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: command_button(-Command)

− Description: Gets the Tcl Command associated with the button.

− Call and exit should be compatible with:

-Command is currently instantiated to an atom. (term_typing:atom/1)

520 The Ciao Prolog System

Chapter 123: checkbutton class (library) 521

123 checkbutton class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#125 (2003/12/4, 17:33:7 CET)

123.1 Usage and interface (checkbutton_class)
® ©

• Library usage:

:- use_module(library(checkbutton_class)).

• Exports:

− Predicates:

variable_value/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

123.2 Documentation on exports (checkbutton_class)

PREDICATEvariable value/1:
Usage 1: variable_value(+Variable)

− Description: Sets the value of global Variable to indicate whether or not this button
is selected.

− Call and exit should be compatible with:

+Variable is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: variable_value(-Variable)

− Description: Gets the value of global Variable which indicates if the button is se-
lected.

− Call and exit should be compatible with:

-Variable is currently instantiated to an atom. (term_typing:atom/1)

522 The Ciao Prolog System

Chapter 124: radiobutton class (library) 523

124 radiobutton class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#143 (2003/12/4, 17:34:38 CET)

124.1 Usage and interface (radiobutton_class)
® ©

• Library usage:

:- use_module(library(radiobutton_class)).

• Exports:

− Predicates:

variable_value/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

124.2 Documentation on exports (radiobutton_class)

PREDICATEvariable value/1:
Usage 1: variable_value(+Variable)

− Description: Specifies the value of global Variable to set whenever this button is
selected.

− Call and exit should be compatible with:

+Variable is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: variable_value(-Variable)

− Description: Gets the value of global Variable which indicates if this button is
selected.

− Call and exit should be compatible with:

-Variable is currently instantiated to an atom. (term_typing:atom/1)

524 The Ciao Prolog System

Chapter 125: entry class (library) 525

125 entry class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#127 (2003/12/4, 17:33:22 CET)

125.1 Usage and interface (entry_class)
® ©

• Library usage:

:- use_module(library(entry_class)).

• Exports:

− Predicates:

textvariable_entry/1, textvariablevalue_string/1,
textvariablevalue_number/1, justify_entry/1.

• Other modules used:

− System library modules:

objects/objects_rt, lists, tcltk/examples/tk_test_aux, tcltk/tcltk.

 ª

125.2 Documentation on exports (entry_class)

PREDICATEtextvariable entry/1:
Usage 1: textvariable_entry(+Variable)

− Description: Variable specifies the name of the Tcl variable

− Call and exit should be compatible with:

+Variable is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: textvariable_entry(-Variable)

− Description: Gets the name of the Tcl Variable associated to the entry

− Call and exit should be compatible with:

-Variable is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEtextvariablevalue string/1:
Usage 1: textvariablevalue_string(+Value)

− Description: Specifies the Value of the Tcl variable associated to the entry.

− Call and exit should be compatible with:

+Value is a number. (basic_props:num/1)

Usage 2: textvariablevalue_string(-Value)

− Description: Value is the value of the Tcl variable associated to the entry.

− Call and exit should be compatible with:

-Value is a number. (basic_props:num/1)

526 The Ciao Prolog System

PREDICATEtextvariablevalue number/1:
Usage 1: textvariablevalue_number(+Value)

− Description: Specifies the Value of the Tcl variable associated to the entry.

− Call and exit should be compatible with:

+Value is a number. (basic_props:num/1)

Usage 2: textvariablevalue_number(-Value)

− Description: Value is the value of the Tcl variable associated to the entry.

− Call and exit should be compatible with:

-Value is a number. (basic_props:num/1)

PREDICATEjustify entry/1:
Usage 1: justify_entry(+How)

− Description: How specifies how to justify the text in the entry. How must be one of
the values left, right or center. This option defaluts to left.

− Call and exit should be compatible with:

+How is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: justify_entry(-How)

− Description: Gets How is justified the text.

− Call and exit should be compatible with:

-How is currently instantiated to an atom. (term_typing:atom/1)

Chapter 126: label class (library) 527

126 label class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#129 (2003/12/4, 17:33:30 CET)

126.1 Usage and interface (label_class)
® ©

• Library usage:

:- use_module(library(label_class)).

• Exports:

− Predicates:

textvariable_label/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

126.2 Documentation on exports (label_class)

PREDICATEtextvariable label/1:
No further documentation available for this predicate.

528 The Ciao Prolog System

Chapter 127: menubutton class (library) 529

127 menubutton class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#137 (2003/12/4, 17:34:7 CET)

127.1 Usage and interface (menubutton_class)
® ©

• Library usage:

:- use_module(library(menubutton_class)).

• Exports:

− Predicates:

menu_name/1.

• Other modules used:

− System library modules:

objects/objects_rt, lists.

 ª

127.2 Documentation on exports (menubutton_class)

PREDICATEmenu name/1:
Usage 1: menu_name(+Menu)

− Description: Menu posted when menubutton is clicked.

− Call and exit should be compatible with:

+Menu is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: menu_name(-Menu)

− Description: Gets the name of the Menu asociated to the menubutton.

− Call and exit should be compatible with:

-Menu is currently instantiated to an atom. (term_typing:atom/1)

530 The Ciao Prolog System

Chapter 128: menu entry class (library) 531

128 menu entry class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#135 (2003/12/4, 17:33:57 CET)

128.1 Usage and interface (menu_entry_class)
® ©

• Library usage:

:- use_module(library(menu_entry_class)).

• Exports:

− Predicates:

set_name/1, set_action/1, label_value/1, menu_name/1.

• Other modules used:

− System library modules:

objects/objects_rt, tcltk_obj/menu_class, lists.

 ª

128.2 Documentation on exports (menu_entry_class)

PREDICATEset name/1:
Usage: set_name(+Name)

− Description: Name of the menubutton associated.

− Call and exit should be compatible with:

+Name is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEset action/1:
Usage: set_action(+Predicate)

− Description: Specifies Predicate asociated to the menu entry.

− Call and exit should be compatible with:

+Predicate is currently instantiated to an atom. (term_typing:atom/1)

PREDICATElabel value/1:
Usage 1: label_value(+Value)

− Description: Value specifies a value to be displayed as an identifying label in the
menu entry.

− Call and exit should be compatible with:

+Value is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: label_value(-Value)

− Description: Gets the string which identify label in the menu entry.

− Call and exit should be compatible with:

-Value is currently instantiated to an atom. (term_typing:atom/1)

532 The Ciao Prolog System

PREDICATEmenu name/1:
Usage 1: menu_name(+Menu)

− Description: Menu posted when cascade entry is invoked.

− Call and exit should be compatible with:

+Menu is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: menu_name(-Menu)

− Description: Gets the Menu asociated to the cascade entry.

− Call and exit should be compatible with:

-Menu is currently instantiated to an atom. (term_typing:atom/1)

Chapter 129: shape class (library) 533

129 shape class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#146 (2003/12/4, 17:34:49 CET)

129.1 Usage and interface (shape_class)
® ©

• Library usage:

:- use_module(library(shape_class)).

• Exports:

− Predicates:

bg_color/1, border_width/1, shape_class/0, shape_class/1.

• Other modules used:

− System library modules:

objects/objects_rt, tcltk_obj/canvas_class.

 ª

129.2 Documentation on exports (shape_class)

PREDICATEbg color/1:
Usage 1: bg_color(+BackgroundColor)

− Description: Background Color specifies the color to use for drawing the shape’s
outline. This option defaults to black.

− Call and exit should be compatible with:

+BackgroundColor is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: bg_color(-BackgroundColor)

− Description: Gets the shape Background Color.

− Call and exit should be compatible with:

-BackgroundColor is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEborder width/1:
Usage 1: border_width(+Width)

− Description: Specifies the Width that the canvas widget should request from its ge-
ometry manager.

− Call and exit should be compatible with:

+Width is a number. (basic_props:num/1)

Usage 2: border_width(-Width)

− Description: Gets the Width of the canvas widget.

− Call and exit should be compatible with:

-Width is a number. (basic_props:num/1)

534 The Ciao Prolog System

PREDICATEshape class/0:
Usage:

− Description: Creates a new shape object.

PREDICATEshape class/1:
Usage: shape_class(+ShapeList)

− Description: Adds shapes of the list to the canvas object.

− Call and exit should be compatible with:

+ShapeList is a list. (basic_props:list/1)

Chapter 130: arc class (library) 535

130 arc class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#120 (2003/12/4, 17:32:15 CET)

130.1 Usage and interface (arc_class)
® ©

• Library usage:

:- use_module(library(arc_class)).

• Exports:

− Predicates:

coord/4, width/1, height/1, center/2, angle_start/1, style_type/1, outline_
color/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

130.2 Documentation on exports (arc_class)

PREDICATEcoord/4:
Usage: coord(+X1, +Y1, +X2, +Y2)

− Description: X1, Y1, X2, and Y2 give the coordinates of two diagonally opposite corners
of a rectangular region enclosing the oval that defines the arc.

− Call and exit should be compatible with:

+X1 is an integer. (basic_props:int/1)

+Y1 is an integer. (basic_props:int/1)

+X2 is an integer. (basic_props:int/1)

+Y2 is an integer. (basic_props:int/1)

PREDICATEwidth/1:
Usage 1: width(+Width)

− Description: Specifies shape’s Width.

− Call and exit should be compatible with:

+Width is an integer. (basic_props:int/1)

Usage 2: width(-Width)

− Description: Gets shape’s Width.

− Call and exit should be compatible with:

-Width is an integer. (basic_props:int/1)

536 The Ciao Prolog System

PREDICATEheight/1:
Usage 1: height(+Height)

− Description: Specifies shape’s Height.

− Call and exit should be compatible with:

+Height is an integer. (basic_props:int/1)

Usage 2: height(-Height)

− Description: Gets shape’s Height.

− Call and exit should be compatible with:

-Height is an integer. (basic_props:int/1)

PREDICATEcenter/2:
Usage 1: center(+X, +Y)

− Description: Specifies shape’s center with X and Y.

− Call and exit should be compatible with:

+X is an integer. (basic_props:int/1)

+Y is an integer. (basic_props:int/1)

Usage 2: center(-X, -Y)

− Description: Gets shape’s center with X and Y.

− Call and exit should be compatible with:

-X is an integer. (basic_props:int/1)

-Y is an integer. (basic_props:int/1)

PREDICATEangle start/1:
Usage 1: angle_start(+Angle)

− Description: Angle specifies the beginning of the angular range occupied by the arc.
Degrees are given in units of degrees measured counter-clockwise from the 3-o’clock
position; it may be either positive or negative.

− Call and exit should be compatible with:

+Angle is an integer. (basic_props:int/1)

Usage 2: angle_start(-Angle)

− Description: Gets the value of the Angle.

− Call and exit should be compatible with:

-Angle is an integer. (basic_props:int/1)

PREDICATEstyle type/1:
Usage 1: style_type(+Style)

− Description: Style specifies how to draw the arc. If type is pieslice (the default) then
the arc’s region is defined by a section of the oval’s perimeter plus two line segments,
one between the center of the oval and each end of the perimeter section. If type is
chord then the arc’s region is defined by a section of the oval’s perimeter plus a single
line segment connecting the two end points of the perimeter section. If type is arc
then the arc’s region consists of a section of the perimeter alone. In this last case the
-fill option is ignored.

Chapter 130: arc class (library) 537

− Call and exit should be compatible with:

+Style is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: style_type(-Style)

− Description: Gets the Style of the arc.

− Call and exit should be compatible with:

-Style is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEoutline color/1:
Usage 1: outline_color(+Color)

− Description: Color specifies the color used for drawing the arc’s outline. This option
defaults to black.

− Call and exit should be compatible with:

+Color is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: outline_color(-Color)

− Description: It gets arc’s outline Color.

− Call and exit should be compatible with:

-Color is currently instantiated to an atom. (term_typing:atom/1)

538 The Ciao Prolog System

Chapter 131: oval class (library) 539

131 oval class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#139 (2003/12/4, 17:34:21 CET)

131.1 Usage and interface (oval_class)
® ©

• Library usage:

:- use_module(library(oval_class)).

• Exports:

− Predicates:

coord/4, width/1, height/1, center/2, outline_color/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

131.2 Documentation on exports (oval_class)

PREDICATEcoord/4:
Usage: coord(+X1, +Y1, +X2, +Y2)

− Description: X1, Y1, X2, and Y2 give the coordinates of two diagonally opposite corners
of a rectangular region enclosing the oval.

− Call and exit should be compatible with:

+X1 is an integer. (basic_props:int/1)

+Y1 is an integer. (basic_props:int/1)

+X2 is an integer. (basic_props:int/1)

+Y2 is an integer. (basic_props:int/1)

PREDICATEwidth/1:
Usage 1: width(+Width)

− Description: Specifies shape’s Width.

− Call and exit should be compatible with:

+Width is an integer. (basic_props:int/1)

Usage 2: width(-Width)

− Description: Gets shape’s Width.

− Call and exit should be compatible with:

-Width is an integer. (basic_props:int/1)

540 The Ciao Prolog System

PREDICATEheight/1:
Usage 1: height(+Height)

− Description: Specifies shape’s Heigh.

− Call and exit should be compatible with:

+Height is an integer. (basic_props:int/1)

Usage 2: height(-Height)

− Description: Gets shape’s Height.

− Call and exit should be compatible with:

-Height is an integer. (basic_props:int/1)

PREDICATEcenter/2:
Usage 1: center(+X, +Y)

− Description: Specifies shape’s center with X and Y.

− Call and exit should be compatible with:

+X is an integer. (basic_props:int/1)

+Y is an integer. (basic_props:int/1)

Usage 2: center(-X, -Y)

− Description: Gets shape’s center with X and Y.

− Call and exit should be compatible with:

-X is an integer. (basic_props:int/1)

-Y is an integer. (basic_props:int/1)

PREDICATEoutline color/1:
Usage 1: outline_color(+Color)

− Description: Color specifies the color to be used for drawing the oval’s outline. This
option defaults to black.

− Call and exit should be compatible with:

+Color is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: outline_color(-Color)

− Description: Gets oval’s outline Color.

− Call and exit should be compatible with:

-Color is currently instantiated to an atom. (term_typing:atom/1)

Chapter 132: poly class (library) 541

132 poly class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#187 (2003/12/10, 21:19:39 CET)

132.1 Usage and interface (poly_class)
® ©

• Library usage:

:- use_module(library(poly_class)).

• Exports:

− Predicates:

vertices/1, outline_color/1.

• Other modules used:

− System library modules:

objects/objects_rt, lists.

 ª

132.2 Documentation on exports (poly_class)

PREDICATEvertices/1:
Usage 1: vertices(+ListofPoints)

− Description: The arguments of the list specify the coordinates for three or more
points that define a closed polygon. The first and last points may be the same. After
the coordinates there may be any number of option-value pairs, each of which sets
one of the configu- ration options for the item.

− Call and exit should be compatible with:

+ListofPoints is a list. (basic_props:list/1)

Usage 2: vertices(-ListofPoints)

− Description: Gets the list of vertices of the polygon.

− Call and exit should be compatible with:

-ListofPoints is a list. (basic_props:list/1)

PREDICATEoutline color/1:
Usage 1: outline_color(+Color)

− Description: Color specifies the color to be used for drawing the polygon’s outline.
This option defaults to black.

− Call and exit should be compatible with:

+Color is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: outline_color(-Color)

− Description: Gets poly’s outline Color.

− Call and exit should be compatible with:

-Color is currently instantiated to an atom. (term_typing:atom/1)

542 The Ciao Prolog System

Chapter 133: line class (library) 543

133 line class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#131 (2003/12/4, 17:33:38 CET)

133.1 Usage and interface (line_class)
® ©

• Library usage:

:- use_module(library(line_class)).

• Exports:

− Predicates:

vertices/1, arrowheads/1.

• Other modules used:

− System library modules:

objects/objects_rt, lists.

 ª

133.2 Documentation on exports (line_class)

PREDICATEvertices/1:
Usage 1: vertices(+ListofPoints)

− Description: The arguments of the list specify the coordinates for two or more points
that describe a serie of connected line segments.

− Call and exit should be compatible with:

+ListofPoints is a list. (basic_props:list/1)

Usage 2: vertices(-ListofPoints)

− Description: Gets the list of points of the line.

− Call and exit should be compatible with:

-ListofPoints is a list. (basic_props:list/1)

PREDICATEarrowheads/1:
Usage 1: arrowheads(+Where)

− Description: Where indicates whether or not arrowheads are to be drawn at one
or both ends of the line. Where must have one of the next values: none (for no
arrowheads), first (for an arrowhead at the first point of the line), last (for an
arrowhead at the last point of the line), or both (for arrowheads at both ends). This
option defaults to none.

− Call and exit should be compatible with:

+Where is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: arrowheads(-Where)

− Description: Gets position of the arrowheads.

− Call and exit should be compatible with:

-Where is currently instantiated to an atom. (term_typing:atom/1)

544 The Ciao Prolog System

Chapter 134: text class (library) 545

134 text class (library)

Author(s): Montserrat Urraca.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#148 (2003/12/4, 17:34:58 CET)

134.1 Usage and interface (text_class)
® ©

• Library usage:

:- use_module(library(text_class)).

• Exports:

− Predicates:

coord/2, point/2, text_characters/1, anchor/1, font_type/1, justify_text/1.

• Other modules used:

− System library modules:

objects/objects_rt.

 ª

134.2 Documentation on exports (text_class)

PREDICATEcoord/2:
Usage: coord(+X, +Y)

− Description: X and Y specify the coordinates of a point used to position the text on
the display.

− Call and exit should be compatible with:

+X is an integer. (basic_props:int/1)

+Y is an integer. (basic_props:int/1)

PREDICATEpoint/2:
Usage: point(+X, +Y)

− Description: X and Y change the coordinates of a point used to position the text on
the display.

− Call and exit should be compatible with:

+X is an integer. (basic_props:int/1)

+Y is an integer. (basic_props:int/1)

PREDICATEtext characters/1:
Usage 1: text_characters(+Text)

− Description: Text specifies the characters to be displayed in the text item. This
option defaults to an empty string.

− Call and exit should be compatible with:

+Text is currently instantiated to an atom. (term_typing:atom/1)

546 The Ciao Prolog System

Usage 2: text_characters(-Text)

− Description: Gets the text displayed in the text item.

− Call and exit should be compatible with:

-Text is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEanchor/1:
Usage 1: anchor(+AnchorPos)

− Description: AnchorPos tells how to position the text relative to the positioning point
for the text. This option defaluts to center.

− Call and exit should be compatible with:

+AnchorPos is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: anchor(-AnchorPos)

− Description: Gets the position of the text relative to the positioning point.

− Call and exit should be compatible with:

-AnchorPos is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEfont type/1:
Usage 1: font_type(+Font)

− Description: Font specifies the font to use for the text item. This option defaluts to
arial.

− Call and exit should be compatible with:

+Font is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: font_type(-Font)

− Description: Gets the value of the Font used for the text item.

− Call and exit should be compatible with:

-Font is currently instantiated to an atom. (term_typing:atom/1)

PREDICATEjustify text/1:
Usage 1: justify_text(+How)

− Description: How specifies how to justify the text within its bounding region. How
must be one of the values left, right or center. This option defaluts to left.

− Call and exit should be compatible with:

+How is currently instantiated to an atom. (term_typing:atom/1)

Usage 2: justify_text(-How)

− Description: Gets How is justified the text.

− Call and exit should be compatible with:

-How is currently instantiated to an atom. (term_typing:atom/1)

Chapter 135: The PiLLoW Web programming library 547

135 The PiLLoW Web programming library

Author(s): Daniel Cabeza,
Manuel Hermenegildo, clip@clip.dia.fi.upm.es, http://www.clip.dia.fi.upm.es/, The
CLIP Group, School of Computer Science, Technical University of Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#231 (2003/12/22, 17:58:8 CET)

This package implements the PiLLoW library [CHV96a]. The following three chap-
ters document, respectively, the predicates for HTML/XML/CGI programming, the pred-
icate for HTTP conectivity, and the types used in the definition of the predicates (key
for fully understanding the other predicates). You can find a paper and some ad-
ditional information in the library/pillow/doc directory of the distribution, and in
the WWW at http://clip.dia.fi.upm.es/Software/pillow/pillow.html. There is
also a PiLLoW on-line tutorial (slides) at http://clip.dia.fi.upm.es/logalg/slides/C_
pillow/C_pillow.html which illustrates the basic features and provides a number of examples
of PiLLoW use.

135.1 Installing PiLLoW

To correctly install PiLLoW, first, make sure you downloaded the right version of PiLLoW
(there are different versions for different LP/CLP systems; the version that comes with Ciao is
of course the right one for Ciao). Then, please follow these steps:

1. Copy the files in the images directory to a WWW accessible directory in your server.

2. Edit the file icon_address.pl and change the fact to point to the URL to be used to access
the images above.

3. In the Ciao system the files are in the correct place, in other systems copy the files pillow.pl
and icon_address.pl to a suitable directory so that your Prolog system will find them.

135.2 Usage and interface (pillow)
® ©

• Library usage:

:- use_package(pillow).

or

:- module(...,...,[pillow]).

• New operators defined:

$/2 [150,xfx], $/1 [150,fx].

• Other modules used:

− System library modules:

pillow/http, pillow/html.

 ª

548 The Ciao Prolog System

Chapter 136: HTML/XML/CGI programming 549

136 HTML/XML/CGI programming

Author(s): Daniel Cabeza, Manuel Hermenegildo, Sacha Varma.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#335 (2004/4/16, 16:18:8 CEST)

This module implements the predicates of the PiLLoW package related to HTML/ XML
generation and parsing, CGI and form handlers programming, and in general all the predicates
which do not imply the use of the HTTP protocol.

136.1 Usage and interface (html)
® ©

• Library usage:

:- use_module(library(html)).

• Exports:

− Predicates:

output_html/1, html2terms/2, xml2terms/2, html_template/3, html_report_
error/1, get_form_input/1, get_form_value/3, form_empty_value/1, form_
default/3, set_cookie/2, get_cookies/1, url_query/2, url_query_values/2,
my_url/1, url_info/2, url_info_relative/3, form_request_method/1, icon_
address/2, html_protect/1, http_lines/3.

− Multifiles:

define_flag/3, html_expansion/2.

• Other modules used:

− System library modules:

strings, lists, system, pillow/pillow_aux, pillow/pillow_types.

 ª

136.2 Documentation on exports (html)

PREDICATEoutput html/1:
output_html(HTMLTerm)

Outputs HTMLTerm, interpreted as an html_term/1, to current output stream.

PREDICATEhtml2terms/2:
html2terms(String, Terms)

String is a character list containing HTML code and Terms is its prolog structured rep-
resentation.

Usage 1: html2terms(-string, +html_term)

− Description: Translates an HTML-term into the HTML code it represents.

Usage 2: html2terms(+string, ?canonic_html_term)

− Description: Translates HTML code into a structured HTML-term.

550 The Ciao Prolog System

PREDICATExml2terms/2:
xml2terms(String, Terms)

String is a character list containing XML code and Terms is its prolog structured repre-
sentation.

Usage 1: xml2terms(-string, +html_term)

− Description: Translates a XML-term into the XML code it represents.

Usage 2: xml2terms(+string, ?canonic_xml_term)

− Description: Translates XML code into a structured XML-term.

PREDICATEhtml template/3:
html_template(Chars, Terms, Dict)

Interprets Chars as an HTML template returning in Terms the corresponding structured
HTML-term, which includes variables, and unifying Dict with a dictionary of those vari-
ables (an incomplete list of name=Var pairs). An HTML template is standard HTML
code, but in which “slots” can be defined and given an identifier. These slots represent
parts of the HTML code in which other HTML code can be inserted, and are represented
in the HTML-term as free variables. There are two kinds of variables in templates:

• Variables representing page contents. A variable with name name is defined with the
special tag <V>name</V>.

• Variables representing tag attributes. They occur as an attribute or an attribute value
starting with _, followed by its name, which must be formed by alphabetic characters.

As an example, suposse the following HTML template:

<html>
<body bgcolor=_bgcolor>
<v>content</v>
</body>
</html>

The following query in the Ciao toplevel shows how the template is parsed, and the
dictionary returned:

?- file_to_string(’template.html’,_S), html_template(_S,Terms,Dict).

Dict = [bgcolor=_A,content=_B|_],
Terms = [env(html,[],["
",env(body,[bgcolor=_A],["
",_B,"
"]),"
"]),"
"] ?

yes

If a dictionary with values is supplied at call time, then variables are unified accordingly
inside the template:

?- file_to_string(’template.html’,_S),
html_template(_S,Terms,[content=b("hello world!"),bgcolor="white"]).

Terms = [env(html,[],["

Chapter 136: HTML/XML/CGI programming 551

",env(body,[bgcolor="white"],["
",b("hello world!"),"
"]),"
"]),"
"] ?

yes

PREDICATEhtml report error/1:
Usage: html_report_error(Error)

− Description: Outputs error Error as a standard HTML page.

PREDICATEget form input/1:
get_form_input(Dict)

Translates input from the form (with either the POST or GET methods, and even with
CONTENT TYPE multipart/form-data) to a dictionary Dict of attribute=value pairs. If
the flag raw_form_values is off (which is the default state), it translates empty values
(which indicate only the presence of an attribute) to the atom ’$empty’, values with more
than one line (from text areas or files) to a list of lines as strings, the rest to atoms or
numbers (using name/2). If the flag on, it gives all values as atoms, without translations.

PREDICATEget form value/3:
get_form_value(Dict, Var, Val)

Unifies Val with the value for attribute Var in dictionary Dict. Does not fail: value is ’’
if not found (this simplifies the programming of form handlers when they can be accessed
directly).

PREDICATEform empty value/1:
Usage: form_empty_value(Term)

− Description: Checks that Term, a value comming from a text area is empty (can have
spaces, newlines and linefeeds).

PREDICATEform default/3:
Usage: form_default(+Val, +Default, -NewVal)

− Description: Useful when a form is only partially filled, or when the executable can
be invoked either by a link or by a form, to set form defaults. If the value of Val is
empty then NewVal=Default, else NewVal=Val.

PREDICATEset cookie/2:
set_cookie(Name, Value)

Sets a cookie of name Name and value Value. Must be invoked before outputting any data,
including the cgi_reply html-term.

552 The Ciao Prolog System

PREDICATEget cookies/1:
get_cookies(Cookies)

Unifies Cookies with a dictionary of attribute=value pairs of the active cookies for this
URL. If the flag raw_form_values is on, values are always atoms even if they could be
interpreted as numbers.

PREDICATEurl query/2:
url_query(Dict, URLArgs)

(Deprecated, see url_query_values/2) Translates a dictionary Dict of parameter values
into a string URLArgs for appending to a URL pointing to a form handler.

PREDICATEurl query values/2:
url_query_values(Dict, URLArgs)

Dict is a dictionary of parameter values and URLArgs is the URL-encoded string of those
assignments, which may appear after an URL pointing to a CGI script preceded by a ’?’.
Dict is computed according to the raw_form_values flag. The use of this predicate is
reversible.

PREDICATEmy url/1:
my_url(URL)

Unifies URL with the Uniform Resource Locator (WWW address) of this cgi executable.

PREDICATEurl info/2:
url_info(URL, URLTerm)

Translates a URL URL to a Prolog structure URLTerm which details its various components,
and vice-versa. For now non-HTTP URLs make the predicate fail.

PREDICATEurl info relative/3:
url_info_relative(URL, BaseURLTerm, URLTerm)

Translates a relative URL URL which appears in the HTML page refered to by BaseURLTerm
into URLTerm, a Prolog structure containing its absolute parameters. Absolute URLs are
translated as with url_info/2. E.g.

url_info_relative("dadu.html",
http(’www.foo.com’,80,"/bar/scoob.html"), Info)

gives Info = http(’www.foo.com’,80,"/bar/dadu.html").

PREDICATEform request method/1:
Usage: form_request_method(Method)

− Description: Unifies Method with the method of invocation of the form handler (GET
or POST).

− The following properties hold upon exit:

Method is an atom. (basic_props:atm/1)

Chapter 136: HTML/XML/CGI programming 553

PREDICATEicon address/2:
icon_address(Img, IAddress)

The PiLLoW image Img has URL IAddress.

PREDICATEhtml protect/1:
html_protect(Goal)

Calls Goal. If an error occurs during its execution, or it fails, an HTML page is output
informing about the incident. Normaly the whole execution of a CGI is protected thus.

Meta-predicate with arguments: html_protect(goal).

Usage:

− Calls should, and exit will be compatible with:

Goal is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEhttp lines/3:
Usage: http_lines(Lines, String, Tail)

− Description: Lines is a list of the lines with occur in String until Tail. The lines
may end UNIX-style or DOS-style in String, in Lines they have not end of line
characters. Suitable to be used in DCGs.

− Calls should, and exit will be compatible with:

Lines is a list of strings. (basic_props:list/2)

String is a string (a list of character codes). (basic_props:string/1)

Tail is a string (a list of character codes). (basic_props:string/1)

136.3 Documentation on multifiles (html)

PREDICATEdefine flag/3:
Defines a flag as follows:

define_flag(raw_form_values,[on,off],off).

(See Chapter 24 [Changing system behaviour and various flags], page 141).

If flag is on, values returned by get_form_input/1 are always atoms, unchanged from its
original value.

The predicate is multifile.

PREDICATEhtml expansion/2:
The predicate is multifile.

Usage: html_expansion(Term, Expansion)

− Description: Hook predicate to define macros. Expand occurrences of Term into
Expansion, in output_html/1. Take care to not transform something into itself!

136.4 Other information (html)

The code uses input from from L. Naish’s forms and F. Bueno’s previous Chat interface.
Other people who have contributed is (please inform us if we leave out anybody): Markus
Fromherz, Samir Genaim.

554 The Ciao Prolog System

Chapter 137: HTTP conectivity 555

137 HTTP conectivity

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.3#114 (1999/11/24, 0:57:16 MET)

This module implements the HTTP protocol, which allows retrieving data from HTTP
servers.

137.1 Usage and interface (http)
® ©

• Library usage:

:- use_module(library(http)).

• Exports:

− Predicates:

fetch_url/3.

• Other modules used:

− System library modules:

strings, lists, pillow/pillow_aux, pillow/pillow_types, pillow/http_ll.

 ª

137.2 Documentation on exports (http)

PREDICATEfetch url/3:
fetch_url(URL, Request, Response)

Fetches the document pointed to by URL from Internet, using request parameters Request,
and unifies Response with the parameters of the response. Fails on timeout. Note that
redirections are not handled automatically, that is, if Response contains terms of the form
status(redirection,301,_) and location(NewURL), the program should in most cases
access location NewURL.

Usage: fetch_url(URL, Request, Response)

− The following properties should hold at call time:

URL specifies a URL. (pillow_types:url_term/1)

Request is a list of http_request_params. (basic_props:list/2)

− The following properties hold upon exit:

Response is a list of http_response_params. (basic_props:list/2)

556 The Ciao Prolog System

Chapter 138: PiLLoW types 557

138 PiLLoW types

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#253 (2003/12/30, 22:44:55 CET)

Here are defined the regular types used in the documentation of the predicates of the PiLLoW
package.

138.1 Usage and interface (pillow_types)
® ©

• Library usage:

:- use_module(library(pillow_types)).

• Exports:

− Regular Types:

canonic_html_term/1, canonic_xml_term/1, html_term/1, form_dict/1, form_
assignment/1, form_value/1, value_dict/1, url_term/1, http_request_param/1,
http_response_param/1, http_date/1, weekday/1, month/1, hms_time/1.

 ª

138.2 Documentation on exports (pillow_types)

REGTYPEcanonic html term/1:
A term representing HTML code in canonical, structured way. It is a list of terms defined
by the following predicate:

canonic_html_item(comment(S)) :-
string(S).

canonic_html_item(declare(S)) :-
string(S).

canonic_html_item(env(Tag,Atts,Terms)) :-
atm(Tag),
list(Atts,tag_attrib),
canonic_html_term(Terms).

canonic_html_item($(Tag,Atts)) :-
atm(Tag),
list(Atts,tag_attrib).

canonic_html_item(S) :-
string(S).

tag_attrib(Att) :-
atm(Att).

tag_attrib(Att=Val) :-
atm(Att),
string(Val).

Each structure represents one HTML construction:

env(tag ,attribs,terms)
An HTML environment, with name tag, list of attributes attribs and contents
terms.

558 The Ciao Prolog System

$(tag ,attribs)
An HTML element of name tag and list of attributes attribs. ($)/2 is defined
by the pillow package as an infix, binary operator.

comment(string)
An HTML comment (translates to/from <!--string-->).

declare(string)
An HTML declaration, they are used only in the header (translates to/from
<!string>).

string Normal text is represented as a list of character codes.

For example, the term

env(a,[href="www.therainforestsite.com"],
["Visit ",img$[src="TRFS.gif"]])

is output to (or parsed from):

Visit

Usage: canonic_html_term(HTMLTerm)

− Description: HTMLTerm is a term representing HTML code in canonical form.

REGTYPEcanonic xml term/1:
A term representing XML code in canonical, structured way. It is a list of terms defined
by the following predicate (see tag_attrib/1 definition in canonic_html_term/1):

canonic_xml_item(Term) :-
canonic_html_item(Term).

canonic_xml_item(xmldecl(Atts)) :-
list(Atts,tag_attrib).

canonic_xml_item(env(Tag,Atts,Terms)) :-
atm(Tag),
list(Atts,tag_attrib),
canonic_xml_term(Terms).

canonic_xml_item(elem(Tag,Atts)) :-
atm(Tag),
list(Atts,tag_attrib).

In addition to the structures defined by canonic_html_term/1 (the ($)/2 structure ap-
pears only in malformed XML code), the following structures can be used:

elem(tag ,atts)
Specifies an XML empty element of name tag and list of attributes atts. For
example, the term

elem(arc,[weigh="3",begin="n1",end="n2"])

is output to (or parsed from):

<arc weigh="3" begin="n1" end="n2"/>

xmldecl(atts)
Specifies an XML declaration with attributes atts (translates to/from <?xml
atts?>)

Chapter 138: PiLLoW types 559

Usage: canonic_xml_term(XMLTerm)

− Description: XMLTerm is a term representing XML code in canonical form.

REGTYPEhtml term/1:
A term which represents HTML or XML code in a structured way. In addition to the struc-
tures defined by canonic_html_term/1 or canonic_xml_term/1, the following structures
can be used:

begin(tag ,atts)
It translates to the start of an HTML environment of name tag and attributes
atts. There exists also a begin(tag) structure. Useful, in conjunction with the
next structure, when including in a document output generated by an existing
piece of code (e.g. tag = pre). Its use is otherwise discouraged.

end(tag) Translates to the end of an HTML environment of name tag.

start Used at the beginning of a document (translates to <html>).

end Used at the end of a document (translates to </html>).

-- Produces a horizontal rule (translates to <hr>).

\\ Produces a line break (translates to
).

$ Produces a paragraph break (translates to <p>).

image(address)
Used to include an image of address (URL) address (equivalent to
img$[src=address]).

image(address,atts)
As above with the list of attributes atts.

ref(address,text)
Produces a hypertext link, address is the URL of the referenced resource, text
is the text of the reference (equivalent to a([href=address],text)).

label(name,text)
Labels text as a target destination with label name (equivalent to
a([name=name],text)).

heading(n,text)
Produces a heading of level n (between 1 and 6), text is the text to be used as
heading. Useful when one wants a heading level relative to another heading
(equivalent to hn(text)).

itemize(items)
Produces a list of bulleted items, items is a list of corresponding HTML terms
(translates to a environment).

enumerate(items)
Produces a list of numbered items, items is a list of corresponding HTML
terms (translates to a environment).

description(defs)
Produces a list of defined items, defs is a list whose elements are definitions,
each of them being a Prolog sequence (composed by ’,’/2 operators). The
last element of the sequence is the definition, the other (if any) are the defined
terms (translates to a <dl> environment).

560 The Ciao Prolog System

nice itemize(img ,items)
Produces a list of bulleted items, using the image img as bullet. The predicate
icon_address/2 provides a colored bullet.

preformatted(text)
Used to include preformatted text, text is a list of HTML terms, each ele-
ment of the list being a line of the resulting document (translates to a <pre>
environment).

verbatim(text)
Used to include text verbatim, special HTML characters (<,>,&," and space)
are translated into its quoted HTML equivalent.

prolog term(term)
Includes any prolog term term, represented in functional notation. Variables
are output as _.

nl Used to include a newline in the HTML source (just to improve human read-
ability).

entity(name)
Includes the entity of name name (ISO-8859-1 special character).

start form(addr ,atts)
Specifies the beginning of a form. addr is the address (URL) of the program
that will handle the form, and atts other attributes of the form, as the method
used to invoke it. If atts is not present (there is only one argument) the method
defaults to POST.

start form Specifies the beginning of a form without assigning address to the handler, so
that the form handler will be the cgi-bin executable producing the form.

end form Specifies the end of a form.

checkbox(name,state)
Specifies an input of type checkbox with name name, state is on if the check-
box is initially checked.

radio(name,value,selected)
Specifies an input of type radio with name name (several radio buttons which
are interlocked must share their name), value is the the value returned by the
button, if selected=value the button is initially checked.

input(type,atts)
Specifies an input of type type with a list of attributes atts. Possible values of
type are text, hidden, submit, reset, ldots

textinput(name,atts,text)
Specifies an input text area of name name. text provides the default text to
be shown in the area, atts a list of attributes.

option(name,val ,options)
Specifies a simple option selector of name name, options is the list of available
options and val is the initial selected option (if val is not in options the first
item is selected by default) (translates to a <select> environment).

menu(name,atts,items)
Specifies a menu of name name, list of attributes atts and list of options
items. The elements of the list items are marked with the prefix operator $
to indicate that they are selected (translates to a <select> environment).

form reply

Chapter 138: PiLLoW types 561

cgi reply This two are equivalent, they do not generate HTML, rather, the CGI protocol
requires this content descriptor to be used at the beginning by CGI executa-
bles (including form handlers) when replying (translates to Content-type:
text/html).

pr Includes in the page a graphical logo with the message “Developed using the
PiLLoW Web programming library”, which points to the manual and library
source.

name(text)
A term with functor name/1, different from the special functors defined herein,
represents an HTML environment of name name and included text text. For
example, the term

address(’clip@clip.dia.fi.upm.es’)

is translated into the HTML source

<address>clip@clip.dia.fi.upm.es</address>

name(atts,text)
A term with functor name/2, different from the special functors defined herein,
represents an HTML environment of name name, attributes atts and included
text text. For example, the term

a([href=’http://www.clip.dia.fi.upm.es/’],"Clip home")

represents the HTML source

Clip home

Usage: html_term(HTMLTerm)

− Description: HTMLTerm is a term representing HTML code.

REGTYPEform dict/1:
Usage: form_dict(Dict)

− Description: Dict is a dictionary of values of the attributes of a form. It is a list of
form_assignment

REGTYPEform assignment/1:
Usage: form_assignment(Eq)

− Description: Eq is an assignment of value of an attribute of a form. It is defined by:

form_assignment(A=V) :-
atm(A),
form_value(V).

form_value(A) :-
atm(A).

form_value(N) :-
num(N).

form_value(L) :-
list(L,string).

562 The Ciao Prolog System

REGTYPEform value/1:
Usage: form_value(V)

− Description: V is a value of an attribute of a form.

REGTYPEvalue dict/1:
Usage: value_dict(Dict)

− Description: Dict is a dictionary of values. It is a list of pairs atom=constant.

REGTYPEurl term/1:
A term specifying an Internet Uniform Resource Locator. Currently only HTTP URLs
are supported. Example: http(’www.clip.dia.fi.upm.es’,80,"/Software/Ciao/").
Defined as

url_term(http(Host,Port,Document)) :-
atm(Host),
int(Port),
string(Document).

Usage: url_term(URL)

− Description: URL specifies a URL.

REGTYPEhttp request param/1:
A parameter of an HTTP request:

• head: Specify that the document content is not wanted.

• timeout(T): T specifies the time in seconds to wait for the response. Default is 300
seconds.

• if modified since(Date): Get document only if newer than Date. Date has the format
defined by http_date/1.

• user agent(Agent): Provides a user-agent field, Agent is an atom. The string
"PiLLoW/1.1" (or whatever version of PiLLoW is used) is appended.

• authorization(Scheme,Params): To provide credentials. See RFC 1945 for details.

• option(Value): Any unary term, being Value an atom, can be used to provide another
valid option (e.g. from(’user@machine’)).

Usage: http_request_param(Request)

− Description: Request is a parameter of an HTTP request.

REGTYPEhttp response param/1:
A parameter of an HTTP response:

• content(String): String is the document content (list of bytes). If the head parameter
of the HTTP request is used, an empty list is get here.

• status(Type,Code,Reason): Type is an atom denoting the response type, Code is the
status code (an integer), and Reason is a string holding the reason phrase.

• message date(Date): Date is the date of the response, with format defined by http_
date/1.

Chapter 138: PiLLoW types 563

• location(Loc): This parameter appears when the document has moved, Loc is an atom
holding the new location.

• http server(Server): Server is the server responding, as a string.

• authenticate(Params): Returned if document is protected, Params is a list of cha-
genges. See RFC 1945 for details.

• allow(Methods): Methods are the methods allowed by the server, as a list of atoms.

• content encoding(Encoding): Encoding is an atom defining the encoding.

• content length(Length): Length is the length of the document (an integer).

• content type(Type,Subtype,Params): Specifies the document content type, Type and
Subtype are atoms, Params a list of parameters (e.g. content_type(text,html,[])).

• expires(Date): Date is the date after which the entity should be considered stale.
Format defined by http_date/1.

• last modified(Date): Date is the date at which the sender believes the resource was
last modified. Format defined by http_date/1.

• pragma(String): Miscellaneous data.

• header(String): Any other functor header/1 is an extension header.

Usage: http_response_param(Response)

− Description: Response is a parameter of an HTTP response.

REGTYPEhttp date/1:
http_date(Date)

Date is a term defined as

http_date(date(WeekDay,Day,Month,Year,Time)) :-
weekday(WeekDay),
int(Day),
month(Month),
int(Year),
hms_time(Time).

.

Usage: http_date(Date)

− Description: Date is a term denoting a date.

REGTYPEweekday/1:
Usage: weekday(WeekDay)

− Description: WeekDay is a term denoting a weekday.

REGTYPEmonth/1:
Usage: month(Month)

− Description: Month is a term denoting a month.

REGTYPEhms time/1:
Usage: hms_time(Time)

− Description: Time is an atom of the form hh:mm:ss

564 The Ciao Prolog System

Chapter 139: Persistent predicate database 565

139 Persistent predicate database

Author(s): J.M. Gomez, D. Cabeza, and M. Hermenegildo, clip@dia.fi.upm.es,
http://www.clip.dia.fi.upm.es/, The CLIP Group, Facultad de Informática, Universidad
Politécnica de Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#328 (2004/3/24, 16:40:57 CET)

139.1 Introduction to persistent predicates

This library implements a generic persistent predicate database. The basic notion imple-
mented by the library is that of a persistent predicate. The persistent predicate concept pro-
vides a simple, yet powerful generic persistent data access method [CHGT98,Par97]. A persistent
predicate is a special kind of dynamic, data predicate that “resides” in some persistent medium
(such as a set of files, a database, etc.) that is typically external to the program using such
predicates. The main effect is that any changes made to to a persistent predicate from a pro-
gram “survive” across executions. I.e., if the program is halted and restarted the predicate that
the new process sees is in precisely the same state as it was when the old process was halted
(provided no change was made in the meantime to the storage by other processes or the user).

Persistent predicates appear to a program as ordinary predicates, and calls to these predicates
can appear in clause bodies in the usual way. However, the definitions of these predicates do not
appear in the program. Instead, the library maintains automatically the definitions of predicates
which have been declared as persistent in the persistent storage.

Updates to persistent predicates can be made using enhanced versions of asserta_fact/1,
assertz_fact/1 and retract_fact/1. The library makes sure that each update is a
transactional update, in the sense that if the update terminates, then the permanent stor-
age has definitely been modified. For example, if the program making the updates is halted just
after the update and then restarted, then the updated state of the predicate will be seen. This
provides security against possible data loss due to, for example, a system crash. Also, due to
the atomicity of the transactions, persistent predicates allow concurrent updates from several
programs.

139.2 Persistent predicates, files, and relational databases

The concept of persistent predicates provided by this library essentially implements a light-
weight, simple, and at the same time powerful form of relational database (a deductive database),
and which is standalone, in the sense that it does not require external support, other than the
file management capabilities provided by the operating system. This is due to the fact that the
persistent predicates are in fact stored in one or more auxiliary files below a given directory.

This type of database is specially useful when building small to medium-sized standalone
applications in Prolog which require persistent storage. In many cases it provides a much easier
way of implementing such storage than using files under direct program control. For example,
interactive applications can use persistent predicates to represent their internal state in a way
that is close to the application. The persistence of such predicates then allows automatically
restoring the state to that at the end of a previous session. Using persistent predicates amounts
to simply declaring some predicates as such and eliminates having to worry about opening files,
closing them, recovering from system crashes, etc.

In other cases, however, it may be convenient to use a relational database as persistent
storage. This may be the case, for example, when the data already resides in such a database
(where it is perhaps accessed also by other applications) or the volume of data is very large.
persdb_sql [CCG98] is a companion library which implements the same notion of persistent

566 The Ciao Prolog System

predicates used herein, but keeping the storage in a relational database. This provides a very
natural and transparent way to access SQL database relations from a Prolog program. In that
library, facilities are also provided for reflecting more complex views of the database relations
as predicates. Such views can be constructed as conjunctions, disjunctions, projections, etc. of
database relations, and may include SQL-like aggregation operations.

A nice characteristic of the notion of persistent predicates used in both of these libraries is
that it abstracts away how the predicate is actually stored. Thus, a program can use persistent
predicates stored in files or in external relational databases interchangeably, and the type of
storage used for a given predicate can be changed without having to modify the program (except
for replacing the corresponding persistent/2 declarations).

An example application of the persdb and persdb_sql libraries (and also the pillow library
[CH97]), is WebDB [GCH98]. WebDB is a generic, highly customizable deductive database engine
with an html interface. WebDB allows creating and maintaining Prolog-based databases as well
as relational databases (residing in conventional relational database engines) using any standard
WWW browser.

139.3 Using file-based persistent predicates

Persistent predicates can be declared statically, using persistent/2 declarations (which is
the preferred method, when possible), or dynamically via calls to make_persistent/2. Cur-
rently, persistent predicates may only contain facts, i.e., they are dynamic predicates of type
data/1.

Predicates declared as persistent are linked to directory, and the persistent state of the
predicate will be kept in several files below that directory. The files in which the persistent
predicates are stored are in readable, plain ASCII format, and in Prolog syntax. One advantage
of this approach is that such files can also be created or edited by hand, in a text editor, or even
by other applications.

An example definition of a persistent predicate implemented by files follows:

:- persistent(p/3,dbdir).

persistent_dir(dbdir, ’/home/clip/public_html/db’).

The first line declares the predicate p/3 persistent. The argument dbdir is a key used to
index into a fact of the relation persistent_dir/2, which specifies the directory where the
corresponding files will be kept. The effect of the declaration, together with the persistent_
dir/2 fact, is that, although the predicate is handled in the same way as a normal data predicate,
in addition the system will create and maintain efficiently a persistent version of p/3 via files in
the directory /home/clip/public_html/db.

The level of indirection provided by the dbdir argument makes it easy to place the storage of
several persistent predicates in a common directory, by specifying the same key for all of them.
It also allows changing the directory for several such persistent predicates by modifying only
one fact in the program. Furthermore, the persistent_dir/2 predicate can even be dynamic
and specified at run-time.

139.4 Implementation Issues

We outline the current implementation approach. This implementation attempts to provide
at the same time efficiency and security. To this end, up to three files are used for each predicate
(the persistence set): the data file, the operations file, and the backup file. In the updated state
the facts (tuples) that define the predicate are stored in the data file and the operations file is
empty (the backup file, which contains a security copy of the data file, may or may not exist).

Chapter 139: Persistent predicate database 567

While a program using a persistent predicate is running, any insertion (assert) or deletion
(retract) operations on the predicate are performed on both the program memory and on the
persistence set. However, in order to incurr only a small overhead in the execution, rather
than changing the data file directly, a record of each of the insertion and deletion operations is
appended to the operations file. The predicate is then in a transient state, in that the contents
of the data file do not reflect exactly the current state of the corresponding predicate. However,
the complete persistence set does.

When a program starts, all pending operations in the operations file are performed on the
data file. A backup of the data file is created first to prevent data loss if the system crashes
during this operation. The order in which this updating of files is done ensures that, if at
any point the process dies, on restart the data will be completely recovered. This process of
updating the persistence set can also be triggered at any point in the execution of the program
(for example, when halting) by calling update_files.

139.5 Defining an initial database

It is possible to define an initial database by simply including in the program code facts of
persistent predicates. They will be included in the persistent database when it is created. They
are ignored in successive executions.

139.6 Using persistent predicates from the top level

Special care must be taken when loading into the top level modules or user files which use
persistent predicates. Beforehand, a goal use_module(library(’persdb/persdbrt’)) must
be issued. Furthermore, since persistent predicates defined by the loaded files are in this way
defined dynamically, a call to initialize_db/0 is commonly needed after loading and before
calling predicates of these files.

568 The Ciao Prolog System

139.7 Usage and interface (persdbrt)
® ©

• Library usage:

There are two packages which implement persistence: persdb and ’persdb/ll’ (for low
level). In the first, the standard builtins asserta_fact/1, assertz_fact/1, and retract_
fact/1 are replaced by new versions which handle persistent data predicates, behaving as
usual for normal data predicates. In the second package, predicates with names starting
with p are defined, so that there is no overhead in calling the standard builtins. In any
case, each package is used as usual: including it in the package list of the module, or using
the use_package/1 declaration.

• Exports:

− Predicates:

passerta_fact/1, passertz_fact/1, pretract_fact/1, pretractall_
fact/1, asserta_fact/1, assertz_fact/1, retract_fact/1, retractall_fact/1,
initialize_db/0, make_persistent/2, update_files/0, update_files/1.

− Multifiles:

persistent_dir/2, $is_persistent/2.

• Other modules used:

− System library modules:

lists, streams, read, aggregates, system, file_locks/file_locks,
persdb/persdbcache.

 ª

139.8 Documentation on exports (persdbrt)

PREDICATEpasserta fact/1:
Meta-predicate with arguments: passerta_fact(fact).

Usage: passerta_fact(Fact)

− Description: Persistent version of asserta_fact/1: the current instance of Fact is
interpreted as a fact (i.e., a relation tuple) and is added at the beginning of the
definition of the corresponding predicate. The predicate concerned must be declared
persistent. Any uninstantiated variables in the Fact will be replaced by new, private
variables. Defined in the ’persdb/ll’ package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEpassertz fact/1:
Meta-predicate with arguments: passertz_fact(fact).

Usage: passertz_fact(Fact)

− Description: Persistent version of assertz_fact/1: the current instance of Fact is
interpreted as a fact (i.e., a relation tuple) and is added at the end of the definition of
the corresponding predicate. The predicate concerned must be declared persistent.
Any uninstantiated variables in the Fact will be replaced by new, private variables.
Defined in the ’persdb/ll’ package.

Chapter 139: Persistent predicate database 569

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEpretract fact/1:
pretract_fact(P)

Retracts a predicate in both, the dynamic and the persistent databases.

Meta-predicate with arguments: pretract_fact(fact).

Usage: pretract_fact(Fact)

− Description: Persistent version of retract_fact/1: deletes on backtracking all the
facts which unify with Fact. The predicate concerned must be declared persistent.
Defined in the ’persdb/ll’ package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEpretractall fact/1:
No further documentation available for this predicate.

Meta-predicate with arguments: pretractall_fact(fact).

PREDICATEasserta fact/1:
Meta-predicate with arguments: asserta_fact(fact).

Usage: asserta_fact(Fact)

− Description: Same as passerta_fact/1, but if the predicate concerned is not persis-
tent then behaves as the builtin of the same name. Defined in the persdb package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEassertz fact/1:
Meta-predicate with arguments: assertz_fact(fact).

Usage: assertz_fact(Fact)

− Description: Same as passertz_fact/1, but if the predicate concerned is not persis-
tent then behaves as the builtin of the same name. Defined in the persdb package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEretract fact/1:
Meta-predicate with arguments: retract_fact(fact).

Usage: retract_fact(Fact)

570 The Ciao Prolog System

− Description: Same as pretract_fact/1, but if the predicate concerned is not persis-
tent then behaves as the builtin of the same name. Defined in the persdb package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEretractall fact/1:
Meta-predicate with arguments: retractall_fact(fact).

Usage: retractall_fact(Fact)

− Description: Same as pretractall_fact/1, but if the predicate concerned is not
persistent then behaves as the builtin of the same name. Defined in the persdb
package.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEinitialize db/0:
Usage:

− Description: Initializes the whole database, updating the state of the declared per-
sistent predicates. Must be called explicitly after dynamically defining clauses for
persistent_dir/2.

PREDICATEmake persistent/2:
Meta-predicate with arguments: make_persistent(spec,?).

Usage: make_persistent(PredDesc, Keyword)

− Description: Dynamic version of the persistent declaration.

− The following properties should hold at call time:

PredDesc is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

Keyword is an atom corresponding to a directory identifier.
(persdbcache:keyword/1)

PREDICATEupdate files/0:
Usage:

− Description: Updates the files comprising the persistence set of all persistent predi-
cates defined in the application.

Chapter 139: Persistent predicate database 571

PREDICATEupdate files/1:
Meta-predicate with arguments: update_files(list(spec)).

Usage: update_files(PredSpecList)

− Description: Updates the files comprising the persistence set of the persistent predi-
cates in PredSpecList.

− Call and exit should be compatible with:

PredSpecList is a list of prednames. (basic_props:list/2)

139.9 Documentation on multifiles (persdbrt)

PREDICATEpersistent dir/2:
The predicate is multifile.

The predicate is of type data.

Usage: persistent_dir(Keyword, Location_Path)

− Description: Relates identifiers of locations (the Keywords) with descriptions of such
locations (Location_Paths). Location_Path is a directory and it means that the
definition for the persistent predicates associated with Keyword is kept in files below
that directory (which must previously exist). These files, in the updated state, con-
tain the actual definition of the predicate in Prolog syntax (but with module names
resolved).

− The following properties should hold at call time:

Keyword is an atom corresponding to a directory identifier.
(persdbcache:keyword/1)

Location_Path is an atom, the name of a directory. (persdbrt:directoryname/1)

PREDICATE$is persistent/2:
$is_persistent(Spec, Key)

Predicate Spec persists within database Key. Programmers should not define this predicate
directly in the program.

The predicate is multifile.

The predicate is of type data.

139.10 Documentation on internals (persdbrt)

DECLARATIONpersistent/2:
Usage: :- persistent(PredDesc, Keyword).

− Description: Declares the predicate PredDesc as persistent. Keyword is the identifier
of a location where the persistent storage for the predicate is kept. The location
Keyword is described in the persistent_dir predicate, which must contain a fact in
which the first argument unifies with Keyword.

− The following properties should hold upon exit:

PredDesc is a Name/Arity structure denoting a predicate name:

572 The Ciao Prolog System

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

Keyword is an atom corresponding to a directory identifier.
(persdbcache:keyword/1)

PREDICATEkeyword/1:
An atom which identifies a fact of the persistent_dir/2 relation. This fact relates this
atom to a directory in which the persistent storage for one or more persistent predicates
is kept. Storage is expected under a subdirectory by the name of the module and in a file
by the name of the predicate.

REGTYPEdirectoryname/1:
Usage: directoryname(X)

− Description: X is an atom, the name of a directory.

139.11 Known bugs and planned improvements (persdbrt)

• To load in the toplevel a file which uses this package, module library(’persdb/persdbrt’)
has to be previously loaded.

Chapter 140: Using the persdb library 573

140 Using the persdb library

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#232 (2003/12/22, 18:4:0 CET)

Through the following examples we will try to illustrate the two mains ways of declaring and
using persistent predicates: statically (the preferred method) and dynamically (necessary when
the new persistent predicates have to be defined at run-time). The final example is a small
application implementing a simple persistent queue.

140.1 An example of persistent predicates (static version)

:- use_package(iso).
:- use_package(persdb).

%% Declare the directory associated to the key "db" where the
%% persistence sets of the persistent predicates are stored:
persistent_dir(db,’./’).

%% Declare a persistent predicate:
:- persistent(bar/1, db).

%% Read a term, storing it in a new fact of the persistent predicate
%% and list all the current facts of that predicate
main:-

read(X),
assertz_fact(bar(X)),
findall(Y,bar(Y),L),
write(L).

erase_one :-
retract_fact(bar(_)).

erase_all :-
retractall_fact(bar(_)).

140.2 An example of persistent predicates (dynamic version)

:- use_package(iso).
:- use_package(persdb).

main([X]):-
%% Declare the directory associated to the key "db"

asserta_fact(persistent_dir(db,’./’)),
%% Declare the predicate bar/1 as dynamic (and data) at run-time

data(bar/1),
%% Declare the predicate bar/1 as persistent at run-time

make_persistent(bar/1, db),

574 The Ciao Prolog System

assertz_fact(bar(X)),
findall(Y, bar(Y), L),
write(L).

140.3 A simple application / a persistent queue

:- module(queue, [main/0],[persdb]).

:- use_package(iso).

:- use_module(library(read)).
:- use_module(library(write)).
:- use_module(library(aggregates)).

persistent_dir(queue_dir,’./pers’).

:- persistent(queue/1, queue_dir).

queue(first).
queue(second).

main:-
write(’Action (in(Term). | slip(Term) | out. | list. | halt.): ’),
read(A),
(handle_action(A)
-> true
; write(’Unknown command.’), nl),
main.

handle_action(end_of_file) :-
halt.

handle_action(halt) :-
halt.

handle_action(in(Term)) :-
assertz_fact(queue(Term)),
main.

handle_action(slip(Term)) :-
asserta_fact(queue(Term)),
main.

handle_action(out) :-
(retract_fact(queue(Term))
-> write(’Out ’), write(Term)
; write(’FIFO empty.’)),
nl,
main.

handle_action(list) :-
findall(Term,queue(Term),Terms),
write(’Contents: ’), write(Terms), nl,
main.

Chapter 140: Using the persdb library 575

576 The Ciao Prolog System

Chapter 141: Filed predicates 577

141 Filed predicates

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#10 (2002/5/30, 19:46:8 CEST)

This package allows using files as a “ cache” for predicates defined by facts. This is useful
for huge tables of facts that may push the memory limits of the system too far. Goals of a filed
predicate are executed simply by reading from the corresponding file.

Anything in the DB file used for the predicate that is different from a fact for the correspond-
ing predicate is ignored. Each call to a filed predicate forces opening the file, so the use of this
package is subject to the limit on the number of open files that the system can support.

Dynamic modification of the filed predicates is also allowed during execution of the program.
Thus filed predicates are regarded as dynamic, data predicates residing in a file. However,
dynamic modifications to the predicates do not affect the file, unless the predicate is also declared
persistent.

The package is compatible with persdb in the sense that a predicate can be made both filed
and persistent. In this way, the predicate can be used in programs, but it will not be loaded
(saving memory), can also be modified during execution, and modifications will persist in the
file. Thus, the user interface to both packages is the same (so the DB file must be one for both
filing and persistency).

141.1 Usage and interface (factsdb_rt)
® ©

• Library usage:

This facility is used as a package, thus either including factsdb in the package list of the
module, or by using the use_package/1 declaration. The facility predicates are defined in
library module factsdb_rt.

• Exports:

− Predicates:

asserta_fact/1, assertz_fact/1, call/1, current_fact/1, retract_fact/1.

− Multifiles:

$factsdb$cached_goal/3, persistent_dir/2, file_alias/2.

• Other modules used:

− System library modules:

counters, read, persdb/persdbcache.

 ª

141.2 Documentation on exports (factsdb_rt)

PREDICATEasserta fact/1:
Meta-predicate with arguments: asserta_fact(fact).

Usage: asserta_fact(Fact)

− Description: Version of data_facts:asserta_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is added at the beginning of the
definition of the corresponding predicate. Therefore, before all the facts filed in the
DB file for the predicate. The predicate concerned must be declared as facts; if it is
not, then data_facts:asserta_fact/1 is used.

578 The Ciao Prolog System

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEassertz fact/1:
Meta-predicate with arguments: assertz_fact(fact).

Usage: assertz_fact(Fact)

− Description: Version of data_facts:assertz_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is added at the end of the definition
of the corresponding predicate. Therefore, after all the facts filed in the DB file for
the predicate. The predicate concerned must be declared as facts; if it is not, then
data_facts:assertz_fact/1 is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEcall/1:
Meta-predicate with arguments: call(fact).

Usage: call(Fact)

− Description: Same as current_fact/1 if the predicate concerned is declared as
facts. If it is not, an exception is raised.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEcurrent fact/1:
Meta-predicate with arguments: current_fact(fact).

Usage: current_fact(Fact)

− Description: Version of data_facts:current_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is unified with an actual fact in the
current definition of the corresponding predicate. Therefore, with a fact previously
asserted or filed in the DB file for the predicate, if it has not been retracted. The pred-
icate concerned must be declared as facts; if it is not, then data_facts:current_
fact/1 is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

PREDICATEretract fact/1:
Meta-predicate with arguments: retract_fact(fact).

Usage: retract_fact(Fact)

Chapter 141: Filed predicates 579

− Description: Version of data_facts:retract_fact/1 for filed predicates. The cur-
rent instance of Fact is interpreted as a fact and is unified with an actual fact in the
current definition of the corresponding predicate; such a fact is deleted from the predi-
cate definition. This is true even for the facts filed in the DB file for the predicate; but
these are NOT deleted from the file (unless the predicate is persistent). The predicate
concerned must be declared as facts; if it is not, then data_facts:retract_fact/1
is used.

− The following properties should hold at call time:

Fact is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

141.3 Documentation on multifiles (factsdb_rt)

PREDICATE$factsdb$cached goal/3:
$factsdb$cached_goal(Spec, Spec, Key)

Predicate Spec is filed within database Key. Programmers should not define this predicate
directly in the program.

The predicate is multifile.

PREDICATEpersistent dir/2:
See persdb.

The predicate is multifile.

The predicate is of type data.

PREDICATEfile alias/2:
See symfnames. This predicate is used only if persistent_dir/2 fails.

The predicate is multifile.

The predicate is of type data.

141.4 Documentation on internals (factsdb_rt)

DECLARATIONfacts/2:
Usage: :- facts(PredDesc, Keyword).

− Description: Declares the predicate PredDesc as filed. Keyword is the identifier of a
location where the file DB for the predicate is kept. The location Keyword is described
in the file_alias predicate, which must contain a fact in which the first argument
unifies with Keyword.

− The following properties should hold upon exit:

PredDesc is a Name/Arity structure denoting a predicate name:

predname(P/A) :-
atm(P),
nnegint(A).

(basic_props:predname/1)

Keyword is an atom corresponding to a directory identifier.
(persdbcache:keyword/1)

580 The Ciao Prolog System

PREDICATEkeyword/1:
See persdbrt. The same conventions for location of DB files apply in both packages.

141.5 Known bugs and planned improvements (factsdb_rt)

• The DB files for persistent predicates have to be used as such from the beginning. Using a
DB file for a filed predicate first, and then using it also when making the predicate persistent
won’t work. Nor the other way around: using a DB file for a persistent predicate first, and
then using it also when making the predicate filed.

Chapter 142: SQL persistent database interface 581

142 SQL persistent database interface

Author(s): I. Caballero, D. Cabeza, J.M. Gómez, M. Hermenegildo, J. F. Morales, and M.
Carro, clip@dia.fi.upm.es, http://www.clip.dia.fi.upm.es/, The CLIP Group, Facultad
de Informática, Universidad Politécnica de Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#113 (2003/11/27, 20:56:6 CET)

The purpose of this library is to implement an instance of the generic concept of persistent
predicates, where external relational databases are used for storage (see the documentation of
the persdb library and [CHGT98,Par97] for details). To this end, this library exports SQL
persistent versions of the assertz_fact/1, retract_fact/1 and retractall_fact/1 builtin
predicates. Persistent predicates also allow concurrent updates from several programs, since
each update is atomic.

The notion of persistence provides a very natural and transparent way to access database
relations from a Prolog program. Stub definitions are provided for such predicates which access
the database when the predicate is called (using the db_client library). A Prolog to SQL
translator is used to generate the required SQL code dynamically (see library pl2sql).

This library also provides facilities for reflecting more complex views of the database relations
as Prolog predicates. Such views can be constructed as conjunctions, disjunctions, projections,
etc. of database relations. Also, SQL-like aggregation operations are supported.

142.1 Implementation of the Database Interface

The architecture of the low-level implementation of the database interface was defined with
two goals in mind:

• to simplify the communication between the Prolog system and the relational database en-
gines as much as possible, and

• to give as much flexibility as possible to the overall system. This includes simultaneous
access to several databases, allowing both the databases and clients to reside on the same
physical machine or different machines, and allowing the clients to reside in Win95/NT or
Unix machines.

In order to allow the flexibility mentioned above, a client-sever architecture was chosen. At
the server side, a MySQL server connects to the databases using the MySQL. At the client
side, a MySQL client interface connects to this server. The server daemon (mysqld) should be
running in the server machine; check your MySQL documentation on how to do that.

After the connection is established a client can send commands to the mediator server which
will pass them to the corresponding database server, and then the data will traverse in the
opposite direction. These messages include logging on and off from the database, sending SQL
queries, and receiving the responses.

The low level implementation of the current library is accomplished by providing abstraction
levels over the MySQL interface library. These layers of abstraction implement the persistent
predicate view, build the appropriate commands for the database using a translator of Prolog
goals to SQL commands, issue such commands using the mediator send/receive procedures,
parse the responses, and present such responses to the Prolog engine via backtracking.

142.2 Example(s)

:- module(_, _, [persdb_mysql, functions]).

% Some contributions from Guy-Noel Mathieu

582 The Ciao Prolog System

:- use_module(library(write)).
:- use_module(library(format)).

:- use_module(user_and_password).

sql_persistent_location(people, db(people, User, Password, HP)):-
mysql_host_and_port(HP),
mysql_user(User),
mysql_password(Password).

:- sql_persistent(
people(string, string, int), %% Prolog predicate and types
people(name, sex, age), %% Table name and attributes
people). %% Database local id

% Low level MySQL interface.
:- use_module(library(’persdb_mysql/mysql_client’)).

main :-
nl,
display(’Creating database’), nl,nl,
create_people_db,
nl,
display(’Inserting people’), nl,nl,
insert_people,
nl,
display(’Showing people’), nl,nl,
show_people,
display(’Removing John’), nl,nl,
remove_people(john,_Y,_Z),
display(’Showing people, after removing John’), nl,nl,
show_people,
remove_people(_X,female,_Z),
display(’Showing people, after removing female’), nl,nl,
show_people.

% Create a database and a table of people. Still needs to be ironed out.

create_people_db :-
mysql_user(User),
mysql_password(Password),
mysql_host_and_port(HP),
mysql_connect(HP, ’’, User, Password, DbConnection),

write(~mysql_query(DbConnection,
"drop database if exists people")), nl,

write(~mysql_query(DbConnection, "create database people")), nl,
write(~mysql_query(DbConnection, "use people")), nl,
write(~mysql_query(DbConnection,

Chapter 142: SQL persistent database interface 583

"create table people(name char(16) not null,
sex text, age int, primary key(name))")), nl,

mysql_disconnect(DbConnection).

% Inserts people into the ’people’ table.

male(john, 15).
male(peter, 24).
male(ralph, 24).
male(bart, 50).
female(kirsten, 24).
female(mary, 17).
female(jona, 12).
female(maija, 34).

%% Tuples are inserted as in the local Prolog dynamic database
insert_people :-

(
male(N, A),
display(’Inserting ’),
display(male(N, A)),
nl,
dbassertz_fact(people(N, male, A)),
fail

;
true

),
(

female(N, A),
display(’Inserting ’),
display(female(N, A)),
nl,
dbassertz_fact(people(N, female, A)),
fail

;
true

).

%% Removes people from the ’people’ table.

%% Still not working in MySQL due to differences in SQL: working on it.

remove_people(A, B, C) :-
dbretractall_fact(people(A, B, C)).

remove_people_2(A, B, C) :-
dbretract_fact(people(A, B, C)),
display(’Removed row ’), display(people(A, B, C)), nl,
fail.

remove_people_2(_, _, _) :-

584 The Ciao Prolog System

display(’No more rows’), nl.

show_people :-
people(Name, Sex, Age),
display(people(Name, Sex, Age)),
nl,
fail.

show_people :-
display(’No more rows’), nl.

142.3 Usage and interface (persdbrt_mysql)
® ©

• Library usage:

Typically, this library is used including the ’persdb mysql’ package into the package list of
the module, or using the use_package/1 declaration:

In a module:
:- module(bar, [main/1], [persdb_mysql]).

or

:- module(bar, [main/1]).
:- include(library(persdb_mysql)).

In a user file:
:- use_package([persdb_mysql]).

or

:- include(library(persdb_mysql)).

This loads the run-time and compile-time versions of the library (persdbtr_mysql.pl and
persdbrt_mysql.pl) and includes some needed declarations.

• Exports:

− Predicates:

init_sql_persdb/0, dbassertz_fact/1, dbretract_fact/1, dbcurrent_fact/1,
dbretractall_fact/1, make_sql_persistent/3, dbfindall/4, dbcall/2, sql_
query/3, sql_get_tables/2, sql_table_types/3.

− Multifiles:

sql_persistent_location/2.

• Other modules used:

− System library modules:

det_hook/det_hook_rt, persdb_mysql/db_client_types, persdb_mysql/pl2sql,
persdb_sql_common/sqltypes, dynamic, terms, terms_vars, messages, lists,
aggregates, persdb_mysql/mysql_client, persdb_sql_common/pl2sqlinsert,
persdb_mysql/delete_compiler/pl2sqldelete.

 ª

Chapter 142: SQL persistent database interface 585

142.4 Documentation on exports (persdbrt_mysql)

PREDICATEinit sql persdb/0:
Usage:

− Description: Internal predicate, used to transform predicates statically declared as
persistent (see sql_persistent/3) into real persistent predicates.

PREDICATEdbassertz fact/1:
Usage: dbassertz_fact(+Fact)

− Description: Persistent extension of assertz_fact/1: the current instance of Fact
is interpreted as a fact (i.e., a relation tuple) and is added to the end of the definition
of the corresponding predicate. If any integrity constraint violation is done (database
stored predicates), an error will be displayed. The predicate concerned must be
statically (sql_persistent/3) or dinamically (make_sql_persistent/3) declared.
Any uninstantiated variables in the Fact will be replaced by new, private variables.
Note: assertion of facts with uninstantiated variables not implemented at this time.

− Call and exit should be compatible with:

+Fact is a fact (a term whose main functor is not ’:-’/2). (persdbrt_
mysql:fact/1)

PREDICATEdbretract fact/1:
Usage: dbretract_fact(+Fact)

− Description: Persistent extension of retract_fact/1: deletes on backtracking all
the facts which unify with Fact. The predicate concerned must be statically (sql_
persistent/3) or dinamically (make_sql_persistent/3) declared.

− Call and exit should be compatible with:

+Fact is a fact (a term whose main functor is not ’:-’/2). (persdbrt_
mysql:fact/1)

PREDICATEdbcurrent fact/1:
Usage: dbcurrent_fact(+Fact)

− Description: Persistent extension of current_fact/1: the fact Fact exists in the
current database. The predicate concerned must be declared sql_persistent/3.
Provides on backtracking all the facts (tuples) which unify with Fact.

− Call and exit should be compatible with:

+Fact is a fact (a term whose main functor is not ’:-’/2). (persdbrt_
mysql:fact/1)

PREDICATEdbretractall fact/1:
Usage: dbretractall_fact(+Fact)

− Description: Persistent extension of retractall_fact/1: when called deletes all the
facts which unify with Fact. The predicate concerned must be statically (sql_
persistent/3) or dinamically (make_sql_persistent/3) declared.

586 The Ciao Prolog System

− Call and exit should be compatible with:

+Fact is a fact (a term whose main functor is not ’:-’/2). (persdbrt_
mysql:fact/1)

PREDICATEmake sql persistent/3:
Meta-predicate with arguments: make_sql_persistent(addmodule,?,?).

Usage: make_sql_persistent(PrologPredTypes, TableAttributes, Keyword)

− Description: Dynamic version of the sql_persistent/3 declaration.

− The following properties should hold upon exit:

PrologPredTypes is a structure describing a Prolog predicate name with its types.
(persdbrt_mysql:prologPredTypes/1)

TableAttributes is a structure describing a table name and some attributes.
(persdbrt_mysql:tableAttributes/1)

Keyword is the name of a persistent storage location. (persdbrt_
mysql:persLocId/1)

PREDICATEdbfindall/4:
Meta-predicate with arguments: dbfindall(?,?,goal,?).

Usage: dbfindall(+DBId, +Pattern, +ComplexGoal, -Results)

− Description: Similar to findall/3, but Goal is executed in database DBId. Certain
restrictions and extensions apply to both Pattern and ComplexGoal stemming from
the Prolog to SQL translation involved (see the corresponding type definitions for
details).

− Call and exit should be compatible with:

+DBId a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+Pattern is a database projection term. (pl2sql:projterm/1)

+ComplexGoal is a database query goal. (pl2sql:querybody/1)

-Results is a list. (basic_props:list/1)

PREDICATEdbcall/2:
Usage: dbcall(+DBId, +ComplexGoal)

− Description: Internal predicate, used by the transformed versions of the persistent
predicates. Not meant to be called directly by users. It is exported by the library
so that it can be used by the transformed versions of the persistent predicates in the
modules in which they reside. Sends ComplexGoal to database DBId for evaluation.
ComplexGoal must be a call to a persistent predicate which resides in database DBId.

− Call and exit should be compatible with:

+DBId a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+ComplexGoal is a database query goal. (pl2sql:querybody/1)

Chapter 142: SQL persistent database interface 587

PREDICATEsql query/3:
Usage: sql_query(+DBId, +SQLString, AnswerTableTerm)

− Description: ResultTerm is the response from database DBId to the SQL query in
SQLString to database DBId. AnswerTableTerm can express a set of tuples, an error
answer or a ’ok’ response (see answertableterm/1 for details). At the moment,
sql_query/3 log in and out for each query. This should be changed to log in only
the first time and log out on exit and/or via a timer in the standard way.

− Call and exit should be compatible with:

+DBId a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+SQLString is a string containing SQL code. (pl2sql:sqlstring/1)

AnswerTableTerm is a response from the ODBC database interface. (persdbrt_
mysql:answertableterm/1)

PREDICATEsql get tables/2:
Usage 1: sql_get_tables(+Location, -Tables)

− Description: Tables contains the tables available in Location.

− Call and exit should be compatible with:

+Location is a structure describing a database. (persdbrt_mysql:database_
desc/1)

-Tables is a list of atms. (basic_props:list/2)

Usage 2: sql_get_tables(+DbConnection, -Tables)

− Description: Tables contains the tables available in DbConnection.

− Call and exit should be compatible with:

+DbConnection a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

-Tables is a list of atms. (basic_props:list/2)

PREDICATEsql table types/3:
Usage 1: sql_table_types(+Location, +Table, -AttrTypes)

− Description: AttrTypes are the attributes and types of Table in Location.

− Call and exit should be compatible with:

+Location is a structure describing a database. (persdbrt_mysql:database_
desc/1)

+Table is an atom. (basic_props:atm/1)

-AttrTypes is a list. (basic_props:list/1)

Usage 2: sql_table_types(+DbConnection, +Table, -AttrTypes)

− Description: AttrTypes are the attributes and types of Table in DbConnection.

− Call and exit should be compatible with:

+DbConnection a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+Table is an atom. (basic_props:atm/1)

-AttrTypes is a list. (basic_props:list/1)

588 The Ciao Prolog System

REGTYPEsocketname/1:
Usage: socketname(IPP)

− Description: IPP is a structure describing a complete TCP/IP port address.

REGTYPEdbname/1:
Usage: dbname(DBId)

− Description: DBId is the identifier of an database.

REGTYPEuser/1:
Usage: user(User)

− Description: User is a user name in the database.

REGTYPEpasswd/1:
Usage: passwd(Passwd)

− Description: Passwd is the password for the user name in the database.

REGTYPEprojterm/1:
Usage: projterm(DBProjTerm)

− Description: DBProjTerm is a database projection term.

REGTYPEquerybody/1:
Usage: querybody(DBGoal)

− Description: DBGoal is a database query goal.

(UNDOC REEXPORT)sqltype/1:
Imported from sqltypes (see the corresponding documentation for details).

142.5 Documentation on multifiles (persdbrt_mysql)

PREDICATEsql persistent location/2:
Relates names of locations (the Keywords) with descriptions of such locations (Locations).

The predicate is multifile.

The predicate is of type dynamic.

Usage: sql_persistent_location(Keyword, DBLocation)

− Description: In this usage, DBLocation is a relational database, in which case the
predicate is stored as tuples in the database.

− The following properties should hold upon exit:

Keyword is the name of a persistent storage location. (persdbrt_
mysql:persLocId/1)

DBLocation is a structure describing a database. (persdbrt_mysql:database_
desc/1)

Chapter 142: SQL persistent database interface 589

142.6 Documentation on internals (persdbrt_mysql)

REGTYPEtuple/1:
tuple(T) :-

list(T,atm).
tuple(T) :-

list(T,atm).

Usage: tuple(T)

− Description: T is a tuple of values from the ODBC database interface.

REGTYPEdbconnection/1:
Usage: dbconnection(H)

− Description: H a unique identifier of a database session connection.

DECLARATIONsql persistent/3:
Usage: :- sql_persistent(PrologPredTypes, TableAttributes, Keyword).

− Description: Declares the predicate corresponding to the main functor of
PrologPredTypes as SQL persistent. Keyword is the name of a location where the
persistent storage for the predicate is kept, which in this case must be an exter-
nal relational database. The description of this database is given through the sql_
persistent_location predicate, which must contain a fact in which the first argu-
ment unifies with Keyword. TableAttributes provides the table name and attributes
in the database corresponding respectively to the predicate name and arguments of
the (virtual) Prolog predicate.

Although a predicate may be persistent, other usual clauses can be defined in the
source code. When querying a persistent predicate with non-persistent clauses, per-
sistent and non-persisten clauses will be evaluated in turn; the order of evaluation is
the usual Prolog order, considering that persistent clauses are defined in the program
point where the sql_persistent/3 declaration is.

Example:

:- sql_persistent(product(integer, integer, string, string),
product(quantity, id, name, size),
radiowebdb).

sql_persistent_location(radiowebdb,
db(’SQL Anywhere 5.0 Sample’, user, pass,

’r2d5.dia.fi.upm.es’:2020)).

− The following properties should hold upon exit:

PrologPredTypes is a structure describing a Prolog predicate name with its types.
(persdbrt_mysql:prologPredTypes/1)

TableAttributes is a structure describing a table name and some attributes.
(persdbrt_mysql:tableAttributes/1)

Keyword is the name of a persistent storage location. (persdbrt_
mysql:persLocId/1)

590 The Ciao Prolog System

PREDICATEdb query/4:
Usage: db_query(+DBId, +ProjTerm, +Goal, ResultTerm)

− Description: ResultTerm contains all the tuples which are the response from database
DBId to the Prolog query Goal, projected onto ProjTerm. Uses pl2sqlstring/3 for
the Prolog to SQL translation and sql_query/3 for posing the actual query.

− Call and exit should be compatible with:

+DBId a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+ProjTerm is a database projection term. (pl2sql:projterm/1)

+Goal is a database query goal. (pl2sql:querybody/1)

ResultTerm is a tuple of values from the ODBC database interface. (persdbrt_
mysql:tuple/1)

PREDICATEdb query one tuple/4:
Usage: db_query_one_tuple(+DBId, +ProjTerm, +Goal, ResultTerm)

− Description: ResultTerm is one of the tuples which are the response from database
DBId to the Prolog query Goal, projected onto ProjTerm. Uses pl2sqlstring/3 for
the Prolog to SQL translation and sql_query_one_tuple/3 for posing the actual
query. After last tuple has been reached, a null tuple is unified with ResultTerm, and
the connection to the database finishes.

− Call and exit should be compatible with:

+DBId a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+ProjTerm is a database projection term. (pl2sql:projterm/1)

+Goal is a database query goal. (pl2sql:querybody/1)

ResultTerm is a predicate containing a tuple. (persdbrt_
mysql:answertupleterm/1)

PREDICATEsql query one tuple/3:
Usage: sql_query_one_tuple(+DBId, +SQLString, ResultTuple)

− Description: ResultTuple contains an element from the set of tuples which repre-
sents the response in DBId to the SQL query SQLString. If the connection is kept,
succesive calls return consecutive tuples, until the last tuple is reached. Then a null
tuple is unified with ResultTuple and the connection is finished (calls to mysql_
disconnect/1).

− Call and exit should be compatible with:

+DBId a unique identifier of a database session connection. (mysql_
client:dbconnection/1)

+SQLString is a string containing SQL code. (pl2sql:sqlstring/1)

ResultTuple is a tuple of values from the ODBC database interface. (persdbrt_
mysql:tuple/1)

Chapter 142: SQL persistent database interface 591

142.7 Known bugs and planned improvements (persdbrt_mysql)

• At least in the shell, reloading a file after changing the definition of a persistent predicate
does not eliminate the old definition...

• Functionality missing: some questions need to be debugged.

• Warning: still using kludgey string2term and still using some non-uniquified temp files.

• Needs to be unified with the file-based library.

592 The Ciao Prolog System

Chapter 143: Prolog to SQL translator 593

143 Prolog to SQL translator

Author(s): C. Draxler. Adapted by M. Hermenegildo and I. Caballero.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#112 (2003/11/27, 20:54:19 CET)

This library performs translation of Prolog queries into SQL. The code is an adaptation
for Ciao of the Prolog to SQL compiler written by Christoph Draxler, CIS Centre for In-
formation and Speech Processing, Ludwig-Maximilians-University Munich, draxler@cis.uni-
muenchen.de, Version 1.1. Many thanks to Christoph for allowing us to include this adaptation
of his code with Ciao.

The translator needs to know the correspondence between Prolog predicates and the SQL ta-
bles in the database. To this end this module exports two multifile predicates, sql__relation/3
and sql__attribute/4. See the description of these predicates for details on how such corre-
spondance is specified.

The main entry points to the translator are pl2sqlstring/3 and pl2sqlterm/3. Details on
the types of queries allowed can be found in the description of these predicates.

Example: the following program would print out a term representing the SQL query corre-
sponding to the given Prolog query:

%jcf%:- use_module(library(’persdb_sql/pl2sql’)).
:- use_module(library(’persdb_mysql/pl2sql’)).
%jcf%
:- use_module(library(strings)).

:- multifile [relation/3,attribute/4].
:- data [relation/3,attribute/4].

relation(product,3,’PRODUCT’).
attribute(1,’PRODUCT’,’ID’,int).
attribute(2,’PRODUCT’,’QUANTITY’,int).
attribute(3,’PRODUCT’,’NAME’,string).

main :-
pl2sqlstring(f(L,K),

((product(L,N,a); product(L,N,b)),
\+ product(2,3,b),
L + 2 > avg(Y, Z^product(Z,Y,a)),
K is N + max(X, product(X,2,b))
), T),

write_string(T).

%% printqueries(T).

Note: while the translator can be used directly in programs, it is more convenient to use a
higher-level abstraction: persistent predicates (implemented in the persdb library). The notion
of persistent predicates provides a completely transparent interface between Prolog and relational
databases. When using this library, the Prolog to SQL translation is called automatically as
needed.

594 The Ciao Prolog System

143.1 Usage and interface (pl2sql)
® ©

• Library usage:

:- use_module(library(pl2sql)).

• Exports:

− Predicates:

pl2sqlstring/3, pl2sqlterm/3, sqlterm2string/2.

− Regular Types:

querybody/1, projterm/1, sqlstring/1.

− Multifiles:

sql__relation/3, sql__attribute/4.

• Other modules used:

− System library modules:

persdb_sql_common/sqltypes, iso_misc, lists, aggregates, messages.

 ª

143.2 Documentation on exports (pl2sql)

PREDICATEpl2sqlstring/3:
Usage: pl2sqlstring(+ProjectionTerm, +DatabaseGoal, -SQLQueryString)

− Description: This is the top level predicate which translates complex Prolog goals
into the corresponding SQL code.

The query code is prepared in such a way that the result is projected onto the term
ProjectionTerm (also in a similar way to the first argument of setof/3)). See the
predicate translate_projection/3 for restrictions on this term.

SQLQueryString contains the code of the SQL query, ready to be sent to an SQL
server.

− Call and exit should be compatible with:

+ProjectionTerm is a database projection term. (pl2sql:projterm/1)

+DatabaseGoal is a database query goal. (pl2sql:querybody/1)

-SQLQueryString is a string containing SQL code. (pl2sql:sqlstring/1)

REGTYPEquerybody/1:
DBGoal is a goal meant to be executed in the external database. It can be a complex term
containing conjunctions, disjunctions, and negations, of:

• Atomic goals, which must have been defined via sql__relation/3 and sql__
attribute/4 and reside in the (same) database. Their arguments must be either
ground or free variables. If they are ground, they must be bound to constants of the
type declared for that argument. If an argument is a free variable, it may share with
(i.e., be the same variable as) other free variables in other goal arguments.

• Database comparison goals, whose main functor must be a database comparison oper-
ator (see pl2sql: comparison/2) and whose arguments must be database arithmetic
expressions.

Chapter 143: Prolog to SQL translator 595

• Database calls to is/2. The left side of such a call may be either unbound, in which
case it is bound to the result of evaluating the right side, or bound in which case an
equality condition is tested. The right side must be a database arithmetic expression.

The binding of variables follows Prolog rules:

• variables are bound by positive base goals and on the left side of the is/2 predicate.

• Comparison operations, negated goals, and right sides of the is/2 predicate do not
return variable bindings and may even require all arguments to be bound for a safe
evaluation.

Database arithmetic expressions may contain:

• Numeric constants (i.e., integers, reals, etc.).

• Bound variables, i.e., variables which will be bound during execution through occur-
rence within a positive database goal, or by a preceding arithmetic function.

• Database arithmetic functions, which are a subset of those typically accepted within
is/2 (see pl2sql: arithmetic_functor/2).

• Database aggregation functions, each of which has two arguments: a variable indi-
cating the argument over which the function is to be computed, and a goal argument
which must contain in at least one argument position the variable (e.g. avg(Seats,
plane(Type, Seats))). The goal argument may only be a conjunction of (positive or
negative) base goals. See pl2sql: aggregate_functor/2 for the admissible aggregate
functions.

In addition, variables can be existentially quantified using ^/2 (in a similar way to how it
is done in setof/3).

Note that it is assumed that the arithmetic operators in Prolog and SQL are the same,
i.e., + is addition in Prolog and in SQL, etc.

Usage: querybody(DBGoal)

− Description: DBGoal is a database query goal.

REGTYPEprojterm/1:
DBProjTerm is a term onto which the result of a database query code is (in a similar way
to the first argument of setof/3)).

A ProjectionTerm must meet the following restrictions:

• The functor of ProjectionTerm may not be one of the built-in predicates, i.e. ’,’, ’;’,
etc. are not allowed.

• Only variables and constants are allowed as arguments, i.e., no structured terms may
appear.

Usage: projterm(DBProjTerm)

− Description: DBProjTerm is a database projection term.

REGTYPEsqlstring/1:
sqlstring(S) :-

string(S).

Usage: sqlstring(S)

− Description: S is a string containing SQL code.

596 The Ciao Prolog System

PREDICATEpl2sqlterm/3:
Usage: pl2sqlterm(+ProjectionTerm, +DatabaseGoal, -SQLQueryTerm)

− Description: Similar to pl2sqlstring/3 except that SQLQueryTerm is a representa-
tion of the SQL query as a Prolog term.

− Call and exit should be compatible with:

+ProjectionTerm is a database projection term. (pl2sql:projterm/1)

+DatabaseGoal is a database query goal. (pl2sql:querybody/1)

-SQLQueryTerm is a list of sqlterms. (basic_props:list/2)

PREDICATEsqlterm2string/2:
Usage: sqlterm2string(+Queries, -QueryString)

− Description: QueryString is a string representation of the list of queries in Prolog-
term format in Queries.

− Call and exit should be compatible with:

+Queries is a list of sqlterms. (basic_props:list/2)

-QueryString is a string containing SQL code. (pl2sql:sqlstring/1)

(UNDOC REEXPORT)sqltype/1:
Imported from sqltypes (see the corresponding documentation for details).

143.3 Documentation on multifiles (pl2sql)

PREDICATEsql relation/3:
The predicate is multifile.

The predicate is of type data.

Usage: sql__relation(PredName, Arity, TableName)

− Description: This predicate, together with sql__attribute/4, defines the corre-
spondence between Prolog predicates and the SQL tables in the database. These two
relations constitute an extensible meta-database which maps Prolog predicate names
to SQL table names, and Prolog predicate argument positions to SQL attributes.

PredName is the chosen Prolog name for an SQL table. Arity is the number of
arguments of the predicate. TableName is the name of the SQL table in the Database
Management System.

− Call and exit should be compatible with:

PredName is an atom. (basic_props:atm/1)

Arity is an integer. (basic_props:int/1)

TableName is an atom. (basic_props:atm/1)

PREDICATEsql attribute/4:
The predicate is multifile.

The predicate is of type data.

Usage: sql__attribute(ANumber, TblName, AName, AType)

Chapter 143: Prolog to SQL translator 597

− Description: This predicate maps the argument positions of a Prolog predicate to the
SQL attributes of its corresponding table. The types of the arguments need to be
specified, and this information is used for consistency checking during the translation
and for output formatting. A minimal type system is provided to this end. The
allowable types are given by sqltype/1.

ANumber is the argument number in the Prolog relation. TblName is the name of the
SQL table in the Database Management System. AName is the name of the corre-
sponding attribute in the table. AType is the (translator) data type of the attribute.

− Call and exit should be compatible with:

ANumber is an integer. (basic_props:int/1)

TblName is an atom. (basic_props:atm/1)

AName is an atom. (basic_props:atm/1)

AType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

143.4 Documentation on internals (pl2sql)

PREDICATEquery generation/3:
Usage: query_generation(+ListOfConjunctions, +ProjectionTerm,
-ListOfQueries)

− Description: For each Conjunction in ListOfConjunctions, translate the pair
(ProjectionTerm, Conjunction) to an SQL query and connect each such query
through a UNION-operator to result in the ListOfQueries.

A Conjunction consists of positive or negative subgoals. Each subgoal is translated
as follows:

• the functor of a goal that is not a comparison operation is translated to a relation
name with a range variable,

• negated goals are translated to NOT EXISTS-subqueries with * projection,

• comparison operations are translated to comparison operations in the WHERE-
clause,

• aggregate function terms are translated to aggregate function (sub)queries.

The arguments of a goal are translated as follows:

• variables of a goal are translated to qualified attributes,

• variables occurring in several goals are translated to equality comparisons (equi
join) in the WHERE-clause,

• constant arguments are translated to equality comparisons in the WHERE-
clause.

Arithmetic functions are treated specially (translate_arithmetic_function/5).
See also querybody/1 for details on the syntax accepted and restrictions.

PREDICATEtranslate conjunction/5:
Usage: translate_conjunction(Conjunction, SQLFrom, SQLWhere, Dict, NewDict)

− Description: Translates a conjunction of goals (represented as a list of goals preceeded
by existentially quantified variables) to FROM-clauses and WHERE-clauses of an
SQL query. A dictionary containing the associated SQL table and attribute names is
built up as an accumulator pair (arguments Dict and NewDict).

598 The Ciao Prolog System

PREDICATEtranslate goal/5:
Usage: translate_goal(Goal, SQLFrom, SQLWhere, Dict, NewDict)

− Description: Translates:

• a positive database goal to the associated FROM- and WHERE clause of an SQL
query,

• a negated database goal to a negated existential subquery,

• an arithmetic goal to an arithmetic expression or an aggregate function query,

• a comparison goal to a comparison expression, and

• a negated comparison goal to a comparison expression with the opposite com-
parison operator.

PREDICATEtranslate arithmetic function/5:
Usage: translate_arithmetic_function(Result, Expression, SQLWhere, Dict,
NewDict)

− Description: Arithmetic functions (left side of is/2 operator is bound to value of
expression on right side) may be called with either:

• Result unbound: then Result is bound to the value of the evaluation of
Expression,

• Result bound: then an equality condition is returned between the value of
Result and the value of the evaluation of Expression.

Only the equality test shows up in the WHERE clause of an SQLquery.

PREDICATEtranslate comparison/5:
Usage: translate_comparison(LeftArg, RightArg, CompOp, Dict, SQLComparison)

− Description: Translates the left and right arguments of a comparison term into the
appropriate comparison operation in SQL. The result type of each argument expres-
sion is checked for type compatibility.

PREDICATEaggregate function/3:
Usage: aggregate_function(AggregateFunctionTerm, Dict,
AggregateFunctionQuery)

− Description: Supports the Prolog aggregate function terms listed in aggregate_
functor/2 within arithmetic expressions. Aggregate functions are translated to the
corresponding SQL built-in aggregate functions.

PREDICATEcomparison/2:
Usage: comparison(PrologOperator, SQLOperator)

− Description: Defines the mapping between Prolog operators and SQL operators:

comparison(=,=).
comparison(<,<).
comparison(>,>).
comparison(@<,<).
comparison(@>,>).

Chapter 143: Prolog to SQL translator 599

− Call and exit should be compatible with:

PrologOperator is an atom. (basic_props:atm/1)

SQLOperator is an atom. (basic_props:atm/1)

PREDICATEnegated comparison/2:
Usage: negated_comparison(PrologOperator, SQLOperator)

− Description: Defines the mapping between Prolog operators and the complementary
SQL operators:

negated_comparison(=,<>).
negated_comparison(\==,=).
negated_comparison(>,=<).
negated_comparison(=<,>).
negated_comparison(<,>=).
negated_comparison(>=,<).

− Call and exit should be compatible with:

PrologOperator is an atom. (basic_props:atm/1)

SQLOperator is an atom. (basic_props:atm/1)

PREDICATEarithmetic functor/2:
Usage: arithmetic_functor(PrologFunctor, SQLFunction)

− Description: Defines the admissible arithmetic functions on the Prolog side and their
correspondence on the SQL side:

arithmetic_functor(+,+).
arithmetic_functor(-,-).
arithmetic_functor(*,*).
arithmetic_functor(/,/).

− Call and exit should be compatible with:

PrologFunctor is an atom. (basic_props:atm/1)

SQLFunction is an atom. (basic_props:atm/1)

PREDICATEaggregate functor/2:
Usage: aggregate_functor(PrologFunctor, SQLFunction)

− Description: Defines the admissible aggregate functions on the Prolog side and their
correspondence on the SQL side:

aggregate_functor(avg,’AVG’).
aggregate_functor(min,’MIN’).
aggregate_functor(max,’MAX’).
aggregate_functor(sum,’SUM’).
aggregate_functor(count,’COUNT’).

− Call and exit should be compatible with:

PrologFunctor is an atom. (basic_props:atm/1)

SQLFunction is an atom. (basic_props:atm/1)

143.5 Known bugs and planned improvements (pl2sql)

• Need to separate db predicate names by module.

600 The Ciao Prolog System

Chapter 144: Low-level socket interface to SQL/ODBC databases 601

144 Low-level socket interface to SQL/ODBC
databases

Author(s): Jose Morales.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.11#155 (2004/1/7, 20:9:58 CET)

This library provides a low-level interface to MySQL using the MySQL C API and the Ciao
foreign interface to C.

144.1 Usage and interface (mysql_client)
® ©

• Library usage:

:- use_module(library(mysql_client)).

• Exports:

− Predicates:

mysql_connect/5, mysql_query/3, mysql_query_one_tuple/3, mysql_free_query_
connection/1, mysql_fetch/2, mysql_get_tables/2, mysql_table_types/3,
mysql_disconnect/1.

− Regular Types:

dbconnection/1, dbqueryconnection/1.

• Other modules used:

− System library modules:

foreign_interface/foreign_interface_properties, persdb_mysql/db_client_
types.

 ª

144.2 Documentation on exports (mysql_client)

PREDICATEmysql connect/5:
No further documentation available for this predicate.

REGTYPEdbconnection/1:
dbconnection(_1) :-

address(_1).

Usage: dbconnection(H)

− Description: H a unique identifier of a database session connection.

PREDICATEmysql query/3:
No further documentation available for this predicate.

PREDICATEmysql query one tuple/3:
No further documentation available for this predicate.

602 The Ciao Prolog System

REGTYPEdbqueryconnection/1:
dbqueryconnection(_1) :-

address(_1).

Usage: dbqueryconnection(H)

− Description: H is a unique identifier of a query answer in a database session connec-
tion.

PREDICATEmysql free query connection/1:
No further documentation available for this predicate.

PREDICATEmysql fetch/2:
No further documentation available for this predicate.

PREDICATEmysql get tables/2:
No further documentation available for this predicate.

PREDICATEmysql table types/3:
No further documentation available for this predicate.

PREDICATEmysql disconnect/1:
No further documentation available for this predicate.

Chapter 145: Types for the Low-level interface to SQL databases 603

145 Types for the Low-level interface to SQL
databases

Author(s): D. Cabeza, M. Carro, I. Caballero, and M. Hermenegildo..

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#233 (2003/12/22, 18:8:26 CET)

This module implement the types for the low level interface to SQL databases

145.1 Usage and interface (db_client_types)
® ©

• Library usage:

:- use_module(library(db_client_types)).

• Exports:

− Regular Types:

socketname/1, dbname/1, user/1, passwd/1, answertableterm/1, tuple/1,
answertupleterm/1, sqlstring/1.

 ª

145.2 Documentation on exports (db_client_types)

REGTYPEsocketname/1:
socketname(IPAddress:PortNumber) :-

atm(IPAddress),
int(PortNumber).

Usage: socketname(IPP)

− Description: IPP is a structure describing a complete TCP/IP port address.

REGTYPEdbname/1:
dbname(DBId) :-

atm(DBId).

Usage: dbname(DBId)

− Description: DBId is the identifier of an database.

REGTYPEuser/1:
user(User) :-

atm(User).

Usage: user(User)

− Description: User is a user name in the database.

REGTYPEpasswd/1:
passwd(Passwd) :-

atm(Passwd).

Usage: passwd(Passwd)

− Description: Passwd is the password for the user name in the database.

604 The Ciao Prolog System

REGTYPEanswertableterm/1:
Represents the types of responses that will be returned from the database interface. These
can be a set of answer tuples, or the atom ok in case of a successful addition or deletion.

Usage: answertableterm(AT)

− Description: AT is a response from the database interface.

REGTYPEtuple/1:
tuple(T) :-

list(T,atm).

Usage: tuple(T)

− Description: T is a tuple of values from the database interface.

REGTYPEanswertupleterm/1:
answertupleterm([]).
answertupleterm(tup(T)) :-

tuple(T).

Usage: answertupleterm(X)

− Description: X is a predicate containing a tuple.

REGTYPEsqlstring/1:
sqlstring(S) :-

string(S).

Usage: sqlstring(S)

− Description: S is a string of SQL code.

Chapter 146: sqltypes (library) 605

146 sqltypes (library)

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#127 (2001/10/26, 14:52:5 CEST)

146.1 Usage and interface (sqltypes)
® ©

• Library usage:

:- use_module(library(sqltypes)).

• Exports:

− Predicates:

accepted_type/2, get_type/2,
type_compatible/2, type_union/3, sybase2sqltypes_list/2, sybase2sqltype/2,
postgres2sqltypes_list/2, postgres2sqltype/2.

− Regular Types:

sqltype/1, sybasetype/1, postgrestype/1.

 ª

146.2 Documentation on exports (sqltypes)

REGTYPEsqltype/1:
sqltype(int).
sqltype(flt).
sqltype(num).
sqltype(string).
sqltype(date).
sqltype(time).
sqltype(datetime).

These types have the same meaning as the corresponding standard types in the
basictypes library.

Usage: sqltype(Type)

− Description: Type is an SQL data type supported by the translator.

PREDICATEaccepted type/2:
Usage: accepted_type(SystemType, NativeType)

− Description: For the moment, tests wether the SystemType received is a sybase or
a postgres type (in the future other systems should be supported) and obtains its
equivalent NativeType sqltype.

− Call and exit should be compatible with:

SystemType is an SQL data type supported by Sybase. (sqltypes:sybasetype/1)

NativeType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

606 The Ciao Prolog System

PREDICATEget type/2:
Usage: get_type(+Constant, Type)

− Description: Prolog implementation-specific definition of type retrievals. CIAO Pro-
log version given here (ISO).

− Call and exit should be compatible with:

+Constant is any term. (basic_props:term/1)

Type is an SQL data type supported by the translator. (sqltypes:sqltype/1)

PREDICATEtype compatible/2:
Usage: type_compatible(TypeA, TypeB)

− Description: Checks if TypeA and TypeB are compatible types, i.e., they are the same
or one is a subtype of the other.

− Call and exit should be compatible with:

TypeA is an SQL data type supported by the translator. (sqltypes:sqltype/1)

TypeB is an SQL data type supported by the translator. (sqltypes:sqltype/1)

PREDICATEtype union/3:
Usage: type_union(TypeA, TypeB, Union)

− Description: Union is the union type of TypeA and TypeB.

− Call and exit should be compatible with:

TypeA is an SQL data type supported by the translator. (sqltypes:sqltype/1)

TypeB is an SQL data type supported by the translator. (sqltypes:sqltype/1)

Union is an SQL data type supported by the translator. (sqltypes:sqltype/1)

REGTYPEsybasetype/1:
SQL datatypes supported by Sybase for which a translation is defined:

sybasetype(integer).
sybasetype(numeric).
sybasetype(float).
sybasetype(double).
sybasetype(date).
sybasetype(char).
sybasetype(varchar).
sybasetype(’long varchar’).
sybasetype(binary).
sybasetype(’long binary’).
sybasetype(timestamp).
sybasetype(time).
sybasetype(tinyint).

Usage: sybasetype(Type)

− Description: Type is an SQL data type supported by Sybase.

Chapter 146: sqltypes (library) 607

PREDICATEsybase2sqltypes list/2:
Usage: sybase2sqltypes_list(SybaseTypesList, SQLTypesList)

− Description: SybaseTypesList is a list of Sybase SQL types. PrologTypesList
contains their equivalent SQL-type names in CIAO.

− The following properties should hold upon exit:

SybaseTypesList is a list. (basic_props:list/1)

SQLTypesList is a list. (basic_props:list/1)

PREDICATEsybase2sqltype/2:
Usage: sybase2sqltype(SybaseType, SQLType)

− Description: SybaseType is a Sybase SQL type name, and SQLType is its equivalent
SQL-type name in CIAO.

− The following properties should hold upon exit:

SybaseType is an SQL data type supported by Sybase. (sqltypes:sybasetype/1)

SQLType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

REGTYPEpostgrestype/1:
SQL datatypes supported by postgreSQL for which a translation is defined:

postgrestype(int2).
postgrestype(int4).
postgrestype(int8).
postgrestype(float4).
postgrestype(float8).
postgrestype(date).
postgrestype(timestamp).
postgrestype(time).
postgrestype(char).
postgrestype(varchar).
postgrestype(text).
postgrestype(bool).

Usage: postgrestype(Type)

− Description: Type is an SQL data type supported by postgres.

PREDICATEpostgres2sqltypes list/2:
Usage: postgres2sqltypes_list(PostgresTypesList, SQLTypesList)

− Description: PostgresTypesList is a list of postgres SQL types. PrologTypesList
contains their equivalent SQL-type names in CIAO.

− The following properties should hold upon exit:

PostgresTypesList is a list. (basic_props:list/1)

SQLTypesList is a list. (basic_props:list/1)

608 The Ciao Prolog System

PREDICATEpostgres2sqltype/2:
Usage: postgres2sqltype(PostgresType, SQLType)

− Description: PostgresType is a postgres SQL type name, and SQLType is its equiv-
alent SQL-type name in CIAO.

− The following properties should hold upon exit:

PostgresType is an SQL data type supported by postgres.
(sqltypes:postgrestype/1)

SQLType is an SQL data type supported by the translator. (sqltypes:sqltype/1)

Chapter 147: persdbtr sql (library) 609

147 persdbtr sql (library)

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#42 (2002/12/13, 17:55:42 CET)

147.1 Usage and interface (persdbtr_sql)
® ©

• Library usage:

:- use_module(library(persdbtr_sql)).

• Exports:

− Predicates:

sql_persistent_tr/2, dbId/2.

• Other modules used:

− System library modules:

dynamic.

 ª

147.2 Documentation on exports (persdbtr_sql)

PREDICATEsql persistent tr/2:
No further documentation available for this predicate.

PREDICATEdbId/2:
No further documentation available for this predicate.

The predicate is of type data.

610 The Ciao Prolog System

Chapter 148: pl2sqlinsert (library) 611

148 pl2sqlinsert (library)

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#115 (2003/11/27, 23:50:45 CET)

148.1 Usage and interface (pl2sqlinsert)
® ©

• Library usage:

:- use_module(library(pl2sqlinsert)).

• Exports:

− Predicates:

pl2sqlInsert/2.

− Multifiles:

sql__relation/3, sql__attribute/4.

• Other modules used:

− System library modules:

aggregates, between, compiler/compiler, dec10_io, dynamic, format, lists, old_
database, operators, prolog_sys, read, sort, system, ttyout, write, iso_byte_
char, iso_misc.

 ª

148.2 Documentation on exports (pl2sqlinsert)

PREDICATEpl2sqlInsert/2:
No further documentation available for this predicate.

148.3 Documentation on multifiles (pl2sqlinsert)

PREDICATEsql relation/3:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

PREDICATEsql attribute/4:
No further documentation available for this predicate.

The predicate is multifile.

The predicate is of type data.

612 The Ciao Prolog System

Chapter 149: Prolog to Java interface 613

149 Prolog to Java interface

Author(s): Jesús Correas.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#67 (2003/3/14, 12:48:36 CET)

This module defines the Ciao Prolog to Java interface. This interface allows a Prolog program
to start a Java process, create Java objects, invoke methods, set/get attributes (fields), and
handle Java events.

This interface only works with JDK version 1.2 or higher.

Although the Java side interface is explained in Javadoc format (it is available at
library/javall/javadoc/ in your Ciao installation), the general interface structure is detailed
here.

149.1 Prolog to Java Interface Structure

This interface is made up of two parts: a Prolog side and a Java side, running in separate
processes. The Prolog side receives requests from a Prolog program and sends them to the Java
side through a socket. The Java side receives requests from the socket and performs the actions
included in the requests.

If an event is thrown in the Java side, an asynchronous message must be sent away to
the Prolog side, in order to launch a Prolog goal to handle the event. This asynchronous
communication is performed using a separate socket. The nature of this communication needs
the use of threads both in Java and Prolog: to deal with the ’sequential program flow,’ and
other threads for event handling.

In both sides the threads are automatically created by the context of the objects we use.
The user must be aware that different requests to the other side of the interface could run
concurrently.

149.1.1 Prolog side of the Java interface

The Prolog side receives the actions to do in the Java side from the user program, and sends
them to the Java process through the socket connection. When the action is done in the Java
side, the result is returned to the user Prolog program, or the action fails if there is any problem
in the Java side.

Prolog data representation of Java elements is very simple in this interface. Java primitive
types such as integers and characters are translated into the Prolog corresponding terms, and
even some Java objects are translated in the same way (e. g. Java strings). Java objects are
represented in Prolog as compound terms with a reference id to identify the corresponding Java
object. Data conversion is made automatically when the interface is used, so the Prolog user
programs do not have to deal with the complexity of this tasks.

149.1.2 Java side

The Java side of this layer is more complex than the Prolog side. The tasks this part has to
deal to are the following:

• Wait for requests from the Prolog side.

• Translate the Prolog terms received in the Prolog ’serialized’ form to a more useful Java rep-
resentation (see the Java interface documentation available at library/javall/javadoc/
in your Ciao installation for details regarding Java representation of Prolog terms).

• Interpret the requests received from the Prolog side, and execute them.

614 The Ciao Prolog System

• Handle the set of objects created by or derived from the requests received from de prolog
side.

• Handle the events raised in the Java side, and launch the listeners added in the prolog side.

• Handle the exceptions raised in the Java side, and send them to the Prolog side.

In the implementation of the Java side, two items must be carefully designed: the handling
of Java objects, and the representation of prolog data structures. The last item is specially
important because all the interactions between Prolog and Java are made using Prolog structures,
an easy way to standardize the different data management in both sides. Even the requests
themselves are encapsulated using Prolog structures. The overload of this encapsulation is not
significant in terms of socket traffic, due to the optimal implementation of the prolog serialized
term.

The java side must handle the objects created from the Prolog side dinamically, and these
objects must be accessed as fast as possible from the set of objects. The Java API provides a
powerful implementation of Hash tables that achieves all the requirements of our implementation.

On the other hand, the java representation of prolog terms is made using the inheritance of
java classes. In the java side exists a representation of a generic prolog term, implemented as an
abstract class in java. Variables, atoms, compound terms, lists, and numeric terms are classes in
the java side which inherit from the term class. Java objects can be seen also under the prolog
representation as compound terms, where the single argument corresponds to the Hash key of
the actual java object in the Hash table referred to before. This behaviour makes the handling
of mixed java and prolog elements easy. Prolog goals are represented in the java side as objects
which contain a prolog compound term with the term representing the goal. This case will be
seen more in depth next, when the java to prolog is explained.

149.2 Java event handling from Prolog

Java event handling is based on a delegation model since version 1.1.x. This approach to
event handling is very powerful and elegant, but a user program cannot handle all the events
that can arise on a given object: for each kind of event, a listener must be implemented and
added specifically. However, the Java 2 API includes a special listener (AWTEventListener)
that can manage the internal java event queue.

The prolog to java interface has been designed to emulate the java event handler, and is also
based on event objects and listeners. The prolog to java interface implements its own event
manager, to handle those events that have prolog listeners associated to the object that raises
the event. From the prolog side can be added listeners to objects for specific events. The java
side includes a list of goals to launch from the object and event type.

Due to the events nature, the event handler must work in a separate thread to manage
the events asynchronously. The java side has its own mechanisms to work this way. The
prolog side must be implemented specially for event handling using threads. The communication
between java and prolog is also asynchronous, and an additional socket stream is used to avoid
interferences with the main socket stream. The event stream will work in this implementation
only in one way: from java to prolog. If an event handler needs to send back requests to java,
it will use the main socket stream, just like the requests sent directly from a prolog program.

Chapter 149: Prolog to Java interface 615

The internal process of register a Prolog event handler to a Java event is shown in the next
figure:

addListener(object,
 eventClass,
 goal);

PLEventListener

2b 2a

Java side Prolog side

Socket

java_add_listener(Obj, Event, Goal),

Prolog registering of Java events

java_add_listener(Button1,

 ’java.awt.event.ActionListener’,
 actionHandler("1")),

When an event raises, the Prolog to Java interface has to send to the Prolog user program
the goal to evaluate. Graphically, the complete process takes the tasks involved in the following
figure:

AWT System event queue

Event raises

Java side Prolog side

Socket

Prolog handling of Java events

PLEventListener

eventDispatched(
 AWTEvent);

Events

Goals

Objects

prolog_listener/0

(in a separate thread)

actionHandler("1"),

3a

3b

4a

4b

616 The Ciao Prolog System

149.3 Java exception handling from Prolog

Java exception handling is very similar to the peer prolog handling: it includes some specific
statements to trap exceptions from user code. In the java side, the exceptions can be originated
from an incorrect request, or can be originated in the code called from the request. Both
exception types will be sent to prolog using the main socket stream, allowing the prolog program
manage the exception. However, the first kind of exceptions are prefixed, so the user program
can distinguish them from the second type of exceptions.

In order to handle exceptions properly using the prolog to java and java to prolog interfaces
simultaneously, in both sides of the interface will be filtered those exceptions coming from their
own side: this avoids an endless loop of exceptions bouncing from one side to another.

149.4 Usage and interface (javart)
® ©

• Library usage:

:- use_module(library(javart)).

• Exports:

− Predicates:

java_start/0, java_start/1, java_start/2, java_stop/0, java_connect/2,
java_disconnect/0, java_use_module/1, java_create_object/2, java_delete_
object/1, java_invoke_method/2, java_get_value/2, java_set_value/2, java_
add_listener/3, java_remove_listener/3.

− Regular Types:

machine_name/1, java_constructor/1, java_object/1, java_event/1, prolog_
goal/1, java_field/1, java_method/1.

• Other modules used:

− System library modules:

concurrency/concurrency, iso_byte_char, format, lists, read, write,
javall/javasock, system.

 ª

149.5 Documentation on exports (javart)

PREDICATEjava start/0:
Usage:

− Description: Starts the Java server on the local machine, connects to it, and starts
the event handling thread.

PREDICATEjava start/1:
Usage: java_start(+Classpath)

− Description: Starts the Java server on the local machine, connects to it, and starts
the event handling thread. The Java server is started using the classpath received as
argument.

− Call and exit should be compatible with:

+Classpath is a string (a list of character codes). (basic_props:string/1)

Chapter 149: Prolog to Java interface 617

PREDICATEjava start/2:
Usage: java_start(+machine_name, +classpath)

− Description: Starts the Java server in machine name (using rsh!), connects to it,
and starts the event handling thread. The Java server is started using the classpath
received as argument.

− Call and exit should be compatible with:

+machine_name is currently instantiated to an atom. (term_typing:atom/1)

+classpath is a string (a list of character codes). (basic_props:string/1)

PREDICATEjava stop/0:
Usage:

− Description: Stops the interface terminating the threads that handle the socket con-
nection, and finishing the Java interface server if it was started using java start/n.

PREDICATEjava connect/2:
Usage: java_connect(+machine_name, +port_number)

− Description: Connects to an existing Java interface server running in machine name
and listening at port port number. To connect to a Java server located in the local
machine, use ’localhost’ as machine name.

− Call and exit should be compatible with:

+machine_name is the network name of a machine. (javart:machine_name/1)

+port_number is an integer. (basic_props:int/1)

PREDICATEjava disconnect/0:
Usage:

− Description: Closes the connection with the java process, terminating the threads that
handle the connection to Java. This predicate does not terminate the Java process
(this is the disconnection procedure for Java servers not started from Prolog). This
predicate should be used when the communication is established with java connect/2.

REGTYPEmachine name/1:
Usage: machine_name(X)

− Description: X is the network name of a machine.

REGTYPEjava constructor/1:
Usage: java_constructor(X)

− Description: X is a java constructor (structure with functor as constructor full name,
and arguments as constructor arguments).

618 The Ciao Prolog System

REGTYPEjava object/1:
Usage: java_object(X)

− Description: X is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side).

REGTYPEjava event/1:
Usage: java_event(X)

− Description: X is a java event represented as an atom with the full event constructor
name (e.g., ’java.awt.event.ActionListener’).

REGTYPEprolog goal/1:
Usage: prolog_goal(X)

− Description: X is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be
java objects, or even the result of java methods. These java objects will be evaluated
when the event raises (instead of when the listener is added). The arguments that
represent java objects must be instantiated to already created objects. The variables
will be kept uninstantiated when the event raises and the predicate is called.

REGTYPEjava field/1:
Usage: java_field(X)

− Description: X is a java field (structure on which the functor name is the field name,
and the single argument is the field value).

PREDICATEjava use module/1:
Usage: java_use_module(+Module)

− Description: Loads a module and makes it available from Java.

− Call and exit should be compatible with:

+Module is any term. (basic_props:term/1)

PREDICATEjava create object/2:
Usage: java_create_object(+java_constructor, -java_object)

− Description: New java object creation. The constructor must be a compound term
as defined by its type, with the full class name as functor (e.g., ’java.lang.String’),
and the parameters passed to the constructor as arguments of the structure.

− Call and exit should be compatible with:

+java_constructor is a java constructor (structure with functor as constructor full
name, and arguments as constructor arguments). (javart:java_constructor/1)

-java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

Chapter 149: Prolog to Java interface 619

PREDICATEjava delete object/1:
Usage: java_delete_object(+java_object)

− Description: Java object deletion. It removes the object given as argument from the
Java object table.

− Call and exit should be compatible with:

+java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

PREDICATEjava invoke method/2:
Usage: java_invoke_method(+java_object, +java_method)

− Description: Invokes a java method on an object. Given a Java object reference,
invokes the method represented with the second argument.

− Call and exit should be compatible with:

+java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

+java_method is a java method (structure with functor as method name, and argu-
ments as method ones, plus a result argument. This result argument is unified with
the atom ’Yes’ if the java method returns void). (javart:java_method/1)

REGTYPEjava method/1:
Usage: java_method(X)

− Description: X is a java method (structure with functor as method name, and argu-
ments as method ones, plus a result argument. This result argument is unified with
the atom ’Yes’ if the java method returns void).

PREDICATEjava get value/2:
Usage: java_get_value(+java_object, +java_field)

− Description: Gets the value of a field. Given a Java object as first argument, it
instantiates the variable given as second argument. This field must be uninstantiated
in the java field functor, or this predicate will fail.

− Call and exit should be compatible with:

+java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

+java_field is a java field (structure on which the functor name is the field name,
and the single argument is the field value). (javart:java_field/1)

PREDICATEjava set value/2:
Usage: java_set_value(+java_object, +java_field)

− Description: Sets the value of a Java object field. Given a Java object reference, it
assigns the value included in the java field compound term. The field value in the
java field structure must be instantiated.

− Call and exit should be compatible with:

+java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

+java_field is a java field (structure on which the functor name is the field name,
and the single argument is the field value). (javart:java_field/1)

620 The Ciao Prolog System

PREDICATEjava add listener/3:
Meta-predicate with arguments: java_add_listener(?,?,goal).

Usage: java_add_listener(+java_object, +java_event, +prolog_goal)

− Description: Adds a listener to an event on an object. Given a Java object reference,
it registers the goal received as third argument to be launched when the Java event
raises.

− Call and exit should be compatible with:

+java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

+java_event is a java event represented as an atom with the full event constructor
name (e.g., ’java.awt.event.ActionListener’). (javart:java_event/1)

+prolog_goal is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated when
the event raises (instead of when the listener is added). The arguments that represent
java objects must be instantiated to already created objects. The variables will be kept
uninstantiated when the event raises and the predicate is called. (javart:prolog_
goal/1)

PREDICATEjava remove listener/3:
Usage: java_remove_listener(+java_object, +java_event, +prolog_goal)

− Description: It removes a listener from an object event queue. Given a Java object
reference, goal registered for the given event is removed.

− Call and exit should be compatible with:

+java_object is a java object (a structure with functor ’$java object’, and argument
an integer given by the java side). (javart:java_object/1)

+java_event is a java event represented as an atom with the full event constructor
name (e.g., ’java.awt.event.ActionListener’). (javart:java_event/1)

+prolog_goal is a prolog predicate. Prolog term that represents the goal that must
be invoked when the event raises on the object. The predicate arguments can be java
objects, or even the result of java methods. These java objects will be evaluated when
the event raises (instead of when the listener is added). The arguments that represent
java objects must be instantiated to already created objects. The variables will be kept
uninstantiated when the event raises and the predicate is called. (javart:prolog_
goal/1)

Chapter 150: Java to Prolog interface 621

150 Java to Prolog interface

Author(s): Jesús Correas.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#65 (2003/3/14, 12:48:10 CET)

This module defines the Prolog side of the Java to Prolog interface. This side of the interface
only has one public predicate: a server that listens at the socket connection with Java, and
executes the commands received from the Java side.

In order to evaluate the goals received from the Java side, this module can work in two
ways: executing them in the same engine, or starting a thread for each goal. The easiest way
is to launch them in the same engine, but the goals must be evaluated sequentially: once a
goal provides the first solution, all the subsequent goals must be finished before this goal can
backtrack to provide another solution. The Prolog side of this interface works as a top-level,
and the goals partially evaluated are not independent.

The solution of this goal dependence is to evaluate the goals in a different prolog engine.
Although Ciao includes a mechanism to evaluate goals in different engines, the approach used
in this interface is to launch each goal in a different thread.

The decision of what kind of goal evaluation is selected is done by the Java side. Each
evaluation type has its own command terms, so the Java side can choose the type it needs.

A Prolog server starts by calling the prolog_server/0 predicate, or by calling prolog_
server/1 predicate and providing the port number as argument. The user predicates and
libraries to be called from Java must be included in the executable file, or be accesible using the
built-in predicates dealing with code loading.

150.1 Usage and interface (jtopl)
® ©

• Library usage:

:- use_module(library(jtopl)).

• Exports:

− Predicates:

prolog_server/0, prolog_server/1, prolog_server/2, shell_s/0,
query_solutions/2, query_requests/2, running_queries/2.

• Other modules used:

− System library modules:

concurrency/concurrency, system, read, write, dynamic, lists, format,
compiler/compiler, atom2term, javall/javasock, prolog_sys.

 ª

150.2 Documentation on exports (jtopl)

PREDICATEprolog server/0:
Usage:

− Description: Prolog server entry point. Reads from the standard input the node name
and port number where the java client resides, and starts the prolog server listening
at the jp socket. This predicate acts as a server: it includes an endless read-process
loop until the prolog_halt command is received.

622 The Ciao Prolog System

However, from the low-level communication point of view, this Prolog server actually
works as a client of the Java side. This means that Java side waits at the given port
to a Prolog server trying to create a socket; Prolog side connects to that port, and
then waits for Java requests (acting as a ’logical’ server). To use this Prolog server
as a real server waiting for connections at a given port, use prolog_server/1.

PREDICATEprolog server/1:
Usage:

− Description: Waits for incoming Java connections to act as a Prolog goal server for
Java requests.This is the only prolog_server/* predicate that works as a true server:
given a port number, waits for a connection from Java and then serves Java requests.
When a termination request is received, finishes the connection to Java and waits
next Java connection request. This behaviour is different with respect to previous
versions of this library. To work as before, use prolog_server/2.

Although it currently does not support simultaneous Java connections, some work is
being done in that direction.

− Call and exit should be compatible with:

Arg1 is an atom. (basic_props:atm/1)

PREDICATEprolog server/2:
Usage:

− Description: Prolog server entry point. Given a network node and a port number,
starts the prolog server trying to connect to Java side at that node:port address, and
then waits for Java requests. This predicate acts as a server: it includes an endless
read-process loop until the prolog_halt command is received.

However, from the low-level communication point of view, this Prolog server actually
works as a client of the Java side. This means that Java side waits at the given port
to a Prolog server trying to create a socket; Prolog side connects to that port, and
then waits for Java requests (acting as a ’logical’ server). To use this Prolog server
as a real server waiting for connections at a given port, use prolog_server/1.

− Call and exit should be compatible with:

Arg1 is an atom. (basic_props:atm/1)

Arg2 is an atom. (basic_props:atm/1)

PREDICATEshell s/0:
Usage:

− Description: Command execution loop. This predicate is called when the connec-
tion to Java is established, and performs an endless loop processing the commands
received. This predicate is only intended to be used by the Prolog to Java interface
and it should not be used by a user program.

PREDICATEquery solutions/2:
No further documentation available for this predicate.

The predicate is of type concurrent.

Chapter 150: Java to Prolog interface 623

PREDICATEquery requests/2:
No further documentation available for this predicate.

The predicate is of type concurrent.

PREDICATErunning queries/2:
No further documentation available for this predicate.

The predicate is of type concurrent.

624 The Ciao Prolog System

Chapter 151: Low-level Prolog to Java socket connection 625

151 Low-level Prolog to Java socket connection

Author(s): Jesús Correas.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#66 (2003/3/14, 12:48:24 CET)

This module defines a low-level socket interface, to be used by javart and jtopl. Includes all
the code related directly to the handling of sockets. This library should not be used by any user
program, because is a very low-level connection to Java. Use javart (Prolog to Java interface)
or jtopl (Java to Prolog interface) libraries instead.

151.1 Usage and interface (javasock)
® ©

• Library usage:

:- use_module(library(javasock)).

• Exports:

− Predicates:

bind_socket_interface/1, start_socket_interface/2, stop_
socket_interface/0, join_socket_interface/0, java_query/2, java_response/2,
prolog_query/2, prolog_response/2, is_connected_to_java/0, java_debug/1,
java_debug_redo/1, start_threads/0.

• Other modules used:

− System library modules:

fastrw, read, sockets/sockets, dynamic, format, concurrency/concurrency,
javall/jtopl, sockets/sockets_io.

 ª

151.2 Documentation on exports (javasock)

PREDICATEbind socket interface/1:
Usage: bind_socket_interface(+Port)

− Description: Given an port number, waits for a connection request from the Java
side, creates the sockets to connect to the java process, and starts the threads needed
to handle the connection.

− Call and exit should be compatible with:

+Port is an integer. (basic_props:int/1)

PREDICATEstart socket interface/2:
Usage: start_socket_interface(+Address, +Stream)

− Description: Given an address in format ’node:port’, creates the sockets to connect
to the java process, and starts the threads needed to handle the connection.

− Call and exit should be compatible with:

+Address is any term. (basic_props:term/1)

+Stream is an open stream. (streams_basic:stream/1)

626 The Ciao Prolog System

PREDICATEstop socket interface/0:
Usage:

− Description: Closes the sockets to disconnect from the java process, and waits until
the threads that handle the connection terminate.

PREDICATEjoin socket interface/0:
Usage:

− Description: Waits until the threads that handle the connection terminate.

PREDICATEjava query/2:
The predicate is of type concurrent.

Usage: java_query(ThreadId, Query)

− Description: Data predicate containing the queries to be sent to Java. First argument
is the Prolog thread Id, and second argument is the query to send to Java.

− Call and exit should be compatible with:

ThreadId is an atom. (basic_props:atm/1)

Query is any term. (basic_props:term/1)

PREDICATEjava response/2:
The predicate is of type concurrent.

Usage: java_response(Id, Response)

− Description: Data predicate that stores the responses to requests received from Java.
First argument corresponds to the Prolog thread Id; second argument corresponds to
the response itself.

− Call and exit should be compatible with:

Id is an atom. (basic_props:atm/1)

Response is any term. (basic_props:term/1)

PREDICATEprolog query/2:
The predicate is of type concurrent.

Usage: prolog_query(Id, Query)

− Description: Data predicate that keeps a queue of the queries requested to Prolog
side from Java side.

− Call and exit should be compatible with:

Id is an integer. (basic_props:int/1)

Query is any term. (basic_props:term/1)

PREDICATEprolog response/2:
The predicate is of type concurrent.

Usage: prolog_response(Id, Response)

Chapter 151: Low-level Prolog to Java socket connection 627

− Description: Data predicate that keeps a queue of the responses to queries requested
to Prolog side from Java side.

− Call and exit should be compatible with:

Id is an integer. (basic_props:int/1)

Response is any term. (basic_props:term/1)

PREDICATEis connected to java/0:
Usage:

− Description: Checks if the connection to Java is established.

PREDICATEjava debug/1:
No further documentation available for this predicate.

PREDICATEjava debug redo/1:
No further documentation available for this predicate.

PREDICATEstart threads/0:
Usage:

− Description: Starts the threads that will handle the connection to Java. This pred-
icate is declared public for internal purposes, and it is not intended to be used by a
user program.

628 The Ciao Prolog System

Chapter 152: Calling emacs from Prolog 629

152 Calling emacs from Prolog

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#234 (2003/12/22, 18:14:10 CET)

This library provides a prolog-emacs interface. This interface is complementary to (and
independent from) the emacs mode, which is used to develop programs from within the emacs
editor/environment. Instead, this library allows calling emacs from a running Prolog program.
This facilitates the use of emacs as a “user interface” for a Prolog program. Emacs can be made
to:

• Visit a file, which can then be edited.

• Execute arbitrary emacs lisp code, sent from Prolog.

In order for this library to work correctly, the following is needed:

• You should be running the emacs editor on the same machine where the executable calling
this library is executing.

• This emacs should be running the emacs server. This can be done by including the following
line in your .emacs file:

;; Start a server that emacsclient can connect to.
(server-start)

Or typing M-x server-start within emacs.

This suffices for using emacs to edit files. For running arbitrary code the following also needs to
be added to the .emacs file:

(setq enable-local-eval t)
Allows executing lisp code without asking.

(setq enable-local-eval nil)
Does not allow executing lisp code without asking.

(setq enable-local-eval ’maybe)
Allows executing lisp code only if user agrees after asking (asks interactively for
every invocation).

Examples:

Assuming that a .pl file loads this library, then:

..., emacs_edit(’foo’), ...
Opens file foo for editing in emacs.

..., emacs_eval_nowait("(run-ciao-toplevel)"), ...
Starts execution of a Ciao top-level within emacs.

630 The Ciao Prolog System

152.1 Usage and interface (emacs)
® ©

• Library usage:

:- use_module(library(emacs)).

• Exports:

− Predicates:

emacs_edit/1, emacs_edit_nowait/1, emacs_eval/1, emacs_eval_nowait/1.

− Regular Types:

elisp_string/1.

• Other modules used:

− System library modules:

terms_check, lists, terms, system.

 ª

152.2 Documentation on exports (emacs)

PREDICATEemacs edit/1:
Usage: emacs_edit(+filename)

− Description: Opens the given file for editing in emacs. Waits for editing to finish
before continuing.

PREDICATEemacs edit nowait/1:
Usage: emacs_edit_nowait(+filename)

− Description: Opens the given file for editing in emacs and continues without waiting
for editing to finish.

PREDICATEemacs eval/1:
Usage: emacs_eval(+elisp_string)

− Description: Executes in emacs the lisp code given as argument. Waits for the
command to finish before continuing.

PREDICATEemacs eval nowait/1:
Usage: emacs_eval_nowait(+elisp_string)

− Description: Executes in emacs the lisp code given as argument and continues without
waiting for it to finish.

REGTYPEelisp string/1:
Usage: elisp_string(L)

− Description: L is a string containing emacs lisp code.

Chapter 153: linda (library) 631

153 linda (library)

Version: 0.9#66 (1999/4/29, 12:28:0 MEST)

This is a SICStus-like linda package. Note that this is essentially quite obsolete, and provided
mostly in case it is needed for compatibility, since Ciao now supports all Linda functionality
(and more) through the concurrent fact database.

153.1 Usage and interface (linda)
® ©

• Library usage:

:- use_module(library(linda)).

• Exports:

− Predicates:

linda_client/1, close_client/0, in/1, in/2, in_noblock/1, out/1, rd/1, rd/2,
rd_noblock/1, rd_findall/3, linda_timeout/2, halt_server/0, open_client/2,
in_stream/2, out_stream/2.

• Other modules used:

− System library modules:

read, fastrw, sockets/sockets.

 ª

153.2 Documentation on exports (linda)

PREDICATElinda client/1:
No further documentation available for this predicate.

PREDICATEclose client/0:
No further documentation available for this predicate.

PREDICATEin/1:
No further documentation available for this predicate.

PREDICATEin/2:
No further documentation available for this predicate.

PREDICATEin noblock/1:
No further documentation available for this predicate.

PREDICATEout/1:
No further documentation available for this predicate.

632 The Ciao Prolog System

PREDICATErd/1:
No further documentation available for this predicate.

PREDICATErd/2:
No further documentation available for this predicate.

PREDICATErd noblock/1:
No further documentation available for this predicate.

PREDICATErd findall/3:
No further documentation available for this predicate.

PREDICATElinda timeout/2:
No further documentation available for this predicate.

PREDICATEhalt server/0:
No further documentation available for this predicate.

PREDICATEopen client/2:
No further documentation available for this predicate.

PREDICATEin stream/2:
No further documentation available for this predicate.

PREDICATEout stream/2:
No further documentation available for this predicate.

PART IX - Abstract data types 633

PART IX - Abstract data types

® ©

Author(s): The CLIP Group.

This part includes libraries which implement some generic data structures (abstract data
types) that are used frequently in programs or in the Ciao system itself.

 ª

634 The Ciao Prolog System

Chapter 154: Extendable arrays with logarithmic access time 635

154 Extendable arrays with logarithmic access time

Author(s): Lena Flood.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#236 (2003/12/22, 18:18:14 CET)

This module implements extendable arrays with logarithmic access time. It has been adapted
from shared code written by David Warren and Fernando Pereira.

154.1 Usage and interface (arrays)
® ©

• Library usage:

:- use_module(library(arrays)).

• Exports:

− Predicates:

new_array/1, is_array/1, aref/3, arefa/3, arefl/3, aset/4, array_to_list/2.

 ª

154.2 Documentation on exports (arrays)

PREDICATEnew array/1:
Usage: new_array(-Array)

− Description: returns an empty new array Array.

PREDICATEis array/1:
Usage: is_array(+Array)

− Description: Array actually is an array.

PREDICATEaref/3:
Usage: aref(+Index, +Array, ?Element)

− Description: unifies Element to Array[Index], or fails if Array[Index] has not been
set.

PREDICATEarefa/3:
Usage: arefa(+Index, +Array, ?Element)

− Description: is as aref/3, except that it unifies Element with a new array if
Array[Index] is undefined. This is useful for multidimensional arrays implemented
as arrays of arrays.

636 The Ciao Prolog System

PREDICATEarefl/3:
Usage: arefl(+Index, +Array, ?Element)

− Description: is as aref/3, except that Element appears as [] for undefined cells.
Thus, arefl(_,_,[]) always succeeds no matter what you give in the first or second
args.

PREDICATEaset/4:
Usage: aset(+Index, +Array, Element, -NewArray)

− Description: unifies NewArray with the result of setting Array[Index] to Element.

PREDICATEarray to list/2:
Usage: array_to_list(+Array, -List)

− Description: returns a List of pairs Index-Element of all the elements of Array that
have been set.

Chapter 155: counters (library) 637

155 counters (library)

Version: 0.4#5 (1998/2/24)

155.1 Usage and interface (counters)
® ©

• Library usage:

:- use_module(library(counters)).

• Exports:

− Predicates:

setcounter/2, getcounter/2, inccounter/2.

 ª

155.2 Documentation on exports (counters)

PREDICATEsetcounter/2:
No further documentation available for this predicate.

PREDICATEgetcounter/2:
No further documentation available for this predicate.

PREDICATEinccounter/2:
No further documentation available for this predicate.

638 The Ciao Prolog System

Chapter 156: Identity lists 639

156 Identity lists

Author(s): Francisco Bueno.

Version: 1.9#266 (2004/1/1, 14:1:7 CET)

The operations in this module handle lists by performing equality checks via identity instead
of unification.

156.1 Usage and interface (idlists)
® ©

• Library usage:

:- use_module(library(idlists)).

• Exports:

− Predicates:

member_0/2, memberchk/2, list_insert/2, add_after/4, add_before/4, delete/3,
subtract/3, union_idlists/3.

 ª

156.2 Documentation on exports (idlists)

PREDICATEmember 0/2:
member_0(X, Xs)

True iff memberchk/2 is true.

PREDICATEmemberchk/2:
memberchk(X, Xs)

Checks that X is an element of (list) Xs.

PREDICATElist insert/2:
Usage: list_insert(-List, +Term)

− Description: Adds Term to the end of (tail-opened) List if there is not an element in
List identical to Term.

PREDICATEadd after/4:
Usage: add_after(+L0, +E0, +E, -L)

− Description: Adds element E after the first element identical to E0 (or at end) of list
L0, returning in L the new list.

PREDICATEadd before/4:
Usage: add_before(+L0, +E0, +E, -L)

− Description: Adds element E before the first element identical to E0 (or at start) of
list L0, returning in L the new list.

640 The Ciao Prolog System

PREDICATEdelete/3:
Usage: delete(+List, +Element, -Rest)

− Description: Rest has the same elements of List except for all the occurrences of
elements identical to Element.

PREDICATEsubtract/3:
Usage: subtract(+Set, +Set0, -Difference)

− Description: Difference has the same elements of Set except those which have an
identical occurrence in Set0.

PREDICATEunion idlists/3:
Usage: union_idlists(+List1, +List2, -List)

− Description: List has the elements which are in List1 but are not identical to an
element in List2 followed by the elements in List2.

Chapter 157: Lists of numbers 641

157 Lists of numbers

Author(s): The CLIP Group.

Version: 1.9#237 (2003/12/22, 18:23:36 CET)

This module implements some kinds of lists of numbers.

157.1 Usage and interface (numlists)
® ©

• Library usage:

:- use_module(library(numlists)).

• Exports:

− Predicates:

get_primes/2, sum_list/2, sum_list/3, sum_list_of_lists/2, sum_list_of_
lists/3.

− Regular Types:

intlist/1, numlist/1.

• Other modules used:

− System library modules:

lists.
 ª

157.2 Documentation on exports (numlists)

PREDICATEget primes/2:
Usage: get_primes(N, Primes)

− Description: Computes the Nth first prime numbers in ascending order.

− The following properties should hold at call time:

N is an integer. (basic_props:int/1)

− The following properties should hold upon exit:

Primes is a list of integers. (numlists:intlist/1)

REGTYPEintlist/1:
Usage: intlist(X)

− Description: X is a list of integers.

REGTYPEnumlist/1:
Usage: numlist(X)

− Description: X is a list of numbers.

642 The Ciao Prolog System

PREDICATEsum list/2:
Usage: sum_list(List, N)

− Description: N is the total sum of the elements of List.

− The following properties should hold at call time:

List is a list of numbers. (numlists:numlist/1)

− The following properties should hold upon exit:

N is a number. (basic_props:num/1)

PREDICATEsum list/3:
Usage: sum_list(List, N0, N)

− Description: N is the total sum of the elements of List plus N0.

− The following properties should hold at call time:

List is a list of numbers. (numlists:numlist/1)

N0 is a number. (basic_props:num/1)

− The following properties should hold upon exit:

N is a number. (basic_props:num/1)

PREDICATEsum list of lists/2:
Usage: sum_list_of_lists(Lists, N)

− Description: N is the total sum of the elements of the lists of Lists.

− The following properties should hold at call time:

List is a list of numlists. (basic_props:list/2)

− The following properties should hold upon exit:

N is a number. (basic_props:num/1)

PREDICATEsum list of lists/3:
Usage: sum_list_of_lists(Lists, N0, N)

− Description: N is the total sum of the elements of the lists of Lists plus N0.

− The following properties should hold at call time:

List is a list of numlists. (basic_props:list/2)

N0 is a number. (basic_props:num/1)

− The following properties should hold upon exit:

N is a number. (basic_props:num/1)

Chapter 158: Pattern (regular expression) matching 643

158 Pattern (regular expression) matching

Author(s): The CLIP Group.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#255 (2003/12/30, 23:32:38 CET)

This library provides facilities for matching strings and terms against patterns (i.e., regular
expressions).

158.1 Usage and interface (patterns)
® ©

• Library usage:

:- use_module(library(patterns)).

• Exports:

− Predicates:

match_pattern/2, match_pattern/3, case_insensitive_match/2, letter_match/2,
match_pattern_pred/2.

− Regular Types:

pattern/1.

• Other modules used:

− System library modules:

lists.
 ª

158.2 Documentation on exports (patterns)

PREDICATEmatch pattern/2:
Usage: match_pattern(Pattern, String)

− Description: Matches String against Pattern. For example, match_
pattern("*.pl","foo.pl") succeeds.

− The following properties should hold at call time:

Pattern is a pattern to match against. (patterns:pattern/1)

String is a string (a list of character codes). (basic_props:string/1)

PREDICATEmatch pattern/3:
Usage: match_pattern(Pattern, String, Tail)

− Description: Matches String against Pattern. Tail is the remainder of the string
after the match. For example, match_pattern("??*","foo.pl",Tail) succeeds,
instantiating Tail to "o.pl".

− The following properties should hold at call time:

Pattern is a pattern to match against. (patterns:pattern/1)

String is a string (a list of character codes). (basic_props:string/1)

Tail is a string (a list of character codes). (basic_props:string/1)

644 The Ciao Prolog System

PREDICATEcase insensitive match/2:
Usage: case_insensitive_match(Pred1, Pred2)

− Description: Tests if two predicates Pred1 and Pred2 match in a case-insensitive way.

PREDICATEletter match/2:
Usage: letter_match(X, Y)

− Description: True iff X and Y represents the same letter

REGTYPEpattern/1:
Special characters for Pattern are:

* Matches any string, including the null string.

? Matches any single character.

[...] Matches any one of the enclosed characters. A pair of characters separated
by a minus sign denotes a range; any character lexically between those two
characters, inclusive, is matched. If the first character following the [is a
^ then any character not enclosed is matched. No other character is special
inside this construct. To include a] in a character set, you must make it the
first character. To include a ‘-’, you must use it in a context where it cannot
possibly indicate a range: that is, as the first character, or immediately after
a range.

| Specifies an alternative. Two patterns A and B with | in between form an
expression that matches anything that either A or B will match.

{...} Groups alternatives inside larger patterns.

\ Quotes a special character (including itself).

Usage: pattern(P)

− Description: P is a pattern to match against.

PREDICATEmatch pattern pred/2:
Usage: match_pattern_pred(Pred1, Pred2)

− Description: Tests if two predicates Pred1 and Pred2match using regular expressions.

Chapter 159: Graphs 645

159 Graphs

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#238 (2003/12/22, 18:25:58 CET)

This module implements utilities for work with graphs

159.1 Usage and interface (graphs)
® ©

• Library usage:

:- use_module(library(graphs)).

• Exports:

− Predicates:

dgraph_to_ugraph/2, dlgraph_to_lgraph/2, edges_to_ugraph/2, edges_to_
lgraph/2.

− Regular Types:

dgraph/1, dlgraph/1.

• Other modules used:

− System library modules:

sort, graphs/ugraphs, graphs/lgraphs.

 ª

159.2 Documentation on exports (graphs)

REGTYPEdgraph/1:
dgraph(Graph)

A directed graph is a term graph(V,E) where V is a list of vertices and E is a list of
edges (none necessarily sorted). Edges are pairs of vertices which are directed, i.e., (a,b)
represents a->b. Two vertices a and b are equal only if a==b.

Usage: dgraph(Graph)

− Description: Graph is a directed graph.

REGTYPEdlgraph/1:
dlgraph(Graph)

A labeled directed graph is a directed graph where edges are triples of the form (a,l,b)
where l is the label of the edge (a,b).

Usage: dlgraph(Graph)

− Description: Graph is a directed labeled graph.

PREDICATEdgraph to ugraph/2:
Usage: dgraph_to_ugraph(+Graph, -UGraph)

− Description: Converts Graph to UGraph.

646 The Ciao Prolog System

− The following properties should hold at call time:

+Graph is a directed graph. (graphs:dgraph/1)

-UGraph is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

+Graph is a directed graph. (graphs:dgraph/1)

-UGraph is an ugraph. (ugraphs:ugraph/1)

PREDICATEdlgraph to lgraph/2:
Usage: dlgraph_to_lgraph(+Graph, -LGraph)

− Description: Converts Edges to LGraph.

− The following properties should hold at call time:

+Graph is a directed labeled graph. (graphs:dlgraph/1)

-LGraph is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

+Graph is a directed labeled graph. (graphs:dlgraph/1)

-LGraph is a labeled graph of term terms. (lgraphs:lgraph/2)

PREDICATEedges to ugraph/2:
Usage: edges_to_ugraph(+Edges, -UGraph)

− Description: Converts Graph to UGraph.

− The following properties should hold at call time:

+Edges is a list of pairs. (basic_props:list/2)

-UGraph is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

+Edges is a list of pairs. (basic_props:list/2)

-UGraph is an ugraph. (ugraphs:ugraph/1)

PREDICATEedges to lgraph/2:
Usage: edges_to_lgraph(+Edges, -LGraph)

− Description: Converts Edges to LGraph.

− The following properties should hold at call time:

+Edges is a list of triples. (basic_props:list/2)

-LGraph is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

+Edges is a list of triples. (basic_props:list/2)

-LGraph is a labeled graph of term terms. (lgraphs:lgraph/2)

Chapter 159: Graphs 647

159.3 Documentation on internals (graphs)

REGTYPEpair/1:
Usage: pair(P)

− Description: P is a pair (_,_).

REGTYPEtriple/1:
Usage: triple(P)

− Description: P is a triple (_,_,_).

648 The Ciao Prolog System

Chapter 160: Unweighted graph-processing utilities 649

160 Unweighted graph-processing utilities

Author(s): M. Carlsson, adapted from shared code written by Richard A O’Keefe. Mods by
F.Bueno and M.Carro..

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 0.9#105 (1999/6/4, 12:24:49 MEST)

An unweighted directed graph (ugraph) is represented as a list of (vertex-neighbors) pairs,
where the pairs are in standard order (as produced by keysort with unique keys) and the neigh-
bors of each vertex are also in standard order (as produced by sort), and every neighbor appears
as a vertex even if it has no neighbors itself.

An undirected graph is represented as a directed graph where for each edge (U,V) there is a
symmetric edge (V,U).

An edge (U,V) is represented as the term U-V.

A vertex can be any term. Two vertices are distinct iff they are not identical (==/2).

A path is represented as a list of vertices. No vertex can appear twice in a path.

160.1 Usage and interface (ugraphs)
® ©

• Library usage:

:- use_module(library(ugraphs)).

• Exports:

− Predicates:

vertices_edges_to_
ugraph/3, neighbors/3, edges/2, del_vertices/3, vertices/2, add_vertices/3,
add_edges/3, transpose/2, point_to/3.

− Regular Types:

ugraph/1.

• Other modules used:

− System library modules:

sets, sort.

 ª

160.2 Documentation on exports (ugraphs)

PREDICATEvertices edges to ugraph/3:
No further documentation available for this predicate.

PREDICATEneighbors/3:
Usage: neighbors(+Vertex, +Graph, -Neighbors)

− Description: Is true if Vertex is a vertex in Graph and Neighbors are its neighbors.

650 The Ciao Prolog System

PREDICATEedges/2:
Usage: edges(+Graph, -Edges)

− Description: Unifies Edges with the edges in Graph.

PREDICATEdel vertices/3:
Usage: del_vertices(+Graph1, +Vertices, -Graph2)

− Description: Is true if Graph2 is Graph1 with Vertices and all edges to and from
Vertices removed from it.

PREDICATEvertices/2:
Usage: vertices(+Graph, -Vertices)

− Description: Unifies Vertices with the vertices in Graph.

PREDICATEadd vertices/3:
Usage: add_vertices(+Graph1, +Vertices, -Graph2)

− Description: Is true if Graph2 is Graph1 with Vertices added to it.

PREDICATEadd edges/3:
Usage: add_edges(+Graph1, +Edges, -Graph2)

− Description: Is true if Graph2 is Graph1 with Edges and their ’to’ and ’from’ vertices
added to it.

PREDICATEtranspose/2:
Usage: transpose(+Graph, -Transpose)

− Description: Is true if Transpose is the graph computed by replacing each edge (u,v)
in Graph by its symmetric edge (v,u). It can only be used one way around. The cost
is O(N^2).

PREDICATEpoint to/3:
Usage: point_to(+Vertex, +Graph, -Point_to)

− Description: Is true if Point_to is the list of nodes which go directly to Vertex in
Graph.

REGTYPEugraph/1:
Usage: ugraph(Graph)

− Description: Graph is an ugraph.

Chapter 161: wgraphs (library) 651

161 wgraphs (library)

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 0.4#5 (1998/2/24)

161.1 Usage and interface (wgraphs)
® ©

• Library usage:

:- use_module(library(wgraphs)).

• Exports:

− Predicates:

vertices_edges_to_wgraph/3.

• Other modules used:

− System library modules:

sets, sort.

 ª

161.2 Documentation on exports (wgraphs)

PREDICATEvertices edges to wgraph/3:
No further documentation available for this predicate.

652 The Ciao Prolog System

Chapter 162: Labeled graph-processing utilities 653

162 Labeled graph-processing utilities

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#256 (2003/12/30, 23:45:1 CET)

See the comments for the ugraphs library.

162.1 Usage and interface (lgraphs)
® ©

• Library usage:

:- use_module(library(lgraphs)).

• Exports:

− Predicates:

vertices_edges_to_lgraph/3.

− Regular Types:

lgraph/2.

• Other modules used:

− System library modules:

sort, sets.

 ª

162.2 Documentation on exports (lgraphs)

REGTYPElgraph/2:
Usage: lgraph(Graph, Type)

− Description: Graph is a labeled graph of Type terms.

PREDICATEvertices edges to lgraph/3:
vertices_edges_to_lgraph(Vertices0, Edges, Graph)

This one is a copy of the same procedure in library(wgraphs) except for the definition of
min/3 (ah! - the polimorphism!).

It would only be needed if there are multi-edges, i.e., several edges between the same two
vertices.

654 The Ciao Prolog System

Chapter 163: queues (library) 655

163 queues (library)

Version: 0.4#5 (1998/2/24)

163.1 Usage and interface (queues)
® ©

• Library usage:

:- use_module(library(queues)).

• Exports:

− Predicates:

q_empty/1, q_insert/3, q_member/2, q_delete/3.

 ª

163.2 Documentation on exports (queues)

PREDICATEq empty/1:
No further documentation available for this predicate.

PREDICATEq insert/3:
No further documentation available for this predicate.

PREDICATEq member/2:
No further documentation available for this predicate.

PREDICATEq delete/3:
No further documentation available for this predicate.

656 The Ciao Prolog System

Chapter 164: Random numbers 657

164 Random numbers

Author(s): Daniel Cabeza.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#275 (2004/1/9, 16:25:9 CET)

This module provides predicates for generating pseudo-random numbers

164.1 Usage and interface (random)
® ©

• Library usage:

:- use_module(library(random)).

• Exports:

− Predicates:

random/1, random/3, srandom/1.

 ª

164.2 Documentation on exports (random)

PREDICATErandom/1:
random(Number)

Number is a (pseudo-) random number in the range [0.0,1.0]

PREDICATErandom/3:
random(Low, Up, Number)

Number is a (pseudo-) random number in the range [Low, Up]

Usage 1: random(+int, +int, -int)

− Description: If Low and Up are integers, Number is an integer.

PREDICATEsrandom/1:
srandom(Seed)

Changes the sequence of pseudo-random numbers according to Seed. The stating sequence
of numbers generated can be duplicated by calling the predicate with Seed unbound (the
sequence depends on the OS).

658 The Ciao Prolog System

Chapter 165: Set Operations 659

165 Set Operations

Author(s): Lena Flood.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#239 (2003/12/22, 18:32:52 CET)

This module implements set operations. Sets are just ordered lists.

165.1 Usage and interface (sets)
® ©

• Library usage:

:- use_module(library(sets)).

• Exports:

− Predicates:

insert/3, ord_delete/3, ord_member/2, ord_test_member/3, ord_subtract/3,
ord_intersection/3, ord_intersection_diff/4, ord_intersect/2, ord_subset/2,
ord_subset_diff/3, ord_union/3, ord_union_diff/4, ord_union_symdiff/4, ord_
union_change/3, merge/3, ord_disjoint/2, setproduct/3.

• Other modules used:

− System library modules:

sort.
 ª

165.2 Documentation on exports (sets)

PREDICATEinsert/3:
Usage: insert(+Set1, +Element, -Set2)

− Description: It is true when Set2 is Set1 with Element inserted in it, preserving the
order.

PREDICATEord delete/3:
Usage: ord_delete(+Set0, +X, -Set)

− Description: It succeeds if Set is Set0 without element X.

PREDICATEord member/2:
Usage: ord_member(+X, +Set)

− Description: It succeeds if X is member of Set.

PREDICATEord test member/3:
Usage: ord_test_member(+Set, +X, -Result)

− Description: If X is member of Set then Result=yes. Otherwise Result=no.

660 The Ciao Prolog System

PREDICATEord subtract/3:
Usage: ord_subtract(+Set1, +Set2, ?Difference)

− Description: It is true when Difference contains all and only the elements of Set1
which are not also in Set2.

PREDICATEord intersection/3:
Usage: ord_intersection(+Set1, +Set2, ?Intersection)

− Description: It is true when Intersection is the ordered representation of Set1 and
Set2, provided that Set1 and Set2 are ordered lists.

PREDICATEord intersection diff/4:
Usage: ord_intersection_diff(+Set1, +Set2, -Intersect, -NotIntersect)

− Description: Intersect contains those elements which are both in Set1 and Set2,
and NotIntersect those which are in Set1 but not in Set2.

PREDICATEord intersect/2:
Usage: ord_intersect(+Xs, +Ys)

− Description: Succeeds when the two ordered lists have at least one element in com-
mon.

PREDICATEord subset/2:
Usage: ord_subset(+Xs, +Ys)

− Description: Succeeds when every element of Xs appears in Ys.

PREDICATEord subset diff/3:
Usage: ord_subset_diff(+Set1, +Set2, -Difference)

− Description: It succeeds when every element of Set1 appears in Set2 and Difference
has the elements of Set2 which are not in Set1.

PREDICATEord union/3:
Usage: ord_union(+Set1, +Set2, ?Union)

− Description: It is true when Union is the union of Set1 and Set2. When some element
occurs in both sets, Union retains only one copy.

PREDICATEord union diff/4:
Usage: ord_union_diff(+Set1, +Set2, -Union, -Difference)

− Description: It succeeds when Union is the union of Set1 and Set2, and Difference
is Set2 set-minus Set1.

Chapter 165: Set Operations 661

PREDICATEord union symdiff/4:
Usage: ord_union_symdiff(+Set1, +Set2, -Union, -Diff)

− Description: It is true when Diff is the symmetric difference of Set1 and Set2, and
Union is the union of Set1 and Set2.

PREDICATEord union change/3:
Usage: ord_union_change(+Set1, +Set2, -Union)

− Description: Union is the union of Set1 and Set2 and Union is different from Set2.

PREDICATEmerge/3:
Usage: merge(+Set1, +Set2, ?Union)

− Description: See ord_union/3.

PREDICATEord disjoint/2:
Usage: ord_disjoint(+Set1, +Set2)

− Description: Set1 and Set2 have no element in common.

PREDICATEsetproduct/3:
Usage: setproduct(+Set1, +Set2, -Product)

− Description: Product has all two element sets such that one element is in Set1
and the other in set2, except that if the same element belongs to both, then the
corresponding one element set is in Product.

662 The Ciao Prolog System

Chapter 166: Variable name dictionaries 663

166 Variable name dictionaries

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#99 (2003/8/27, 17:56:12 CEST)

166.1 Usage and interface (vndict)
® ©

• Library usage:

:- use_module(library(vndict)).

• Exports:

− Predicates:

create_dict/2, complete_dict/3, complete_vars_dict/3, prune_dict/3, sort_
dict/2, dict2varnamesl/2, varnamesl2dict/2, find_name/4, rename/2, vars_
names_dict/3.

− Regular Types:

null_dict/1, varname/1, varnamesl/1, varnamedict/1.

• Other modules used:

− System library modules:

idlists, terms_vars, sets, sort.

 ª

166.2 Documentation on exports (vndict)

REGTYPEnull dict/1:
Usage: null_dict(D)

− Description: D is an empty dictionary.

PREDICATEcreate dict/2:
Usage: create_dict(Term, Dict)

− Description: Dict has names for all variables in Term.

− The following properties should hold at call time:

Term is any term. (basic_props:term/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEcomplete dict/3:
Usage: complete_dict(+Dict, +Term, -NewDict)

− Description: NewDict is Dict augmented with the variables of Term not yet in Dict.

664 The Ciao Prolog System

PREDICATEcomplete vars dict/3:
Usage: complete_vars_dict(+Dict, +Vars, -NewDict)

− Description: NewDict is Dict augmented with the variables of the list Vars not yet
in Dict.

PREDICATEprune dict/3:
Usage: prune_dict(+Term, +Dict, -NewDict)

− Description: NewDict is Dict reduced to just the variables of Term.

PREDICATEsort dict/2:
Usage: sort_dict(D, Dict)

− Description: D is sorted into Dict.

− The following properties should hold at call time:

D is a dictionary of variable names. (vndict:varnamedict/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEdict2varnamesl/2:
Usage: dict2varnamesl(Dict, VNs)

− Description: Translates Dict to VNs.

− The following properties should hold at call time:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

− The following properties should hold upon exit:

VNs is a list of Name=Var, for a variable Var and its name Name.
(vndict:varnamesl/1)

PREDICATEvarnamesl2dict/2:
Usage: varnamesl2dict(VNs, Dict)

− Description: Translates VNs to Dict.

− The following properties should hold at call time:

VNs is a list of Name=Var, for a variable Var and its name Name.
(vndict:varnamesl/1)

− The following properties should hold upon exit:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

PREDICATEfind name/4:
find_name(Vars, Names, V, Name)

Given that vars_names_dict(Dict,Vars,Names) holds, it acts as rename(X,Dict), but
the name of X is given as Name instead of unified with it.

Chapter 166: Variable name dictionaries 665

PREDICATErename/2:
Usage: rename(Term, Dict)

− Description: Unifies each variable in Term with its name in Dict. If no name is found,
a new name is created.

− The following properties should hold at call time:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

REGTYPEvarname/1:
Usage: varname(N)

− Description: N is a term representing a variable name.

REGTYPEvarnamesl/1:
Usage: varnamesl(D)

− Description: D is a list of Name=Var, for a variable Var and its name Name.

REGTYPEvarnamedict/1:
Usage: varnamedict(D)

− Description: D is a dictionary of variable names.

PREDICATEvars names dict/3:
Usage: vars_names_dict(Dict, Vars, Names)

− Description: Varss is a sorted list of variables, and Names is a list of their names,
which correspond in the same order.

− Call and exit should be compatible with:

Dict is a dictionary of variable names. (vndict:varnamedict/1)

Vars is a list. (basic_props:list/1)

Names is a list. (basic_props:list/1)

666 The Ciao Prolog System

PART X - Miscellaneous standalone utilities 667

PART X - Miscellaneous standalone utilities

® ©

Author(s): clip@clip.dia.fi.upm.es, http://www.clip.dia.fi.upm.es/, The CLIP
Group, School of Computer Science, Technical University of Madrid.

This is the documentation for a set of miscellaneous standalone utilities contained in the etc
directory of the Ciao distribution.

 ª

668 The Ciao Prolog System

Chapter 167: A Program to Help Cleaning your Directories 669

167 A Program to Help Cleaning your Directories

Author(s): Manuel Carro.

Version: 0.1#3 (2001/10/25, 14:31:59 CEST)

A simple program for traversing a directory tree and deciding which files may be deleted in
order to save space and not to loose information.

167.1 Usage (cleandirs)

cleandirs [--silent] <initial_dir> <delete_options> <backup_options>
cleandirs explores <initial_dir> (which should be an absolute path)
and looks for backup files and files which can be generated from other
files, using a plausible heuristic aimed at retaining the same amount
of information while recovering some disk space. The heuristic is
based on the extension of the filename.

Delete options is one of:
--list: just list the files/directories which are amenable to be deleted,

but do not delete them. SAFE.
--ask: list the files/directories and ask for deletion. UNSAFE if you

make a mistake.
--delete: just delete the files/directories without asking. I envy your

brave soul if you choose this option.

Backup options is one of:
--includebackups: include backup files in the list of files to check.
--excludebackups: do not include backup files in the list of files to check.

--onlybackups: include only backup files in the list of files to check.

Symbolic links are not traversed. Special files are not checked.

Invoking the program with no arguments will return an up-to-date information on the options.

167.2 Known bugs and planned improvements (cleandirs)

• Recursive removal of subdirectories relies on the existence of a recursive /bin/rm command
in your system.

670 The Ciao Prolog System

Chapter 168: Printing the declarations and code in a file 671

168 Printing the declarations and code in a file

Author(s): Manuel Hermenegildo.

Version: 0.5#6 (1999/4/15, 20:33:6 MEST)

A simple program for printing assertion information (predicate declarations, property dec-
larations, type declarations, etc.) and printing code-related information (imports, exports,
libraries used, etc.) on a file. The file should be a single Ciao or Prolog source file. It uses
the Ciao compiler’s pass one to do it. This program is specially useful for example for checking
what assertions the assertion normalizer is producing from the original assertions in the file or
to check what the compiler is actually seeing after some of the syntactic expansions (but before
goal translations).

168.1 Usage (fileinfo)

fileinfo -asr <filename.asr>
: pretty prints the contents of <filename.asr>

fileinfo [-v] [-m] <-a|-f|-c|-e> <filename> [libdir1] ... [libdirN]
-v : verbose output (e.g., lists all files read)
-m : restrict info to current module
-a : print assertions
-f : print code and interface (imports/exports, etc.)
-c : print code only
-e : print only errors - useful to check syntax of assertions in file

fileinfo -h
: print this information

Note that system lib paths *must* be given explicitly, e.g. :

fileinfo -m -c foo.pl \
/home/clip/System/ciao/lib \
/home/clip/System/ciao/library \

168.2 More detailed explanation of options (fileinfo)

• If the -a option is selected, fileinfo prints the assertions (only code-oriented assertions –
not comment-oriented assertions) in the file after normalization. If the -f option is selected
fileinfo prints the file interface, the declarations contained in the file, and the actual code.
The -c option prints only the code. If the -e option is selected fileinfo prints only any
sintactic and import-export errors found in the file, including the assertions.

• filename must be the name of a Prolog or Ciao source file.

• This filename can be followed by other arguments which will be taken to be library directory
paths in which to look for files used by the file being analyzed.

• If the -m option is selected, only the information related to the current module is printed.

• The -v option produces verbose output. This is very useful for debugging, since all the files
accessed during assertion normalization are listed.

672 The Ciao Prolog System

• In the -asr usage, fileinfo can be used to print the contents of a .asr file in human-
readable form.

Chapter 169: Printing the contents of a bytecode file 673

169 Printing the contents of a bytecode file

Author(s): Daniel Cabeza.

Version: 0.5#2 (1999/11/11, 19:20:50 MET)

This simple program takes as an argument a bytecode (.po) file and prints out in symbolic
form the information contained in the file. It uses compiler and engine builtins to do so, so that
it keeps track with changes in bytecode format.

169.1 Usage (viewpo)

viewpo <file1>.po
: print .po contents in symbolic form

viewpo -h
: print this information

674 The Ciao Prolog System

Chapter 170: Crossed-references of a program 675

170 Crossed-references of a program

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#257 (2003/12/30, 23:49:22 CET)

The xrefs crossed-references Ciao library includes several modules which allow displaying
crossed-references of the code in a program. Crossed-references identify modules which import
code from other modules, or files (be them modules or not) which use code in other files. Crossed-
references can be obtained as a term representing a graph, displayed graphically (using daVinci,
a graph displayer developed by U. of Bremen, Germany), or printed as a list.

The libraries involved are as follows:

• etc(xmrefs) displays a graph of crossed-references between modules using daVinci,

• etc(xfrefs) displays a graph of crossed-references between files using daVinci,

• library(xrefs) obtains a graph of crossed-references between files,

• library(’xrefs/mrefs’) obtains a graph of crossed-references between modules,

• library(’xrefs/pxrefs’) prints a list of crossed-references between files.

The first two are intended to be used by loading in ciaosh. The other three are intended to
be used as modules within an application.

The following is an example graph of the library modules involved in the crossed-references
application. It has been obtained with:

[ciao/etc]> ciaosh
Ciao-Prolog 1.5 #24: Tue Dec 28 14:12:11 CET 1999
?- use_module(xmrefs).

yes
?- set_flag(X).

X = 3 ?

yes
?- set_files([xfrefs, xmrefs,

library(xrefs),
library(’xrefs/mrefs’),
library(’xrefs/pxrefs’),
library(’xrefs/xrefs2graph’),
library(’xrefs/xrefsbuild’),
library(’xrefs/xrefsread’)

]).

yes
?- xmrefs.

676 The Ciao Prolog System

so that it is displayed by daVinci as:

da
V

in
ci

V
2.

1

mrefspxrefs

xfrefs xmrefs

xrefs

xrefs2graphxrefsbuild

xrefsread

set_files/1
set_flag/1
xref/1
xrefs/2

meta_call/3
xrefs_files/1

mrefs_lgraph/1
mrefs_ugraph/1
set_files/1
set_flag/1

set_files/1

set_files/1
set_flag/1
xref/1
xrefs_lgraph/2
xrefs_ugraph/2

set_files/1
set_flag/1
xrefs_modules/2

set_flag/1
xref/1
xrefs/2

xrefs2graph/2
xrefs2graph/2
xrefsnolabels/2

The following is an example graph of the same module files, where crossed-references have
been obtained with xfrefs:xfrefs(whodefs) instead of xmrefs:xmrefs:

da
V

in
ci

V
2.

1

/home/clip/Systems/ciao−1.5/etc/xfrefs /home/clip/Systems/ciao−1.5/etc/xmrefs

/home/clip/Systems/ciao/library/xrefs/mrefs/home/clip/Systems/ciao/library/xrefs/pxrefs /home/clip/Systems/ciao/library/xrefs/xrefs

/home/clip/Systems/ciao/library/xrefs/xrefs2graph/home/clip/Systems/ciao/library/xrefs/xrefsbuild

/home/clip/Systems/ciao/library/xrefs/xrefsread

xrefs/2

meta_call/3
xrefs_files/1

mrefs_lgraph/1
mrefs_ugraph/1

xrefs/2 xrefs2graph/2
xrefs2graph/2
xrefsnolabels/2

xrefs_lgraph/2
xrefs_ugraph/2

xrefs_modules/2

For more information refer to the xrefs documentation (xrefs_doc.dvi) in the source library
of the Ciao distribution.

Chapter 171: Gathering the dependent files for a file 677

171 Gathering the dependent files for a file

Author(s): Daniel Cabeza, Manuel Hermenegildo.

Version: 1.0#6 (1998/11/5, 13:56:58 MET)

This simple program takes a single Ciao or Prolog source filename (which is typically the
main file of an application). It prints out the list of all the dependent files, i.e., all files needed
in order to build the application, including those which reside in libraries. This is particularly
useful in Makefiles, for building standalone distributions (e.g., .tar files) automatically.

The filename should be followed by other arguments which will be taken to be library directory
paths in which to look for files used by the file being analyzed.

171.1 Usage (get deps)

get_deps [-u <filename>] <filename> [lib_dir1] ... [lib_dirN]
: return dependent files for <filename>

found in [lib_dir1] ... [lib_dirN]

get_deps -h
: print this information

678 The Ciao Prolog System

Chapter 172: Finding differences between two Prolog files 679

172 Finding differences between two Prolog files

Author(s): Francisco Bueno.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#258 (2003/12/30, 23:52:10 CET)

This simple program works like the good old diff but for files that contain Prolog code. It
prints out the clauses that it finds are different in the files. Its use avoids textual differences
such as different variable names and different formatting of the code in the files.

172.1 Usage (pldiff)

pldiff <file1> <file2>
: find differences

pldiff -h
: print this information

but you can also use the program as a library and invoke the predicate:

pldiff(<filename> , <filename>)

172.2 Known bugs and planned improvements (pldiff)

• Currently uses variant/2 to compare clauses. This is useful, but there should be an option
to select the way clauses are compared, e.g., some form of equivalence defined by the user.

680 The Ciao Prolog System

Chapter 173: The Ciao lpmake scripting facility 681

173 The Ciao lpmake scripting facility

Author(s): Manuel Hermenegildo, clip@dia.fi.upm.es,
http://www.clip.dia.fi.upm.es/, The CLIP Group, Facultad de Informática, Universidad
Politécnica de Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#27 (2002/11/20, 13:4:12 CET)

Note: lpmake and the make library are still under development, and they may change in
future releases.

lpmake is a Ciao application which uses the Ciao make library to implement a dependency-
driven scripts in a similar way to the Un*x make facility.

The original purpose of the Un*x make utility is to determine automatically which pieces of a
large program needed to be recompiled, and issue the commands to recompile them. In practice,
make is often used for many other purposes: it can be used to describe any task where some
files must be updated automatically from others whenever these change. lpmake can be used for
the same types of applications as make, and also for some new ones, and, while being simpler,
it offers a number of advantages over make. The first one is portability. When compiled to a
bytecode executable lpmake runs on any platform where a Ciao engine is available. Also, the
fact that typically many of the operations are programmed in Prolog within the makefile, not
needing external applications, improves portability further. The second advantage of lpmake
is improved programming capabilities. While lpmake is simpler than make, lpmake allows using
the Ciao Prolog language within the scripts. This allows establising more complex dependencies
and programming powerful operations within the make file, and without resorting to external
packages (e.g., operating system commands), which also helps portability. A final advantage of
lpmake is that it supports a form of autodocumentation: comments associated to targets can be
included in the configuration files. Calling lpmake in a directory which has such a configuration
file explains what commands the configuration file support and what these commands will do.

173.1 General operation

To prepare to use lpmake, and in a similar way to make, you must write a configuration file:
a module (typically called Makefile.pl) that describes the relationships among files in your
program or application, and states the commands for updating each file. In a program, typically
the executable file is updated from object files, which are in turn made by compiling source files.
Another example is running latex and dvips on a set of source .tex files to generate a document
in dvi and postscript formats. Once a suitable makefile exists, each time you change some
source files, simply typing lpmake suffices to perform all necessary operations (recompilations,
processing text files, etc.). The lpmake program uses the dependency rules in the makefile and
the last modification times of the files to decide which of the files need to be updated. For each
of those files, it issues the commands recorded in the makefile. For example, in the latex/
dvips case one rule states that the .dvi file whould be updated from the .tex files whenever
one of them changes and another rule states that the .ps file needs to be updated from a .dvi
file every time it changes. The rules also describe the commands to be issued to update the files.

So, the general process is as follows: lpmake executes commands in the configuration file to
update one or more target names, where name is often a program, but can also be a file to be
generated or even a “virtual” target. lpmake updates a target if it depends on prerequisite files
that have been modified since the target was last modified, or if the target does not exist. You
can provide command line arguments to lpmake to control which files should be regenerated, or
how.

682 The Ciao Prolog System

173.2 Format of the Configuration File

lpmake uses as default configuration file the file Makefile.pl, if it is present in the current
directory. This can be overridden and another file used by means of the -m option. The configu-
ration file must a module that uses the make package. This package provides syntax for defining
the dependency rules and functionality for correctly interpreting these rules. The configuration
files can contain such rules and also arbitrary Ciao Prolog predicates. The syntax of the rules
is described in Chapter 84 [The Ciao Make Package], page 365, together with some examples.

173.3 lpmake usage

Supported command line options:

lpmake [-v] <command1> ... <commandn>

Process commands <command1> ... <commandn>, using
file ’Makefile.pl’ in the current directory as
configuration file. The configuration file must
be a module. This is useful to implement
inherintance across diferent configuration files,
i.e., the values declared in a configuration file
can be easily made to override those defined in
another.

The optional argument ’-v’ produces verbose output,
reporting on the processing of the dependency rules.
Very useful for debugging Makefiles.

lpmake [-v] [-m <.../Configfile.pl>] <command1> ... <commandn>

Same as above, but using file <.../Configfile.pl>
as configuration file.

lpmake -h [-m <.../Configfile.pl>]
lpmake -help [-m <.../Configfile.pl>]

Print this help message. If a configuration file is given,
and the commands in it are commented, then information on
these commands is also printed.

173.4 Acknowledgments (lpmake)

Some parts of the documentation are taken from the documentation of GNU’s gmake.

Chapter 174: Find out which architecture we are running on 683

174 Find out which architecture we are running on

Author(s): Manuel Carro, Robert Manchek.

Version: 0.0#6 (2001/3/26, 13:56:52 CEST)

The architecure and operating system the engine is compiled for determines whether we can
use or not certain libraries. This script, taken from a PVM distribution, uses a heuristic (which
may need to be tuned from time to time) to find out the platform. It returns a string which is
used throughout the engine (in #ifdefs) to enable/disable certain characteristics.

174.1 Usage (ciao get arch)

Usage: ciao_get_arch

174.2 More details

Look at the script itself...

684 The Ciao Prolog System

Chapter 175: Print out WAM code 685

175 Print out WAM code

Author(s): Manuel Carro.

Version: 0.5 (2003/1/20, 17:12:6 CET)

This program prints to standard output a symbolic form of the (modified) Wam code the
compiler generates for a given source file. Directives are ignored.

175.1 Usage (compiler output)

Print (modified, partial) WAM code for a .pl file

Usage: compiler_output <file.pl>

686 The Ciao Prolog System

PART XI - Contributed libraries 687

PART XI - Contributed libraries

® ©

Author(s): The CLIP Group.

This part includes a number of libraries which have contributed by users of the Ciao system.
Over time, some of these libraries are moved to the main library directories of the system.

 ª

688 The Ciao Prolog System

Chapter 176: Programming MYCIN rules 689

176 Programming MYCIN rules

Author(s): Angel Fernandez Pineda.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#59 (2000/2/29, 14:51:54 CET)

MYCIN databases are declared as Prolog modules containing mycin rules. Those rules are
given a certainty factor (CF) which denotates an expert’s credibility on that rule:

• A value of -1 stands for surely not.

• A value of 1 stands for certainly.

• A value of 0 stands for I don’t know.

Intermediate values are allowed.

Mycin rules work on a different way as Prolog clauses: a rule will never fail (in the Prolog
sense), it will return a certainty value instead. As a consequence all mycin rules will be explored
during inference, so the order in which rules are written is not significant. For this reason, the
usage of the Prolog cut (!) is discouraged.

176.1 Usage and interface (mycin)
® ©

• Library usage:

In order to declare a mycin database you must include the following declaration as the first
one in your file:

:- mycin(MycinDataBaseName).

• New declarations defined:

export/1.

 ª

176.2 Documentation on new declarations (mycin)

DECLARATIONexport/1:
This directive allows a given mycin predicate to be called from Prolog programs. The way
in which mycin rules are called departs from Prolog ones. For instance, the followin mycin
predicate:

:- export p/1.

must be called from Prolog Programs as: mycin(p(X),CF), where CF will be binded
to the resulting certainty factor. Obviously, the variables on P/1 may be instanti-
ated as you wish. Since the Prolog predicate mycin/2 may be imported from several
mycin databases, it is recommended to fully qualify those predicate goals. For example :
mydatabase:mycin(p(X),CF).

Usage: :- export(Spec).

− Description: Spec will be a callable mycin predicate.

176.3 Known bugs and planned improvements (mycin)

• Not fully implemented.

• Dynamic mycin predicates not implemented: open question.

• Importation of user-defined mycin predicates requires further design. This includes impor-
tation of mycin databases from another mycin database.

690 The Ciao Prolog System

Chapter 177: Constraint programming over finite domains 691

177 Constraint programming over finite domains

Author(s): J.M. Gomez, M. Carro.

This package allows to write and evaluate constraint programming expressions over finite
domains in a Ciao program. It is based upon the indexicals concept.

The syntax of this constraint system is described below:

• c ::= X in r (r is the range of variable X).

• c ::= E1 .=. E2 (eventual value of expression E1 equals E2)

• c ::= E1 .<>. E2 (E1 differs from E2)

• c ::= E1 .<. E2 (E1 is lower than E2)

• c ::= E1 .>. E2 (E1 is greater than E2)

• c ::= E1 .=<. E2 (E1 is lower or equal than E2)

• c ::= E1 .>=. E2 (E1 is greater or equal than E2)

• r ::= r1 (one interval range).

• r ::= r1 .&. r (multi interval range).

• r1 ::= t..t (interval range).

• r1 ::= dom(X) (indexical domain, e.g., X in dom(Y) means "X in the domain of Y").

• t::= n (integer).

• t::= min(X) (indexical min).

• t::= max(X) (indexical max).

Some examples of this constraints package (more can be found in the source and library direc-
tories):

• SEND + MORE = MONEY:

:- use_package(fd).
:- use_module(library(prolog_sys), [statistics/2]).
:- use_module(library(format)).

smm(SMM) :-
statistics(runtime,_),
do_smm(SMM),
statistics(runtime,[_, Time]),
format("Used ~d milliseconds~n", Time).

do_smm(X) :-
X = [S,E,N,D,M,O,R,Y],
X in 0 .. 9,
all_different(X),
M .>. 0,
S .>. 0,
1000*S + 100*E + 10*N + D + 1000*M + 100*O + 10*R + E .=. 10000*M + 1000*O + 100*N + 10*E + Y,

labeling(X).

• Queens:

:- use_package(fd).
:- use_module(library(prolog_sys), [statistics/2]).
:- use_module(library(format)).

692 The Ciao Prolog System

:- use_module(library(aggregates)).
:- use_module(library(lists),[length/2]).

queens(N, Qs) :-
statistics(runtime,_),
do_queens(N, Qs),
statistics(runtime,[_, Time]),
format("Used ~d milliseconds~n", Time).

do_queens(N, Qs):-
constrain_values(N, N, Qs),
all_different(Qs),!,
labeling(Qs).

constrain_values(0, _N, []).
constrain_values(N, Range, [X|Xs]):-

N > 0,
X in 1 .. Range,
N1 is N - 1,
constrain_values(N1, Range, Xs),
no_attack(Xs, X, 1).

no_attack([], _Queen, _Nb).
no_attack([Y|Ys], Queen, Nb):-

Nb1 is Nb + 1,
no_attack(Ys, Queen, Nb1),
Queen .<>. Y + Nb,
Queen .<>. Y - Nb.

177.1 Usage and interface (fd)
® ©

• Library usage:

:- use_package(fd).

or

:- module(...,...,[fd]).

• Exports:

− Predicates:

labeling/1, pitm/2, choose_var/3, choose_free_var/2, choose_var_nd/2,
choose_value/2, retrieve_range/2, retrieve_store/2, glb/2, lub/2, bounds/3,
retrieve_list_of_values/2.

− Regular Types:

fd_item/1, fd_range/1, fd_subrange/1, fd_store/1, fd_store_entity/1.

• New operators defined:

.=./2 [700,xfx], .<>./2 [700,xfx], .<./2 [700,xfx], .=<./2 [700,xfx], .>./2 [700,xfx], .>=./2
[700,xfx], ../2 [500,yfx], .&./2 [600,xfy], in/2 [700,xfy].

 ª

Chapter 177: Constraint programming over finite domains 693

177.2 Documentation on exports (fd)

REGTYPEfd item/1:
Usage: fd_item(FD_item)

− Description: FD_item is a finite domain entity, i.e. either a finite domains variable
or an integer.

REGTYPEfd range/1:
Usage: fd_range(FD_range)

− Description: FD_range is the range of a finite domain entity.

REGTYPEfd subrange/1:
Usage:

− Description: A subrange is a pair representing a single interval.

REGTYPEfd store/1:
Usage: fd_store(FD_store)

− Description: FD_store is a representation of the constraint store of a finite domain
entity.

REGTYPEfd store entity/1:
Usage:

− Description: Representation of primitive constraints.

PREDICATElabeling/1:
Usage: labeling(Vars)

− Description: Implements the labeling process. Assigns values to the input variables
Vars. On exit all variables are instantiated to a consistent value. On backtracking,
the predicate returns all possible assignments. No labeling heuristics implemented so
far, i.e. variables are instantiated in their order of appearance.

− The following properties should hold at call time:

Vars is a list of fd_items. (basic_props:list/2)

PREDICATEpitm/2:
Usage: pitm(+V, -MiddlePoint)

− Description: Returns in MiddlePoint the intermediate value of the range of V. In
case V is a ground integer value the returned value is V itself.

− The following properties should hold at call time:

+V is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-MiddlePoint is an integer. (basic_props:int/1)

694 The Ciao Prolog System

PREDICATEchoose var/3:
Usage: choose_var(+ListOfVars, -Var, -RestOfVars)

− Description: Returns a finite domain item Var from a list of fd items ListOfVars
and the rest of the list RestOfVarsin a deterministic way. Currently it always returns
the first item of the list.

− The following properties should hold at call time:

+ListOfVars is a list of fd_items. (basic_props:list/2)

-Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-RestOfVars is a list of fd_items. (basic_props:list/2)

PREDICATEchoose free var/2:
Usage: choose_free_var(+ListOfVars, -Var)

− Description: Returns a free variable Var from a list of fd items ListOfVars. Currently
it always returns the first free variable of the list.

− The following properties should hold at call time:

+ListOfVars is a list of fd_items. (basic_props:list/2)

-Var is a free variable. (term_typing:var/1)

PREDICATEchoose var nd/2:
Usage: choose_var_nd(+ListOfVars, -Var)

− Description: Returns non deterministically an fd item Var from a list of fd items
ListOfVars .

− The following properties should hold at call time:

+ListOfVars is a list of fd_items. (basic_props:list/2)

-Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

PREDICATEchoose value/2:
Usage: choose_value(+Var, -Value)

− Description: Produces an integer value Value from the domain of Var. On back-
tracking returns all possible values for Var.

− The following properties should hold at call time:

+Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-Value is an integer. (basic_props:int/1)

PREDICATEretrieve range/2:
Usage: retrieve_range(+Var, -Range)

− Description: Returns in Range the range of an fd item Var.

− The following properties should hold at call time:

+Var is a free variable. (term_typing:var/1)

-Range is the range of a finite domain entity. (user(... /fd_doc):fd_range/1)

Chapter 177: Constraint programming over finite domains 695

PREDICATEretrieve store/2:
Usage: retrieve_store(+Var, -Store)

− Description: Returns in Store a representation of the constraint store of an fd item
Var.

− The following properties should hold at call time:

+Var is a free variable. (term_typing:var/1)

-Store is a representation of the constraint store of a finite domain entity. (user(...
/fd_doc):fd_store/1)

PREDICATEglb/2:
Usage: glb(+Var, -LowerBound)

− Description: Returns in LowerBound the lower bound of the range of Var.

− The following properties should hold at call time:

+Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-LowerBound is an integer. (basic_props:int/1)

PREDICATElub/2:
Usage: lub(+Var, -UpperBound)

− Description: Returns in UpperBound the upper bound of the range of Var.

− The following properties should hold at call time:

+Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-UpperBound is an integer. (basic_props:int/1)

PREDICATEbounds/3:
Usage: bounds(+Var, -LowerBound, -UpperBound)

− Description: Returns in LowerBound and UpperBound the lower and upper bounds of
the range of Var.

− The following properties should hold at call time:

+Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-LowerBound is an integer. (basic_props:int/1)

-UpperBound is an integer. (basic_props:int/1)

PREDICATEretrieve list of values/2:
Usage: retrieve_list_of_values(+Var, -ListOfValues)

− Description: Returns in ListOfValues an enumeration of al the values in the range
of Var

− The following properties should hold at call time:

+Var is a finite domain entity, i.e. either a finite domains variable or an integer.
(user(... /fd_doc):fd_item/1)

-ListOfValues is a list of ints. (basic_props:list/2)

696 The Ciao Prolog System

Chapter 178: XDR handle library 697

178 XDR handle library

Author(s): Jos Manuel Gmez Prez.

This library offers facilities to enable users to setup preferences on the values an eventual
XML document may take. XML documents are specified by XDR documents (eXternal Data
Representation standard), in a way conceptually similar to that of objects and classes in object
oriented programming. These facilities allow to take as input an XDR Schema defining the
class of documents of interest, and establish a dialogue with the user via an HTML form that
allows the user to setup preferences to select sub-classes of documents (those which satisfy the
preferences). The preferences are the output of the process and may be in the form of XPath
expressions, for example, as can be seen in the example attached in the "examples" directory.

178.1 Usage and interface (xdr_handle)
® ©

• Library usage:

:- use_module(library(xdr_handle)).

• Exports:

− Predicates:

xdr_tree/3, xdr_tree/1, xdr2html/4, xdr2html/2, unfold_tree/2, unfold_tree_
dic/3, xdr_xpath/2.

− Regular Types:

xdr_node/1.

• Other modules used:

− System library modules:

pillow/http, pillow/html, pillow/pillow_types, xdr_handle/xdr_types,
aggregates, lists, terms.

 ª

178.2 Documentation on exports (xdr_handle)

PREDICATExdr tree/3:
Usage: xdr_tree(+XDR_url, -XDR_tree, -XDR_id)

− Description: Parses an XDR (External Data Representation Standard) located at an
url XDR_url into a tree structured Prolog term XDR_tree. It also returns an identifier
of the XDR tree XDR_id corresponding to the sequence of nodes in the tree (this is
intended to be a hook to use in CGI applications).

− The following properties should hold at call time:

+XDR_url specifies a URL. (pillow_types:url_term/1)

-XDR_tree specifies an XDR document. (xdr_types:xdr/1)

-XDR_id is an integer. (basic_props:int/1)

PREDICATExdr tree/1:
Usage: xdr_tree(XDR_tree)

− Description: Checks the correctness of an XDR tree XDR_tree.

698 The Ciao Prolog System

− The following properties should hold at call time:

XDR_tree specifies an XDR document. (xdr_types:xdr/1)

REGTYPExdr node/1:
Usage: xdr_node(XDR_node)

− Description: XDR_node is a XDR tree node.

PREDICATExdr2html/4:
Usage: xdr2html(+XDRTree, -HTMLOutput, -UnfoldedTree, -Dic)

− Description: Receives an XDR tree XDRTree and produces the corresponding HTML
code HTMLOutput, an equivalente unfolded plain tree UnfoldedTree and a control
dictionary Dic to hold a reference the evenutal fom objects.

− The following properties should hold at call time:

+XDRTree specifies an XDR document. (xdr_types:xdr/1)

-HTMLOutput is a term representing HTML code. (pillow_types:html_term/1)

-UnfoldedTree specifies an XDR document. (xdr_types:xdr/1)

-Dic is a dictionary of values of the attributes of a form. It is a list of form_
assignment (pillow_types:form_dict/1)

PREDICATExdr2html/2:
Usage: xdr2html(+XDRTree, -HTMLOutput)

− Description: Receives an XDR tree XDRTree and produces the corresponding HTML
code HTMLOutput. This html code is intended to be part of a form used as a means
by which an eventual user can give value to an instance of the XDR, i.e. an XML
element.

− The following properties should hold at call time:

+XDRTree specifies an XDR document. (xdr_types:xdr/1)

-HTMLOutput is a term representing HTML code. (pillow_types:html_term/1)

PREDICATEunfold tree/2:
Usage: unfold_tree(+XDRTree, -UFT)

− Description: Obtains an unfolded XDR tree UFT from a standard XDR tree XDRTree,
i.e. an XDR tree where all references to XDR elements have been substituted with the
elements themselves. Especially useful for eventual generation of equivalent XPATH
expressions, (see example).

− The following properties should hold at call time:

+XDRTree specifies an XDR document. (xdr_types:xdr/1)

-UFT specifies an XDR document. (xdr_types:xdr/1)

Chapter 178: XDR handle library 699

PREDICATEunfold tree dic/3:
Usage: unfold_tree_dic(+XDRTree, -UFT, -Dic)

− Description: Obtains an unfolded XDR tree UFT and a form dictionary Dic from a
standard XDR tree XDRTree. Especially useful for HTML form data exchange (see
example).

− The following properties should hold at call time:

+XDRTree specifies an XDR document. (xdr_types:xdr/1)

-UFT specifies an XDR document. (xdr_types:xdr/1)

-Dic is a dictionary of values of the attributes of a form. It is a list of form_
assignment (pillow_types:form_dict/1)

PREDICATExdr xpath/2:
Usage: xdr_xpath(+XDRTree, -XPath)

− Description: Produces an XPATH expression XPath from an XDR tree XDRTree. If
the given XDR tree has no definite value the xpath expression produced will be empty

− The following properties should hold at call time:

+XDRTree specifies an XDR document. (xdr_types:xdr/1)

-XPath is an atom. (basic_props:atm/1)

700 The Ciao Prolog System

Chapter 179: XML query library 701

179 XML query library

Author(s): Jos Manuel Gmez Prez.

Version: 0.1 (2003/12/1, 13:24:9 CET)

This package provides a language suitable for querying XML documents from a Prolog pro-
gram. Constraint programming expresions can be included in order to prune search as soon as
possible, i.e. upon constraint unsatisfability, improving efficiency. Also, facilities are offerd to
improve search speed by transforming XML documents into Prolog programs, hence reducing
search to just running the program and taking advantage of Prolog’s indexing capabilities.

Queries in an XML document have a recursive tree structructure that permits to detail the
search on the XML element sought, its attributes, and its children. As a suffix, a constraint
programming expression can be added. Queries return value for the free variables included (in
case of success), and checks whether the XML document structure matches that depicted by the
query itself.

The operators introduced are described below:

• @ Delimits a subquery on an elment’s attribute, such as product@val(product_name,
"car"), the first argument being the attribute name and the second its value. Any of
them can be free variables, being possible to write queries like product@val(Name, "car"),
intended to find the ’Name’ of attributes of element product whose value is the string "car".

• :: The right-hand side of the subexpression delimited by this operator is a query on the
children elements of the element described on its left-hand side.

• with Declares the constraints the items sought must satisfy.

Some examples of this query language (more can be found in the examples directory):

• Example A:

product@val(product_name,"car")::(quantity(X),
’time-left’(Y),
negotiation::preference::price(Z))

with X * Z .>. Y

• Example B:

nitf::head::docdata::’doc-id’@val(’id-string’,"020918050")::(Y),
body::’body.head’::abstract::p(X)

702 The Ciao Prolog System

179.1 Usage and interface (xml_path)
® ©

• Library usage:

:- use_package(xml_path).

or

:- module(...,...,[xml_path]).

• Exports:

− Predicates:

xml_search/3, xml_parse/3, xml_parse_match/3, xml_search_match/3, xml_
index_query/3, xml_index_to_file/2, xml_index/1, xml_query/3.

• New operators defined:

@/2 [200,yfx], ::/2 [300,xfy], with/2 [800,yfx].

• Other modules used:

− System library modules:

xml_path/xml_path_types.

 ª

179.2 Documentation on exports (xml_path)

PREDICATExml search/3:
Usage: xml_search(+Query, +Source, -Doc)

− Description: Checks a high level query Query against an XML document Source. If
the query is successful it retuns in Doc the whole xml element(s) of the document
that matched it.

− The following properties should hold at call time:

+Query is a primitive XML query. (xml_path_types:canonic_xml_query/1)

+Source is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

-Doc is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

PREDICATExml parse/3:
Usage: xml_parse(+Query, +Source, -Doc)

− Description: Checks a high level query Query against an XML document Source. If
the query is successful it retuns in Doc the whole xml element(s) of the document
that matched it. On the contrary as xml_search/3, the query can start at any level
of the XML document, not necessarily at the root node.

− The following properties should hold at call time:

+Query is a primitive XML query. (xml_path_types:canonic_xml_query/1)

+Source is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

-Doc is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

Chapter 179: XML query library 703

PREDICATExml parse match/3:
Usage: xml_parse_match(+Query, +Source, -Match)

− Description: Checks a high level query Query against an XML document Source. If
the query is successful it retuns in Doc the exact subtree of the xml document that
matched it. On the contrary as ’$xml_search_match/3, the query can start at any
level of the XML document, not necessarily at the root node.

− The following properties should hold at call time:

+Query is a primitive XML query. (xml_path_types:canonic_xml_query/1)

+Source is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

-Match is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

PREDICATExml search match/3:
Usage: xml_search_match(+BasicQuery, +SourceDoc, -Match)

− Description: Checks query Query against an XML document Source. If the query is
successful it retuns in Doc the exact subtree of the xml document that matched it.

− The following properties should hold at call time:

+BasicQuery is a primitive XML query. (xml_path_types:canonic_xml_query/1)

+SourceDoc is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

-Match is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

PREDICATExml index query/3:
Usage: xml_index_query(+Query, -Id, -Match)

− Description: Matches a high level query Query against an XML document previously
transformed into a Prolog program. Id identifies the resulting document Match, which
is the exact match of the query against the XML document.

− The following properties should hold at call time:

+Query is a primitive XML query. (xml_path_types:canonic_xml_query/1)

-Id is an atom. (basic_props:atm/1)

-Match is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

PREDICATExml index to file/2:
Usage: xml_index_to_file(SourceDoc, File)

− Description: Transforms the XML document SourceDoc in a Prolog program which
is output to file File.

− The following properties should hold at call time:

SourceDoc is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

File is an atom. (basic_props:atm/1)

704 The Ciao Prolog System

PREDICATExml index/1:
Usage: xml_index(SourceDoc)

− Description: Transforms the XML document SourceDoc in a Prolog program, gen-
erating the associated clauses, which are stored dynamically into the current process
memory space.

− The following properties should hold at call time:

SourceDoc is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

PREDICATExml query/3:
Usage: xml_query(+Query, +Doc, -Match)

− Description: Checks that XML document Doc is compliant with respect to the query
Query expressed in the low level query language. The exact mapping of the query
over the document is returned in Match

− The following properties should hold at call time:

+Query is a primitive XML query. (xml_path_types:canonic_xml_query/1)

+Doc is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

-Match is either a XML attribute, a XML element or a line break. (xml_path_
types:canonic_xml_item/1)

179.3 Documentation on internals (xml_path)

REGTYPEcanonic xml term/1:
Usage: canonic_xml_term(XMLTerm)

− Description: XMLTerm is a term representing XML code in canonical form.

REGTYPEcanonic xml item/1:
Usage: canonic_xml_item(XMLItem)

− Description: XMLItem is either a XML attribute, a XML element or a line break.

REGTYPEtag attrib/1:
Usage: tag_attrib(Att)

− Description: Att is a XML attribute.

REGTYPEcanonic xml query/1:
Usage: canonic_xml_query(Query)

− Description: Query is a primitive XML query.

REGTYPEcanonic xml subquery/1:
Usage: canonic_xml_subquery(SQuery)

− Description: SQuery defines a XML subquery.

Chapter 180: A Chart Library 705

180 A Chart Library

Author(s): Isabel Mart́ın Garćıa.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#154 (2003/12/4, 17:39:3 CET)

This library is intended to eaose the task of displaying some graphical results. This library
allows the programmer to visualize different graphs and tables without knowing anything about
specific graphical packages.

You need to install the BLT package in your computer. BLT is an extension to the Tk
toolkit and it does not require any patching of the Tcl or Tk source files. You can find it in
http://www.tcltk.com/blt/index.html

Basically, when the user invokes a predicate, the library (internally) creates a bltwish in-
terpreter and passes the information through a socket to display the required widget. The
interpreter parses the received commands and executes them.

The predicates exported by this library can be classified in four main groups, according to
the types of representation they provide.

• bar charts

• line graphs

• scatter graphs

• tables

To represent graphs, the Cartesian coordinate system is used. I have tried to show simple
samples for every library exported predicate in order to indicate how to call them.

180.1 Bar charts

In this section we shall introduce the general issues about the set of barchart predicates.
By calling the predicates that pertain to this group a bar chart for plotting two-dimensional
data (X-Y coordinates) can be created. A bar chart is a graphic means of comparing numbers
by displaying bars of lengths proportional to the y-coordinates they represented. The barchart
widget has many configurable options such as title, header text, legend and so on. You can
configure the appearance of the bars as well. The bar chart widget has the following components:

Header text
The text displayed at the top of the window. If it is ’’ no text will be displayed.

Save button
The button placed below the header text. Pops up a dialog box for the user to select
a file to save the graphic in PostScript format.1

Bar chart title
The title of the graph. It is displayed at the top of the bar chart graph. If text is
’’ no title will be displayed.

X axis title
X axis title. If text is ’’ no x axis title will be displayed.

Y axis title
Y axis title. If text is ’’ no y axis title will be displayed.

1 Limitation: Some printers can have problems if the PostScript file is too complex (i.e. too
many points/lines appear in the picture).

706 The Ciao Prolog System

X axis X coordinate axis. The x axis is drawn at the bottom margin of the bar chart graph.
The x axis consists of the axis line, ticks and tick labels. Tick labels can be numbers
or plain text. If the labels are numbers, they could be displayed at uniform intervals
(the numbers are treated as normal text) or depending on its x-coodinate value.
You can also set limits (maximum and minimum) for the x axis, but only if the tick
labels are numeric.

Y axis Y coordinate axis. You can set limits (maximum and minimum) for the y axis. The
y axis is drawn at the right margin of the bar chart graph.The y axis consists of the
axis line, ticks and tick labels. The tick labels are numeric values determined from
the data and are drawn at uniform intervals.

Bar chart graph
This is the plotting area, placed in the center of the window and surrounded by the
axes, the axis titles and the legend (if any). The range of the axes controls what
region of the data is plotted. By default, the minimum and maximum limits are
determined from the data, but you can set them (as mentioned before). Data points
outside the minimum and maximum value of the axes are not plotted.

Legend The legend displays the name and symbol of each bar. The legend is placed in the
right margin of the Bar chart graph.

Footer text
Text displayed at the lower part of the window. If text is ’’ no header text will be
displayed.

Quit button
Button placed below the footer text. Click it to close the window.

All of them are arranged in a window. However you can, for example, show a bar chart
window without legend or header text. Other configuration options will be explained later.

In addition to the window appearance there is another important issue about the bar chart
window, namely its behaviour in response to user actions. The association user actions to
response is called bindings. The main bindings currently specified are the following:

Default bindings
Those are well known by most users. They are related to the frame displayed
around the window. As you know, you can interactively move, resize, close, iconify,
deiconify, send to another desktop etc. a window.

Bindings related to bar chart graph and its legend
Clicking the left mouse key over a legend element, the corresponding bar turns out
into red. After clicking again, the bar toggles to its original look. In addition, you
can do zoom-in by pressing the left mouse key over the bar chart graph and dragging
to select an area. To zoom out simply press the right mouse button.

When the pointer passes over the plotting area the cross hairs are drawn. The cross
hairs consists of two intersecting lines (one vertical and one horizontal). Besides, if
the pointer is over a legend element, its background changes.

Bindings related to buttons
There are two buttons in the main widget. Clicking the mouse on the Save button
a "Save as" dialog box is popped up. The user can select a file to save the graph.
If the user choose a file that already exists, the dialog box prompts the user for
confirmation on whether the existing file should be overwritten or not. Furthermore,
you can close the widget by clicking on the Quit button.

When the pointer passes over a button the button color changes.

The predicates that belong to this group are those whose names begin with barchart and
genmultibar. If you take a look at the predicate names that pertain to this group, you will notice

Chapter 180: A Chart Library 707

that they are not self-explanatory. It would have been better to name the predicates in a way
that allows the user to identify the predicate features by its name, but it would bring about very
long names (i.e barchart WithoutLegend BarsAtUniformIntervals RandomBarsColors). For this
reason I decided to simply add a number after barchart to name them.

180.2 Line graphs

It is frequently the case that several datasets need to be displayed on the same plot. If so, you
may wish to distinguish the points in different datasets by joining them by lines of different color,
or by plotting with symbols of different types. This set of predicates allows the programmer
to represent two-dimensional data (X-Y coordinates). Each dataset contains x and y vectors
containing the coordinates of the data. You can configure the appearance of the points and the
lines which the points are connected with. The configurable line graph components are:

line graph This is the plotting area, placed in the center of the window and surrounded by the
axes, the axes titles and the legend (if any). The range of the axes controls what
region of the data is plotted. By default, the minimum and maximum limits are
determined from the data, but you can set them. Data points outside the minimum
and maximum value of the axes are not plotted. You can specify how connecting line
segments joining successive datapoints are drawn by setting the Smooth argument.
Smooth can be either linear, step, natural and quadratic. Furthermore, you can
select the appearance of the points and lines.

Legend The legend displays the name and symbol of each line. The legend is placed in the
right margin of the graph.

The elements header, footer, quit and save buttons, the titles and the axes are quite similar
to those in barchart graphs, except in that the tick labels will be numbers. All of them are
arranged in a window by the geometry manager. However you can, as we mentioned in the above
paragraphs, show a line graph window without any titles or footer text. Other configuration
options will be explained later in this section or in the corresponding modules.

Related to the behaviour of the widgets in response to user actions (bindings) we will remark
the following features:

Bindings related to line graph and its legend
Clicking the left mouse key over a legend element, the corresponding line turns out
into blue. Repeating the action reverts the line to its original color. Moreover, you
can do zoom-in by clicking the left mouse key over the bar chart graph and dragging
a rectangle defining the area you want to zoom in. To zoom out simply press the
right mouse button.

When the pointer passes over the plotting area the cross hairs are drawn. The cross
hairs consists of two intersecting lines (one vertical and one horizontal). Besides, if
the pointer is over a legend element, its background changes.

Other bindings
The default bindings and the bindings related to the save and quit buttons are
similar to those in the bar chart graphs.

The predicates that belong to this group are those whose names begin with graph .

180.3 Scatter graphs

The challenge of this section is to introduce some general aspects about the scatter graph
predicates group. By invoking the scatter graph predicates the user can represent two-
dimensional point datasets. Often you need to display one or several point datasets on the
same plot. If so, you may wish to distinguish the points that pertain to different datasets by

708 The Ciao Prolog System

using plotting symbols of different types, or by displaying them in different colors. This set of
predicates allows you to represent two-dimensional data (X-Y coordinates). Each dataset con-
tains x and y vectors containing the coordinates of the data. You can configure the appearance
of the points. The configurable scatter graph components are:

scatter graph
This is the plotting area, placed in the center of the window and surrounded by the
axes, the axes titles and the legend (if any). The range of the axes controls what
region of the data is plotted. By default, the minimum and maximum limits are
determined from the data, but you can set them (as we mentioned before). Data
points outside the minimum and maximum value of the axes are not plotted. The
user can select the appearance of the points.

Legend The legend displays the name and symbol of each point dataset. The legend is
drawn in the right margin of the graph.

The elements header, footer, quit and save buttons, the titles and the axes are similar to those
in barchart graphs except for that, as in line graphs, the tick labels will be numbers. All of them
are arranged in a window by the geometry manager. However you can, for example, show a
scatter graph window without titles or footer text, as we mentioned before. Other configuration
options will be explained later, in the corresponding modules.

Related to the behaviour of the widgets in response to user actions (bindings) the following
features are:

Bindings related to scatter graph and its legend
Clicking the left mouse key over a legend element, the points which belong to the
corresponding dataset turn out into blue. Repeating the action toggles the point
dataset to its original color. Moreover, you can do zoom-in by clicking the left mouse
key over the bar chart graph and dragging a rectangle defining the area you want
to zoom-in on. To do zoom-out simply press the right mouse button.

When the pointer passes over the plotting area the cross hairs are drawn. The cross
hairs consists of two intersecting lines (one vertical and one horizontal). Besides, if
the pointer is over a legend element, its background changes.

Other bindings
The default bindings and the bindings related to the save and quit buttons are
similar to those in the bar chart graphs.

The predicates that belong to this group are those whose names began with scattergraph .

180.4 Tables

The purpose of this section is to allow the user to display results in a table. A table is a
regular structure in which:

• Every row has the same number of columns, or

• Every column has the same number of rows.

The widget configurable components are as follows:

Title

Title of the widget, it is displayed centered at the top of the canvas. If text is ’’ no
title will be displayed.

Header text
Left centered text displayed bellow the title. If text is ’’ no header text will be
displayed.

Chapter 180: A Chart Library 709

Table

Is placed in the center of the window. The table is composed by cells ordered in rows
and columns. The cell values can be either any kind of text or numbers and they
can be empty as well (see the type definition in the corresponding chapter module).
A table is a list of lists. Each sublist is a row, so every sublist in the table must
contain the same number of alements.

Footer text
Left centered text displayed at the lower part of the window. If text is ’’ no header
text will be displayed.

Quit button
Button placed below the footer text. You can click it to close the window.

If the arguments are not in a correct format an exception will be thrown. Moreover, these
widgets have the default bindings and the binding related to the quit button:

The set of predicates that belongs to this group are those which names begin with ta-
ble widget.

180.5 Overview of widgets

Although you don’t have to worry about how to arrange the widgets, here is an overview
of how Tcl-tk, the underlying graphical system currently used by chartlib, performs this task.
Quoting from the book Tcl and Tk toolkit, John K. Ousterhout.

The X Window System provides many facilities for manipulating windows in displays. The
root window may have any number of child windows, each of wich is called a top-level window.
Top-level windows may have children of their own, wich may have also children, and so on.
The descendants of top-level windows are called internal windows. Internal windows are usedfor
individual controls such as buttons, text entries, and for grouping controls together. An X-
application tipically manages several top-level windows. Tk uses X to implement a set of controls
with the Motif look and feel. These controls are called widgets. Each widget is implemented
using one X window, and the terms "window" and "widget" will be used interchangeably in
this document. As with windows, widgets are nested in hierarchical structures. In this library
top-level widgets (nonleaf or main) are just containers for organizing and arranging the leaf
widgets (components). Thereby, the barchart widget is a top-level window wich contains some
widget components.

Probably the most painstaking aspect of building a graphical application is getting the place-
ment and size of the widgets just right. It usually takes many iterations to align widgets and
adjust their spacing. That’s because managing the geometry of widgets is simply not a packing
problem, but also graphical design problem. Attributes such as alignment, symmetry, and bal-
ance are more important than minimizing the amount of space used for packing. Tk is similar to
other X toolkits in that it does not allow widgets to determine their own geometries. A widget
will not even appeared unless it is managed by a geometry manager. This separation of geom-
etry management from internal widget behaviour allows multiple geometry managers to exist
simultaneously and permits any widget to be used with any geometry manager. A geometry
manager’s job is to arrange one or more slave widgets relative to a master widgets. There are
some geometry managers in Tk such as pack, place and canvas widget. We will use another one
call table.

The table geometry manager arranges widgets in a table. It’s easy to align widgets (hor-
izontally and vertically) or to create empty space to balance the arrangement of the widgets.
Widgets (called slaves in the Tk parlance) are arranged inside a containing widget (called the
master). Widgets are positioned at row,column locations and may span any number of rows or
columns. More than one widget can occupy a single location. The placement of widget windows
determines both the size and arrangement of the table. The table queries the requested size of

710 The Ciao Prolog System

each widget. The requested size of a widget is the natural size of the widget (before the widget
is shrunk or expanded). The height of each row and the width of each column is the largest
widget spanning that row or column. The size of the table is in turn the sum of the row and
column sizes. This is the table’s normal size. The total number of rows and columns in a table
is determined from the indices specified. The table grows dynamically as windows are added at
larger indices.

180.6 Usage and interface (chartlib)
® ©

• Library usage:

:- use_module(library(chartlib)).

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/genbar2, chartlib/genbar3, chartlib/genbar4,
chartlib/genmultibar, chartlib/table_widget1,
chartlib/table_widget2, chartlib/table_widget3, chartlib/table_widget4,
chartlib/gengraph1, chartlib/gengraph2, chartlib/chartlib_errhandle.

 ª

180.7 Documentation on exports (chartlib)

(UNDOC REEXPORT)barchart1/7:
Imported from genbar1 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart1/9:
Imported from genbar1 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart1/7:
Imported from genbar1 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart2/7:
Imported from genbar2 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart2/11:
Imported from genbar2 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart2/7:
Imported from genbar2 (see the corresponding documentation for details).

Chapter 180: A Chart Library 711

(UNDOC REEXPORT)barchart3/7:
Imported from genbar3 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart3/9:
Imported from genbar3 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart3/7:
Imported from genbar3 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart4/7:
Imported from genbar4 (see the corresponding documentation for details).

(UNDOC REEXPORT)barchart4/11:
Imported from genbar4 (see the corresponding documentation for details).

(UNDOC REEXPORT)percentbarchart4/7:
Imported from genbar4 (see the corresponding documentation for details).

(UNDOC REEXPORT)multibarchart/8:
Imported from genmultibar (see the corresponding documentation for details).

(UNDOC REEXPORT)multibarchart/10:
Imported from genmultibar (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget1/4:
Imported from table_widget1 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget1/5:
Imported from table_widget1 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget2/4:
Imported from table_widget2 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget2/5:
Imported from table_widget2 (see the corresponding documentation for details).

712 The Ciao Prolog System

(UNDOC REEXPORT)tablewidget3/4:
Imported from table_widget3 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget3/5:
Imported from table_widget3 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget4/4:
Imported from table_widget4 (see the corresponding documentation for details).

(UNDOC REEXPORT)tablewidget4/5:
Imported from table_widget4 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b1/9:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b1/13:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w1/9:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w1/13:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b1/8:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b1/12:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w1/8:
Imported from gengraph1 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w1/12:
Imported from gengraph1 (see the corresponding documentation for details).

Chapter 180: A Chart Library 713

(UNDOC REEXPORT)graph b2/9:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph b2/13:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w2/9:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)graph w2/13:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b2/8:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph b2/12:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w2/8:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)scattergraph w2/12:
Imported from gengraph2 (see the corresponding documentation for details).

(UNDOC REEXPORT)chartlib text error protect/1:
Imported from chartlib_errhandle (see the corresponding documentation for details).

(UNDOC REEXPORT)chartlib visual error protect/1:
Imported from chartlib_errhandle (see the corresponding documentation for details).

714 The Ciao Prolog System

Chapter 181: Low level Interface between Prolog and blt 715

181 Low level Interface between Prolog and blt

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#153 (2003/12/4, 17:38:53 CET)

This module exports some predicates to interact with Tcl-tk, particularly with the bltwish
program. Bltwish is a windowing shell consisting of the Tcl command languaje, the Tk toolkit
plus the additional commands that comes with the BLT library and a main program that reads
commands. It creates a main window and then processes Tcl commands.

181.1 Usage and interface (bltclass)
® ©

• Library usage:

:- use_module(library(bltclass)).

• Exports:

− Predicates:

new_interp/1, tcltk_raw_code/2, interp_file/2.

− Regular Types:

bltwish_interp/1.

• Other modules used:

− System library modules:

sockets/sockets, system, write, read, strings, format, terms.

 ª

181.2 Documentation on exports (bltclass)

PREDICATEnew interp/1:
new_interp(Interp)

Creates a bltwish interprter and returns a socket. The socket allows the comunication
between Prolog and Tcl-tk. Thus, bltwish receives the commands through the socket.

PREDICATEtcltk raw code/2:
tcltk_raw_code(Command_Line, Interp)

Sends a command line to the interpreter. Tcl-tk parses and executes it.

REGTYPEbltwish interp/1:
bltwish_interp(Interp)

This type defines a bltwish interpreter. In fact, the bltwish interpreter receives the com-
mands through the socket created.

bltwish_interp(Interp) :-
stream(Interp).

716 The Ciao Prolog System

PREDICATEinterp file/2:
interp_file(File, Interp)

Sends the script file (File) to the interpreter through the socket. A script file is a file that
contains commands that Tcl-tk can execute.

Chapter 182: Error Handler for Chartlib 717

182 Error Handler for Chartlib

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#259 (2003/12/30, 23:55:26 CET)

This module is an error handler. If the format of the arguments is not correct in a call to a
chartlib predicate an exception will be thrown . You can wrap the chartlib predicates with the
predicates exported by this module to handle automatically the errors if any.

182.1 Usage and interface (chartlib_errhandle)
® ©

• Library usage:

:- use_module(library(chartlib_errhandle)).

• Exports:

− Predicates:

chartlib_text_error_protect/1, chartlib_visual_error_protect/1.

• Other modules used:

− System library modules:

chartlib/bltclass, chartlib/install_utils.

 ª

182.2 Documentation on exports (chartlib_errhandle)

PREDICATEchartlib text error protect/1:
chartlib_text_error_protect(G)

This predicate catches the thrown exception and sends it to the appropiate handler. The
handler will show the error message in the standard output.

Meta-predicate with arguments: chartlib_text_error_protect(goal).

PREDICATEchartlib visual error protect/1:
chartlib_visual_error_protect(G)

This predicate catches the thrown exception and sends it to the appropiate handler. The
handler will pop up a message box.

Meta-predicate with arguments: chartlib_visual_error_protect(goal).

182.3 Documentation on internals (chartlib_errhandle)

REGTYPEhandler type/1:
handler_type(X)

The library chartlib includes two error handlers already programmed.

handler_type(text).
handler_type(visual).

718 The Ciao Prolog System

PREDICATEerror message/2:
error_message(ErrorCode, ErrorMessage)

Binds the error code with its corresponding text message.

PREDICATEerror file/2:
error_file(ErrorCode, ErrorFile)

Binds the error code with its corresponding script error file.

Chapter 183: Color and Pattern Library 719

183 Color and Pattern Library

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#156 (2003/12/4, 17:39:13 CET)

This module contains predicates to access and check conformance to the available colors and
patterns.

183.1 Usage and interface (color_pattern)
® ©

• Library usage:

:- use_module(library(color_pattern)).

• Exports:

− Predicates:

color/2, pattern/2, random_color/1, random_lightcolor/1, random_darkcolor/1,
random_pattern/1.

− Regular Types:

color/1, pattern/1.

• Other modules used:

− System library modules:

lists, random/random.

 ª

183.2 Documentation on exports (color_pattern)

REGTYPEcolor/1:
color(Color)

color(’GreenYellow’).
color(’Yellow’).
color(’White’).
color(’Wheat’).
color(’BlueViolet’).
color(’Violet’).
color(’MediumTurquoise’).
color(’DarkTurquoise’).
color(’Turquoise’).
color(’Thistle’).
color(’Tan’).
color(’Sienna’).
color(’Salmon’).
color(’VioletRed’).
color(’OrangeRed’).
color(’MediumVioletRed’).
color(’IndianRed’).
color(’Red’).
color(’Plum’).

720 The Ciao Prolog System

color(’Pink’).
color(’MediumOrchid’).
color(’DarkOrchid’).
color(’Orchid’).
color(’Orange’).
color(’Maroon’).
color(’Magenta’).
color(’Khaki’).
color(’Grey’).
color(’LightGray’).
color(’DimGray’).
color(’DarkSlateGray’).
color(’YellowGreen’).
color(’SpringGreen’).
color(’SeaGreen’).
color(’PaleGreen’).
color(’MediumSpringGreen’).
color(’MediumSeaGreen’).
color(’LimeGreen’).
color(’ForestGreen’).
color(’DarkOliveGreen’).
color(’DarkGreen’).
color(’Green’).
color(’Goldenrod’).
color(’Gold’).
color(’Brown’).
color(’Firebrick’).
color(’Cyan’).
color(’Coral’).
color(’SteelBlue’).
color(’SlateBlue’).
color(’SkyBlue’).
color(’Navy’).
color(’MidnightBlue’).
color(’MediumSlateBlue’).
color(’MediumBlue’).
color(’LightSteelBlue’).
color(’LightBlue’).
color(’DarkSlateBlue’).
color(’CornflowerBlue’).
color(’CadetBlue’).
color(’Blue’).
color(’Black’).
color(’MediumAquamarine’).
color(’Aquamarine’).

Defines available colors for elements such as points, lines or bars.

PREDICATEcolor/2:
Usage: color(C1, C2)

Chapter 183: Color and Pattern Library 721

− Description: Test whether the color C1 is a valid color or not. If C1 is a variable the
predicate will choose a valid color randomly. If C1 is a ground term that is not a valid
color an exception (error9) will be thrown

− The following properties should hold at call time:

color_pattern:color(C1) (color_pattern:color/1)

− The following properties should hold upon exit:

color_pattern:color(C2) (color_pattern:color/1)

REGTYPEpattern/1:
pattern(Pattern)

pattern(pattern1).
pattern(pattern2).
pattern(pattern3).
pattern(pattern4).
pattern(pattern5).
pattern(pattern6).
pattern(pattern7).
pattern(pattern8).
pattern(pattern9).

Defines valid patterns used in the stipple style bar attribute.

PREDICATEpattern/2:
Usage: pattern(P1, P2)

− Description: Test whether the pattern P1 is a valid pattern or not. If P1 is a variable
the predicate will choose a valid pattern randomly. If P1 is a ground term that is not
a valid pattern an exception (error10) will be thrown.

− The following properties should hold at call time:

color_pattern:pattern(P1) (color_pattern:pattern/1)

− The following properties should hold upon exit:

color_pattern:pattern(P2) (color_pattern:pattern/1)

PREDICATErandom color/1:
random_color(Color)

This predicate choose a valid color among the availables randomly.

PREDICATErandom lightcolor/1:
random_lightcolor(Color)

This predicate choose a valid light color among the availables randomly.

PREDICATErandom darkcolor/1:
random_darkcolor(Color)

This predicate choose a valid dark color among the availables randomly.

722 The Ciao Prolog System

PREDICATErandom pattern/1:
random_pattern(Pattern)

This predicate choose a valid pattern among the availables randomly.

Chapter 184: Barchart widgets - 1 723

184 Barchart widgets - 1

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#260 (2003/12/31, 0:13:52 CET)

This module defines predicates to show barchart widgets. The three predicates exported by
this module plot two-variable data as regular bars in a window. They all share the following
features:

• No numeric values for the x axis are needed because they will be interpreted as labels. See
xbarelement1/1 definition type.

• The bars will be displayed at uniform intervals.

• The user can either select the appearance of the bars (background color, foreground color
and stipple style) or not. See the xbarelement1 type definition. Thus, the user can call
each predicate in two ways.

• The bar chart has a legend. One entry (symbol and label) per bar.

• If you don’t want to display text in the elements header, barchart title, x axis title, y axis
title or footer, simply type ’’ as the value of the argument.

• The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contains elements but are
not correct, the exception error1 or error3 will be thrown, depending on the error type.
error1 means that XVector and YVector do not contain the same number of elements and
error3 indicates that not all the XVector elements contain a correct number of attributes
.

Particular features will be pointed out in the corresponding predicate.

184.1 Usage and interface (genbar1)
® ©

• Library usage:

:- use_module(library(genbar1)).

• Exports:

− Predicates:

barchart1/7, barchart1/9, percentbarchart1/7.

− Regular Types:

yelement/1, axis_limit/1, header/1, title/1, footer/1.

• Other modules used:

− System library modules:

chartlib/bltclass, chartlib/test_format, chartlib/color_pattern,
chartlib/install_utils, lists, random/random.

 ª

184.2 Documentation on exports (genbar1)

PREDICATEbarchart1/7:
barchart1(Header, BarchartTitle, XTitle, XVector, YTitle, YVector, Footer)

724 The Ciao Prolog System

The y axis range is determined from the limits of the data. Two examples are given to
demonstrate clearly how to call the predicates. In the first example the user sets the bar
appearance, in the second one the appearance features will be chosen by the system and
the colors that have been assigned to the variables Color1, Color2 and Pattern will be
shown also.

Example 1:

barchart1(’This is the header text’,
’Barchart title’,
’xaxistitle’,
[[’bar1’,’legend_element1’,’Blue’,’Yellow’,’pattern1’],

[’bar2’,’legend_element2’,’Plum’,’SeaGreen’,’pattern2’],
[’bar3’,’legend_element3’,’Turquoise’,’Yellow’,’pattern5’]],

’yaxixtitle’,
[20,10,59],
’footer’).

Example 2:

barchart1(’This is the header text’,
’Barchart title’,
’xaxistitle’,
[[’element1’,’legend_element1’,Color1,Color2,Pattern],

[’element2’,’legend_element2’],
[’element3’,’legend_element3’]],

’yaxixtitle’,
[20,10,59],
’footer’).

PREDICATEbarchart1/9:
barchart1(Header, BTitle, XTitle, XVector, YTitle, YVector, YMax, YMin,
Footer)

You can set the minimum and maximum limits of the y axis. Data outside the limits will
not be plotted. Each limit, as you can check by looking at the axis_limit/1 definition,
is a number. If the argument is a variable the limit will be calculated from the data (i.e.,
if YMax value is YValueMax the maximum y axis limit will calculated using the largest
data value).

Example:

barchart1(’This is the header text’,
’Barchart title’,
’xaxistitle’,
[[’element1’,’e1’,’Blue’,’Yellow’,’pattern1’],

[’element2’,’e2’,’Turquoise’,’Plum’,’pattern5’],
[’element3’,’e3’,’Turquoise’,’Green’,’pattern5’]],

’yaxixtitle’,
[20,10,59],
70,
_,
’footer’).

Chapter 184: Barchart widgets - 1 725

PREDICATEpercentbarchart1/7:
percentbarchart1(Header, BTitle, XTitle, XVector, YTitle, YVector, Footer)

The y axis maximum coordinate value is 100. The x axis limits are automatically worked
out.

Example:

percentbarchart1(’This is a special barchart to represent percentages’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,’Blue’,’Yellow’,’pattern1’],

[8,’bar2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[80,10],
’This is the footer text’).

REGTYPEyelement/1:
yelement(Y) :-

number(Y).

Y is the bar lenght, so it must be a numeric value.

Both Prolog and Tcl-Tk support integers and floats. Integers are usually specified in
decimal, but if the first character is 0 the number is read in octal (base 8), and if the first
two characters are 0x, the number is read in hexadecimal (base16). Float numbers may
be specified using most of the forms defined for ANSI C, including the following examples:

• 9.56

• 5.88e-2

• 5.1E2

Note: Be careful when using floats. While 8. or 7.e4 is interpreted by Tcl-tk as 8.0 and
7.0e4, Prolog will not read them as float numbers. Example:

?- number(8.e+5).
{SYNTAX ERROR: (lns 130-130) , or) expected in arguments
number (8
** here **
. e + 5) .
}

no
?- number(8.).
{SYNTAX ERROR: (lns 138-138) , or) expected in arguments
number (8
** here **
.) .
}

no

?- number(8.0e+5).

yes
?- number(8.0).

726 The Ciao Prolog System

yes

Precision: Tcl-tk internally represents integers with the C type int, which provides at
least 32 bits of precision on most machines. Since Prolog integers can (in some implemen-
tations) exceed 32 bits but the precision in Tcl-tk depends on the machine, it is up to the
progammer to ensure that the values fit into the maximum precision of the machine for
integers. Real numbers are represented with the C type double, which is usually repre-
sented with 64-bit values (about 15 decimal digits of precision) using the IEEE Floating
Point Standard.

Conversion: If the list is composed by integers and floats, Tcl-tk will convert integers to
floats.

REGTYPEaxis limit/1:
axis_limit(X) :-

number(X).
axis_limit(_1).

This type is defined in order to set the minimum and maximum limits of the axes. Data
outside the limits will not be plotted. Each limit, is a number or a variable. If the
argument is not a number the limit will be calculated from the data (i.e., if YMax value
is Var the maximum y axis limit will be calculated using the largest data value).

REGTYPEheader/1:
Usage: header(X)

− Description: X is a text (an atom) describing the header of the graph.

REGTYPEtitle/1:
Usage: title(X)

− Description: X is a text (an atom) to be used as label, usually not very long.

REGTYPEfooter/1:
Usage: footer(X)

− Description: X is a text (an atom) describing the footer of the graph.

184.3 Documentation on internals (genbar1)

REGTYPExbarelement1/1:
xbarelement1([XValue,LegendElement]) :-

atomic(XValue),
atomic(LegendElement).

xbarelement1([XValue,LegendElement,ForegColor,BackgColor,SPattern]) :-
atomic(XValue),
atomic(LegendElement),

Chapter 184: Barchart widgets - 1 727

color(ForegColor),
color(BackgColor),
pattern(SPattern).

Defines the attributes of the bar.

XValue bar label. Although XValue values may be numbers, the will be treated as
labels. Different elements with the same label will produce different bars.

LegendElement
Legend element name. It may be a number or an atom and equal or different
to the XValue. Every LegendElement value of the list must be unique.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

728 The Ciao Prolog System

Chapter 185: Barchart widgets - 2 729

185 Barchart widgets - 2

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#265 (2003/12/31, 16:47:45 CET)

This module defines predicates which show barchart widgets. The three predicates exported
by this module plot two-variable data as regular bars in a window. They all share the following
features:

• Numeric values for the x axis are needed, otherwise it does not work properly. See
xbarelement2/1 definition type.

• The bar position is proportional to the x-coordinate value.

• The user can either select the appearance of the bars (background color, foreground color
and stipple style) or not. See the xbarelement2/1 type definition. Thus, the user can call
each predicate in two ways.

• The bar chart has a legend and one entry (symbol and label) per bar.

• If you do not want to display text in the elements header, barchart title, x axis title, y axis
title or footer, simply type ’’ as the value of the argument.

• The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contain elements but are
not correct, the exception error1 or error3 will be thrown, depending on the error type.
error1 means that XVector and YVector does not contain the same number of elements and
error3 indicates that not all the XVector elements contain a correct number of attributes
.

Particular features will be pointed out in the corresponding predicate.

185.1 Usage and interface (genbar2)
® ©

• Library usage:

:- use_module(library(genbar2)).

• Exports:

− Predicates:

barchart2/7, barchart2/11, percentbarchart2/7.

− Regular Types:

xbarelement2/1.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 ª

185.2 Documentation on exports (genbar2)

PREDICATEbarchart2/7:
barchart2(Header, BarchartTitle, XTitle, XVector, YTitle, YVector, Footer)

The maximum and minimum limits for axes are determined from the data.

Example:

730 The Ciao Prolog System

barchart2(’This is the header text’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,’Blue’,’Yellow’,’pattern1’],

[2,’bar2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[20,10],
’This is the footer text’).

PREDICATEbarchart2/11:
barchart2(Header, BT, XT, XVector, XMax, XMin, YT, YVector, YMax, YMin,
Footer)

You can set the minimum and maximum limits of the axes. Data outside the limits will
not be plotted. Each limit, as you can check looking at the axis_limit/1 definition, is a
number. If the argument is a variable the limit will be calculated from the data (i.e., if
YMax value is YValueMax the maximum y axis limit will calculated using the largest data
value).

Example:

barchart2(’This is the header text’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,Color1,Color2,Pattern1],

[2,’bar2’,Color3,Color4,Pattern2]],
10,
-10,
’My yaxixtitle’,
[20,10],
100,
-10,
’The limits for the axes are set by the user’).

PREDICATEpercentbarchart2/7:
percentbarchart2(Header, BTitle, XTitle, XVector, YTitle, YVector, Footer)

The y axis maximum coordinate value is 100. The x axis limits are autoarrange.

Example:

percentbarchart2(’This is a special barchart to represent percentages’,
’Barchart with legend’,
’My xaxistitle’,
[[1,’bar1’,’Blue’,’Yellow’,’pattern1’],

[2,’bar2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[80,10],
’This is the footer text’).

REGTYPExbarelement2/1:

Chapter 185: Barchart widgets - 2 731

xbarelement2([XValue,LegendElement]) :-
number(XValue),
atomic(LegendElement).

xbarelement2([XValue,LegendElement,ForegColor,BackgColor,SPattern]) :-
number(XValue),
atomic(LegendElement),
color(ForegColor),
color(BackgColor),
pattern(SPattern).

Defines the attributes of the bar.

XValue x-coordinate position of the bar. Different elements with the same abscissas
will produce overlapped bars.

LegendElement
Element legend name. It may be a number or an atom and equal or different
to the XValue. Every LegendElement value of the list must be unique.

ForegColor
Is the Foreground color of the bar. Its value must be a valid color, otherwise
the system will throw an exception. If the argument value is a variable, it
gets instantiated to a color chosen by the library.

BackgColor
Is the Background color of the bar. Its value must be a valid color, otherwise
the system will throw an exception. If the argument value is a variable, it
gets instantiated to a color chosen by the library.

SPattern Is the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

732 The Ciao Prolog System

Chapter 186: Depict barchart widgets - 3 733

186 Depict barchart widgets - 3

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#267 (2004/1/1, 14:9:7 CET)

This module defines predicates which depict barchart widgets. The three predicates exported
by this module plot two-variable data as regular bars in a window and are similar to those
exported in the genbar1 module except in that these defined in this module do not display a
legend. Thus, not all the argument types are equal.

The predicates test whether the format of the arguments is correct. If one or both vectors are
empty, the exception error2 will be thrown. If the vectors contain elements but are not correct,
the exception error1 or error3 will be thrown, depending on the error type. error1 means
that XVector and YVector do not contain the same number of elements and error3 indicates
that not all the XVector elements contain a correct number of attributes .

186.1 Usage and interface (genbar3)
® ©

• Library usage:

:- use_module(library(genbar3)).

• Exports:

− Predicates:

barchart3/7, barchart3/9, percentbarchart3/7.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 ª

186.2 Documentation on exports (genbar3)

PREDICATEbarchart3/7:
barchart3(Header, BarchartTitle, XTitle, XVector, YTitle, YVector, Footer)

As we mentioned in the above paragraph, this predicate is comparable to barchart1/8
except in the XVector argument type.

Example:

barchart3(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[’bar1’],[’bar2’]],
’My yaxixtitle’,
[20,10],
’This is the footer text’).

734 The Ciao Prolog System

PREDICATEbarchart3/9:
barchart3(Header, BTitle, XTitle, XVector, YTitle, YVector, YMax, YMin,
Footer)

As we mentioned, this predicate is quite similar to the barchart1/10 except in the
XVector argument type, because the yielded bar chart lacks of legend.

Example:

barchart3(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[’bar1’],[’bar2’]],
’My yaxixtitle’,
30,
5,
[20,10],
’This is the footer text’).

PREDICATEpercentbarchart3/7:
percentbarchart3(Header, BTitle, XTitle, XVector, YTitle, YVector, Footer)

The y axis maximum coordinate value is 100. The x axis limits are autoarrange.

Example:

percentbarchart3(’This is a special barchart to represent percentages’,
’Barchart without legend’,
’My xaxistitle’,
[[’pr1’,’Blue’,’Yellow’,’pattern1’],

[’pr2’,’MediumTurquoise’,’Plum’,’pattern5’]],
’My yaxixtitle’,
[80,10],
’This is the footer text’).

186.3 Documentation on internals (genbar3)

REGTYPExbarelement3/1:
xbarelement3([XValue]) :-

atomic(XValue).
xbarelement3([XValue,ForegColor,BackgColor,StipplePattern]) :-

atomic(XValue),
color(ForegColor),
color(BackgColor),
pattern(StipplePattern).

Defines the attributes of the bar.

XValue bar label. Although XValue values may be numbers, the will be treated as
labels. Different elements with the same label will produce different bars.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

Chapter 186: Depict barchart widgets - 3 735

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

736 The Ciao Prolog System

Chapter 187: Depict barchart widgets - 4 737

187 Depict barchart widgets - 4

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#268 (2004/1/1, 14:15:51 CET)

This module defines predicates which depict barchart widgets. The three predicates exported
by this module plot two-variable data as regular bars in a window and are similar to those
exported in genbar2 module except in that those defined in this module doesn’t display a legend.
Thus, the user does not have to define legend element names.

The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contains elements but are not
correct, the exception error1 or error3 will be thrown, depending on the error type. error1
means that XVector and YVector do not contain the same number of elements and error3
indicates that not all the XVector elements contain a correct number of attributes .

187.1 Usage and interface (genbar4)
® ©

• Library usage:

:- use_module(library(genbar4)).

• Exports:

− Predicates:

barchart4/7, barchart4/11, percentbarchart4/7.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 ª

187.2 Documentation on exports (genbar4)

PREDICATEbarchart4/7:
barchart4(Header, BarchartTitle, XTitle, XVector, YTitle, YVector, Footer)

As we mentioned in the above paragraph, this predicate is comparable to barchart2/8
except in the XVector argument type.

Example:

barchart4(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[2],[5],[6]],
’My yaxixtitle’,
[20,10,59],
’Numeric values in the xaxis’).

738 The Ciao Prolog System

PREDICATEbarchart4/11:
barchart4(Hder, BT, XT, XVector, XMax, XMin, YT, YVector, YMax, YMin, Fter)

As we stated before, this predicate is quite similar to barchart2/10 except in the following
aspects:

• The XVector argument type, because the yielded bar chart lacks the legend.

• The user can set limits for both x axis and y axis.

Example:

barchart4(’This is the header text, you can write a graph description’,
’Barchart without legend’,
’My xaxistitle’,
[[2,’Blue’,’Yellow’,’pattern1’],

[20,’MediumTurquoise’,’Plum’,’pattern5’],
[30,’MediumTurquoise’,’Green’,’pattern5’]],

50,
-10,
’My yaxixtitle’,
[20,10,59],
100,
-10,
’Numeric values in the xaxis’).

PREDICATEpercentbarchart4/7:
percentbarchart4(Header, BTitle, XTitle, XVector, YTitle, YVector, Footer)

The y axis maximum coordinate value is 100. The x axis limits are automatically worked
out. This predicate is useful when the bar height represents percentages.

Example:

percentbarchart4(’This is the header text’,
’Barchart without legend’,
’My xaxistitle’,
[[2,’Blue’,’Yellow’,’pattern1’],[5,’Yellow’,’Plum’,’pattern5’],

[6,’MediumTurquoise’,’Green’,’pattern5’]],
’My yaxixtitle’,
[20,10,59],
’Numeric values in the xaxis’).

187.3 Documentation on internals (genbar4)

REGTYPExbarelement4/1:
Defines the attributes of the bar.

XValue x-coordinate position of the bar. Different elements with the same abscissas
will produce overlapped bars.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

Chapter 187: Depict barchart widgets - 4 739

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

740 The Ciao Prolog System

Chapter 188: Depic line graph 741

188 Depic line graph

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#269 (2004/1/1, 14:17:43 CET)

This module defines predicates which depict line graph and scatter graph widgets. All eigth
predicates exported by this module plot two-variable data. Each point is defined by its X-Y
coordinate values. A dataset is defined by two lists xvector and yvector, which contain the
points coordinates. As you might guess, the values placed in the the same position in both lists
are the coordinates of a point. They both share the following features:

• Numeric values for vector elements are needed. We’ll use two vectors to represent the X-Y
coordinates of each set of plotted data, but in this case every dataset shares the X-vector,
i.e., x-coordinate of points with the same index1 in different datasets is the same. Thus, the
numbers of points in each yvector must be equal to the number of points in the xvector.

• The active element color is navyblue, which means that when you select a legend element,
the corresponding line or point dataset turns into navyblue.

• The user can either select the appearance of the lines and/or points of each dataset or not.
If not, the system will choose the colors for the lines and the points among the available
ones in accordance with the plot background color and it will also set the points size and
symbol to the default. If the plot background color is black, the system will choose a lighter
color, and the system will select a darker color when the plot background color is white.
Thus, the user can define the appearanse attributes of each dataset in four different ways.
Take a look at the attributes/1 type definition and see the examples to understand it
clearly.

• The graph has a legend and one entry (symbol and label) per dataset.

• If you do not want to display text in the element header, barchart title, xaxis title, yaxis
title or footer, simply give ’’ as the value of the argument.

• The predicates check whether the format of the arguments is correct as well. The testing
process involves some verifications. If one or both vectors are empty, the exception error2
will be thrown. If the vectors contains elements but are not correct, the exception error4
will be thrown.

The names of the line graph predicates begin with graph and those corresponding to the
scatter graph group begin with scattergraph .

1 It should be pointed out that I am refering to an index as the position of an element in a list.

742 The Ciao Prolog System

188.1 Usage and interface (gengraph1)
® ©

• Library usage:

:- use_module(library(gengraph1)).

• Exports:

− Predicates:

graph_b1/9, graph_b1/13, graph_w1/9, graph_w1/13, scattergraph_b1/8,
scattergraph_b1/12, scattergraph_w1/8, scattergraph_w1/12.

− Regular Types:

vector/1, smooth/1, attributes/1, symbol/1, size/1.

• Other modules used:

− System library modules:

chartlib/bltclass, chartlib/genbar1, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 ª

188.2 Documentation on exports (gengraph1)

PREDICATEgraph b1/9:
graph_b1(Header, GTitle, XTitle, XVector, YTitle, YVectors, LAtts, Footer,
Smooth)

Besides the features mentioned at the begining of the chapter, the displayed graph gener-
ated when calling this predicate has the following distinguishing characteristics:

• The plotting area background color is black.

• The cross hairs color is white.

• The axes limits are determined from the data.

Example:

graph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
’yaxixtitle’,
[[10,35,40],[25,50,60]],
[[’element1’,’Blue’,’Yellow’,’plus’,6],[’element2’,Outline,Color]],
’footer’,
’linear’).

PREDICATEgraph b1/13:
graph_b1(Header, GT, XT, XV, XMax, XMin, YT, YVs, YMax, YMin, LAtts, Footer,
Smooth)

The particular features related to this predicate are described below:

• The plotting area background color is black.

• The cross hairs color is white.

Chapter 188: Depic line graph 743

• You can set the minimum and maximum limits of the axes. Data outside the limits
will not be plotted.

Example:

graph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’line1’,’circle’,4],[’line2’,OutlineColor,Color]],
’footer’,
’step’).

PREDICATEgraph w1/9:
graph_w1(Header, GTitle, XTitle, XVector, YTitle, YVectors, LAtts, Footer,
Smooth)

This predicate is quite similar to graph_b1/9. The differences lies in the plot background
color and in the cross hairs color, which are white and black respectively.

Example:

graph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,40,50],
’yaxixtitle’,
[[10,35,40,50],[25,20,60,40]],
[[’line1’,’Blue’,’DarkOrchid’],[’line2’,’circle’,3]],
’footer’,
’quadratic’).

PREDICATEgraph w1/13:
graph_w1(Header, GT, XT, XV, XMax, XMin, YT, YVs, YMax, YMin, LAtts, Footer,
Smooth)

This predicate is quite similar to graph_b1/13, the differences between them are listed
below:

• The plotting area background color is white.

• The cross hairs color is black.

Example:

graph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
100,

744 The Ciao Prolog System

10,
’yaxixtitle’,
[[10,35,40],[25,20,60]],
_,
_,
[[’element1’,’Blue’,’Yellow’],[’element2’,’Turquoise’,’Plum’]],
’footer’,
’quadratic’).

PREDICATEscattergraph b1/8:
scattergraph_b1(Header, GTitle, XTitle, XVector, YTitle, YVectors, PAtts,
Footer)

Apart from the features brought up at the beginning of the chapter, the scatter graph
displayed invoking this predicate has the following characteristics:

• The plotting area background color is black.

• The cross hairs color is white.

• The axes limits are determined from the data.

Example:

scattergraph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[10,15,20],
’yaxixtitle’,
[[10,35,20],[15,11,21]],
[[’element1’,’Blue’,’Yellow’],[’element2’,’Turquoise’,’Plum’]],
’footer’).

PREDICATEscattergraph b1/12:
scattergraph_b1(Header, GT, XT, XV, XMax, XMin, YT, YVs, YMax, YMin, PAtts,
Footer)

The particular features related to this predicate are described below:

• The plotting area background color is black.

• The cross hairs color is white.

• You can set the minimum and maximum limits of the axes. Data outside the limits
will not be plotted.

Example:

scattergraph_b1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’point dataset1’,’Blue’,’Yellow’],[’point dataset2’]],
’footer’).

Chapter 188: Depic line graph 745

PREDICATEscattergraph w1/8:
scattergraph_w1(Header, GT, XT, XVector, YT, YVectors, PAtts, Footer)

This predicate is quite similar to scattergraph_b1/8 except in the following:

• The plotting area background color is black.

• The cross hairs color is white.

• If the user does not fix the points colors, they will be chosen among the lighter ones.

Example:

scattergraph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
’yaxixtitle’,
[[10,35,40],[25,20,60]],
[[’e1’,’Blue’,’Green’],[’e2’,’MediumVioletRed’,’Plum’]],
’footer’).

PREDICATEscattergraph w1/12:
scattergraph_w1(Header, GT, XT, XV, XMax, XMin, YT, YVs, YMax, YMin, PAtts,
Footer)

This predicate is quite similar to scattergraph1_b1/13, the differences between them are
listed below:

• The plotting area background color is white.

• The cross hairs color is black.

Example:

scattergraph_w1(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[20,10,59],
150,
5,
’yaxixtitle’,
[[10,35,40],[25,20,60]],
_,
-10,
[[’e1’,’Blue’,’Yellow’],[’e2’,’MediumTurquoise’,’Plum’]],
’footer’).

REGTYPEvector/1:
vector(X) :-

list(X,number).

The type vector defines a list of numbers (integers or floats).

REGTYPEsmooth/1:
smooth(Smooth)

746 The Ciao Prolog System

smooth(linear).
smooth(cubic).
smooth(quadratic).
smooth(step).

Specifies how connecting segments are drawn between data points. If Smooth is linear,
a single line segment is drawn, connecting both data points. When Smooth is step, two
line segments will be drawn, the first line is a horizontal line segment that steps the next
X-coordinate and the second one is a vertical line, moving to the next Y-coordinate. Both
cubic and quadratic generate multiple segments between data points. If cubicis used,
the segments are generated using a cubic spline. If quadratic, a quadratic spline is used.
The default is linear.

REGTYPEattributes/1:
attributes([ElementName]) :-

atomic(ElementName).
attributes([ElementName,OutLine,Color]) :-

atomic(ElementName),
color(OutLine),
color(Color).

attributes([ElementName,Symbol,Size]) :-
atomic(ElementName),
symbol(Symbol),
size(Size).

attributes([ElementName,OutLine,Color,Symbol,Size]) :-
atomic(ElementName),
color(OutLine),
color(Color),
symbol(Symbol),
size(Size).

Each line or point dataset in the graph has its own attributes, which are defined by this
type. The name of the dataset, specified in the ElementName argument, may be either a
number or an atom. The second argument is the color of a thin line around each point
in the dataset and the Color argument is the points and lines color. Both OutLine and
Color must be a valid color (see available values in color/1), otherwise a random color
according to the plot background color will be selected. The Symbol must be a valid
symbol and the Size must be a number. Be careful if you want to especify the Symbol
and the Size, otherwise the predicate will not work as you expect. If you don’t select a
symbol and a size for a dataset the default values will be square and 1 pixel.

REGTYPEsymbol/1:
symbol(Symbol)

symbol(square).
symbol(circle).
symbol(diamond).
symbol(plus).
symbol(cross).
symbol(splus).
symbol(scross).
symbol(triangle).

Chapter 188: Depic line graph 747

Symbol stands for the shape of the points whether in scatter graphs or in line graphs.

REGTYPEsize/1:
size(Size)

size(Size) :-
number(Size).

Size stands for the size in pixels of the points whether in scatter graphs or in line graphs.

748 The Ciao Prolog System

Chapter 189: Line graph widgets 749

189 Line graph widgets

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#270 (2004/1/1, 14:19:56 CET)

This module defines predicates which show line graph widgets. All eight predicates exported
by this module plot two-variable data. Each point is defined by its X-Y coordinate values. Every
predicate share the following features:

• A dataset is defined by three lists xvector, yvector and attributes. The arguments named
XVectors (or XVs), YVectors (or YVs) and LAtts1 contain this information. Those argu-
ments must be lists whose elements are also lists. The first dataset is defined by the firts
element of the three lists, the second dataset is defined by the second element of the three
lists and so on.

• Numeric values for the vector elements are needed. We will use two vectors to represent
the X-Y coordinates of each set of data plotted. In these predicates the vectors can have
different number of points. However, the number of elements in xvector and yvector that
pertain to a certain dataset must be, obviously, equal.

• The active line color is blue, which means that when you select a legend element, the
corresponding line turns into navyblue.

• The user can either select the appearance for the lines and the points or not. See the
attributes/1 type definition. Thus, the user can call each predicate in different ways
ways.

• The graph has a legend and one entry (symbol and label) per dataset.

• If you do not want to display text in the elements header, barchart title, xaxis title, yaxis
title or footer, simply give ’’ as the value of the argument.

• The predicates check whether the format of the arguments is correct as well. The testing
process involves some verifications. If one or both vectors are empty, the exception error2
will be thrown. If the vectors contains elements but are not correct, the exception error4
will be thrown.

189.1 Usage and interface (gengraph2)
® ©

• Library usage:

:- use_module(library(gengraph2)).

• Exports:

− Predicates:

graph_b2/9, graph_b2/13, graph_w2/9, graph_w2/13, scattergraph_b2/8,
scattergraph_b2/12, scattergraph_w2/8, scattergraph_w2/12.

• Other modules used:

− System library modules:

chartlib/gengraph1, chartlib/genbar1, chartlib/bltclass, chartlib/color_
pattern, chartlib/test_format, chartlib/install_utils, lists, random/random.

 ª

1 In scatter graphs the attibute that contains the features of a point dataset is PAtts.

750 The Ciao Prolog System

189.2 Documentation on exports (gengraph2)

PREDICATEgraph b2/9:
graph_b2(Header, GTitle, XTitle, XVectors, YTitle, YVectors, LAtts, Footer,
Sm)

Besides the features mentioned at the begining of the module chapter, the displayed graph
generated calling this predicate has the following distinguish characteristics:

• The plotting area background color is black.

• The cross hairs color is white.

• The axis limits are determined from the data.

Example:

graph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,30,59],[25,50]],
’yaxixtitle’,
[[10,35,40],[25,50]],
[[’line1’,’Blue’,’Yellow’],[’line2’]],
’footer’,
’natural’).

PREDICATEgraph b2/13:
graph_b2(Header, GT, XT, XVs, XMax, XMin, YT, YVs, YMax, YMin, LAtts, Footer,
Smooth)

In addition to the features brought up at the begining of the module chapter, this graph
has the following:

• The plotting area background color is black.

• The cross hairs color is white.

• You can set the maximum and minimum values for the graph axes.

Example:

graph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,10,59],[15,30,35]],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50.5,
_,
[[’line1’,’Blue’,’Yellow’],[’line’,’MediumTurquoise’,’Plum’]],
’footer’,
’step’).

Chapter 189: Line graph widgets 751

PREDICATEgraph w2/9:
graph_w2(Header, GT, XT, XVectors, YTitle, YVectors, LAtts, Footer, Smooth)

This predicate is quite similar to graph_b2/9. The difference lies in the graph appearance,
as you can see below.

• The plotting area background color is white.

• The cross hairs color is black.

Example:

graph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[10,30,59],[25,50]],
’yaxixtitle’,
[[10,35,40],[25,40]],
[[’element1’,’Blue’,’DarkOrchid’],[’element2’,’DarkOliveGreen’,

’Firebrick’]],
’footer’,
’natural’).

PREDICATEgraph w2/13:
graph_w2(Header, GT, XT, XV, XMax, XMin, YT, YVs, YMax, YMin, LAtts, Footer,
Smooth)

This predicate is comparable to graph_b2/13. The differences lie in the plot background
color and in the cross hairs color, wich are white and black respectively.

Example:

graph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[10,30,59],[10,35,40]],
80,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’element1’,’Blue’,’Green’],[’element2’,’Turquoise’,’Black’]],
’footer’,
’linear’).

PREDICATEscattergraph b2/8:
scattergraph_b2(Header, GT, XT, XVectors, YT, YVectors, PAtts, Footer)

Apart from the features brought up at the beginning of the chapter, the scatter graph
displayed when invoking this predicate has the following features:

• The plotting area background color is black.

• The cross hairs color is white.

• The axis limits are determined from the data.

Example:

752 The Ciao Prolog System

scattergraph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[10,15,20],[8,30,40]],
’yaxixtitle’,
[[10,35,20],[15,11,21]],
[[’element1’,’Blue’,’Yellow’],[’element2’,’MediumTurquoise’,’Plum’]],
’footer’).

PREDICATEscattergraph b2/12:
scattergraph_b2(Header, GT, XT, XVs, XMax, XMin, YT, YVs, YMax, YMin, PAtts,
Footer)

The particular features related to this predicate are described below:

• The plotting area background color is black.

• The cross hairs color is white.

• You can set the minimum and maximum limits of the axes. Data outside the limits
will not be plotted.

Example:

scattergraph_b2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,30,50],[18,40,59]],
50,
_,
’yaxixtitle’,
[[10,35,40],[25,50,60]],
50,
_,
[[’point dataset1’],[’point dataset2’]],
’footer’).

PREDICATEscattergraph w2/8:
scattergraph_w2(Header, GTitle, XTitle, XVs, YTitle, YVs, PAtts, Footer)

This predicate is quite similar to scattergraph_w1/8 except in the following:

• The plotting area background color is black.

• The cross hairs color is white.

• If the user do not provide the colors of the points, they will be chosen among the
lighter ones.

Example:

scattergraph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,30,40,15,30,35,20,30]],
’yaxixtitle’,
[[10,30,40,25,20,25,20,25]],
[[’set1’,’cross’,4]],
’footer’).

Chapter 189: Line graph widgets 753

PREDICATEscattergraph w2/12:
scattergraph_w2(Header, GT, XT, XVs, XMax, XMin, YT, YVs, YMax, YMin, PAtts,
Footer)

This predicate is comparable to scattergraph_w2/13, the differences between them are
listed below:

• The plotting area background color is white.

• The cross hairs color is black.

Example:

scattergraph_w2(’This is the header text’,
’Graph_title’,
’xaxistitle’,
[[20,10,59],[15,30,50]],
150,
5,
’yaxixtitle’,
[[10,35,40],[25,20,60]],
_,
-10,
[[’e1’,’Blue’,’Yellow’],[’e2’,’MediumTurquoise’,’Plum’]],
’footer’).

754 The Ciao Prolog System

Chapter 190: Multi barchart widgets 755

190 Multi barchart widgets

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#271 (2004/1/1, 14:21:46 CET)

This module defines predicates which show barchart widgets. These bar charts are somewhat
different from the bar charts generated by the predicates in modules genbar1, genbar2, genbar3
and genbar4. Predicates in the present module show different features of each dataset element in
one chart at the same time. Each bar chart element is a group of bars, and the element features
involve three vectors defined as follows:

• xvector is a list containing the names (atoms) of the bars (n elements). Each bar group will
be displayed at uniform intervals.

• yvector is a list that contains m sublists, each one is composed of n elements. The i-sublist
contains the y-values of the i-BarAttribute element for all of the XVector elements.

• bar attributtes is a list containing the appearance features of the bars (m elements). Each
element of the list can be partial or complete, which means that you can define as bar
attributes only the element name or by setting the element name, its background and
foreground color and its stipple pattern.

Other relevant aspects about this widgets are:

• If you don’t want to display text in the elements header, barchart title, xaxis title, yaxis
title or footer, simply type ’’ as the value of the argument.

• The bar chart has a legend, and one entry (symbol and label) per feature group bar.

• The user can either select the appearance of the bars (background color, foreground color
and stipple style) or not. See the multibar attribute type definition.

• Data points can have their bar segments displayed in one of the following modes: stacked,
aligned, overlapped or overlayed. They user can change the mode clicking in the checkboxes
associated to each mode.

• The predicates test whether the format of the arguments is correct. If one or both vectors
are empty, the exception error2 will be thrown. If the vectors contains elements but are
not correct, the exception error5 or error6 will be thrown, depending on what is incorrect.
error5 means that XVector and each element of YVector do not contain the same number
of elements or that YVector and BarsAtt do not contain the same number of elements, while
error6 indicates that not all the BarsAtt elements contain a correct number of attributes.

The examples will help you to understand how these predicates should be called.

190.1 Usage and interface (genmultibar)
® ©

• Library usage:

:- use_module(library(genmultibar)).

• Exports:

− Predicates:

multibarchart/8, multibarchart/10.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/color_pattern,
chartlib/test_format, chartlib/install_utils, lists, random/random.

 ª

756 The Ciao Prolog System

190.2 Documentation on exports (genmultibar)

PREDICATEmultibarchart/8:
multibarchart(Header, BTitle, XTitle, XVector, YTitle, BarsAtts, YVector,
Footer)

The x axis limits are autoarrange. The user can call the predicate in two ways. In the
first example the user sets the appearance of the bars, in the second one the appearance
features will be chosen by the library.

Example1:

multibarchart(’This is the Header text’,
’My BarchartTitle’,
’Processors’,
[’processor1’,’processor2’,’processor3’,’processor4’],
’Time (seconds)’,
[[’setup time’,’MediumTurquoise’,’Plum’,’pattern2’],

[’sleep time’,’Blue’,’Green’,’pattern5’],
[’running time’,’Yellow’,’Plum’,’pattern1’]],

[[20,30,40,50],[10,8,5,35],[60,100,20,50]],
’This is the Footer text’).

Example2:

multibarchart(’This is the Header text’,
’My BarchartTitle’,
’Processors’,
[’processor1’,’processor2’,’processor3’,’processor4’],
’Time (seconds)’,
[[’setup time’],[’sleep time’],[’running time’]],
[[20,30,40,50],[10,8,5,35],[60,100,20,50]],
’This is the Footer text’).

PREDICATEmultibarchart/10:
multibarchart(Header, BT, XT, XVector, YT, BAtts, YVector, YMax, YMin,
Footer)

This predicate is quite similar to multibarchart/8, except in that you can choose limits
in the y axis. The part of the bars placed outside the limits will not be plotted.

Example2:

multibarchart(’This is the Header text’,
’My BarchartTitle’,
’Processors’,
[’processor1’,’processor2’,’processor3’,’processor4’],
’Time (seconds)’,
[[’setup time’],[’sleep time’],[’running time’]],
[[20,30,40,50],[10,8,5,35],[60,100,20,50]],
[80],
[0],
’This is the Footer text’).

Chapter 190: Multi barchart widgets 757

190.3 Documentation on internals (genmultibar)

REGTYPEmultibar attribute/1:
multibar_attribute([LegendElement]) :-

atomic(LegendElement).
multibar_attribute([LegendElement,ForegroundColor,BackgroundColor,StipplePattern]) :-

atom(LegendElement),
color(ForegroundColor),
color(BackgroundColor),
pattern(StipplePattern).

Defines the attributes of each feature bar along the different datasets.

LegendElement
Legend element name. It may be a number or an atom. Every LegendElement
value of the list must be unique.

ForegColor
It sets the Foreground color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

BackgColor
It sets the Background color of the bar. Its value must be a valid color,
otherwise the system will throw an exception. If the argument value is a
variable, it gets instantiated to a color chosen by the library.

SPattern It sets the stipple of the bar. Its value must be a valid pattern, otherwise the
system will throw an exception. If the argument value is a variable, it gets
instantiated to a pattern chosen by the library.

REGTYPExelement/1:
xelement(Label) :-

atomic(Label).

This type defines a dataset label. Although Label values may be numbers, the will be
treated as atoms, So it will be displayed at uniform intervals along the x axis.

758 The Ciao Prolog System

Chapter 191: table widget1 (library) 759

191 table widget1 (library)

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#166 (2003/12/4, 17:39:45 CET)

In addition to the features explained in the introduction, the predicates exported by this
module depict tables in which the font weight for the table elements is bold.

If the arguments are not in a correct format the exception error8 will be thrown.

191.1 Usage and interface (table_widget1)
® ©

• Library usage:

:- use_module(library(table_widget1)).

• Exports:

− Predicates:

tablewidget1/4, tablewidget1/5.

− Regular Types:

table/1, image/1.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/test_format,
chartlib/install_utils, lists.

 ª

191.2 Documentation on exports (table_widget1)

PREDICATEtablewidget1/4:
tablewidget1(Title, Header, ElementTable, Footer)

Shows a regular table in a window. The user does not choose a background image.

Example:

tablewidget1(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Average Tasks per fork’,’7.5’]],
’Footer text’).

PREDICATEtablewidget1/5:
tablewidget1(Title, Header, ElementTable, Footer, BackgroundImage)

Shows a regular table in a window. The user must set a background image. See the
image/1 type definition.

Example:

760 The Ciao Prolog System

tablewidget1(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Average Tasks per fork’,’7.5’]],
’Footer text’,
’./images/rain.gif’)

REGTYPEtable/1:
A table is a list of rows, each row must contain the same number of elements, otherwise
the table wouldn’t be regular and an exception will be thrown by the library. The rows
list may not be empty.

table([X]) :-
row(X).

table([X|Xs]) :-
row(X),
table(Xs).

REGTYPEimage/1:
Some predicates allow the user to set the widget background image, whose is what this
type is intended for. The user has to take into account the following restrictions:

• The image must be in gif format.

• The file path must be absolute.

191.3 Documentation on internals (table_widget1)

REGTYPErow/1:
row([X]) :-

cell_value(X).
row([X|Xs]) :-

cell_value(X),
row(Xs).

Each row is a list of elements whose type is cell_value/1. A row cannot be an empty
list, as you can see in the definition type.

REGTYPErow/1:
row([X]) :-

cell_value(X).
row([X|Xs]) :-

cell_value(X),
row(Xs).

Each row is a list of elements whose type is cell_value/1. A row cannot be an empty
list, as you can see in the definition type.

Chapter 191: table widget1 (library) 761

REGTYPEcell value/1:
This type defines the possible values that a table element have. If any cell value is ’’, the
cell will be displayed empty.

cell_value(X) :-
atomic(X).

762 The Ciao Prolog System

Chapter 192: table widget2 (library) 763

192 table widget2 (library)

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#167 (2003/12/4, 17:39:48 CET)

In addition to the features explained in the introduction, predicates exported by this module
display tables in which the font weight for the elements placed in the first row is bold. The
remaining elements are in medium weight font.

If the arguments are not in a correct format the exception error8 will be thrown.

192.1 Usage and interface (table_widget2)
® ©

• Library usage:

:- use_module(library(table_widget2)).

• Exports:

− Predicates:

tablewidget2/4, tablewidget2/5.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/table_widget1,
chartlib/test_format, chartlib/install_utils, lists.

 ª

192.2 Documentation on exports (table_widget2)

PREDICATEtablewidget2/4:
tablewidget2(Title, Header, ElementTable, Footer)

Shows a regular table in a window. The system sets a default background image for the
widget.

Example:

tablewidget2(’COM Features’,
’Extracted from "Inside COM" book ’,
[[’Feature’,’Rich people’,’Bean Plants’,’C++’,’COM’],

[’Edible’,’Yes’,’Yes’,’No’,’No’],
[’Supports inheritance’,’Yes’,’Yes’,’Yes’,’Yes and No’],
[’Can run for President’,’Yes’,’No’,’No’,’No’]],

’What do you think about COM?’).

PREDICATEtablewidget2/5:
tablewidget2(Title, Header, ElementTable, Footer, BackgroundImage)

This predicate and tablewidget2/4 are quite similar, except that in the already one
defined you must set the background image.

Example:

764 The Ciao Prolog System

tablewidget2(’COM Features’,
’Extracted from "Inside COM" book ’,
[[’Feature’,’Rich people’,’Bean Plants’,’C++’,’COM’],

[’Edible’,’Yes’,’Yes’,’No’,’No’],
[’Supports inheritance’,’Yes’,’Yes’,’Yes’,’Yes and No’],
[’Can run for President’,’Yes’,’No’,’No’,’No’]],

’What do you think about COM?’,
’./images/rain.gif’).

Chapter 193: table widget3 (library) 765

193 table widget3 (library)

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#168 (2003/12/4, 17:39:51 CET)

The predicates exported by this module display data in a regular table, as we brought up in
the introduction. Both predicates have in common that the font weight for the elements placed
in the first column is bold and the remaining elements are in medium font weight.

If the arguments are not in a correct format the exception error8 will be thrown.

193.1 Usage and interface (table_widget3)
® ©

• Library usage:

:- use_module(library(table_widget3)).

• Exports:

− Predicates:

tablewidget3/4, tablewidget3/5.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/table_widget1,
chartlib/test_format, chartlib/install_utils, lists.

 ª

193.2 Documentation on exports (table_widget3)

PREDICATEtablewidget3/4:
tablewidget3(Title, Header, ElementTable, Footer)

Shows a regular table in a window. The user does not choose a background image.

Example:

tablewidget3(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Tasks per fork’,’7.5’]],
’Footer text’).

PREDICATEtablewidget3/5:
tablewidget3(Title, Header, ElementTable, Footer, BackgroundImage)

Shows a regular table in a window. The user must set a background image.

Example:

tablewidget3(’This is the title’,
’Header text’,
[[’Number of processors’,’8’],[’Average processors’,’95’],

[’Average Tasks per fork’,’7.5’]],
’Footer text’,
’./images/rain.gif’)

766 The Ciao Prolog System

Chapter 194: table widget4 (library) 767

194 table widget4 (library)

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#169 (2003/12/4, 17:39:54 CET)

In addition to the features explained in the introduction, predicates exported by this module
display tables in which the font weight for the elements placed in the first row and column is
bold. The remaining elements are in medium weight font.

If the arguments are not in a correct format the exception error8 will be thrown.

194.1 Usage and interface (table_widget4)
® ©

• Library usage:

:- use_module(library(table_widget4)).

• Exports:

− Predicates:

tablewidget4/4, tablewidget4/5.

• Other modules used:

− System library modules:

chartlib/genbar1, chartlib/bltclass, chartlib/table_widget1,
chartlib/test_format, chartlib/install_utils, lists.

 ª

194.2 Documentation on exports (table_widget4)

PREDICATEtablewidget4/4:
tablewidget4(Title, Header, ElementTable, Footer)

Shows a regular table in a window. The system sets a default background image for the
widget.

Example:

tablewidget4(’Some sterEUtypes’,
’Source: Eurostat yearbook, 1999’,
[[’Country’,’Adult alcohol intake per year (litres)’,

’Cigarettes smoked per day per adult’,
’Suicides per 100000 people’],

[’Finland’,’8.4’,’2.2’,’26.3’],[’Spain’,’11.4’,’5.3’,’7.5’],
[’Austria’,’11.9’,’4.6’,’20.7’],[’Britain’,’9.4’,’4.2’,’7.1’],
[’USA’,’4.7’,’4.9’,’13’],[’European Union’,’11.1’,’4.5’,’11.9’]],

’This is part of the published table’).

PREDICATEtablewidget4/5:
tablewidget4(Title, Header, ElementTable, Footer, BackgroundImage)

This predicate and tablewidget4/4 are comparable, except that in the already defined
you must set the background image.

Example:

768 The Ciao Prolog System

tablewidget4(’Some sterEUtypes’,
’Source: Eurostat yearbook, 1999’,
[[’Country’,’Adult alcohol intake per year (litres)’,

’Cigarettes smoked per day per adult’,
’Suicides per 100000 people’],

[’Finland’,’8.4’,’2.2’,’26.3’],[’Spain’,’11.4’,’5.3’,’7.5’],
[’Austria’,’11.9’,’4.6’,’20.7’],[’Britain’,’9.4’,’4.2’,’7.1’],
[’USA’,’4.7’,’4.9’,’13’],[’European Union’,’11.1’,’4.5’,’11.9’]],

’This is part of the published table’,
’./images/rain.gif’).

Chapter 195: test format (library) 769

195 test format (library)

Author(s): Isabel Martn.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#170 (2003/12/4, 17:39:57 CET)

Most of the predicates exported by this module perform some checks to determine whether
the arguments attain some conditions or not. In the second case an exception will be thrown. To
catch the exceptions you can use the following metapredicates when invoking chartlib exported
predicates:

• chartlib_text_error_protect/1

• chartlib_text_error_protect/1

Both metapredicates are defined in the chartlib errhandle module that comes with this li-
brary. Some of the predicates have a Predicate argument which will be used in case of error
to show which chartlib predicate causes the error.

195.1 Usage and interface (test_format)
® ©

• Library usage:

:- use_module(library(test_format)).

• Exports:

− Predicates:

equalnumber/3, not_empty/4, not_empty/3, check_sublist/4, valid_format/4,
vectors_format/4, valid_vectors/4, valid_attributes/2, valid_table/2.

• Other modules used:

− System library modules:

chartlib/bltclass, lists.

 ª

195.2 Documentation on exports (test_format)

PREDICATEequalnumber/3:
equalnumber(X, Y, Predicate)

Test whether the list X and the list Y contain the same number of elements.

PREDICATEnot empty/4:
not_empty(X, Y, Z, Predicate)

Tests whether at least one the lists X, Y or Z are empty.

PREDICATEnot empty/3:
not_empty(X, Y, Predicate)

Tests whether the lists X or Y are empty.

770 The Ciao Prolog System

PREDICATEcheck sublist/4:
check_sublist(List, Number, Number, Predicate)

Tests if the number of elements in each sublist of List is Number1 or Number2.

PREDICATEvalid format/4:
valid_format(XVector, YVector, BarsAttributes, Predicate)

Tests the following restrictions:

• The XVector number of elements is the same as each YVector sublist number of
elements.

• The YVector length is equal to BarsAttributes length.

PREDICATEvectors format/4:
vectors_format(XVector, YVectors, LinesAttributes, Predicate)

Tests the following conditions:

• YVectors list and LinesAttributes list have the same number of elements.

• XVector list and each YVectors element have the same number of elements.

• Each sublist of LinesAttributes is composed of 5, 3 or 1 elements.

PREDICATEvalid vectors/4:
valid_vectors(XVector, YVectors, LinesAttributes, Predicate)

Tests the following conditions:

• XVector list, YVectors list and LinesAttributes list have the same number of ele-
ments.

• Each sublist of LinesAttributes is composed of 5, 3 or 1 element.

PREDICATEvalid attributes/2:
valid_attributes(BarsAttibuttes, Predicate)

Check if each BarsAttibuttes element is a list composed of one or four elements.

PREDICATEvalid table/2:
valid_table(ElementTable, Predicate)

All of the ElementTable sublists have the same number of elements and are not empty.

Chapter 196: ProVRML - a Prolog interface for VRML 771

196 ProVRML - a Prolog interface for VRML

Author(s): Göran Smedbäck, (Some changes by MCL), clip@dia.fi.upm.es,
http://www.clip.dia.fi.upm.es/, The CLIP Group, Facultad de Informática, Universidad
Politécnica de Madrid.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 0.1#1 (1998/12/10, 16:19:45 MET)

ProVRML is Prolog library to handle VRML code. The library consists of modules to handle
the tokenising, that is breaking the VRML code into smaller parts that can be analysed further.
The further analysis will be the parsing. This is a complex part of the library and consists of
several modules to handle errors and value check. When the parsing is done we have the Prolog
terms of the VRML code. The terms are quite similar to the origin VRML code and can easily
be read if you recognise that syntax.

This Prolog terms of the VRML code is then possible to use for analysis, reconstruction,
reverse enginering, building blocks for automatic generation of VRML code. There are several
possibilities and these are only some of them.

When you are done with the Prolog terms for the code, you would probably want to reverse
the action and return to VRML code. This is done with the code generation modules. These
are built up in more or less the same manner as the parser modules.

196.1 Usage and interface (provrml)
® ©

• Library usage:

:- use_module(library(provrml)).

• Exports:

− Predicates:

vrml_web_to_terms/2, vrml_file_to_terms/2, vrml_web_to_terms_file/2, vrml_
file_to_terms_file/2, terms_file_to_vrml/2, terms_file_to_vrml_file/2,
terms_to_vrml_file/2, terms_to_vrml/2, vrml_to_terms/2, vrml_in_out/2,
vrml_http_access/2.

• Other modules used:

− System library modules:

pillow/http, pillow/html, provrml/io, provrml/parser, provrml/generator,
lists.

 ª

196.2 Documentation on exports (provrml)

PREDICATEvrml web to terms/2:
Usage: vrml_web_to_terms(+WEBAddress, -Terms)

− Description: Given a address to a VRML-document on the Internet, the predicate
will return the prolog-terms.

− Call and exit should be compatible with:

+WEBAddress is an atom. (basic_props:atm/1)

-Terms is a string (a list of character codes). (basic_props:string/1)

772 The Ciao Prolog System

PREDICATEvrml file to terms/2:
Usage 1: vrml_file_to_terms(+FileName, -Term)

− Description: Given a filename containing a VRML-file the predicate returns the pro-
log terms corresponding.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

-Term is an atom. (basic_props:atm/1)

Usage 2: vrml_file_to_terms(+FileName, +Terms)

− Description: Given a filename containing a VRML-file and a filename, the predicate
write the prolog terms corresponding to the filename.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

+Terms is an atom. (basic_props:atm/1)

PREDICATEvrml web to terms file/2:
Usage: vrml_web_to_terms_file(+WEBAddress, +FileName)

− Description: Given a address to a VRML-document on the Internet and a filename,
the predicate will write the prolog terms to the file.

− Call and exit should be compatible with:

+WEBAddress is an atom. (basic_props:atm/1)

+FileName is an atom. (basic_props:atm/1)

PREDICATEvrml file to terms file/2:
No further documentation available for this predicate.

PREDICATEterms file to vrml/2:
Usage: terms_file_to_vrml(+FileName, -List)

− Description: From a given filename with prologterms on the special format, the
predicate returns the corresponding VRML-code.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

-List is a string (a list of character codes). (basic_props:string/1)

PREDICATEterms file to vrml file/2:
Usage: terms_file_to_vrml_file(+Atom, +Atom)

− Description: From a given filename with prologterms on the special format, the
predicate writes the corresponding VRML-code to second filename.

− Call and exit should be compatible with:

+Atom is an atom. (basic_props:atm/1)

+Atom is an atom. (basic_props:atm/1)

Chapter 196: ProVRML - a Prolog interface for VRML 773

PREDICATEterms to vrml file/2:
Usage: terms_to_vrml_file(+Term, +FileName)

− Description: Given prolog-terms the predicate writes the corresponding VRML-code
to the given file.

− Call and exit should be compatible with:

+Term is an atom. (basic_props:atm/1)

+FileName is an atom. (basic_props:atm/1)

PREDICATEterms to vrml/2:
Usage: terms_to_vrml(+Term, -VRMLCode)

− Description: Given prolog-terms the predicate returns a list with the corresponding
VRML-code.

− Call and exit should be compatible with:

+Term is an atom. (basic_props:atm/1)

-VRMLCode is a string (a list of character codes). (basic_props:string/1)

PREDICATEvrml to terms/2:
Usage: vrml_to_terms(+VRMLCode, -Terms)

− Description: Given a list with VRML-code the predicate will return the corresponding
prolog-terms.

− Call and exit should be compatible with:

+VRMLCode is a string (a list of character codes). (basic_props:string/1)

-Terms is an atom. (basic_props:atm/1)

PREDICATEvrml in out/2:
Usage: vrml_in_out(+FileName, +FileName)

− Description: This is a controll-predicate that given a filename to a VRML-file and a
filename, the predicate will read the VRML-code. Transform it to prolog-terms and
then transform it back to VRRML-code and write it to the latter file.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

+FileName is an atom. (basic_props:atm/1)

PREDICATEvrml http access/2:
Usage: vrml_http_access(+ReadFilename, +BaseFilename)

− Description: Given a web-address to a VRML-file the predicate will load the code,
write it first to the second argument with extension ’ first.wrl’. Then it transform
the code to prolog terms and write it with the extension ’.term’. Transform it back
to VRML-code and write it to the filename with ’.wrl. A good test-predicate.

− Call and exit should be compatible with:

+ReadFilename is an atom. (basic_props:atm/1)

+BaseFilename is an atom. (basic_props:atm/1)

774 The Ciao Prolog System

196.3 Documentation on internals (provrml)

PREDICATEread page/2:
Usage: read_page(+WEBAddress, -Data)

− Description: This routine reads a page on the web using pillow routines.

− Call and exit should be compatible with:

+WEBAddress is an atom. (basic_props:atm/1)

-Data is a string (a list of character codes). (basic_props:string/1)

Chapter 197: boundary (library) 775

197 boundary (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#171 (2003/12/4, 17:46:50 CET)

This module offers predicate to check values according to their boundaries and offers lists of
possible node ascendents.

197.1 Usage and interface (boundary)
® ©

• Library usage:

:- use_module(library(boundary)).

• Exports:

− Predicates:

boundary_check/3, boundary_rotation_first/2, boundary_rotation_last/2,
reserved_words/1, children_nodes/1.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, provrml/internal_types, provrml/error.

 ª

197.2 Documentation on exports (boundary)

PREDICATEboundary check/3:
Usage: boundary_check(+Value_to_check, +Init_value, +Bound)

− Description: This predicate check the boundaries of the given value according to the
boudary values. If the value is wrong according to the boundaries, the value is checked
according to the initial value given. If the value continues to be wrong, an error will
be raised accordingly.

− Call and exit should be compatible with:

+Value_to_check is an atom. (basic_props:atm/1)

+Init_value is a list of atms. (basic_props:list/2)

+Bound is a variable interval. (internal_types:bound/1)

PREDICATEboundary rotation first/2:
Usage: boundary_rotation_first(+Bound_double, -Bound)

− Description: The predicate will extract the first bounds from a double bound.

− Call and exit should be compatible with:

+Bound_double is a variable interval. (internal_types:bound_double/1)

-Bound is a variable interval. (internal_types:bound/1)

776 The Ciao Prolog System

PREDICATEboundary rotation last/2:
Usage: boundary_rotation_last(+Bound_double, -Bound)

− Description: The predicate will extract the last bounds from a double bound.

− Call and exit should be compatible with:

+Bound_double is a variable interval. (internal_types:bound_double/1)

-Bound is a variable interval. (internal_types:bound/1)

PREDICATEreserved words/1:
Usage: reserved_words(-List)

− Description: Returns a list with the reserved words, words prohibited to use in cases
not appropiated.

− Call and exit should be compatible with:

-List is a list of atms. (basic_props:list/2)

PREDICATEchildren nodes/1:
Usage: children_nodes(-List)

− Description: Returns a list of all nodes possible as children nodes.

− Call and exit should be compatible with:

-List is a list of atms. (basic_props:list/2)

Chapter 198: dictionary (library) 777

198 dictionary (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#172 (2003/12/4, 17:47:7 CET)

This module contains the fixed dictionary. All the nodes in VRML with their associated
fields.

198.1 Usage and interface (dictionary)
® ©

• Library usage:

:- use_module(library(dictionary)).

• Exports:

− Predicates:

dictionary/6.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists, provrml/internal_types.

 ª

198.2 Documentation on exports (dictionary)

PREDICATEdictionary/6:
Usage 1: dictionary(?NodeTypeId, ?AccessType, ?FieldTypeId, ?FieldId, -Init_
value, -Boundary)

− Description: To lookup information about the nodes, getting their properties. Note
that the type returned for the bound can be of two different types bound or
bound double. The rotation type have one bound for the directions and one for
the degree of rotation.

− Call and exit should be compatible with:

?NodeTypeId is an atom. (basic_props:atm/1)

?AccessType is an atom. (basic_props:atm/1)

?FieldTypeId is an atom. (basic_props:atm/1)

?FieldId is an atom. (basic_props:atm/1)

-Init_value is a list of atms. (basic_props:list/2)

-Boundary is a variable interval. (internal_types:bound/1)

Usage 2: dictionary(?NodeTypeId, ?AccessType, ?FieldTypeId, ?FieldId, -Init_
value, -Boundary)

− Description: To lookup information about the nodes, getting their properties. Note
that the type returned for the bound can be of two different types bound or
bound double. The rotation type have one bound for the directions and one for
the degree of rotation.

778 The Ciao Prolog System

− Call and exit should be compatible with:

?NodeTypeId is an atom. (basic_props:atm/1)

?AccessType is an atom. (basic_props:atm/1)

?FieldTypeId is an atom. (basic_props:atm/1)

?FieldId is an atom. (basic_props:atm/1)

-Init_value is a list of atms. (basic_props:list/2)

-Boundary is a variable interval. (internal_types:bound_double/1)

Chapter 199: dictionary tree (library) 779

199 dictionary tree (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#173 (2003/12/4, 17:47:16 CET)

This module offers a dynamic tree structured dictionary a bit combined with predicates that
gives it the useability to be the dictionary for the parser.

199.1 Usage and interface (dictionary_tree)
® ©

• Library usage:

:- use_module(library(dictionary_tree)).

• Exports:

− Predicates:

create_dictionaries/1, is_dictionaries/1, get_definition_dictionary/2,
get_prototype_dictionary/2, dictionary_insert/5, dictionary_lookup/5,
merge_tree/2.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists, provrml/internal_types.

 ª

199.2 Documentation on exports (dictionary_tree)

PREDICATEcreate dictionaries/1:
Usage: create_dictionaries(-Dictionary)

− Description: Returns a dictionary. A general name was used if the user would like to
change the code to include more dictionaries.

− Call and exit should be compatible with:

-Dictionary is a dictionary. (internal_types:dictionary/1)

PREDICATEis dictionaries/1:
Usage: is_dictionaries(?Dictionary)

− Description: Is the argument a dictionary is solved by this predicate.

− Call and exit should be compatible with:

?Dictionary is a dictionary. (internal_types:dictionary/1)

PREDICATEget definition dictionary/2:
Usage: get_definition_dictionary(+Dictionary, -Tree)

− Description: Returns the definition dictionary (for the moment there is only one
dictionary), which is a tree representation.

780 The Ciao Prolog System

− Call and exit should be compatible with:

+Dictionary is a dictionary. (internal_types:dictionary/1)

-Tree is a tree structure. (internal_types:tree/1)

PREDICATEget prototype dictionary/2:
Usage: get_prototype_dictionary(+Dictionary, -Tree)

− Description: Returns the prototype dictionary (for the moment there is only one
dictionary), which is a tree representation.

− Call and exit should be compatible with:

+Dictionary is a dictionary. (internal_types:dictionary/1)

-Tree is a tree structure. (internal_types:tree/1)

PREDICATEdictionary insert/5:
Usage: dictionary_insert(+Key, +Type, +Field, +Dictionary, ?Info)

− Description: The predicate will search for the place for the Key and return Info,
if the element inserted had a post before (same key value) multiple else new. The
dictionary is dynamic and do not need output because of using unbinded variables.

− Call and exit should be compatible with:

+Key is an atom. (basic_props:atm/1)

+Type is an atom. (basic_props:atm/1)

+Field is any term. (basic_props:term/1)

+Dictionary is a tree structure. (internal_types:tree/1)

?Info is an atom. (basic_props:atm/1)

PREDICATEdictionary lookup/5:
Usage: dictionary_lookup(+Key, ?Type, ?Field, +Dictionary, -Info)

− Description: The predicate will search for the Key and return Info;defined or unde-
fined accordingly. If defined the fields will be filled as well. The predicate do not
insert the element.

− Call and exit should be compatible with:

+Key is an atom. (basic_props:atm/1)

?Type is an atom. (basic_props:atm/1)

?Field is any term. (basic_props:term/1)

+Dictionary is a dictionary. (internal_types:dictionary/1)

-Info is an atom. (basic_props:atm/1)

PREDICATEmerge tree/2:
Usage: merge_tree(+Tree, +Tree)

− Description: The predicate can be used for adding a tree dictionary to another one
(the second). It will remove equal posts but posts with a slight difference will be
inserted. The resulting tree will be the second tree.

− Call and exit should be compatible with:

+Tree is a tree structure. (internal_types:tree/1)

+Tree is a tree structure. (internal_types:tree/1)

Chapter 200: error (library) 781

200 error (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#179 (2003/12/4, 19:25:17 CET)

This file implements error predicates of different types.

200.1 Usage and interface (error)
® ©

• Library usage:

:- use_module(library(error)).

• Exports:

− Predicates:

error_vrml/1, output_error/1.

• Other modules used:

− System library modules:

write.
 ª

200.2 Documentation on exports (error)

PREDICATEerror vrml/1:
Usage: error_vrml(+Structure)

− Description: Given a structure with the error type as its head with possible argu-
ments, it will write the associated error-text.

− Call and exit should be compatible with:

+Structure is any term. (basic_props:term/1)

PREDICATEoutput error/1:
Usage: output_error(+Message)

− Description: This predicate will print the error message given as the argument. This
predicate is used for warnings that only needs to be given as information and not
necessarily give an error by the VRML browser.

− Call and exit should be compatible with:

+Message is a list of atms. (basic_props:list/2)

782 The Ciao Prolog System

Chapter 201: field type (library) 783

201 field type (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#174 (2003/12/4, 17:47:35 CET)

201.1 Usage and interface (field_type)
® ©

• Library usage:

:- use_module(library(field_type)).

• Exports:

− Predicates:

fieldType/1.

 ª

201.2 Documentation on exports (field_type)

PREDICATEfieldType/1:
Usage: fieldType(+FieldTypeId)

− Description: Boolean predicate used to check the fieldTypeId with the defiened.

− Call and exit should be compatible with:

+FieldTypeId is an atom. (basic_props:atm/1)

784 The Ciao Prolog System

Chapter 202: field value (library) 785

202 field value (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#175 (2003/12/4, 17:47:48 CET)

202.1 Usage and interface (field_value)
® ©

• Library usage:

:- use_module(library(field_value)).

• Exports:

− Predicates:

fieldValue/6, mfstringValue/5.

− Properties:

parse/1.

• Other modules used:

− System library modules:

lists, provrml/parser, provrml/parser_util, provrml/error.

 ª

202.2 Documentation on exports (field_value)

PREDICATEfieldValue/6:
No further documentation available for this predicate.

PREDICATEmfstringValue/5:
No further documentation available for this predicate.

PROPERTYparse/1:
A property, defined as follows:

parse(_1).
parse(parse(In,Out,Env,Dic)) :-

list(In),
list(Out),
environment(Env),
dictionary(Dic).

786 The Ciao Prolog System

Chapter 203: field value check (library) 787

203 field value check (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#176 (2003/12/4, 17:47:53 CET)

203.1 Usage and interface (field_value_check)
® ©

• Library usage:

:- use_module(library(field_value_check)).

• Exports:

− Predicates:

fieldValue_check/8, mfstringValue/7.

• Other modules used:

− System library modules:

lists, provrml/io, provrml/generator_util, provrml/boundary,
provrml/tokeniser, provrml/generator, provrml/parser_util.

 ª

203.2 Documentation on exports (field_value_check)

PREDICATEfieldValue check/8:
No further documentation available for this predicate.

PREDICATEmfstringValue/7:
No further documentation available for this predicate.

788 The Ciao Prolog System

Chapter 204: generator (library) 789

204 generator (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

204.1 Usage and interface (generator)
® ©

• Library usage:

:- use_module(library(generator)).

• Exports:

− Predicates:

generator/2, nodeDeclaration/4.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, provrml/lookup, provrml/io, provrml/generator_util, provrml/parser_
util, provrml/error, provrml/internal_types.

 ª

204.2 Documentation on exports (generator)

PREDICATEgenerator/2:
Usage: generator(+Terms, -VRML)

− Description: This predicate is the generator of VRML code. It accepts a list of terms
that is correct VRML code, other kind of terms will be rejected will errormessage
accordingly. The output is a string of correct VRML code, acceptable for VRML
browsers.

− Call and exit should be compatible with:

+Terms is a list of termss. (basic_props:list/2)

-VRML is a string (a list of character codes). (basic_props:string/1)

PREDICATEnodeDeclaration/4:
No further documentation available for this predicate.

790 The Ciao Prolog System

Chapter 205: generator util (library) 791

205 generator util (library)

Author(s): Göran Smedbäck.

205.1 Usage and interface (generator_util)
® ©

• Library usage:

:- use_module(library(generator_util)).

• Exports:

− Predicates:

reading/4, reading/5, reading/6, open_node/6, close_node/5, close_nodeGut/4,
open_PROTO/4, close_PROTO/6, open_EXTERNPROTO/5, close_EXTERNPROTO/6, open_
DEF/5, close_DEF/5, open_Script/5, close_Script/5, decompose_field/3,
indentation_list/2, start_vrmlScene/4, remove_comments/4.

• Other modules used:

− System library modules:

provrml/error, lists, provrml/io, provrml/field_value, provrml/field_value_
check, provrml/lookup, provrml/parser_util.

 ª

205.2 Documentation on exports (generator_util)

PREDICATEreading/4:
Usage 1: reading(+IS, +NodeTypeId, +ParseIn, -ParseOut)

− Description: This predicate will refer to a formerly introduced interface. We do a
checkup of the access type and output the values.

− Call and exit should be compatible with:

+IS is an atom. (basic_props:atm/1)

+NodeTypeId is an atom. (basic_props:atm/1)

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

Usage 2: reading(+NodeGut, +NodeName, +ParseIn, -ParseOut)

− Description: This predicate will read a node gut and will check the field according to
the name.

− Call and exit should be compatible with:

+NodeGut is an atom. (basic_props:atm/1)

+NodeName is an atom. (basic_props:atm/1)

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

PREDICATEreading/5:
No further documentation available for this predicate.

792 The Ciao Prolog System

PREDICATEreading/6:
No further documentation available for this predicate.

PREDICATEopen node/6:
No further documentation available for this predicate.

PREDICATEclose node/5:
No further documentation available for this predicate.

PREDICATEclose nodeGut/4:
No further documentation available for this predicate.

PREDICATEopen PROTO/4:
No further documentation available for this predicate.

PREDICATEclose PROTO/6:
No further documentation available for this predicate.

PREDICATEopen EXTERNPROTO/5:
No further documentation available for this predicate.

PREDICATEclose EXTERNPROTO/6:
No further documentation available for this predicate.

PREDICATEopen DEF/5:
No further documentation available for this predicate.

PREDICATEclose DEF/5:
No further documentation available for this predicate.

PREDICATEopen Script/5:
No further documentation available for this predicate.

PREDICATEclose Script/5:
No further documentation available for this predicate.

Chapter 205: generator util (library) 793

PREDICATEdecompose field/3:
No further documentation available for this predicate.

PREDICATEindentation list/2:
Usage: indentation_list(+Parse, -IndList)

− Description: This predcate will construct a list with indentations to be output before
text. The information of the indentations is inside the parse structure.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

-IndList is a list of atms. (basic_props:list/2)

PREDICATEstart vrmlScene/4:
No further documentation available for this predicate.

PREDICATEremove comments/4:
Usage: remove_comments(+Value, -CommentsBefore, -ValueClean, -CommentsAfter)

− Description: The predicate will remove comments and return the comments before
and after the pure value.

− Call and exit should be compatible with:

+Value is a list of atms. (basic_props:list/2)

-CommentsBefore is a list of atms. (basic_props:list/2)

-ValueClean is an atom. (basic_props:atm/1)

-CommentsAfter is a list of atms. (basic_props:list/2)

794 The Ciao Prolog System

Chapter 206: internal types (library) 795

206 internal types (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#177 (2003/12/4, 17:48:37 CET)

These are the internal data types used in the predicates. They are only used to simplify this
documentation and make it more understandable.

Implemented by Göran Smedbäck

206.1 Usage and interface (internal_types)
® ©

• Library usage:

:- use_module(library(internal_types)).

• Exports:

− Regular Types:

bound/1, bound_double/1, dictionary/1, environment/1, parse/1, tree/1,
whitespace/1.

 ª

206.2 Documentation on exports (internal_types)

REGTYPEbound/1:
Min is a number or an atom that indicates the minimal value, Max indicates the maximal.

bound(bound(Min,Max)) :-
atm(Min),
atm(Max).

Usage: bound(Bound)

− Description: Bound is a variable interval.

REGTYPEbound double/1:
Min is a number or an atom that indicates the minimal value, Max indicates the maximal.
The first two for some value and the second pair for some other. Typically used for types
that are compound, e.g., rotationvalue.

bound_double(bound(Min0,Max0,Min1,Max1)) :-
atm(Min0),
atm(Max0),
atm(Min1),
atm(Max1).

Usage: bound_double(Bound)

− Description: Bound is a variable interval.

796 The Ciao Prolog System

REGTYPEdictionary/1:
Dic is a tree structure and is used as the internal representation of the dictionary.

dictionary(dic(Dic)) :-
tree(Dic).

Usage: dictionary(Dictionary)

− Description: Dictionary is a dictionary.

REGTYPEenvironment/1:
EnvironmentType one of ’DEF’,’PROTO’,’EXTERNPROTO’ with the name Name.
Whitespace is a structure with whitespace information.

environment(env(Env,Name,WhiteSpace)) :-
atm(Env),
atm(Name),
whitespace(WhiteSpace).

Usage: environment(Environment)

− Description: Environment is an environment structure.

REGTYPEparse/1:
In is the list of tokens to parse and Out is the resulting list after the parsing. Env is of type
env and is the environment-structure.The dictinonary Dic contains created information
and structures.

parse(parse(In,Out,Env,Dic)) :-
list(In),
list(Out),
environment(Env),
dictionary(Dic).

Usage: parse(Parse)

− Description: Parse is a parse structure.

REGTYPEtree/1:
Key is the search-key, Leaf is the information, Left and Right are more dictionary posts,
where Left have less Key-value.

tree(tree(Key,Leaf,Left,Right)) :-
atm(Key),
leaf(Leaf),
tree(Left),
tree(Right).

Usage: tree(Tree)

− Description: Tree is a tree structure.

REGTYPEwhitespace/1:
The Row and Indentation information. The row information used when parsing the VRML
code to give accurate error position and the indentation is used when generating VRML
code from terms.

Chapter 206: internal types (library) 797

whitespace(w(Row,Indentation)) :-
number(Row),
number(Indentation).

Usage: whitespace(Whitespace)

− Description: Whitespace is a whitespace structure.

798 The Ciao Prolog System

Chapter 207: io (library) 799

207 io (library)

Author(s): Göran Smedbäck.

Version: 0.1#2 (1998/12/2)

This file implements I/O predicates of different types.

Implemented by Göran Smedbäck

207.1 Usage and interface (io)
® ©

• Library usage:

:- use_module(library(io)).

• Exports:

− Predicates:

out/1, out/3, convert_atoms_to_string/2, read_terms_file/2, write_terms_
file/2, read_vrml_file/2, write_vrml_file/2.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists, format.

 ª

207.2 Documentation on exports (io)

PREDICATEout/1:
Usage: out(+ListOfOutput)

− Description: The predicate used is out/3 (DCG) where we will ’save’ the output in
the second argument. The tird argument is the rest, nil.

− Call and exit should be compatible with:

+ListOfOutput is a list of atms. (basic_props:list/2)

PREDICATEout/3:
No further documentation available for this predicate.

PREDICATEconvert atoms to string/2:
Usage: convert_atoms_to_string(+Atoms, -String)

− Description: The predicate transforms a list of atoms to a string.

− Call and exit should be compatible with:

+Atoms is a list of atms. (basic_props:list/2)

-String is a list of nums. (basic_props:list/2)

800 The Ciao Prolog System

PREDICATEread terms file/2:
Usage: read_terms_file(+Filename, -Term)

− Description: Given a filename to a file with terms, the predicate reads the terms
and are returned in the second argument. Filename is an atom and Term is the read
prolog terms.

− Call and exit should be compatible with:

+Filename is an atom. (basic_props:atm/1)

-Term is an atom. (basic_props:atm/1)

PREDICATEwrite terms file/2:
Usage: write_terms_file(+FileName, +List)

− Description: Given a filename and a list of terms the predicate will write them down
to the file.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

+List is a list of atms. (basic_props:list/2)

PREDICATEread vrml file/2:
Usage: read_vrml_file(+FileName, -Data)

− Description: Given a filename, the predicate returns the substance.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

-Data is a string (a list of character codes). (basic_props:string/1)

PREDICATEwrite vrml file/2:
Usage: write_vrml_file(+FileName, +Data)

− Description: Given a filename and data in form of a string, the predicate will write
the data to the named file.

− Call and exit should be compatible with:

+FileName is an atom. (basic_props:atm/1)

+Data is a string (a list of character codes). (basic_props:string/1)

Chapter 208: lookup (library) 801

208 lookup (library)

Author(s): Göran Smedbäck.

Version: 0.1 (1999/1/14, 13:30:46 MET)

208.1 Usage and interface (lookup)
® ©

• Library usage:

:- use_module(library(lookup)).

• Exports:

− Predicates:

create_proto_element/3, get_prototype_interface/2, get_
prototype_definition/2, lookup_check_node/4, lookup_check_field/6, lookup_
check_interface_fieldValue/8, lookup_field/4, lookup_route/5, lookup_
fieldTypeId/1, lookup_get_fieldType/4, lookup_field_access/4, lookup_set_
def/3, lookup_set_prototype/4, lookup_set_extern_prototype/4.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_
incomplete, operators, read, write, lists, provrml/error, provrml/internal_
types, provrml/io, provrml/parser_util, provrml/parser, provrml/dictionary,
provrml/dictionary_tree, provrml/field_value_check, provrml/boundary,
provrml/generator_util, provrml/field_type, provrml/field_value.

 ª

208.2 Documentation on exports (lookup)

PREDICATEcreate proto element/3:
Usage: create_proto_element(+Interface, +Definition, -Proto)

− Description: The predicate will construct a proto structure containing the interface
and the definition.

− Call and exit should be compatible with:

+Interface is any term. (basic_props:term/1)

+Definition is any term. (basic_props:term/1)

-Proto is any term. (basic_props:term/1)

PREDICATEget prototype interface/2:
Usage: get_prototype_interface(+Proto, -Interface)

− Description: The predicate will return the interface from a proto structure.

− Call and exit should be compatible with:

+Proto is any term. (basic_props:term/1)

-Interface is any term. (basic_props:term/1)

802 The Ciao Prolog System

PREDICATEget prototype definition/2:
Usage: get_prototype_definition(+Proto, -Definition)

− Description: The predicate will return the definition from a proto structure.

− Call and exit should be compatible with:

+Proto is any term. (basic_props:term/1)

-Definition is any term. (basic_props:term/1)

PREDICATElookup check node/4:
No further documentation available for this predicate.

PREDICATElookup check field/6:
No further documentation available for this predicate.

PREDICATElookup check interface fieldValue/8:
Usage: lookup_check_interface_fieldValue(+ParseIn, -ParseOut, +AccessType,
+FieldType, +Id, +FieldValue, DCGIn, DCGOut)

− Description: The predicate formats the output for the interface part of the prototype.
It also checks the values for the fields.

− Call and exit should be compatible with:

field_value:parse(+ParseIn) (field_value:parse/1)

field_value:parse(-ParseOut) (field_value:parse/1)

+AccessType is an atom. (basic_props:atm/1)

+FieldType is any term. (basic_props:term/1)

+Id is an atom. (basic_props:atm/1)

+FieldValue is any term. (basic_props:term/1)

DCGIn is a string (a list of character codes). (basic_props:string/1)

DCGOut is a string (a list of character codes). (basic_props:string/1)

PREDICATElookup field/4:
Usage: lookup_field(+Parse, +FieldTypeId, +FieldId0, +FieldId1)

− Description: The predicate will control that the two connected Fields are of the same
type, e.g., SFColor - SFColor, MFVec3f - MFVec3f.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+FieldTypeId is an atom. (basic_props:atm/1)

+FieldId0 is an atom. (basic_props:atm/1)

+FieldId1 is an atom. (basic_props:atm/1)

Chapter 208: lookup (library) 803

PREDICATElookup route/5:
Usage: lookup_route(+Parse, +NodeTypeId0, +FieldId0, +NodeTypeId1,
+FieldId1)

− Description: The predicate will check the routing behaviour for two given fields. They
will be checked according to the binding rules, like name changes access proporties.
The node types for the field must of course be given for the identification.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+NodeTypeId0 is an atom. (basic_props:atm/1)

+FieldId0 is an atom. (basic_props:atm/1)

+NodeTypeId1 is an atom. (basic_props:atm/1)

+FieldId1 is an atom. (basic_props:atm/1)

PREDICATElookup fieldTypeId/1:
Usage: lookup_fieldTypeId(+FieldTypeId)

− Description: The predicate just make a check to see if the given FieldType id is among
the allowed. You can not construct own ones and the check is mearly a spellcheck.

− Call and exit should be compatible with:

+FieldTypeId is an atom. (basic_props:atm/1)

PREDICATElookup get fieldType/4:
Usage: lookup_get_fieldType(+Parse, +NodeTypeId, +field_Id, -FieldType)

− Description: The predicate will return the given field’s type. It will start the search in
the ordinar dictionary and then to the personal dictionary sarting off with ’PROTO’.
After it will go for ’DEF’ and ’EXTERNPROTO’.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+NodeTypeId is an atom. (basic_props:atm/1)

+field_Id is an atom. (basic_props:atm/1)

-FieldType is an atom. (basic_props:atm/1)

PREDICATElookup field access/4:
Usage: lookup_field_access(+Parse, +NodenameId, +FieldId, +FieldId)

− Description: The predicate will control that the access proporties are correct accord-
ing to the certain rules that we have. It makes a check to see if the fields are of the
same access type or if one of them is an exposedField. It is not doing a route check
up to control that behaviour entirely.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+NodenameId is an atom. (basic_props:atm/1)

+FieldId is an atom. (basic_props:atm/1)

+FieldId is an atom. (basic_props:atm/1)

804 The Ciao Prolog System

PREDICATElookup set def/3:
Usage: lookup_set_def(+Parse, +Name, +Node)

− Description: The predicate will enter a new post in the personal dictionary for the
node definition.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+Name is an atom. (basic_props:atm/1)

+Node is any term. (basic_props:term/1)

PREDICATElookup set prototype/4:
Usage: lookup_set_prototype(+Parse, +Name, +Interface, +Definition)

− Description: The predicate will insert the prototype definition in the personal dictio-
nary and will give a warning if there is a multiple name given.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+Name is an atom. (basic_props:atm/1)

+Interface is any term. (basic_props:term/1)

+Definition is any term. (basic_props:term/1)

PREDICATElookup set extern prototype/4:
Usage: lookup_set_extern_prototype(+Parse, +Name, +Interface, +Strings)

− Description: The predicate will insert the external prototype definition in the personal
dictionary and will give a warning if there is a multiple name given.

− Call and exit should be compatible with:

field_value:parse(+Parse) (field_value:parse/1)

+Name is an atom. (basic_props:atm/1)

+Interface is any term. (basic_props:term/1)

+Strings is any term. (basic_props:term/1)

Chapter 209: parser (library) 805

209 parser (library)

Author(s): Göran Smedbäck.

209.1 Usage and interface (parser)
® ©

• Library usage:

:- use_module(library(parser)).

• Exports:

− Predicates:

parser/2, nodeDeclaration/4.

− Properties:

field_Id/1.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators,
read, write, lists, provrml/lookup, provrml/field_value, provrml/tokeniser,
provrml/parser_util, provrml/possible, provrml/error.

 ª

209.2 Documentation on exports (parser)

PREDICATEparser/2:
Usage: parser(+VRML, -Terms)

− Description: The parser uses a tokeniser to read the input text string of VRML
code and returns a list with the corresponding terms. The tokens will be read in this
parser as the grammar says. The parser is according to the specification of the VRML
grammar, accept that it is performed over tokens in sted of the actual code.

− Call and exit should be compatible with:

+VRML is a string (a list of character codes). (basic_props:string/1)

-Terms is a list of termss. (basic_props:list/2)

PREDICATEnodeDeclaration/4:
No further documentation available for this predicate.

PROPERTYfield Id/1:
A property, defined as follows:

field_Id(_1).

806 The Ciao Prolog System

Chapter 210: parser util (library) 807

210 parser util (library)

Author(s): Göran Smedbäck.

210.1 Usage and interface (parser_util)
® ©

• Library usage:

:- use_module(library(parser_util)).

• Exports:

− Predicates:

at_least_one/4, at_least_one/5, fillout/4, fillout/5, create_node/3, create_
field/3, create_field/4, create_field/5, create_directed_field/5, correct_
commenting/4, create_parse_structure/1, create_parse_structure/2, create_
parse_structure/3, create_environment/4, insert_comments_in_beginning/3,
get_environment_name/2, get_environment_type/2, get_row_number/2,
add_environment_whitespace/3, get_indentation/2, inc_indentation/2, dec_
indentation/2, add_indentation/3, reduce_indentation/3, push_whitespace/3,
push_dictionaries/3, get_parsed/2, get_environment/2, inside_proto/1,
get_dictionaries/2, strip_from_list/2, strip_from_term/2, strip_clean/2,
strip_exposed/2, strip_restricted/2, strip_interface/2, set_parsed/3, set_
environment/3, insert_parsed/3, reverse_parsed/2, stop_parse/2, look_first_
parsed/2, get_first_parsed/3, remove_code/3, look_ahead/3.

• Other modules used:

− System library modules:

aggregates, dynamic, iso_misc, iso_byte_char, iso_incomplete, operators, read,
write, lists, provrml/dictionary_tree, provrml/internal_types.

 ª

210.2 Documentation on exports (parser_util)

PREDICATEat least one/4:
No further documentation available for this predicate.

PREDICATEat least one/5:
No further documentation available for this predicate.

PREDICATEfillout/4:
No further documentation available for this predicate.

PREDICATEfillout/5:
No further documentation available for this predicate.

808 The Ciao Prolog System

PREDICATEcreate node/3:
Usage: create_node(+NodeTypeId, +Parse, -Node)

− Description: The predicate will construct a node term with the read guts which is
inside the parse structure. A node consists of its name and one argument, a list of its
fields.

− Call and exit should be compatible with:

+NodeTypeId is an atom. (basic_props:atm/1)

+Parse is a parse structure. (internal_types:parse/1)

-Node is any term. (basic_props:term/1)

PREDICATEcreate field/3:
Usage: create_field(+FieldNameId, +Arguments, -Field)

− Description: The predicate will construct a field with the Id as the fieldname and the
arguments as they are, in a double list, which results in a single list or a single list
which will result in free arguments.

− Call and exit should be compatible with:

+FieldNameId is an atom. (basic_props:atm/1)

+Arguments is any term. (basic_props:term/1)

-Field is any term. (basic_props:term/1)

PREDICATEcreate field/4:
Usage: create_field(+FieldAccess, +FieldType, +FieldId, -Field)

− Description: The predicate will construct a field with its access type as the name
with type and id as arguments.

− Call and exit should be compatible with:

+FieldAccess is an atom. (basic_props:atm/1)

+FieldType is an atom. (basic_props:atm/1)

+FieldId is an atom. (basic_props:atm/1)

-Field is any term. (basic_props:term/1)

PREDICATEcreate field/5:
Usage: create_field(+FieldAccess, +FieldType, +FieldId, +Fieldvalue, -Field)

− Description: The predicate will construct a field with its access type as the name
with type, id and value as arguments.

− Call and exit should be compatible with:

+FieldAccess is an atom. (basic_props:atm/1)

+FieldType is an atom. (basic_props:atm/1)

+FieldId is an atom. (basic_props:atm/1)

+Fieldvalue is any term. (basic_props:term/1)

-Field is any term. (basic_props:term/1)

Chapter 210: parser util (library) 809

PREDICATEcreate directed field/5:
Usage: create_directed_field(+Access, +Type, +Id0, +Id1, -Field)

− Description: The predicate will construct a directed field with the key word IS in the
middle. Its access type as the name with type, from id0 and to id1 as arguments.

− Call and exit should be compatible with:

+Access is an atom. (basic_props:atm/1)

+Type is an atom. (basic_props:atm/1)

+Id0 is an atom. (basic_props:atm/1)

+Id1 is an atom. (basic_props:atm/1)

-Field is any term. (basic_props:term/1)

PREDICATEcorrect commenting/4:
Usage: correct_commenting(+Place, +Comment, +ParsedIn, -ParsedOut)

− Description: The predicate places the comment ’before’ or ’after’ the parsed term.
This results in a list with the term and the comment or in just returning the term.

− Call and exit should be compatible with:

+Place is an atom. (basic_props:atm/1)

+Comment is a compound term. (basic_props:struct/1)

+ParsedIn is any term. (basic_props:term/1)

-ParsedOut is any term. (basic_props:term/1)

PREDICATEcreate parse structure/1:
Usage: create_parse_structure(-Parse)

− Description: The predicate will construct the parse structure with its three fields:
the parsing list, the environment structure, and the dictionaries.

− Call and exit should be compatible with:

-Parse is a parse structure. (internal_types:parse/1)

PREDICATEcreate parse structure/2:
Usage 1: create_parse_structure(+ParseIn, -ParseOut)

− Description: The predicate will construct a parse structure with its three fields:
the parsing list, the environment structure, and the dictionaries. It will reuse the
environment and the dictionaries from the input.

− Call and exit should be compatible with:

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

Usage 2: create_parse_structure(+ParsedList, -ParseOut)

− Description: The predicate will construct a parse structure with its three fields: the
parsing list, the environment structure, and the dictionaries. It will use the list of
parsed items in its structure.

− Call and exit should be compatible with:

+ParsedList is a list of terms. (basic_props:list/2)

-ParseOut is a parse structure. (internal_types:parse/1)

810 The Ciao Prolog System

PREDICATEcreate parse structure/3:
Usage: create_parse_structure(+ParsedList, +ParseIn, -ParseOut)

− Description: The predicate will construct a parse structure with its three fields: the
parsing list, the environment structure, and the dictionaries. It will use the list of
parsed items in its structure and the environment and the dictionary from the parse
structure given.

− Call and exit should be compatible with:

+ParsedList is a list of terms. (basic_props:list/2)

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

PREDICATEcreate environment/4:
Usage: create_environment(+Parse, +EnvType, +Name, -EnvStruct)

− Description: The predicate will construct an environment structure based on the
information in the parse structure. Well only the white- space information will be
reused. The are three types of environments ’PROTO’, ’EXTERNPROTO’, and
’DEF’.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

+EnvType is an atom. (basic_props:atm/1)

+Name is an atom. (basic_props:atm/1)

-EnvStruct is an environment structure. (internal_types:environment/1)

PREDICATEinsert comments in beginning/3:
Usage: insert_comments_in_beginning(+Comment, +ParseIn, -ParseOut)

− Description: We add the comment in the beginneing of the parsed, to get the proper
look.

− Call and exit should be compatible with:

+Comment is a compound term. (basic_props:struct/1)

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

PREDICATEget environment name/2:
Usage: get_environment_name(+Environment, -Name)

− Description: The predicate will return the enviroment name.

− Call and exit should be compatible with:

+Environment is an environment structure. (internal_types:environment/1)

-Name is an atom. (basic_props:atm/1)

PREDICATEget environment type/2:
Usage: get_environment_type(+Environment, -Type)

Chapter 210: parser util (library) 811

− Description: The predicate will return the enviroment type, one of the three:
’PROTO’, ’EXTERNPROTO’, and ’DEF’.

− Call and exit should be compatible with:

+Environment is an environment structure. (internal_types:environment/1)

-Type is an atom. (basic_props:atm/1)

PREDICATEget row number/2:
Usage: get_row_number(+Parse, -Row)

− Description: The predicate will return the row number from the parse structure. The
row number is not fully implemented.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

-Row is a number. (basic_props:num/1)

PREDICATEadd environment whitespace/3:
Usage: add_environment_whitespace(+EnvIn, +WhiteSpaceList, -EnvOut)

− Description: The predicate will add the new whitespace that is collected in a list of
whitespaces to the environment.

− Call and exit should be compatible with:

+EnvIn is an environment structure. (internal_types:environment/1)

+WhiteSpaceList is a list of atms. (basic_props:list/2)

-EnvOut is an environment structure. (internal_types:environment/1)

PREDICATEget indentation/2:
Usage 1: get_indentation(+Whitespace, -Indentation)

− Description: The predicate will return the indentation depth from a whitespace struc-
ture.

− Call and exit should be compatible with:

+Whitespace is a whitespace structure. (internal_types:whitespace/1)

-Indentation is a number. (basic_props:num/1)

Usage 2: get_indentation(+Parse, -Indentation)

− Description: The predicate will return the indentation depth from a parse structure.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

-Indentation is a number. (basic_props:num/1)

PREDICATEinc indentation/2:
Usage: inc_indentation(+ParseIn, -ParseOut)

− Description: Will increase the indentation with one step to a parse structure.

− Call and exit should be compatible with:

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

812 The Ciao Prolog System

PREDICATEdec indentation/2:
Usage: dec_indentation(+ParseIn, -ParseOut)

− Description: Will decrease the indentation with one step to a parse structure.

− Call and exit should be compatible with:

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

PREDICATEadd indentation/3:
No further documentation available for this predicate.

PREDICATEreduce indentation/3:
No further documentation available for this predicate.

PREDICATEpush whitespace/3:
Usage: push_whitespace(+ParseWithWhitespace, +ParseIn, -ParseOut)

− Description: The predicate will add the whitespace values from one parse structure
to another one, resultin in the output, with the values from the second parse structure
with the whitespace from the first added.

− Call and exit should be compatible with:

+ParseWithWhitespace is a parse structure. (internal_types:parse/1)

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

PREDICATEpush dictionaries/3:
Usage: push_dictionaries(+Parse, +Parse, -Parse)

− Description: The predicate will set the first parse structure’s directory to the second
parsing structure argument. The resulting parsing structure will be returned.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

+Parse is a parse structure. (internal_types:parse/1)

-Parse is a parse structure. (internal_types:parse/1)

PREDICATEget parsed/2:
Usage 1: get_parsed(+ParseStructure, -ListOfParsed)

− Description: The predicate will return a list of the parsed terms that is inside the
parse structure.

− Call and exit should be compatible with:

+ParseStructure is a parse structure. (internal_types:parse/1)

-ListOfParsed is a list of terms. (basic_props:list/2)

Usage 2: get_parsed(+ParseStructure, -EnvironmentStructure)

Chapter 210: parser util (library) 813

− Description: The predicate will return the environment of the parse structure.

− Call and exit should be compatible with:

+ParseStructure is a parse structure. (internal_types:parse/1)

-EnvironmentStructure is an environment structure. (internal_
types:environment/1)

Usage 3: get_parsed(+ParseStructure, -Dictionaries)

− Description: The predicate will return dictionary used within the parse structure.

− Call and exit should be compatible with:

+ParseStructure is a parse structure. (internal_types:parse/1)

-Dictionaries is a dictionary. (internal_types:dictionary/1)

PREDICATEget environment/2:
No further documentation available for this predicate.

PREDICATEinside proto/1:
Usage: inside_proto(+Parse)

− Description: The predicate will answer to the question: are we parsing inside a
PROTO/EXTERNPROTO.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

PREDICATEget dictionaries/2:
No further documentation available for this predicate.

PREDICATEstrip from list/2:
Usage: strip_from_list(+ListWithComments, -CleanList)

− Description: The predicate will strip the list from comments and return a list without
any comments.

− Call and exit should be compatible with:

+ListWithComments is a list of terms. (basic_props:list/2)

-CleanList is a list of terms. (basic_props:list/2)

PREDICATEstrip from term/2:
Usage: strip_from_term(+Term, -Stripped)

− Description: The predicate will remove comments from a term, it will reduce its
arguments if there are comments as arguments.

− Call and exit should be compatible with:

+Term is any term. (basic_props:term/1)

-Stripped is any term. (basic_props:term/1)

814 The Ciao Prolog System

PREDICATEstrip clean/2:
Usage: strip_clean(+ParsedIn, -ParsedOut)

− Description: The predicate will return a striped list or a single atom if there was
no comments and no more items in the list. It will also return a atom if there is
comments and only one other element.

− Call and exit should be compatible with:

+ParsedIn is any term. (basic_props:term/1)

-ParsedOut is any term. (basic_props:term/1)

PREDICATEstrip exposed/2:
No further documentation available for this predicate.

PREDICATEstrip restricted/2:
No further documentation available for this predicate.

PREDICATEstrip interface/2:
Usage: strip_interface(+Interface, -StrippedInterface)

− Description: The predicate will remove comments from the interface that we read for
the PROTOtype. This will help us when setting the properties.

− Call and exit should be compatible with:

+Interface is a list of terms. (basic_props:list/2)

-StrippedInterface is a list of terms. (basic_props:list/2)

PREDICATEset parsed/3:
Usage: set_parsed(+ParseIn, +NewParseList, -ParseOut)

− Description: The predicate will create a new parse structure from the first parse
structure with the parse list from the second argument.

− Call and exit should be compatible with:

+ParseIn is a parse structure. (internal_types:parse/1)

+NewParseList is a list of terms. (basic_props:list/2)

-ParseOut is a parse structure. (internal_types:parse/1)

PREDICATEset environment/3:
Usage: set_environment(+Environment, +ParseIn, -ParseOut)

− Description: The modificator will return a parse structure with the environment given
with the other properties from the first parse structure.

− Call and exit should be compatible with:

+Environment is an environment structure. (internal_types:environment/1)

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

Chapter 210: parser util (library) 815

PREDICATEinsert parsed/3:
No further documentation available for this predicate.

PREDICATEreverse parsed/2:
No further documentation available for this predicate.

PREDICATEstop parse/2:
Usage: stop_parse(+TermIn, -TermOut)

− Description: The predicate will bind the invalue to the outvalue, used to terminate
a parsing.

− Call and exit should be compatible with:

+TermIn is any term. (basic_props:term/1)

-TermOut is any term. (basic_props:term/1)

PREDICATElook first parsed/2:
Usage: look_first_parsed(+Parse, -First)

− Description: Look at the first item in the parse structure.

− Call and exit should be compatible with:

+Parse is a parse structure. (internal_types:parse/1)

-First is any term. (basic_props:term/1)

PREDICATEget first parsed/3:
Usage: get_first_parsed(+ParseIn, -ParseOut, -First)

− Description: Get the first item in the parse structure and return the parse structure
with the item removed.

− Call and exit should be compatible with:

+ParseIn is a parse structure. (internal_types:parse/1)

-ParseOut is a parse structure. (internal_types:parse/1)

-First is any term. (basic_props:term/1)

PREDICATEremove code/3:
No further documentation available for this predicate.

PREDICATElook ahead/3:
Usage: look_ahead(+Name, +Parsed, -Parsed)

− Description: This predicate is used normally by the CDG and the two last arguments
will therefore be the same because we don’t remove the parsed. The name is the name
inside a term, the first argument.

− Call and exit should be compatible with:

+Name is an atom. (basic_props:atm/1)

+Parsed is a list of terms. (basic_props:list/2)

-Parsed is a list of terms. (basic_props:list/2)

816 The Ciao Prolog System

Chapter 211: possible (library) 817

211 possible (library)

Author(s): Göran Smedbäck.

Version: 0.1 (1999/2/19, 6:32:46 MET)

211.1 Usage and interface (possible)
® ©

• Library usage:

:- use_module(library(possible)).

• Exports:

− Predicates:

continue/3.

• Other modules used:

− System library modules:

lists.
 ª

211.2 Documentation on exports (possible)

PREDICATEcontinue/3:
No further documentation available for this predicate.

818 The Ciao Prolog System

Chapter 212: tokeniser (library) 819

212 tokeniser (library)

Author(s): Göran Smedbäck.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#178 (2003/12/4, 17:49:33 CET)

212.1 Usage and interface (tokeniser)
® ©

• Library usage:

:- use_module(library(tokeniser)).

• Exports:

− Predicates:

tokeniser/2, token_read/3.

• Other modules used:

− System library modules:

iso_byte_char, lists, write, provrml/error.

 ª

212.2 Documentation on exports (tokeniser)

PREDICATEtokeniser/2:
Usage: tokeniser(+VRML, -Tokens)

− Description: This predicate will perform the parsing of the VRML code. The result
will be tokens that will be the source for producing the Prolog terms of the VRML
code. This is done in the parser module. From these terms analysis, changing, and
any thing that you want to do with VRML code from Prolog programming language.
We perform the predicate with a catch call to be able to output error messages if
encountered.

− Call and exit should be compatible with:

+VRML is a list of atms. (basic_props:list/2)

-Tokens is a list of terms. (basic_props:list/2)

PREDICATEtoken read/3:
No further documentation available for this predicate.

820 The Ciao Prolog System

Chapter 213: Double linked list 821

213 Double linked list

Author(s): David Trallero Mena.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.9#116 (2003/12/1, 22:4:57 CET)

This library allows the user to work with double linked lists. An index is used for referencing
the current element in the list. Such index can be modified by next and prev predicated. The
value of the current index can be obtained with top predicate

213.1 Usage and interface (ddlist)
® ©

• Library usage:

:- use_module(library(ddlist)).

• Exports:

− Predicates:

null_list/1, next/2, prev/2, insert/3, insert_top/3, insert_after/3, delete/2,
delete_top/2, delete_after/2, top/2, rewind/2, forward/2, length/2, length_
next/2, length_prev/2.

− Regular Types:

ddlist/1.

• Other modules used:

− System library modules:

lists.
 ª

213.2 Documentation on exports (ddlist)

PREDICATEnull list/1:
Usage: null_list(?NullList)

− Description: NullList is an empty list

− The following properties should hold at call time:

A is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

A is double linked list (ddlist:ddlist/1)

PREDICATEnext/2:
Usage: next(OldList, NewList)

− Description: NewList is OldList but index is set to next element of current element
of OldList. It satisfies next(A,B),prev(B,A)

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

822 The Ciao Prolog System

PREDICATEprev/2:
Usage: prev(OldList, NewList)

− Description: NewList is OldList but index is set to previous element of current
element of OldListop) of OldList

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEinsert/3:
Usage: insert(List, Element, NewList)

− Description: NewList is like List but with Element inserted BEFORE the current
index It satisfies insert(X , A , Xp) , delete(Xp , X).

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEinsert top/3:
Usage: insert_top(List, Element, NewList)

− Description: Put Element as new top of NewList and push the rest of elements after
it. It satisfies top(NewList , element)

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEinsert after/3:
Usage: insert_after(List, Element, NewList)

− Description: NewList is like List but with Element inserted AFTER the current
index It satisfies insert after(X , A , Xp) , delete after(Xp , X).

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEdelete/2:
Usage: delete(OldList, NewList)

− Description: NewList does not have the previous element (top(prev)) of OldList

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

Chapter 213: Double linked list 823

PREDICATEdelete top/2:
Usage: delete_top(OldList, NewList)

− Description: NewList does not have the current element (top) of OldList

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEdelete after/2:
Usage: delete_after(OldList, NewList)

− Description: NewList does not have next element to current element (top) of OldList

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEtop/2:
Usage: top(List, Element)

− Description: Element is the element pointed by index

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

PREDICATErewind/2:
Usage: rewind(OldList, NewList)

− Description: NewList is the OldList but index is set to 0

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATEforward/2:
Usage: forward(OldList, NewList)

− Description: NewList is the OldList but index is set to lentgh of NewList

− Call and exit should be compatible with:

OldList is double linked list (ddlist:ddlist/1)

NewList is double linked list (ddlist:ddlist/1)

PREDICATElength/2:
Usage: length(List, Len)

− Description: Len is the length of the List

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

824 The Ciao Prolog System

PREDICATElength next/2:
Usage: length_next(List, Len)

− Description: Len is the length from the current index till the end

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

PREDICATElength prev/2:
Usage: length_prev(List, Len)

− Description: Len is the length from the beginning till the current index

− Call and exit should be compatible with:

List is double linked list (ddlist:ddlist/1)

REGTYPEddlist/1:
Usage: ddlist(X)

− Description: X is double linked list

213.3 Other information (ddlist)

Two simple examples of the use of the ddlist library package follow.

213.3.1 Using insert after

:- module(ddl1 , _ , []).

:- use_module(library(ddlist)).

main(A,B):-
% L = []
null_list(L),
% L = [1]
insert_after(L , 1 , L1),
% L = [1,2]
insert_after(L1 , 2 , L2),
% L = [1,3,2]
insert_after(L2 , 3 , L3),
% L = [1,3,2] => A = [1]
top(L3 , A),
% L = [3,2]
next(L3 , PL3),
% L = [3,2] => A = [3]
top(PL3 , B).

Chapter 213: Double linked list 825

213.3.2 More Complex example

:- module(ddl2 , _ , []).

:- use_module(library(ddlist)).

main(A,B):-
% L = []
null_list(L),
% L = [1]
insert_after(L , 1 , L1),
% L = [1,2]
insert_after(L1 , 2 , L2),
% L = [1,2]
insert(L2 , 3 , L3),
% L = [3,1,2]
prev(L3 , PL3),
% L = [],
forward(PL3 , FOR),
% L = [2]
prev(FOR , FOR1),
% L = [2] => A = 2
top(FOR1 , A),
% L = [1,2]
prev(FOR1 , FOR2),
% L = [2]
delete_after(FOR2 , FOR3),
% L = [3,2]
prev(FOR3, FOR4),
% L = [3,2] => B = 3
top(FOR4 , B).

826 The Ciao Prolog System

Chapter 214: Measuring features from predicates (time cost or memory used...) 827

214 Measuring features from predicates (time cost
or memory used...)

Author(s): David Trallero Mena.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.0#2 (2003/12/3, 0:10:32 CET)

This library has been done for measuring or compare execution features (currently only time)
of predicates. This module relies on gnuplot, an auxiliary module which use the tool gnuplot,
for representing results graphically

214.1 Usage and interface (time_analyzer)
® ©

• Library usage:

:- use_module(library(time_analyzer)).

• Exports:

− Predicates:

performance/3, benchmark/6, compare_benchmark/7, benchmark2/6, compare_
benchmark2/7, sub_times/3, div_times/2, cost/3.

• Other modules used:

− System library modules:

gnuplot/gnuplot, prolog_sys, lists, write, system, hiordlib.

 ª

214.2 Documentation on exports (time_analyzer)

PREDICATEperformance/3:
Meta-predicate with arguments: performance(goal,?,?).

Usage: performance(P, M, Times)

− Description: performance accepts a goal, P, as a first argument. The aim of this
predicate is to call P several times and meassure some feature (in this version, only
time, that is because no extra parameter has been added). M defines how many times
P should be called. Usually, calling the predicate in some succesion (10,100,1000) and
dividing by the number of times it is executed we can obtain the "execution time" of
the predicate (if we are measuring time).

The result of executions are returned in the list Times

The diferent modes are:

• graph(Start , End , Increment). It defines arithmetic succesion starting in Start
and ending in End, by increment of Increment. So P is called Start times on the
first time, Start+Increment on the second, etc.

• graph The same as graph/3 but with default options

• graph exp(Start , End , Exp). It defines geometric succesion. Start is multiplied
by Exp till it gets End. So P is called Start times on the first time, Start*Exp
on the second, etc.

• graph exp The same as graph exp/3 but with default options

828 The Ciao Prolog System

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

M is any term. (basic_props:term/1)

Times is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

P is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

M is any term. (basic_props:term/1)

Times is a list of nums. (basic_props:list/2)

PREDICATEbenchmark/6:
Usage: benchmark(P, BenchList, NumTimes, Method, Reserved, OutList)

− Description: The predicate P, which accepts ONE argument, is called with the first
member of each pair of the BenchList list NumTimes. The entry list have pairs because
the second member of the pair express the meaning of the first one in the X-Axis. For
example, if we are doing a benchmark of qsort function, the first member will be a
list for being ordered and the second one will be the length of the unordered list. The
output is a list of (X,Y) points where Y means the time needed for its entry of "cost"
X. OutList can be used as TimeList in predicate generate plot. Reserved is reserved
for future implementations (it will take the value of runtime, memory used...)

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

BenchList is a list of pairs. (basic_props:list/2)

NumTimes is an integer. (basic_props:int/1)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

Reserved is any term. (basic_props:term/1)

OutList is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

P is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

BenchList is a list of pairs. (basic_props:list/2)

NumTimes is an integer. (basic_props:int/1)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

Reserved is any term. (basic_props:term/1)

OutList is a list of pairs. (basic_props:list/2)

PREDICATEcompare benchmark/7:
Usage: compare_benchmark(ListPred, BenchList, Method, NumTimes, BaseName,
Reserved, GeneralOptions)

− Description: It is the generalization of execute predicate benchmark/6 with several
predicates. benchmark/6 predicate is called with each predicate in ListPred, and
BaseName is used for the temporaries basename file. GeneralOptions are aplied to
the plot

Chapter 214: Measuring features from predicates (time cost or memory used...) 829

− The following properties should hold at call time:

ListPred is a list of preds. (basic_props:list/2)

BenchList is a list. (basic_props:list/1)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

NumTimes is an integer. (basic_props:int/1)

BaseName is currently instantiated to an atom. (term_typing:atom/1)

Reserved is any term. (basic_props:term/1)

GeneralOptions is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

ListPred is a list of preds. (basic_props:list/2)

BenchList is a list. (basic_props:list/1)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

NumTimes is an integer. (basic_props:int/1)

BaseName is currently instantiated to an atom. (term_typing:atom/1)

Reserved is any term. (basic_props:term/1)

GeneralOptions is a list. (basic_props:list/1)

PREDICATEbenchmark2/6:
Usage: benchmark2(P, BenchList, Method, NumTimes, What, OutList)

− Description: The predicate P, which accepts TWO arguments, is called NumTimes
with the first member of each pair of the BenchList list and a free variable as the
second. The time of execution (in the future, the desired featured for be measured)
is expected to be the second argument, that is because it is a variable. The entry
list, BenchList have pairs because the second member of the pair express the cost
of the first (in X-Axis). For example, if we are doing a benchmark of qsort function,
the first member will be a list for being ordered and the second one will represent the
lenght of the unordered list. The output is a list of (X,Y) points where Y express the
time needed for they entry of "cost" X. OutList can be used as TimeList in predicate
generate plot. What is reserved for future use

− The following properties should hold at call time:

P is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

BenchList is a list of pairs. (basic_props:list/2)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

NumTimes is an integer. (basic_props:int/1)

What is currently instantiated to an atom. (term_typing:atom/1)

OutList is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

P is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

BenchList is a list of pairs. (basic_props:list/2)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

NumTimes is an integer. (basic_props:int/1)

What is currently instantiated to an atom. (term_typing:atom/1)

OutList is a list of pairs. (basic_props:list/2)

830 The Ciao Prolog System

PREDICATEcompare benchmark2/7:
Usage: compare_benchmark2(ListPred, BenchList, Method, NumTimes, BaseName,
Reserved, GeneralOptions)

− Description: It is the generalization of execute predicate benchmark2/6 with several
predicates. benchmark2/6 is called with each predicate in ListPred and BaseName
is used for the temporaries basename file. GeneralOptions are applied to the plot
(’default’ can be used for default General options)

− The following properties should hold at call time:

ListPred is a list of preds. (basic_props:list/2)

BenchList is a list. (basic_props:list/1)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

NumTimes is an integer. (basic_props:int/1)

BaseName is currently instantiated to an atom. (term_typing:atom/1)

Reserved is currently instantiated to an atom. (term_typing:atom/1)

GeneralOptions is a list. (basic_props:list/1)

− The following properties should hold upon exit:

ListPred is a list of preds. (basic_props:list/2)

BenchList is a list. (basic_props:list/1)

time_analyzer:average_mode(Method) (time_analyzer:average_mode/1)

NumTimes is an integer. (basic_props:int/1)

BaseName is currently instantiated to an atom. (term_typing:atom/1)

Reserved is currently instantiated to an atom. (term_typing:atom/1)

GeneralOptions is a list. (basic_props:list/1)

PREDICATEsub times/3:
Usage: sub_times(A, B, C)

− Description: C is the result of doing A - B, where A, B, C are a list of pairs as
(Time,)

− Call and exit should be compatible with:

A is a list of pairs. (basic_props:list/2)

B is a list of pairs. (basic_props:list/2)

C is a list of pairs. (basic_props:list/2)

PREDICATEdiv times/2:
Usage: div_times(A, B)

− Description: A is a list of pairs (P1,P2). B is a list of pairs with the form (P1,P2/P1)
for each (P1,P2) that belongs to A

− Call and exit should be compatible with:

A is a list of pairs. (basic_props:list/2)

B is a list of pairs. (basic_props:list/2)

Chapter 214: Measuring features from predicates (time cost or memory used...) 831

PREDICATEcost/3:
Meta-predicate with arguments: cost(goal,?,?).

Usage: cost(A, T, What)

− Description: This pred is thought for measuring constant complexity predicates. T is
the expected measured feature. What is reserved for future implementations, just put
’runtime’

− Call and exit should be compatible with:

A is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

T is an integer. (basic_props:int/1)

What is any term. (basic_props:term/1)

(UNDOC REEXPORT)generate plot/3:
Imported from gnuplot (see the corresponding documentation for details).

(UNDOC REEXPORT)generate plot/2:
Imported from gnuplot (see the corresponding documentation for details).

(UNDOC REEXPORT)set general options/1:
Imported from gnuplot (see the corresponding documentation for details).

(UNDOC REEXPORT)get general options/1:
Imported from gnuplot (see the corresponding documentation for details).

832 The Ciao Prolog System

Chapter 215: Printing graph using gnuplot as auxiliary tool. 833

215 Printing graph using gnuplot as auxiliary tool.

Author(s): David Trallero Mena.

This library uses gnuplot for printing graphs.

User-friendly predicates to generate data plots are provided, as well as predicates to set the
general options which govern the generation of such plots. If no options is specified, global ones
are used for data plots generation.

Several files can be generated as temporary files. A BaseName is required for generating
the temporaries files. Data files name will be created from BaseName + number + .dat. The
BaseName + ".plot" will be the name used for gnuplot tool.

A list of pairs of list of pairs of the from (X,Y) and Local Option value is provided to the
main predicate as data. In other words DataList = [(CurveDataList,LocalOptions), (Curve-
DataList1,LocalOptions1) ...]. Additionaly (function(String) , LocalOptions) can be used for
adding a curve to the plot (imagine you want to compare your result with ’x=y’).

LocalOptions of the DataList are options that are applied to the curve, as for example, if we
print the curve with lines, or the title in the legend, etc. GlobalOptions are referred to the plot
options, like title in x or y axis, etc.

215.1 Usage and interface (gnuplot)
® ©

• Library usage:

:- use_module(library(gnuplot)).

• Exports:

− Predicates:

get_general_options/1, set_general_options/1, generate_plot/2, generate_
plot/3.

• Other modules used:

− System library modules:

lists, write, system.

 ª

215.2 Documentation on exports (gnuplot)

PREDICATEget general options/1:
Usage: get_general_options(X)

− Description: Get the general options of the graphic that will be plotted

− The following properties should hold at call time:

X is a free variable. (term_typing:var/1)

− The following properties should hold upon exit:

X is a list. (basic_props:list/1)

PREDICATEset general options/1:
Usage: set_general_options(X)

834 The Ciao Prolog System

− Description: Get the general options of the graphic that will be plotted. Possible
options are:

• format(A) Specify the format of points

• nokey Legend is no represented

• nogrid No grid

• grid An smooth grid is shown

• label(L , (X,Y)) Put Label L at point (X,Y)

• xlabel(A) Label of X-Axis

• ylabel(A) Label of Y-Axis

• xrange(A,B) Define the X range representation

• yrange(A,B) Define the Y range representation

• title(A) Title of the plot

• key(A) define the key (for example [left,box], left is the position, box indicates
that a box should be around)

• term post(A) define the postscript terminal. A is a list of atoms.

• size(A,B) specify the size of the plot (A,B float numbers)

• autoscale autoscale the size of the plot

• autoscale(A) autoscale the argument (for example: autoscale(x))

− Call and exit should be compatible with:

X is a list. (basic_props:list/1)

PREDICATEgenerate plot/2:
Usage: generate_plot(BaseName, DataList)

− Description: This predicates generate a ’BaseName + .ps’ postscript file using each
element of DataList as pair of list of pairs and local options, i.e., (list((X,Y)),
LocalOptions), in which X is the position in X-Axis and Y is the position in Y-Axis.
Nevertheless, each element of DataList can be a list of pairs instead of a pair for
commodity. gnuplot is used as auxiliary tool. Temporary files ’BaseName + N.dat’
are generated for for every list of pairs, and ’BaseName + .plot’ is de file used by
gnuplot. The local options can be:

• with(Option) Tells how the curve will be represented. Option can b line, dots,
boxes, impulses, linespoints. This option HAVE TO BE the last one

• title(T) Put the name of the curve in the legend to T

− The following properties should hold at call time:

BaseName is currently instantiated to an atom. (term_typing:atom/1)

DataList is a list of pairs. (basic_props:list/2)

− The following properties should hold upon exit:

BaseName is currently instantiated to an atom. (term_typing:atom/1)

DataList is a list of pairs. (basic_props:list/2)

PREDICATEgenerate plot/3:
Usage: generate_plot(BaseName, DataList, GeneralOptions)

− Description: It is the same as generate plot/2 but GeneralOptions are used as the
general options of the plot. Look at predicate set general options for detailed descrip-
tion of possible options

Chapter 215: Printing graph using gnuplot as auxiliary tool. 835

− The following properties should hold at call time:

BaseName is currently instantiated to an atom. (term_typing:atom/1)

DataList is a list of pairs. (basic_props:list/2)

GeneralOptions is a list. (basic_props:list/1)

− The following properties should hold upon exit:

BaseName is currently instantiated to an atom. (term_typing:atom/1)

DataList is a list of pairs. (basic_props:list/2)

GeneralOptions is a list. (basic_props:list/1)

836 The Ciao Prolog System

Chapter 216: Automatic modules caller tester 837

216 Automatic modules caller tester

Author(s): David Trallero Mena.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.0#6 (2004/2/24, 17:12:13 CET)

This module is intended to agilizy the work of calling several modules as prove cases of some
program. Usually when you are developing a program you have several auto-test program cases
that you would like to execute whenever you do some modification in your program/system.
The predicate mod_tester/2 was created with the propouse of execute this test an report to
you which of them were correctly executed and which one were not.

216.1 Usage and interface (modtester)
® ©

• Library usage:

:- use_module(library(modtester)).

• Exports:

− Predicates:

tester_func/1, modules_tester/2, pred_tester/2.

• Other modules used:

− System library modules:

tester/tester, lists, write, filenames, compiler/compiler, terms_check, conc_
aggregates, system.

 ª

216.2 Documentation on exports (modtester)

PREDICATEtester func/1:
No further documentation available for this predicate.

PREDICATEmodules tester/2:
Usage 1: modules_tester(BaseName, ModulesList)

− Description: modules tester accepts an atom as basename of the two generated
files. For each module in ModulesList an output and report is saved in ’base-
name test output.log’ and ’basename test summary.log’ respectevely

− The following properties should hold at call time:

BaseName is currently instantiated to an atom. (term_typing:atom/1)

ModulesList is a list. (basic_props:list/1)

Usage 2: modules_tester(BaseName, PredList)

− Description: pred tester accepts an atom as basename of the two generated files.
For each element with the pattern (FindPatter, precidate, [results]), module in
PredList an output and report is saved in ’basename test output.log’ and ’base-
name test summary.log’ respectevely. For example, you can call this predicate as:
pred tester(test , [(X,mypred(X),[1,2,3]),((X,Y),mypred2(X, aa , Y), [(1,2),(2,3)])]
).

838 The Ciao Prolog System

− The following properties should hold at call time:

BaseName is currently instantiated to an atom. (term_typing:atom/1)

PredList is a list. (basic_props:list/1)

PREDICATEpred tester/2:
No further documentation available for this predicate.

Chapter 217: Automatic tester 839

217 Automatic tester

Author(s): David Trallero Mena.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.0 (2003/10/16, 11:52:43 CEST)

This module have been created to automatizate the test that a predicate should pass hope-
fully. With that intention we have to provide a set of test and its correct answers. The predicate
run_tester/10 will execute every test and compare it with its answer, generating two traces,
one with detailed information, and another with the summary of executions of the tests.

217.1 Usage and interface (tester)
® ©

• Library usage:

:- use_module(library(tester)).

• Exports:

− Predicates:

run_tester/10.

• Other modules used:

− System library modules:

lists, write, io_alias_redirection.

 ª

217.2 Documentation on exports (tester)

PREDICATErun tester/10:
Meta-predicate with arguments:
run_tester(?,?,pred(0),pred(1),?,pred(1),?,pred(0),?,?).

Usage: run_tester(LogFile, ResultFile, Begin, Test, TestList, Check,
CheckList, End, GoodExamples, Slider)

− Description: run tester is a predicate for automatizate testers. It get 2 file names as
entry (LogFile and ResultFile) for saving the trace and the short result scheme
respectevely. Being and End are called at the beginning and at the end of the
test. Test is called which each element of TestList and after, Check is called with
the corresponding element in CheckList for checking the results of Test predicate.
GoodExample is ground(int) at the exit and tells the number of examples that passed
the test correctly. Slider can take the values slider(no) or slider(Title) and slider
will be shown everytime a new test is called

− The following properties should hold at call time:

LogFile is a string (a list of character codes). (basic_props:string/1)

ResultFile is a string (a list of character codes). (basic_props:string/1)

Begin is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

Test is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

TestList is a list. (basic_props:list/1)

840 The Ciao Prolog System

Check is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

CheckList is a list. (basic_props:list/1)

End is a term which represents a goal, i.e., an atom or a structure. (basic_
props:callable/1)

GoodExamples is a free variable. (term_typing:var/1)

Slider is any term. (basic_props:term/1)

217.3 Other information (tester)

Two simple examples of the use of the run tester are provided.

217.3.1 Understanding run test predicate

:- module(tester_test2 , _ , _).

:- use_module(’../tester’).
%:- use_module(library(tester)).
:- use_module(library(lists)).
:- use_module(library(write)).

init_func :-
write(’Starting the test\n’).

tester_func((X,X,_)) :-
write(’The argument is correct ’),
write(X) , nl.

checker_func((_,X,X)) :-
write(’check is fine\n\n’).

end_func :-
write(’Test ended\n’).

main :-
L = [(1,1,1), % CORRECT

(2,2,1), % Test CORRECT , CHECK FALSE
(1,2,2) % Test FALSE

],

run_tester(
’test.log’,
’result.log’,
init_func ,
tester_func ,
L,
checker_func,

Chapter 217: Automatic tester 841

L,
end_func,
Res,
slider(’Tester2: ’)

),

length(L , LL),
Op is (Res / LL) * 100,
message(note , [’Analysis result: ’ , Op , ’%’]).

217.3.2 More complex example

In this example we just want to test if the output of Ciaopp is readable by CIAO.

Tester function succeds if it is able to write the output file.

Checker function succeds if it is able to load the written file.

:- module(tester_test1 , _ , []).

%:- use_module(library(tester) , [run_tester/10]).
:- use_module(’../tester’ , [run_tester/10]).

:- use_module(library(ciaopp)).
:- use_module(library(compiler)).

:- use_module(library(filenames)).

:- use_module(library(write)).

:- use_module(library(lists)).

init_func.

test_files(’/home/dtm/Ciaopp/Benchmarks/ciaopp/modes/’).

tester_func(FileArg) :-
test_files(Path),
atom_concat(Path , FileArg , File0),

message(note ,
[’+++\n’]),
(unload(File0)->true;true),
module(File0),

atom_concat(TFile , ’.pl’, File0),
atom_concat(TFile , ’_test.pl’ , TestFile),

output(TestFile).

842 The Ciao Prolog System

get_module(Path , Module) :-
no_path_file_name(Path , File),
(atom_concat(Module , ’.pl’ , File)
-> true ; Module = File).

checker_func(FileArg) :-
get_module(FileArg , Module),
(unload(Module)->true;true),

atom_concat(RawFile, ’.pl’ , FileArg),
atom_concat(RawFile, ’_test.pl’ , OptFile),

test_files(Path),
atom_concat(Path , OptFile, OptFilePath),

message(note , [’Cargando ’ , OptFilePath]),
use_module(OptFilePath).

end_func.

main :-
L = [

’aiakl.pl’,
’query.pl’,
’mmatrix.pl’,
’ann.pl’,
’bid.pl’,
’rdtok.pl’,
’myread.pl’,
’boyer.pl’,
’read.pl’,
’occur.pl’,
’serialize.pl’,
’browse.pl’,
’peephole.pl’,
’tak.pl’,
’deriv.pl’,
’progeom.pl’,
’warplan.pl’,
’fib.pl’,
’qplan.pl’,
’witt.pl’,
’grammar.pl’,
’zebra.pl’,
’qsortapp.pl’,
’hanoiapp.pl’

],

Chapter 217: Automatic tester 843

run_tester(
’test.log’,
’result.log’,
init_func ,
tester_func ,
L,
checker_func,
L,
end_func,
Res,
slider(’Tester1: ’)

),
length(L , LL),
Op is (Res / LL) * 100,
message(note , [’Analysis result: ’ , Op , ’%’]).

844 The Ciao Prolog System

PART XII - Appendices 845

PART XII - Appendices

® ©

Author(s): The CLIP Group.

These appendices describe the installation of the Ciao environment on different systems and
some other issues such as reporting bugs, signing up on the Ciao user’s mailing list, downloading
new versions, limitations, etc.

 ª

846 The Ciao Prolog System

Chapter 218: Installing Ciao from the source distribution 847

218 Installing Ciao from the source distribution

Author(s): Manuel Carro, Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#130 (2001/10/28, 17:6:47 CET)

This describes the installation procedure for the Ciao Prolog system, including libraries and
manuals, from a source distribution. This applies primarily to Unix-type systems (Linux, Mac
OS X, Solaris, SunOS, etc.). However, the sources can also be compiled if so desired on Windows
systems – see Section 218.6 [Installation and compilation under Windows], page 852 for details.

If you find any problems during installation, please refer to Section 218.8 [Troubleshooting
(nasty messages and nifty workarounds)], page 854. See also Section 220.3 [Downloading new
versions], page 861 and Section 220.4 [Reporting bugs], page 862.

218.1 Un*x installation summary

Note: it is recommended that you read the full installation instructions (specially if the instal-
lation will be shared by different architectures). However, in many cases it suffices to follow this
summary:

1. Uncompress and unpackage (using gunzip and tar -xpf) the distribution. This will put
everything in a new directory whose name reflects the Ciao version.

2. Enter the newly created directory (SRC). Edit SETTINGS and check/set the variables SRC,
BINROOT (where the executables will go), LIBROOT (where the libraries will go), and DOCROOT
(where the documentation will go, preferably a directory accessible via WWW).

3. Type gmake install. This will build executables, compile libraries, and install everything
in a directory LIBROOT/ciao and in BINROOT.

Note that gmake refers to the GNU implementation of the make Un*x command, which is
available in many systems (including all Linux systems and Mac OS X) simply as make.
I.e., you can try simply typing make install if gmake install does not work. If typing
make stops right away with error messages it is probably an older version and you need to
install gmake.

4. Make the following modifications in your startup scripts. This will make the documentation
accessible, set the correct mode when opening Ciao source files in emacs, etc. Note that
<LIBROOT> must be replaced with the appropriate value:

• For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

if (-e <LIBROOT>/ciao/DOTcshrc) then
source <LIBROOT>/ciao/DOTcshrc

endif

Mac OS X users should add (or modify) the path file in the directory
~/Library/init/tcsh, adding the lines shown above. Note: while this is recognized
by the terminal shell, and therefore by the text-mode Emacs which comes with Mac OS
X, the Aqua native Emacs 21 does not recognize that initialization. It is thus necessary,
at this moment, to set manually the Ciao shell (ciaosh) and Ciao library location by
hand. This can be done from the Ciao menu within Emacs after a Ciao Prolog file has
been loaded. We suppose that the reason is that Mac OS X does not actually consult
the per-user initialization files on startup. It should also be possible to put the right
initializations in the .emacs file using the setenv function of Emacs-lisp, as in

(setenv "CIAOLIB" "<LIBROOT>/ciao")

The same can be done for the rest of the variables initialized in
<LIBROOT>/ciao/DOTcshrc

• For users of an sh-compatible shell (sh, bash, ...), add to ~/.profile:

848 The Ciao Prolog System

if [-f <LIBROOT>/ciao/DOTprofile]; then
. <LIBROOT>/ciao/DOTprofile

fi

This will set up things so that the Ciao executables are found and you can access the
Ciao system manuals using the info command. Note that, depending on your shell,
you may have to log out and back in for the changes to take effect.

• Also, if you use emacs (highly recommended) add this line to your ~/.emacs file:

(load-file "<LIBROOT>/ciao/DOTemacs.el")

If you are installing Ciao globally in a multi-user machine, make sure that you instruct
all users to do the same. If you are the system administrator, the previous steps can
be done once and for all, and globally for all users by including the lines above in the
central startup scripts (e.g., in Linux /etc/bashrc, /etc/csh.login, /etc/csh.cshrc,
/etc/skel, /usr/share/emacs/.../lisp/site-init.pl, etc.).

5. Finally, if the (freely available) emacs editor/environment is not installed in your system,
we highly recommend that you also install it at this point (see Section 218.2 [Un*x full
installation instructions], page 848 for instructions). While it is easy to use Ciao with any
editor of your choice, the Ciao distribution includes a very powerful application development
environment which is based on emacs and which enables, e.g., source-level debugging, syntax
coloring, context-sensitive on-line help, etc.

6. You may want now want to check your installation (see Section 218.3 [Checking for correct
installation on Un*x], page 851) and read the documentation, which is stored in DOCROOT
(copied from SRC/doc/reference) and can be easily accessed as explained in that same
section. There are special “getting started” sections at the beginning of the manual.

7. If you have any problems you may want to check the rest of the instructions. The system
can be uninstalled by typing gmake uninstall.

218.2 Un*x full installation instructions

1. Uncompress and unpackage: (using gunzip and tar -xpf) the distribution in a suitable
directory. This will create a new directory called ciao-X.Y, where X.Y is the version
number of the distribution. The -p option in the tar command ensures that the relative
dates of the files in the package are preserved, which is needed for correct operation of the
Makefiles.

2. Select installation options: Edit the file SETTINGS and set the following variables:

• SRC: directory where the sources are stored.

• BINROOT: directory where the Ciao executables will go. For example, if
BINROOT=/usr/local/bin, then the Ciao compiler (ciaoc) will be stored at
/usr/local/bin/ciaoc. Actually, it will be a link to ciaoc-VersionNumber. This
applies also to other executables below and is done so that several versions of Ciao can
coexist on the same machine. Note that the version installed latest will be the one
started by default when typing ciao, ciaoc, etc.

• LIBROOT: directory where the run-time libraries will be installed. The Ciao in-
stallation procedure will create a new subdirectory ciao below LIBROOT and a
subdirectory below this one for each Ciao version installed. For example, if
LIBROOT=/usr/local/lib and you have Ciao version x.y, then the libraries will be in-
stalled under /usr/local/lib/ciao/ciao-x.y. This allows you to install site-specific
programs under /usr/local/lib/ciao and they will not be overwritten if a new ver-
sion of Ciao is installed. It also again allows having several Ciao versions installed
simultaneously.

Chapter 218: Installing Ciao from the source distribution 849

• DOCROOT: directory where the manuals will be installed. It is often convenient if this
directory is accessible via WWW (DOCROOT=/home/httpd/html/ciao, or something
like that).

For network-based installations, it is of utmost importance that the paths given be reachable
in all the networked machines. Different machines with different architectures can share the
same physical SRC directory during installation, since compilations for different architectures
take place in dedicated subdirectories. Also, different machines/architectures can share the
same LIBROOT directory. This saves space since the architecture-independent libraries will
be shared. See Section 218.5 [Multiarchitecture support], page 852 below.

3. Compile Ciao: At the ciao top level directory type gmake all.

Important: use GNU make (gmake), not the standard UNIX make, as the latter does not
support some features used during the compilation. It does not matter if the name of the
executable is make or gmake: only make sure that it is GNU make.

This will:

• Build an engine in $(SRC)/bin/$(CIAOARCH), where $(CIAOARCH) depends on the
architecture. The engine is the actual interpreter of the low level code into which Ciao
Prolog programs are compiled.

• Build a new Ciao standalone compiler (ciaoc), with the default paths set for your
local configuration (nonetheless, these can be overridden by environment variables, as
described below).

• Precompile all the libraries under $(SRC)/lib and $(SRC)/library using this com-
piler.

• Compile a toplevel Prolog shell and a shell for Prolog scripts, under the $(SRC)/shell
directory.

• Compile some small, auxiliary applications (contained in the etc directory, and docu-
mented in the part of the manual on ’Miscellaneous Standalone Utilities’).

This step can be repeated successively for several architectures in the same source directory.
Only the engine and some small parts of the libraries (those written in C) differ from one
architecture to the other. Standard Ciao Prolog code compiles into bytecode object files
(.po) and/or executables which are portable among machines of different architecture,
provided there is an executable engine accessible in every such machine. See more details
below under Section 218.5 [Multiarchitecture support], page 852.

4. Check compilation: If the above steps have been satisfactorily finished, the compiler has
compiled itself and all the distribution modules, and very probably everything is fine.

5. Install Ciao: To install Ciao in the directories selected in the file SETTINGS during step 2
above, type gmake justinstall. This will:

• Install the executables of the Ciao program development tools (i.e., the general
driver/top-level ciao, the standalone compiler ciaoc, the script interpreter ciao-
shell, miscellaneous utilities, etc.) in BINROOT (see below). In order to use these
tools, the PATH environment variable of users needs to contain the path BINROOT.

• Install the Ciao libraries under LIBROOT/ciao (these will be automatically found).

• Install under DOCROOT the Ciao manuals in several formats (such as GNU info, html,
postscript, etc.), depending on the distribution. In order for these manuals to be
found when typing M-x info within emacs, or by the standalone info and man com-
mands, the MANPATH and INFOPATH environment variables of users both need to contain
the path DOCROOT.

• Install under LIBROOT/ciao the Ciao GNU emacs interface (ciao.el, which provides
an interactive interface to the Ciao program development tools, as well as some other
auxiliary files) and a file DOTemacs containing the emacs initialization commands which
are needed in order to use the Ciao emacs interface.

850 The Ciao Prolog System

6. Set up user environments: In order to automate the process of setting the variables
above, the installation process leaves the files LIBROOT/ciao/DOTcshrc (for csh-like shells),
LIBROOT/ciao/DOTprofile (for sh-like shells), and LIBROOT/ciao/DOTemacs (for emacs)
with appropriate definitions which will take care of all needed environment variable defini-
tions and emacs mode setup. Make the following modifications in your startup scripts, so
that these files are used (<LIBROOT> must be replaced with the appropriate value):

• For users a csh-compatible shell (csh, tcsh, ...), add to ~/.cshrc:

if (-e <LIBROOT>/ciao/DOTcshrc) then
source <LIBROOT>/ciao/DOTcshrc

endif

Mac OS X users should add (or modify) the path file in the directory
~/Library/init/tcsh, adding the lines shown above. Note: while this is recognized
by the terminal shell, and therefore by the text-mode Emacs which comes with Mac OS
X, the Aqua native Emacs 21 does not recognize that initialization. It is thus necessary,
at this moment, to set manually the Ciao shell (ciaosh) and Ciao library location by
hand. This can be done from the Ciao menu within Emacs after a Ciao Prolog file has
been loaded. We suppose that the reason is that Mac OS X does not actually consult
the per-user initialization files on startup. It should also be possible to put the right
initializations in the .emacs file using the setenv function of Emacs-lisp, as in

(setenv "CIAOLIB" "<LIBROOT>/ciao")

The same can be done for the rest of the variables initialized in
<LIBROOT>/ciao/DOTcshrc

• For users of an sh-compatible shell (sh, bash, ...), add to ~/.profile:

if [-f <LIBROOT>/ciao/DOTprofile]; then
. <LIBROOT>/ciao/DOTprofile

fi

This will set up things so that the Ciao executables are found and you can access the
Ciao system manuals using the info command. Note that, depending on your shell,
you may have to log out and back in for the changes to take effect.

• Also, if you use emacs (highly recommended) add this line to your ~/.emacs file:

(load-file "<LIBROOT>/ciao/DOTemacs.el")

If you are installing Ciao globally in a multi-user machine, make sure that you instruct
all users to do the same. If you are the system administrator, the previous steps can
be done once and for all, and globally for all users by including the lines above in the
central startup scripts (e.g., in Linux /etc/bashrc, /etc/csh.login, /etc/csh.cshrc,
/etc/skel, /usr/share/emacs/.../lisp/site-init.pl, etc.).

7. Download and install Emacs (highly recommended): If the (freely available) emacs editor is
not installed in your system, its installation is highly recommended (if you are installing in a
multi-user machine, you may want to do it in a general area so that it is available for other
users, even if you do not use it yourself). While it is easy to use Ciao with any editor of your
choice, the Ciao distribution includes a very powerful application development environment
which is based on emacs and which enables, e.g., source-level debugging, syntax coloring,
context-sensitive on-line help, etc.

The emacs editor (in all its versions: Un*x, Windows, etc.) can be downloaded from, for
example, http://www.emacs.org/, and also from the many GNU mirror sites worldwide
(See http://www.gnu.org/ for a list), in the gnu/emacs and gnu/windows/emacs directo-
ries. You can find answers to frequently asked questions (FAQ) about emacs in general at
http://www.gnu.org/software/emacs/emacs-faq.text and about the Windows version
at http://www.gnu.org/software/emacs/windows/ntemacs.html (despite the ntemacs
name it runs fine also as is on Win9X and Win2000 machines).

Chapter 218: Installing Ciao from the source distribution 851

8. Check installation / read documentation: You may now want to check your installation
(see Section 218.3 [Checking for correct installation on Un*x], page 851) and read the
documentation, which is stored in DOCROOT (copied from SRC/doc/reference) and can be
easily accessed as explained that same section. There are special “getting started” sections
at the beginning of the manual.

Other useful make targets are listed at the beginning of $(SRC)/Makefile.

If you have any problems you may want to check Section 218.8 [Troubleshooting (nasty
messages and nifty workarounds)], page 854.

The system can be uninstalled by typing gmake uninstall in the top directory (the variables
in SETTINGS should have the same value as when the install was performed, so that the same
directories are cleaned).

218.3 Checking for correct installation on Un*x

If everything has gone well, several applications and tools should be available to a normal
user. Try the following while logged in as a normal user (important in order to check that
permissions are set up correctly):

• Typing ciao (or ciaosh) should start the typical Prolog top-level shell.

• In the top-level shell, Prolog library modules should load correctly. Type for example
use_module(library(dec10_io)) –you should get back a prompt with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

• Typing ciaoc should produce the help message from the Ciao standalone compiler.

• Typing ciao-shell should produce a message saying that no code was found. This is a
Ciao application which can be used to write scripts written in Prolog, i.e., files which do
not need any explicit compilation to be run.

Also, the following documentation-related actions should work:

• If the info program is installed, typing info should produce a list of manuals which should
include Ciao manual(s) in a separate area (you may need to log out and back in so that
your shell variables are reinitialized for this to work).

• Opening with a WWW browser (e.g., netscape) the directory or URL corresponding to the
DOCROOT setting should show a series of Ciao-related manuals. Note that style sheets should
be activated for correct formatting of the manual.

• Typing man ciao should produce a man page with some very basic general information on
Ciao (and pointing to the on-line manuals).

• The DOCROOT directory should contain the manual also in the other formats such as
postscript or pdf which specially useful for printing. See Section 2.3.7 [Printing man-
uals (Un*x)], page 22 for instructions.

Finally, if emacs is installed, after starting it (typing emacs) the following should work:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should open
a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Prolog file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename (or
using the menus) the code should appear highlighted according to syntax (e.g., comments in
red), and Ciao/Prolog menus should appear in the menu bar on top of the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch the
the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not very
useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to do this
is explained in the emacs frequently asked questions FAQs (see the emacs download instructions
for their location).

852 The Ciao Prolog System

218.4 Cleaning up the source directory

After installation, the source directory can be cleaned up in several ways:

• gmake uninstall removes the installation but does not touch the source directories.

• gmake totalclean leaves the distribution is its original form, throwing away any interme-
diate files (as well as any unneeded files left behind by the Ciao developers), while still
allowing recompilation.

Other useful make targets are listed at the beginning of $(SRC)/Makefile.

218.5 Multiarchitecture support

As mentioned before, Ciao applications (including the compiler and the top level) can run on
several machines with different architectures without any need for recompiling, provided there is
one Ciao engine (compiled for the corresponding architecture) accessible in each machine. Also,
the Ciao libraries (installed in LIBROOT, which contain also the engines) and the actual binaries
(installed in BINROOT) can themselves be shared on several machines with different architectures,
saving disk space.

For example, assume that the compiler is installed as:

/usr/local/share/bin/ciaoc

and the libraries are installed under

/usr/local/share/lib

Assume also that the /usr/local/share directory is mounted on, say, a number of Linux
and a number of Solaris boxes. In order for ciaoc to run correctly on both types of machines,
the following is needed:

1. Make sure you that have done gmake install on one machine of each architecture (once
for Linux and once for Solaris in our example). This recompiles and installs a new engine
and any architecture-dependent parts of the libraries for each architecture. The engines will
have names such as ciaoengine.LINUXi86, ciaoengine.SolarisSparc, and so on.

2. In multi-architecture environments it is even more important to make sure that users make
the modifications to their startup scripts using <LIBROOT>/ciao/DOTcshrc etc. The selec-
tion of the engine (and architecture-dependent parts of libraries) is done in these scripts
by setting the environment variable CIAOARCH, using the ciao_get_arch command, which
is installed automatically when installing Ciao. This will set CIAOARCH to, say, LINUXi86,
SolarisSparc, respectively, and CIAOENGINE will be set to ciaoengine.CIAOARCH.

However, note that this is not strictly necessary if running on only one architecture: if
CIAOARCH is not set (i.e., undefined), the Ciao executables will look simply for ciaoengine,
which is always a link to the latest engine installed in the libraries. But including the
initialization files provided has the advantage of setting also paths for the manuals, etc.

218.6 Installation and compilation under Windows

There are two possibilities in order to install Ciao Prolog on Windows machines:

• Installing from the Windows precompiled distribution. This is the easiest since it requires
no compilation and is highly recommended. This is described in Chapter 219 [Installing
Ciao from a Win32 binary distribution], page 857.

• Installing the standard Ciao Prolog (Un*x) system source distribution and compiling it un-
der Windows. This is somewhat more complex and currently requires the (freely available)
Cygnus Win32 development libraries –described below.

Chapter 218: Installing Ciao from the source distribution 853

In order to compile Ciao Prolog for Win32 environments you need to have the (public domain)
Cygnus Win32 and development libraries installed in your system. Compilation should be
performed preferably under Windows NT-type systems.

• Thus, the first step, if Cygnus Win32 is not installed in your system, is to download it
(from, e.g., http://www.cygnus.com/misc/gnu-win32) and install it. The compilation
process also requires that the executables rm.exe, sh.exe, and uname.exe from the Cygnus
distribution be copied under /bin prior to starting the process (if these executables are not
available under /bin the compilation process will produce a number of errors and eventually
stop prematurely).

• Assuming all of the above is installed, type make allwin32. This will compile both the
engine and the Prolog libraries. In this process, system libraries that are normally linked
dynamically under Un*x (i.e., those for which .so dynamically loadable files are generated)
are linked statically into the engine (this is done instead of generating .dlls because of a
limitation in the current version of the Cygnus Win32 environment). No actual installation
is made at this point, i.e., this process leaves things in a similar state as if you had just
downloaded and uncompressed the precompiled distribution. Thus, in order to complete
the installation you should now:

• Follow now the instructions in Chapter 219 [Installing Ciao from a Win32 binary distribu-
tion], page 857.

A further note regarding the executables generated by the Ciao compiler and top-level: the
same considerations given in Chapter 219 [Installing Ciao from a Win32 binary distribution],
page 857 apply regarding .bat files, etc. However, in a system in which Cygnus Win32 is
installed these executables can also be used in a very simple way. In fact, the executables can
be run as in Un*x by simply typing their name at the bash shell command line without any
associated .bat files. This only requires that the bash shell which comes with Cygnus Win32
be installed and accessible: simply, make sure that /bin/sh.exe exists.

218.7 Porting to currently unsupported operating systems

If you would like to port Ciao to a currently unsupported platform, there are several issues
to take into account. The main one is to get the engine to compile in that platform, i.e., the
C code under the engine directory. The procedure currently followed by Ciao to decide the
various flags needed to compile is as follows:

• The shell script $(SRC)/etc/ciao_get_arch is executed; it returns a string describing the
operating system and the processor architecture (e.g., LINUXi86, SolarisSparc, SolarisAl-
pha, etc.). You should make sure it returns a correct (and meaningful) string for your setup.
This string is used trhoughout the compilation to create several architecture-dependant
flags.

• In the directory $(SRC)/makefile-sysdep there are files called mkf-<OS><ARCH> for ev-
ery combination of operating system and architecture in which Ciao is know to (and how
to) compile. They set several flags regarding, for example, whether to use or not threads,
which threads library to use, the optimization flags to use, the compiler, linker, and it also
sets separately the architecture name (ARCHNAME variable) and the operating system
(OSNAME). You should create a new mkf file for your machine, starting from the one
which is closest to you.

• Most times the porting problems happen in the use of locks and threads. You
can either disable them, or have a look at the files $(SRC)/engine/locks.h and
$(SRC)/engine/threads.h. If you know how to implement native (assembler) locks for
your architecture, enable HAVE NATIVE SLOCKS for your architecture and add the def-
initions. Otherwise, if you have library-based locks, enable them. The mechanism in
threads.h is similar.

854 The Ciao Prolog System

Once a working engine is achieved, it should be possible to continue with the standard
installation procedure, which will try to use a completely static version of the standalone compiler
(ciaoc.sta in the ciaoc directory) to compile the interactive top-level (ciaosh) and a new
version of the standalone compiler (ciaoc). These in turn should be able to compile the Prolog
libraries. You may also need to look at some libraries (such as, for example, sockets) which
contain C code. If you do succeed in porting to a platform that is currently unsupported please
send the mkf-CIAOARCH and any patches to ciao@clip.dia.fi.upm.es, and we will include
them (with due credit, of course) in the next distribution.

218.8 Troubleshooting (nasty messages and nifty workarounds)

The following a list of common installation problems reported by users:

• Problem: Compilation errors appear when trying a new installation/compilation after the
previous one was aborted (e.g., because of errors).

Possible reason and solution: It is a good idea to clean up any leftovers from the previous
compilation using make engclean before restarting the installation or compilation process.

• Problem:

During engine compilation, messages such as the following appear: tasks.c:102:PTHREAD_
CANCEL_ASYNCHRONOUS undeclared (first use of this function).

Possible reason and solution:

Your (Linux?) system does not have (yet) the Posix threads library installed. You can
upgrade to one which does have it, or download the library from

http://pauillac.inria.fr/~xleroy/linuxthreads/index.html

and install it, or disable the use of threads in Linux: for this, edit the SETTINGS file and
specify USE_THREADS=no, which will avoid linking against thread libraries (it will disable
the use of thread-related primitives as well). Clean the engine with make engclean and
restart compilation.

If you have any alternative threads library available, you can tinker with engine/threads.h
and the files under makefile-sysdep in order to get the task managing macros right for your
system. Be sure to link the right library. If you succeed, we (ciao@clip.dia.fi.upm.es)
will be happy of knowing about what you have done.

• Problem:

-lpthread: library not found (or similar)

Possible reason and solution:

Your (Linux?) system seems to have Posix threads installed, but there is no threads library
in the system. In newer releases (e.g., RedHat 5.0), the Posix threads system calls have
been included in glibc.so, so specifying -lpthread in makefile-sysdep/mkf-LINUX is
not needed; remove it. make engclean and restart installation.

Alternatively, you may have made a custom installation of Posix threads in a non-standard
location: be sure to include the flag -L/this/is/where/the/posix/libraries/are before
-lpthread, and to update /etc/ld.so.conf (see man ldconfig).

• Problem:

Segmentation Violation (when starting the first executable)

Possible reason and solution:

This has been observed with certain older versions of gcc which generated erroneous code
under full optimization. The best solution is to upgrade to a newer version of gcc. Alterna-
tively, lowering the level of optimization (by editing the SETTINGS file in the main directory
of the distribution) normally solves the problem, at the cost of reduced execution speed.

Chapter 218: Installing Ciao from the source distribution 855

• Problem: ciaoc: /home/clip/lib/ciao/ciao-X.Y/engine/ciaoengine: not found

Possible reason and solution:

• The system was not fully installed and the variable CIAOENGINE was not set.

• The system was installed, the variable CIAOENGINE is set, but it is does not point to a
valid ciaoengine.

See the file LIBROOT/ciao/DOTcshrc for user settings for environment variables.

• Problem:

ERROR: File library(compiler) not found - aborting... (or any other library is not
found)

Possible reason and solution:

• The system was not installed and the variable CIAOLIB was not set.

• The system is installed and the variable CIAOLIB is wrong.

See the file LIBROOT/ciao/DOTcshrc for user settings for environment variables.

• Problem:

ERROR: File <some_directory>/<some_file>.itf not found - aborting...

Possible reason and solution:

Can appear when compiling .pl files. The file to compile (<some file>.pl) is not in the
directory <some directory>. You gave a wrong file name or you are in the wrong directory.

• Problem:

ERROR: /(write_option,1) is not a regular type (and similar ones)

Possible reason and solution:

This is not a problem, but rather the type checker catching some minor inconsistencies
which may appear while compiling the libraries. Bug us to remove it, but ignore it for now.

• Problem:

WARNING: Predicate <some_predicate>/<N> undefined in module <some_module>

Possible reason and solution:

It can appear when the compiler is compiling Ciao library modules. If so, ignore it (we will
fix it). If it appears when compiling user programs or modules, you may want to check your
program for those undefined predicates.

• Problem:

gmake[1]: execve: /home/clip/mcarro/ciao-0.7p2/etc/collect_modules: No such
file or directory

Possible reason and solution:

Check if collect modules is in $(SRC)/etc and is executable. If it is not here, your distri-
bution is incorrect: please let us know.

• Problem:

make: Fatal error in reader: SHARED, line 12: Unexpected end of line seen

Possible reason and solution:

You are using standard Un*x make, not GNU’s make implementation (gmake).

• Problem:

WARNINGs or ERRORs while compiling the Ciao libraries during installation.

Possible reason and solution:

It is possible that you will see some such errors while compiling the Ciao libraries during
installation. This is specially the case if you are installing a Beta or Alpha release of Ciao.
These releases (which have “odd” version numbers such as 1.5 or 2.1) are typically snapshots

856 The Ciao Prolog System

of the development directories, on which many developers are working simultaneously, which
may include libraries which have typically not been tested yet as much as the “official”
distributions (those with “even” version numbers such as 1.6 or 2.8). Thus, minor warnings
may not have been eliminated yet or even errors can sneak in. These warnings and errors
should not affect the overall operation of the system (e.g., if you do not use the affected
library).

Chapter 219: Installing Ciao from a Win32 binary distribution 857

219 Installing Ciao from a Win32 binary
distribution

Author(s): Daniel Cabeza, Manuel Carro, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.5#92 (2000/3/28, 17:41:25 CEST)

This describes the installation of Ciao after downloading the Windows binary (i.e., precom-
piled) distribution. It includes the installation of libraries and manuals and applies to Windows
95/98/NT/2000/XP systems. This is the simplest Windows installation, since it requires no
compilation and is highly recommended. However, it is also possible to compile Ciao from the
source distribution on these systems (please refer to Chapter 218 [Installing Ciao from the source
distribution], page 847 for details).

If you find any problems during installation, please refer to Section 218.8 [Troubleshooting
(nasty messages and nifty workarounds)], page 854. See also Section 220.3 [Downloading new
versions], page 861 and Section 220.4 [Reporting bugs], page 862.

219.1 Win32 binary installation summary

Please follow these steps (below we use the terms folder and directory interchangeably):

1. Download the precompiled distribution and unpack it into any suitable folder, such as, e.g.,
C:\Program Files.

This will create there a folder whose name reflects the Ciao version. Due to limitations
of Windows related to file associations, do not put Ciao too deep in the folder hierarchy.
For unpacking you will need a recent version of a zip archive manager – there are many
freely available such as WinZip, unzip, pkunzip, etc. (see for example www.winzip.com).
Some users have reported some problems with version 6.2 of WinZip, but no problems with,
e.g., version 7. With WinZip, simply click on “Extract” and select the extraction folder as
indicated above.

2. Stop any Ciao-related applications.

If you have a previous version of Ciao installed, make sure you do not have any Ciao
applications (including, e.g., a toplevel shell) running, or the extraction process may not be
able to complete. You may also want to delete the entire folder of the previous installation
to save space.

3. Open the Ciao source directory created during extraction and run (e.g. by double-clicking
on it) the install(.bat) script. Answer “yes” to the dialog that pops up and type any
character in the installation window to finish the process. You may need to reboot for the
changes in the registry to take effect.

This will update the windows registry (the file ciao(.reg) lists the additions) and also
create some .bat files which may be useful for running Ciao executables from the command
line. It also creates initialization scripts for the emacs editor. The actions performed by
the installation script are reported in the installation window.

4. You may want to add a windows shortcut in a convenient place, such as the desktop, to
ciaosh.cpx, the standard interactive toplevel shell. It is located inside the shell folder
(e.g., click on the file ciaosh.cpx with the right mouse button and select the appropriate
option, Send to->Desktop as shortcut).

5. You may also want to add another shortcut to the file ciao(.html) located inside
doc\reference\ciao_html so that you can open the Ciao manual by simply double-clicking
on this shortcut.

6. Finally, if the (freely available) emacs editor/environment is not installed in your system,
we highly recommend that you also install it at this point. While it is easy to use Ciao
with any editor of your choice, the Ciao distribution includes a very powerful application

858 The Ciao Prolog System

development environment which is based on emacs and which enables, e.g., source-level
debugging, syntax coloring, context-sensitive on-line help, etc. If you are not convinced,
consider that many programmers inside Micros*ft use emacs for developing their programs.

The emacs editor (in all its versions: Un*x, Windows, etc.) can be downloaded from, for
example, http://www.emacs.org/, and also from the many GNU mirror sites worldwide
(See http://www.gnu.org/ for a list), in the gnu/emacs and gnu/windows/emacs directo-
ries. You can find answers to frequently asked questions (FAQ) about emacs in general at
http://www.gnu.org/software/emacs/emacs-faq.text and about the Windows version
at http://www.gnu.org/software/emacs/windows/ntemacs.html (despite the ntemacs
name it runs fine also as is on Win9X and Win2000 machines).

You need to tell emacs how to load the Ciao mode automatically when editing and how to
access the on-line documentation:

• Start emacs (double click on the icon or from the Start menu). Open (menu Files-
>Open File or simply 〈̂ X〉〈̂ F〉) the file ForEmacs.txt that the installation script has
created in directory where you installed the Ciao distribution.

• Copy the lines in the file (select with the mouse and then menu Edit->Copy).
Open/Create using emacs (menu Files->Open File or simply 〈̂ X〉〈̂ F〉) the file
~/.emacs (or, if this fails, c:/.emacs).

• Paste the two lines (menu Edit->Paste or simply 〈̂ Y〉) into the file and save (menu
Files->Save Buffer or simply 〈̂ X〉〈̂ S〉).

• Exit emacs and start it again.

emacs should not report any errors (at least related to Ciao) on startup. At this point the
emacs checks in the following section should work.

219.2 Checking for correct installation on Win32

After the actions and registry changes performed by the installation procedure, you should
check that the following should work correctly:

• Ciao-related file types (.pl source files, .cpx executables, .itf,.po,.asr interface files,
.pls scripts, etc.) should have specific icons associated with them (you can look at the files
in the folders in the Ciao distribution to check).

• Double-clicking on the shortcut to ciaosh(.cpx) on the desktop should start the typical
Prolog top-level shell in a window. If this shortcut has not been created on the desktop, then
double-clicking on the ciaosh(.cpx) icon inside the shell folder within the Ciao source
folder should have the same effect.

• In the top-level shell, Prolog library modules should load correctly. Type for example use_
module(library(dec10_io)). at the Ciao top-level prompt –you should get back a prompt
with no errors reported.

• To exit the top level shell, type halt. as usual, or 〈̂ D〉.

Also, the following documentation-related actions should work:

• Double-clicking on the shortcut to ciao(.html) which appears on the desktop should show
the Ciao manual in your default WWW browser. If this shortcut has not been created you
can double-click on the ciao(.html) file in the doc\reference\ciao_html folder inside the
Ciao source folder. Make sure you configure your browser to use style sheets for correct
formatting of the manual (note, however, that some older versions of Explorer did not
support style sheets well and will give better results turning them off).

• The doc\reference folder contains the manual also in the other formats present in the dis-
tribution, such as info (very convenient for users of the emacs editor/program development
system) and postscript or pdf, which are specially useful for printing. See Section 3.2.7
[Printing manuals (Win32)], page 27 for instructions.

Chapter 219: Installing Ciao from a Win32 binary distribution 859

Finally, if emacs is installed, after starting it (double-clicking on the emacs icon or from the
Start menu) the following should work:

• Typing 〈̂ H〉 〈i〉 (or in the menus Help->Manuals->Browse Manuals with Info) should open
a list of manuals in info format in which the Ciao manual(s) should appear.

• When opening a Prolog file, i.e., a file with .pl or .pls ending, using 〈̂ X〉〈̂ F〉filename (or
using the menus) the code should appear highlighted according to syntax (e.g., comments in
red), and Ciao/Prolog menus should appear in the menu bar on top of the emacs window.

• Loading the file using the Ciao/Prolog menu (or typing 〈̂ C〉 〈l〉) should start in another
emacs buffer the Ciao toplevel shell and load the file. You should now be able to switch the
the toplevel shell and make queries from within emacs.

Note: when using emacs it is very convenient to swap the locations of the (normally not very
useful) 〈Caps Lock〉 key and the (very useful in emacs) 〈Ctrl〉 key on the keyboard. How to do this
is explained in the emacs frequently asked questions FAQs (see the emacs download instructions
for their location).

If you find that everything works but emacs cannot start the Ciao toplevel you may want
to check if you can open a normal Windows shell within emacs (just do 〈M-x〉 shell). If you
cannot, it is possible that you are using some anti-virus software which is causing problems. See
http://www.gnu.org/software/emacs/windows/faq3.html#anti-virus for a workaround.

In some Windows versions it is possible that you had to change the first back-
slashes in the DOTemacs.el file in the Ciao Directory. E.g., assuming you have in-
stalled in drive c:, instances of c:\ need to be changed to c:/. For example:
c:\prolog/ciao-1.7p30Win32/shell/ciaosh.bat should be changed to c:/prolog/ciao-
1.7p30Win32/shell/ciaosh.bat.

219.3 Compiling the miscellaneous utilities under Windows

The etc folder contains a number of utilities, documented in the manual in PART V -
Miscellaneous Standalone Utilities. In the Win32 distribution these utilities are not compiled
by the installation process. You can create the executable for each of them when needed by
compiling the corresponding .pl file.

219.4 Server installation under Windows

If you would like to install Ciao on a server machine, used by several clients, the following
steps are recommended:

• Follow the standard installation procedure on the server. When selecting the folder in which
Ciao is installed make sure you select a folder that is visible by the client machines. Also
make sure that the functionality specified in the previous sections is now available on the
server.

• Perform a client installation on each client, by running (e.g., double-click on it) the
client.bat script. This should update the registry of each client. At this point all the
functionality should also be available on the clients.

219.5 CGI execution under IIS

The standard installation procedure updates the windows registry so that Ciao executables
(ending in .cpx) are directly executable as CGIs under Microsoft’s IIS, i.e., so that you make
applications written in Ciao available on the WWW (see the pillow library for specific support
for this task). In the event you re-install IIS, you probably would lose the entries in the registry
which allow this. In that case, processing the file ciao.reg produced during the installation (or
simply reinstalling Ciao) will add those entries again.

860 The Ciao Prolog System

219.6 Uninstallation under Windows

To uninstall Ciao under Windows, simply delete the directory in which you put the Ciao
distribution. If you also want to delete the registry entries created by the Ciao installation (not
strictly needed) this must currently be done by hand. The installation leaves a list of these
entries in the file ciao.reg to aid in this task. Also, all the register entries contain the word
ciao. Thus, to delete all Ciao entries, run the application regedit (for example, by selecting
Run from the Windows Start menu), search (〈̂ F〉) for ciao in all registry entries (i.e., select all
of Keys, Values, and Data in the Edit->Find dialog), and delete each matching key (click on
the left window to find the matching key for each entry found).

%% Local Variables: %% mode: CIAO %% update-version-comments: "off" %% End:

Chapter 220: Beyond installation 861

220 Beyond installation

Author(s): Manuel Carro, Daniel Cabeza, Manuel Hermenegildo.

Version: 1.9#342 (2004/4/24, 20:30:39 CEST)

Version of last change: 1.7#55 (2001/1/26, 17:36:30 CET)

220.1 Architecture-specific notes and limitations

Ciao makes use of advanced characteristics of modern architectures and operating systems
such as multithreading, shared memory, sockets, locks, dynamic load libraries, etc., some of
which are sometimes not present in a given system and others may be implemented in very
different ways across the different systems. As a result, currently not all Ciao features are
available in all supported operating systems. Sometimes this is because not all the required
features are present in all the OS flavors supported and sometimes because we simply have not
had the time to port them yet.

The current state of matters is as follows:

LINUX: multithreading, shared DB access, and locking working.

Solaris: multithreading, shared DB access, and locking working.

IRIX: multithreading, shared DB access, and locking working.

SunOS 4: multithreading, shared DB access, and locking NOT working.

Win 95/98/NT/2000/XP:
multithreading, shared DB access, and locking working. Dynamic linking of object
code (C) libraries NOT working.

Mac OS X (Darwin):
multithreading, shared DB access, and locking working.

The features that do not work are disabled at compile time.

220.2 Keeping up to date with the Ciao users mailing list

We recommend that you join the Ciao users mailing
list (ciao-users@clip.dia.fi.upm.es), in order to receive information on new versions and
solutions to problems. Simply send a message to ciao-users-request@clip.dia.fi.upm.es,
containing in the body only the word:

subscribe

alone in one line. Messages in the list are strictly limited to issues directly related to Ciao
Prolog and your email address will of course be kept strictly confidential. You mail also want
to subscribe to the comp.lang.prolog newsgroup.

There is additional info available on the Ciao system, other CLIP group software, pub-
lications on the technology underlying these systems, etc. in the CLIP group’s WWW site
http://clip.dia.fi.upm.es.

220.3 Downloading new versions

Ciao and its related libraries and utilities are under constant improvement, so you should
make sure that you have the latest versions of the different components, which can be dowloaded
from:

http://clip.dia.fi.upm.es/Software

862 The Ciao Prolog System

220.4 Reporting bugs

If you still have problems after downloading the latest version and reading the installation in-
structions you can send a message to ciao-bug@clip.dia.fi.upm.es. Please be as informative
as possible in your messages, so that we can reproduce the bug.

• For installation problems we typically need to have the version and patch number of the Ciao
package (e.g., the name of the file downloaded), the output produced by the installation
process (you can capture it by redirecting the output into a file or cutting and pasting with
the mouse), and the exact version of the Operating System you are using (as well as the C
compiler, if you took a source distribution).

• For problems during use we also need the Ciao and OS versions and a small example of
code which we can run to reproduce the bug.

References 863

References

[AAF91] J. Almgren, S. Andersson, L. Flood, C. Frisk, H. Nilsson, and J. Sundberg.
Sicstus Prolog Library Manual.
Po Box 1263, S-16313 Spanga, Sweden, October 1991.

[AKNL86] Hassan Ait-Kaci, Roger Nasr, and Pat Lincoln.
E An Overview.
Technical Report AI-420-86-P, Microelectronics and Computer Technology Corpo-
ration, 9430 Research Boulevard, Austin, TX 78759, December 1986.

[AKPS92] H. A\"\it-Kaci, A. Podelski, and G. Smolka.
A feature-based constraint system for logic programming with entailment.
In Proc. Fifth Generation Computer Systems 1992, pages 1012–1021, 1992.

[Apt97] K. Apt, editor.
From Logic Programming to Prolog.
Prentice-Hall, Hemel Hempstead, Hertfordshire, England, 1997.

[BA82] M. Ben-Ari.
Principles of Concurrent Programming.
Prentice Hall International, 1982.

[BBP81] D.L. Bowen, L. Byrd, L.M. Pereira, F.C.N. Pereira, and D.H.D. Warren.
Decsystem-10 prolog user’s manual.
Technical report, Department of Artificial Intelligence, University of Edinburgh,
October 1981.

[BCC97] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. L\’opez-Garc\’\ia, and G.
Puebla.
The Ciao Prolog System. Reference Manual.
The Ciao System Documentation Series–TR CLIP3/97.1, School of Computer Sci-
ence, Technical University of Madrid (UPM), August 1997.
System and on-line version of the manual available at \htmladdnormallink\tt
http://clip.dia.fi.upm.es/Software/Ciao/ http://clip.dia.fi.upm.es/Software/Ciao/.

[BdlBH99] F. Bueno, M.~Garc\’\ia de~la Banda, and M. Hermenegildo.
Effectiveness of Abstract Interpretation in Automatic Parallelization: A Case Study
in Logic Programming.
ACM Transactions on Programming Languages and Systems, 21(2):189–238, March
1999.

[BLGPH04]
F. Bueno, P. L\’opez-Garc\’\ia, G. Puebla, and M. Hermenegildo.
The Ciao Prolog Preprocessor.
Technical Report CLIP1/04, Technical University of Madrid (UPM), Facultad de
Inform\’atica, 28660 Boadilla del Monte, Madrid, Spain, January 2004.

[Bue95] F. Bueno.
The CIAO Multiparadigm Compiler: A User’s Manual.
Technical Report CLIP8/95.0, Facultad de Inform\’atica, UPM, June 1995.

[Byr80] L. Byrd.
Understanding the Control Flow of Prolog Programs.
In S.-A. T\"arnlund, editor, Workshop on Logic Programming, Debrecen, 1980.

[Car87] M. Carlsson.
Freeze, Indexing, and Other Implementation Issues in the Wam.
In Fourth International Conference on Logic Programming, pages 40–58. University
of Melbourne, MIT Press, May 1987.

864 The Ciao Prolog System

[Car88] M. Carlsson.
Sicstus Prolog User’s Manual.
Po Box 1263, S-16313 Spanga, Sweden, February 1988.

[CCG98] I. Caballero, D. Cabeza, S. Genaim, J.M. Gomez, and M. Hermenegildo.
persdb\ sql: SQL Persistent Database Interface.
Technical Report D3.1.M2-A2 CLIP10/98.0, RADIOWEB Project, December 1998.

[CGH93] M. Carro, L. G\’omez, and M. Hermenegildo.
Some Paradigms for Visualizing Parallel Execution of Logic Programs.
In 1993 International Conference on Logic Programming, pages 184–201. MIT Press,
June 1993.

[CH95] D. Cabeza and M. Hermenegildo.
Distributed Concurrent Constraint Execution in the CIAO System.
In Proc. of the 1995 COMPULOG-NET Workshop on Parallelism and Implemen-
tation Technologies, Utrecht, NL, September 1995. U. Utrecht / T.U. Madrid.
Available from \htmladdnormallink\tt http://www.clip.dia.fi.upm.es/
http://www.clip.dia.fi.upm.es/.

[CH97] D. Cabeza and M. Hermenegildo.
WWW Programming using Computational Logic Systems (and the PiLLoW/Ciao
Library).
In Proceedings of the Workshop on Logic Programming and the WWW at WWW6,
San Francisco, CA, April 1997.

[CH99] D. Cabeza and M. Hermenegildo.
The Ciao Modular Compiler and Its Generic Program Processing Library.
In ICLP’99 WS on Parallelism and Implementation of (C)LP Systems, pages 147–
164. N.M. State U., December 1999.

[CH00a] D. Cabeza and M. Hermenegildo.
A New Module System for Prolog.
In International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 131–148. Springer-Verlag, July 2000.

[CH00b] D. Cabeza and M. Hermenegildo.
The Ciao Modular, Standalone Compiler and Its Generic Program Processing Li-
brary.
In Special Issue on Parallelism and Implementation of (C)LP Systems, volume 30(3)
of Electronic Notes in Theoretical Computer Science. Elsevier - North Holland,
March 2000.

[CH00c] M. Carro and M. Hermenegildo.
Tools for Constraint Visualization: The VIFID/TRIFID Tool.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 253–272.
Springer-Verlag, September 2000.

[CH00d] M. Carro and M. Hermenegildo.
Tools for Search Tree Visualization: The APT Tool.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 237–252.
Springer-Verlag, September 2000.

[CHGT98] D. Cabeza, M. Hermenegildo, S. Genaim, and C. Taboch.
Design of a Generic, Homogeneous Interface to Relational Databases.
Technical Report D3.1.M1-A1, CLIP7/98.0, RADIOWEB Project, September 1998.

References 865

[CHV96a] D. Cabeza, M. Hermenegildo, and S. Varma.
The PiLLoW/Ciao Library for INTERNET/WWW Programming using Computa-
tional Logic Systems.
In Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET
Applications, pages 72–90, JICSLP’96, Bonn, September 1996.

[CHV96b] D. Cabeza, M. Hermenegildo, and S. Varma.
The \sf P\em i\sf LL\em o\sf W/Ciao Library for INTERNET/WWW Program-
ming using Computational Logic Systems.
In Proceedings of the 1st Workshop on Logic Programming Tools for INTERNET
Applications, JICSLP’96, Bonn, September 1996.
Available from \htmladdnormallink\tt http://clement.info.umoncton.ca/\~lpnet
http://clement.info.umoncton.ca/\~lpnet.

[CLI95] The CLIP Group.
CIAO Compiler: Distributed Execution and Low Level Support Subsystem.
Public Software, ACCLAIM Deliverable D4.3/2-A3, Facultad de Inform\’atica,
UPM, June 1995.

[CM81] W.F. Clocksin and C.S. Mellish.
Programming in Prolog.
Springer-Verlag, 1981.

[Col78] A. Colmerauer.
Metamorphosis grammars.
In Natural language communication with computers, pages 133–189. Springer LNCS
63, 1978.

[Col82] A. Colmerauer et al.
Prolog II: Reference Manual and Theoretical Model.
Groupe D’intelligence Artificielle, Facult\’e Des Sciences De Luminy, Marseille,
1982.

[DEDC96] P. Deransart, A. Ed-Dbali, and L. Cervoni.
Prolog: The Standard.
Springer-Verlag, 1996.

[Dij65] E.W. Dijkstra.
Co-operating sequential processes.
In F. Genuys, editor, Programming Languages. Academic Press, London, 1965.

[DL93] S.K. Debray and N.W. Lin.
Cost analysis of logic programs.
ACM Transactions on Programming Languages and Systems, 15(5):826–875,
November 1993.

[DLGH97] S.K. Debray, P. L\’opez-Garc\’\ia, and M. Hermenegildo.
Non-Failure Analysis for Logic Programs.
In 1997 International Conference on Logic Programming, pages 48–62, Cambridge,
MA, June 1997. MIT Press, Cambridge, MA.

[DLGHL97]
S.K. Debray, P. L\’opez-Garc\’\ia, M. Hermenegildo, and N.-W. Lin.
Lower Bound Cost Estimation for Logic Programs.
In 1997 International Logic Programming Symposium, pages 291–305. MIT Press,
Cambridge, MA, October 1997.

[GCH98] J.M. Gomez, D. Cabeza, and M. Hermenegildo.
WebDB: A Database WWW Interface.
Technical Report D3.1.M2-A3 CLIP11/98.0, RADIOWEB Project, December 1998.

866 The Ciao Prolog System

[GdW94] J.P. Gallagher and D.A. de Waal.
Fast and precise regular approximations of logic programs.
In Pascal Van~Hentenryck, editor, Proc.~of the 11th International Conference on
Logic Programming, pages 599–613. MIT Press, 1994.

[HBC96] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M.~Garc\’\ia de~la Banda, P.
L\’opez-Garc\’\ia, and G. Puebla.
The CIAO Multi-Dialect Compiler and System: A Demo and Status Report.
In Proceedings of the JICSLP’96 Workshop on Parallelism and Implementation
Technology. Computer Science Department, Technical University of Madrid,
September 1996.
Available from \htmladdnormallink\tt
http://www.clip.dia.fi.upm.es/Projects/COMPULOG/meeting96/papers/PS/clip.ps.%
gz
http://www.clip.dia.fi.upm.es/Projects/COMPULOG/meeting96/papers/PS/clip.ps%
.gz.

[HBC99] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, M.~Garc\’\ia de la Banda, P.
L\’opez-Garc\’\ia, and G. Puebla.
The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench
for Future (C)LP Systems.
In Parallelism and Implementation of Logic and Constraint Logic Programming,
pages 65–85. Nova Science, Commack, NY, USA, April 1999.

[HBdlBP95]
M. Hermenegildo, F. Bueno, M.~Garc\’\ia de~la Banda, and G. Puebla.
The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench
for Future (C)LP Systems.
In Proceedings of the ILPS’95 Workshop on Visions for the Future of Logic Pro-
gramming, Portland, Oregon, USA, December 1995.
Available from \htmladdnormallink\tt http://www.clip.dia.fi.upm.es/
http://www.clip.dia.fi.upm.es/.

[HBPLG99]
M. Hermenegildo, F. Bueno, G. Puebla, and P. L\’opez-Garc\’\ia.
Program Analysis, Debugging and Optimization Using the Ciao System Preproces-
sor.
In 1999 Int’l. Conference on Logic Programming, pages 52–66, Cambridge, MA,
November 1999. MIT Press.

[HC93] M. Hermenegildo and The CLIP Group.
Towards CIAO-Prolog – A Parallel Concurrent Constraint System.
In Proc. of the Compulog Net Area Workshop on Parallelism and Implementation
Technologies. FIM/UPM, Madrid, Spain, June 1993.

[HC94] M. Hermenegildo and The CLIP Group.
Some Methodological Issues in the Design of CIAO - A Generic, Parallel, Concurrent
Constraint System.
In Principles and Practice of Constraint Programming, number 874 in LNCS, pages
123–133. Springer-Verlag, May 1994.

[HC97] M. Hermenegildo and The CLIP Group.
An Automatic Documentation Generator for (C)LP – Reference Manual.
The Ciao System Documentation Series–TR CLIP5/97.3, Facultad de Inform\’atica,
UPM, August 1997.
Online at \tt http://clip.dia.fi.upm.es/Software/Ciao/.

[HCC95] M. Hermenegildo, D. Cabeza, and M. Carro.
Using Attributed Variables in the Implementation of Concurrent and Parallel Logic

References 867

Programming Systems.
In Proc. of the Twelfth International Conference on Logic Programming, pages
631–645. MIT Press, June 1995.

[Her86] M. Hermenegildo.
An Abstract Machine for Restricted AND-parallel Execution of Logic Programs.
In Third International Conference on Logic Programming, number 225 in Lecture
Notes in Computer Science, pages 25–40. Imperial College, Springer-Verlag, July
1986.

[Her96] M. Hermenegildo.
Writing “Shell Scripts” in SICStus Prolog, April 1996.
Posting in \tt comp.lang.prolog. Available from \htmladdnormallink\tt
http://www.clip.dia.fi.upm.es/ http://www.clip.dia.fi.upm.es/.

[Her99] M. Hermenegildo.
A Documentation Generator for Logic Programming Systems.
Technical Report CLIP10/99.0, Facultad de Inform\’atica, UPM, September 1999.

[Her00] M. Hermenegildo.
A Documentation Generator for (C)LP Systems.
In International Conference on Computational Logic, CL2000, number 1861 in
LNAI, pages 1345–1361. Springer-Verlag, July 2000.

[HG90] M. Hermenegildo and K. Greene.
\&-Prolog and its Performance: Exploiting Independent And-Parallelism.
In 1990 International Conference on Logic Programming, pages 253–268. MIT Press,
June 1990.

[HG91] M. Hermenegildo and K. Greene.
The \&-Prolog System: Exploiting Independent And-Parallelism.
New Generation Computing, 9(3,4):233–257, 1991.

[Hog84] C.~J. Hogger.
Introduction to Logic Programming.
Academic Press, London, 1984.

[Hol90] C. Holzbaur.
Specification of Constraint Based Inference Mechanisms through Extended Unifica-
tion.
PhD thesis, University of Vienna, 1990.

[Hol92] C. Holzbaur.
Metastructures vs. Attributed Variables in the Context of Extensible Unification.
In 1992 International Symposium on Programming Language Implementation and
Logic Programming, pages 260–268. LNCS631, Springer Verlag, August 1992.

[Hol94] C. Holzbaur.
SICStus 2.1/DMCAI Clp 2.1.1 User’s Manual.
University of Vienna, 1994.

[JL88] D. Jacobs and A. Langen.
Compilation of Logic Programs for Restricted And-Parallelism.
In European Symposium on Programming, pages 284–297, 1988.

[Knu84] D. Knuth.
Literate programming.
Computer Journal, 27:97–111, 1984.

[Kor85] R. Korf.
Depth-first iterative deepening: an optimal admissible tree search.
Artificial Intelligence, 27:97–109, 1985.

868 The Ciao Prolog System

[LGHD96] P. L\’opez-Garc\’\ia, M. Hermenegildo, and S.K. Debray.
A Methodology for Granularity Based Control of Parallelism in Logic Programs.
Journal of Symbolic Computation, Special Issue on Parallel Symbolic Computation,
22:715–734, 1996.

[MH89] K. Muthukumar and M. Hermenegildo.
Determination of Variable Dependence Information at Compile-Time Through Ab-
stract Interpretation.
In 1989 North American Conference on Logic Programming, pages 166–189. MIT
Press, October 1989.

[Nai85] L.\ Naish.
The MU-Prolog 3.2 Reference Manual.
TR 85/11, Dept. of Computer Science, U. of Melbourne, October 1985.

[Nai91] L. Naish.
Adding equations to NU-Prolog.
In Symp. on Progr. Language Impl. and Logic Progr (PLILP’91), LNCS 528, pages
15–26. Springer Verlag, 1991.

[Par97] The RADIOWEB~Project Partners.
RADIOWEB EP25562: Automatic Generation of Web Sites for the Radio Brod-
casting Industry – Project Description / Technical Annex.
Technical Report, RADIOWEB Project, July 1997.

[PBH97] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Debugging of Constraint Logic Programs.
In Proceedings of the ILPS’97 Workshop on Tools and Environments for (Con-
straint) Logic Programming, October 1997.
Available from \htmladdnor-
mallink\tt ftp://clip.dia.fi.upm.es/pub/papers/assert\ lang\ tr\ discipldeliv.ps.gz
ftp://clip.dia.fi.upm.es/pub/papers/assert\ lang\ tr\ discipldeliv.ps.gz as technical
report CLIP2/97.1.

[PBH00] G. Puebla, F. Bueno, and M. Hermenegildo.
An Assertion Language for Constraint Logic Programs.
In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors, Analysis and Visu-
alization Tools for Constraint Programming, number 1870 in LNCS, pages 23–61.
Springer-Verlag, September 2000.

[PH99] G. Puebla and M. Hermenegildo.
Some Issues in Analysis and Specialization of Modular Ciao-Prolog Programs.
In ICLP’99 Workshop on Optimization and Implementation of Declarative Lan-
guages, pages 45–61. U. of Southampton, U.K, November 1999.

[PW80] F.C.N. Pereira and D.H.D. Warren.
Definite clause grammars for language analysis - a survey of the formalism and a
comparison with augmented transition networks.
Artificial Intelligence, 13:231–278, 1980.

[SS86] L. Sterling and E. Shapiro.
The Art of Prolog.
MIT Press, 1986.

[Swe95] Swedish Institute of Computer Science, P.O. Box 1263, S-16313 Spanga, Sweden.
Sicstus Prolog V3.0 User’s Manual, 1995.

[War88] D.H.D. Warren.
The Andorra Model.
Presented at Gigalips Project workshop. U. of Manchester, March 1988.

Library/Module Definition Index 869

Library/Module Definition Index

A

actmods . 415

aggregates . 183

andorra . 401

andprolog . 399

arc_class . 535

argnames . 391

arithmetic . 119

arrays . 635

assertions . 263

assertions_props . 271

assrt_write . 341

atom2term . 315

atomic_basic. 115

attributes . 157

B

basic_props . 99

basiccontrol . 93

basicmodes . 293

between . 237

bf . 419

bltclass . 715

boundary . 775

build_foreign_interface . 487

builtin_directives . 97

button_class. 519

C

canvas_class. 517

chartlib . 705

chartlib_errhandle . 717

checkbutton_class . 521

ciaosh . 39

class . 441

clpq . 423

clpr . 425

color_pattern . 719

compiler . 235

conc_aggregates . 357

concurrency . 351

counters . 637

ctrlcclean . 317

D

data_facts . 145

davinci . 489

db_client_types . 603

dcg . 215

dcg_expansion . 219

ddlist . 821

debugger . 55

dec10_io . 253

default_predicates . 165

det_hook_rt . 405

dict . 303

dictionary . 777

dictionary_tree . 779

dynamic . 187

E

emacs . 629

entry_class . 525

errhandle . 319

error . 781

exceptions . 137

expansion_tools . 347

F

factsdb_rt . 577

fastrw . 321

fd . 691

field_type . 783

field_value . 785

field_value_check . 787

file_locks . 329

file_utils . 327

filenames . 323

foreign_compilation . 485

foreign_interface . 469

foreign_interface_properties 479

format . 221

freeze . 409

functions . 395

fuzzy . 429

870 The Ciao Prolog System

G
genbar1 . 723

genbar2 . 729

genbar3 . 733

genbar4 . 737

generator . 789

generator_util . 791

gengraph1 . 741

gengraph2 . 749

genmultibar . 755

global . 397

gnuplot . 833

graphs . 645

H
hiord_rt . 387

hiordlib . 389

html . 549

http . 555

I
id . 421

idlists . 639

indexer . 385

internal_types . 795

io . 799

io_alias_redirection . 313

io_aux . 153

io_basic . 131

iso . 181

iso_byte_char . 205

iso_incomplete . 211

iso_misc . 209

isomodes . 291

J
javart . 613

javasock . 625

jtopl . 621

L
label_class . 527

lgraphs . 653

libpaths . 63

librowser . 343

linda . 631

line_class . 543

lists . 227

loading_code . 91

lookup . 801

M
make . 365

make_rt . 371

menu_class . 515

menu_entry_class . 531

menubutton_class . 529

messages . 307

modtester . 837

modules . 87

mycin . 689

mysql_client. 601

N
native_props. 283

numlists . 641

O
objects . 453

objects_rt . 459

odd . 407

old_database. 255

operators . 203

oval_class . 539

P
parser . 805

parser_util . 807

patterns . 643

persdbrt . 565

persdbrt_mysql . 581

persdbtr_sql. 609

pillow . 547

pillow_types. 557

pl2sql . 593

pl2sqlinsert. 611

poly_class . 541

possible . 817

pretty_print. 337

prolog_flags. 141

prolog_sys . 249

provrml . 771

Library/Module Definition Index 871

pure . 383

Q
queues . 655

R
radiobutton_class . 523

random . 657

read . 193

regtypes . 277

remote . 465

rtchecks . 297

runtime_ops . 259

S
sets . 659

shape_class . 533

sockets . 359

sockets_io . 363

sort . 233

sqltypes . 605

streams . 301

streams_basic . 123

strings . 305

symfnames . 325

syntax_extensions . 149

system . 239

system_extra. 373

system_info . 161

T
table_widget1 . 759

table_widget2 . 763

table_widget3 . 765

table_widget4 . 767

tcltk . 493

tcltk_low_level . 499

term_basic . 109

term_compare. 111

term_typing . 105

terms . 331

terms_check . 333

terms_vars . 335

test_format . 769

tester . 839

text_class . 545

time_analyzer . 827

tokeniser . 819

ttyout . 257

U
ugraphs . 649

V
vndict . 663

W
wgraphs . 651

when . 411

widget_class. 507

window_class. 503

write . 197

X
xdr_handle . 697

xml_path . 701

872 The Ciao Prolog System

Predicate/Method Definition Index 873

Predicate/Method Definition Index

!
!!/0 . 405

!/0 . 93

$
$class$/1 . 517

$factsdb$cached_goal/3 . 579

$is_persistent/2 . 571

&
&/2 . 399

,
,/2 . 93

-
-/1 . 375

->/2 . 93

.

./2 . 44

:
:#/2 . 430

:~/2 . 431

;
;/2 . 93

=
=../2 . 110

=:=/2 . 120

=>/4 . 432

=\=/2 . 120

=</2 . 120

|

|/2 . 95

>
>/2 . 120

>=/2 . 120

^
^/2 . 185

\
\=/2 . 209

\+/1 . 93

<
</2 . 119

A
abolish/1 . 189

abort/0 . 139

absolute_file_name/2 . 126

absolute_file_name/7 . 127

accepted_type/2 . 605

action_widget/1 . 512

action_widget/3 . 512

active_agents/1 . 399

add_after/4 . 229, 639

add_before/4 . 229, 639

add_edges/3 . 650

add_environment_whitespace/3 811

add_indentation/3 . 812

add_vertices/3 . 650

aggregate_function/3 . 598

aggregate_functor/2 . 599

alias_file/1. 325

all_values/2. 375

anchor/1 . 546

angle_start/1 . 536

append/3 . 227

apropos/1 . 345

aref/3 . 635

arefa/3 . 635

arefl/3 . 635

arg/2 . 331

arg/3 . 109

arg_expander/6 . 348

arithmetic_functor/2 . 599

array_to_list/2 . 636

arrowheads/1. 543

874 The Ciao Prolog System

aset/4 . 636

ask/2 . 333

assert/1 . 188

assert/2 . 188

asserta/1 . 187

asserta/2 . 187

asserta_fact/1 . 145, 569, 577

asserta_fact/2 . 145

assertz/1 . 188

assertz/2 . 188

assertz_fact/1 . 146, 569, 578

assertz_fact/2 . 146

at_least_one/4 . 807

at_least_one/5 . 807

atom_chars/2. 205

atom_codes/2. 115

atom_concat/2 . 331

atom_concat/3 . 117

atom_length/2 . 116

atom_lock_state/2 . 354

atom_number/2 . 116

atom2term/2 . 315

attach_attribute/2 . 157

B
background_color/1 . 508

bagof/3 . 184

barchart1/7 . 723

barchart1/9 . 724

barchart2/11. 730

barchart2/7 . 729

barchart3/7 . 733

barchart3/9 . 733

barchart4/11. 737

barchart4/7 . 737

basename/2 . 324

benchmark/6 . 828

benchmark2/6. 829

between/3 . 237

bg_color/1 . 533

bind_socket/3 . 361

bind_socket_interface/1 . 625

body_expander/6 . 347

border_width/1 . 533

borderwidth_value/1 . 508

boundary_check/3 . 775

boundary_rotation_first/2 775

boundary_rotation_last/2 . 775

bounds/3 . 695

breakpt/6 . 57

browse/2 . 344

build_foreign_interface/1 487

build_foreign_interface_explicit_decls/2 . . 487

build_foreign_interface_object/1 488

C
C/3 . 110

call/1 . 94, 578

call/2 . 387

call_in_module/2 . 58

call_unknown/1 . 372, 376

case_insensitive_match/2 . 643

cat/2 . 374

cat_append/2. 374

catch/3 . 137

cd/1 . 242

center/2 . 536, 540

char_code/2 . 205

character_count/2 . 125

chartlib_text_error_protect/1 717

chartlib_visual_error_protect/1 717

check/1 . 268, 297

check_sublist/4 . 769

children_nodes/1 . 776

chmod/2 . 246

chmod/3 . 246

choose_free_var/2 . 694

choose_value/2 . 694

choose_var/3. 694

choose_var_nd/2 . 694

ciaolibdir/1. 162

class$attr_template/4 . 517

class$constructor/4 . 518

class$default_cons/1 . 517

class$destructor/3 . 518

class$implements/2 . 518

class$initial_state/3 . 517

class$super/2 . 517

class$virtual/6 . 517

clause/2 . 189

clause/3 . 189

clearerr/1 . 126

close/1 . 124

close/2 . 211

close_client/0 . 631

close_DEF/5 . 792

close_EXTERNPROTO/6 . 792

close_file/1. 253

Predicate/Method Definition Index 875

close_input/1 . 301

close_node/5. 792

close_nodeGut/4 . 792

close_output/1 . 301

close_predicate/1 . 147

close_PROTO/6 . 792

close_Script/5 . 792

code_class/2. 134

color/2 . 720

column_value/1 . 511

columnspan_value/1 . 511

combine_attributes/2 . 158

command_button/1 . 519

compare/3 . 112

compare_benchmark/7 . 828

compare_benchmark2/7 . 830

comparison/2. 598

compile/1 . 43

compiler_and_opts/2 . 485

complete_dict/3 . 663

complete_vars_dict/3 . 663

compound/1 . 209

concurrent/1. 355

connect_to_socket/3 . 359

connect_to_socket_type/4 . 362

constructor/0 . 445

consult/1 . 43

contains_ro/2 . 230

contains1/2 . 230

continue/3 . 817

convert_atoms_to_string/2 799

convert_permissions/4 . 374

coord/2 . 545

coord/4 . 535, 539

copy_args/3 . 331

copy_file/2 . 374

copy_files/2. 373

copy_stdout/1 . 328

copy_term/2 . 110

core/1 . 501

correct_commenting/4 . 809

cost/3 . 830

create_dict/2 . 663

create_dictionaries/1 . 779

create_directed_field/5 . 808

create_environment/4 . 810

create_field/3 . 808

create_field/4 . 808

create_field/5 . 808

create_node/3 . 807

create_parse_structure/1 . 809

create_parse_structure/2 . 809

create_parse_structure/3 . 810

create_proto_element/3 . 801

creation_bind/1 . 513

creation_menu_name/1 . 516

creation_options/1 . 513, 516

creation_options_entry/1 . 516

creation_position/1 . 513

creation_position_grid/1 . 513

cross_product/2 . 232

ctrlc_clean/1 . 317

ctrlcclean/0. 317

current_atom/1 . 251

current_executable/1 . 241

current_fact/1 . 146, 578

current_fact/2 . 146

current_fact_nb/1 . 147

current_host/1 . 241

current_infixop/4 . 204

current_input/1 . 124

current_key/2 . 256

current_module/1 . 162

current_op/3. 204

current_output/1 . 125

current_postfixop/3 . 204

current_predicate/1 . 190

current_predicate/2 . 190

current_prefixop/3 . 204

current_prolog_flag/2 . 142

current_stream/3 . 126

cyg2win/3 . 247

D
data/1 . 190

datime/1 . 239

datime/9 . 240

datime_string/1 . 375

datime_string/2 . 375

davinci/0 . 489

davinci_get/1 . 489

davinci_get_all/1 . 489

davinci_lgraph/1 . 490

davinci_put/1 . 490

davinci_quit/0 . 490

davinci_ugraph/1 . 490

db_query/4 . 589

db_query_one_tuple/4 . 590

dbassertz_fact/1 . 585

876 The Ciao Prolog System

dbcall/2 . 586

dbcurrent_fact/1 . 585

dbfindall/4 . 586

dbId/2 . 609

dbretract_fact/1 . 585

dbretractall_fact/1 . 585

dcg_translation/2 . 219

debug/0 . 56

debug/1 . 154

debug_goal/2. 310

debug_goal/3. 311

debug_message/1 . 310

debug_message/2 . 310

debug_module/1 . 55

debug_module_source/1 . 55

debugging/0 . 58

dec_indentation/2 . 812

decompose_field/3 . 793

define_flag/3 144, 194, 201, 247, 553

del_dir_if_empty/1 . 373

del_endings_nofail/2 . 374

del_file_nofail/1 . 374

del_file_nofail/2 . 374

del_global/1. 397

del_vertices/3 . 650

delete/1 . 501

delete/2 . 822

delete/3 . 228, 640

delete_after/2 . 823

delete_directory/1 . 246

delete_file/1 . 246

delete_files/1 . 374

delete_non_ground/3 . 228

delete_on_ctrlc/2 . 317

delete_top/2. 822

derived_from/2 . 461

describe/1 . 345

destroy/1 . 462

destructor/0 . 446, 504

det_try/3 . 405

detach_attribute/1 . 158

dgraph_to_ugraph/2 . 645

dic_get/3 . 304

dic_lookup/3. 303

dic_lookup/4. 304

dic_node/2 . 303

dic_replace/4 . 304

dict2varnamesl/2 . 664

dictionary/5. 303

dictionary/6. 777

dictionary_insert/5 . 780

dictionary_lookup/5 . 780

difference/3. 231

directory_files/2 . 244

display/1 . 135

display/2 . 134

display_list/1 . 155

display_string/1 . 155

display_term/1 . 155

displayq/1 . 135

displayq/2 . 135

div_times/2 . 830

dlgraph_to_lgraph/2 . 646

dlist/3 . 229

do/2 . 375

do_interface/1 . 488

do_on_abolish/1 . 191

dyn_load_cfg_module_into_make/1 372

dynamic/1 . 190

dynamic_search_path/1 . 45

E
edges/2 . 649

edges_to_lgraph/2 . 646

edges_to_ugraph/2 . 646

emacs_edit/1. 630

emacs_edit_nowait/1 . 630

emacs_eval/1. 630

emacs_eval_nowait/1 . 630

eng_backtrack/2 . 352

eng_call/3 . 352

eng_call/4 . 351

eng_cut/1 . 352

eng_goal_id/1 . 354

eng_kill/1 . 353

eng_killothers/0 . 353

eng_release/1 . 352

eng_self/1 . 353

eng_status/0. 354

eng_wait/1 . 353

ensure_loaded/1 . 42, 235

equal_lists/2 . 231

equalnumber/3 . 769

erase/1 . 147

error/1 . 154

error_file/2. 718

error_message/1 . 307

error_message/2 . 307, 718

error_message/3 . 308

Predicate/Method Definition Index 877

error_protect/1 . 319

error_vrml/1. 781

event_loop/0. 505

event_type_widget/1 . 512

exec/3 . 243

exec/4 . 243

exec/8 . 243

expand_value/1 . 510

extension/2 . 324

extract_paths/2 . 240

F
fail/0 . 94

false/1 . 269

fast_read/1 . 321

fast_read/2 . 321

fast_write/1. 321

fast_write/2. 321

fast_write_to_string/3 . 322

fetch_url/3 . 555

fieldType/1 . 783

fieldValue/6. 785

fieldValue_check/8 . 787

file_alias/2 . 326, 579

file_exists/1 . 244

file_exists/2 . 245

file_name_extension/3 . 324

file_properties/6 . 245

file_property/2 . 245

file_search_path/2 . 63, 129

file_terms/2. 327

file_to_string/2 . 328

fileerrors/0. 143

fill_type/1 . 510

fillout/4 . 807

fillout/5 . 807

filter_alist_pattern/3 . 375

find_name/4 . 664

findall/3 . 184, 357

findall/4 . 184

findnsols/4 . 184

findnsols/5 . 185

flush_output/0 . 126

flush_output/1 . 126

fmode/2 . 246

fnot/1 . 431

foldl/4 . 389

font_type/1 . 507, 546

force_lazy/1 . 45

foreground_color/1 . 508

form_default/3 . 551

form_empty_value/1 . 551

form_request_method/1 . 552

format/2 . 222

format/3 . 222

formatting/2. 490

forward/2 . 823

freeze/2 . 409

frozen/2 . 409

functor/3 . 109

fuzzy/1 . 430

fuzzy_predicate/1 . 430

G
garbage_collect/0 . 251

gc/0 . 143

generate_plot/2 . 834

generate_plot/3 . 834

generator/2 . 789

get_alias_path/0 . 63

get_arch/1 . 161

get_attribute/2 . 157

get_byte/1 . 205

get_byte/2 . 205

get_char/1 . 206

get_char/2 . 206

get_code/1 . 131

get_code/2 . 131

get_cookies/1 . 552

get_definition_dictionary/2 779

get_dictionaries/2 . 813

get_environment/2 . 813

get_environment_name/2 . 810

get_environment_type/2 . 810

get_first_parsed/3 . 815

get_form_input/1 . 551

get_form_value/3 . 551

get_general_options/1 . 833

get_global/2. 397

get_indentation/2 . 811

get_line/1 . 305

get_line/2 . 305

get_os/1 . 161

get_parsed/2. 812

get_pid/1 . 241

get_primes/2. 641

get_prototype_definition/2 801

get_prototype_dictionary/2 780

878 The Ciao Prolog System

get_prototype_interface/2 801

get_row_number/2 . 811

get_stream/2. 313

get_type/2 . 605

get1_code/1 . 132

get1_code/2 . 131

getcounter/2. 637

getct/2 . 134

getct1/2 . 134

getenvstr/2 . 240

glb/2 . 695

goal_id/1 . 353

graph_b1/13 . 742

graph_b1/9 . 742

graph_b2/13 . 750

graph_b2/9 . 750

graph_w1/13 . 743

graph_w1/9 . 743

graph_w2/13 . 751

graph_w2/9 . 750

H
halt/0 . 138

halt/1 . 138

halt_server/0 . 632

handle_error/2 . 319

hash_term/2 . 386

height/1 . 535, 539

hide_/0 . 504

highlight_color/1 . 509

highlightbackground_color/1 508

hostname_address/2 . 360

html_expansion/2 . 553

html_protect/1 . 553

html_report_error/1 . 551

html_template/3 . 550

html2terms/2. 549

http_lines/3. 553

I
icon_address/2 . 553

if/3 . 94

imports_meta_pred/3 . 347

in/1 . 631

in/2 . 631

in_noblock/1. 631

in_stream/2 . 632

inc_indentation/2 . 811

inccounter/2. 637

include/1 . 43

indentation_list/2 . 793

indep/1 . 400

indep/2 . 399

inform_user/1 . 155

inherited/1 . 445

init_sql_persdb/0 . 585

initialize_db/0 . 570

insert/3 . 659, 822

insert_after/3 . 822

insert_comments_in_beginning/3 810

insert_last/3 . 230

insert_parsed/3 . 815

insert_top/3. 822

inside_proto/1 . 813

instance_codes/2 . 462

instance_of/2 . 460

intercept/3 . 137

interface/2 . 461

interp_file/2 . 715

intersection/3 . 231

intset_delete/3 . 230

intset_in/2 . 231

intset_insert/3 . 230

intset_sequence/3 . 231

is/2 . 119

is_array/1 . 635

is_connected_to_java/0 . 627

is_dictionaries/1 . 779

issue_debug_messages/1 . 311

J
java_add_listener/3 . 620

java_connect/2 . 617

java_create_object/2 . 618

java_debug/1. 627

java_debug_redo/1 . 627

java_delete_object/1 . 618

java_disconnect/0 . 617

java_get_value/2 . 619

java_invoke_method/2 . 619

java_query/2. 626

java_remove_listener/3 . 620

java_response/2 . 626

java_set_value/2 . 619

java_start/0. 616

java_start/1. 616

java_start/2. 617

Predicate/Method Definition Index 879

java_stop/0 . 617

java_use_module/1 . 618

join_socket_interface/0 . 626

justify_entry/1 . 526

justify_text/1 . 546

K
keysort/2 . 233

keyword/1 . 572, 580

L
label_value/1 . 515, 531

labeling/1 . 693

last/2 . 230

leash/1 . 58

length/2 . 228, 823

length_next/2 . 824

length_prev/2 . 824

letter_match/2 . 644

library_directory/1 . 64, 129

linda_client/1 . 631

linda_timeout/2 . 632

line_count/2. 125

line_position/2 . 125

linker_and_opts/2 . 485

list_breakpt/0 . 58

list_concat/2 . 229

list_insert/2 . 230, 639

list_lookup/3 . 230

list_lookup/4 . 230

list_to_list_of_lists/2 . 232

lock_atom/1 . 354

lock_file/3 . 329

look_ahead/3. 815

look_first_parsed/2 . 815

lookup_check_field/6 . 802

lookup_check_interface_fieldValue/8 802

lookup_check_node/4 . 802

lookup_field/4 . 802

lookup_field_access/4 . 803

lookup_fieldTypeId/1 . 803

lookup_get_fieldType/4 . 803

lookup_route/5 . 802

lookup_set_def/3 . 803

lookup_set_extern_prototype/4 804

lookup_set_prototype/4 . 804

ls/2 . 375

ls/3 . 375

lub/2 . 695

M
make/1 . 371

make_actmod/2. 44

make_directory/1 . 241

make_directory/2 . 241

make_dirpath/1 . 242

make_dirpath/2 . 242

make_exec/2 . 43

make_option/1 . 371

make_persistent/2 . 570

make_po/1 . 44, 235

make_sql_persistent/3 . 586

map/3 . 389

match_pattern/2 . 643

match_pattern/3 . 643

match_pattern_pred/2 . 644

maxdepth/1 . 58

maxsize/2 . 505

member_0/2 . 639

memberchk/2 . 639

menu_data/1 . 515

menu_name/1 . 529, 532

merge/3 . 661

merge_tree/2. 780

message/1 . 154

message/2 . 153

message_lns/4 . 153

mfstringValue/5 . 785

mfstringValue/7 . 787

minimum/3 . 389

minsize/2 . 505

mktemp/2 . 244

mode_of_module/2 . 236

modif_time/2. 245

modif_time0/2 . 245

module_of/2 . 236

modules_tester/2 . 837

most_general_instance/3 . 333

most_specific_generalization/3 333

move_file/2 . 373

move_files/2. 373

multibarchart/10 . 756

multibarchart/8 . 756

multifile/1 . 45

my_url/1 . 552

mysql_connect/5 . 601

mysql_disconnect/1 . 602

880 The Ciao Prolog System

mysql_fetch/2 . 602

mysql_free_query_connection/1 602

mysql_get_tables/2 . 602

mysql_query/3 . 601

mysql_query_one_tuple/3 . 601

mysql_table_types/3 . 602

N
name/2 . 115

name_menu/1 . 515

negated_comparison/2 . 599

neighbors/3 . 649

new/2 . 459

new_array/1 . 635

new_atom/1 . 251

new_interp/1 . 499, 715

new_interp/2. 499

new_interp_file/2 . 499

next/2 . 821

nl/0 . 133

nl/1 . 133

no_path_file_name/2 . 323

no_tr_nl/2 . 376

nobreakall/0 . 57

nobreakpt/6 . 57

nocontainsx/2 . 230

nodebug/0 . 56

nodebug_module/1 . 55

nodeDeclaration/4 . 789, 805

nofileerrors/0 . 143

nogc/0 . 143

nonsingle/1 . 227

nospy/1 . 56

nospyall/0 . 57

not_empty/3 . 769

not_empty/4 . 769

note/1 . 154

note_message/1 . 308

note_message/2 . 309

note_message/3 . 309

notrace/0 . 56

nth/3 . 229

null_list/1 . 821

number_chars/2 . 205

number_codes/2 . 116

number_codes/3 . 116

numbervars/3. 200

O
once/1 . 209

op/3 . 203

open/3 . 123, 325

open/4 . 123

open_client/2 . 632

open_DEF/5 . 792

open_EXTERNPROTO/5 . 792

open_input/2. 301

open_node/6 . 792

open_null_stream/1 . 301

open_output/2 . 301

open_predicate/1 . 147

open_PROTO/4. 792

open_Script/5 . 792

optional_message/2 . 310

optional_message/3 . 310

ord_delete/3. 659

ord_disjoint/2 . 661

ord_intersect/2 . 660

ord_intersection/3 . 660

ord_intersection_diff/4 . 660

ord_member/2. 659

ord_subset/2. 660

ord_subset_diff/3 . 660

ord_subtract/3 . 659

ord_test_member/3 . 659

ord_union/3 . 660

ord_union_change/3 . 661

ord_union_diff/4 . 660

ord_union_symdiff/4 . 660

out/1 . 631, 799

out/3 . 799

out_stream/2. 632

outline_color/1 . 537, 540, 541

output_error/1 . 781

output_html/1 . 549

P
padx_value/1. 510

pady_value/1. 510

parse_term/3. 315

parser/2 . 805

passerta_fact/1 . 568

passertz_fact/1 . 568

pattern/2 . 721

pause/1 . 239

peek_byte/1 . 206

peek_byte/2 . 206

Predicate/Method Definition Index 881

peek_char/1 . 206

peek_char/2 . 206

peek_code/1 . 132

peek_code/2 . 132

percentbarchart1/7 . 724

percentbarchart2/7 . 730

percentbarchart3/7 . 734

percentbarchart4/7 . 738

performance/3 . 827

persistent_dir/2 . 571, 579

phrase/2 . 219

phrase/3 . 219

pitm/2 . 693

pl2sqlInsert/2 . 611

pl2sqlstring/3 . 594

pl2sqlterm/3. 595

point/2 . 545

point_to/3 . 650

pop_global/2. 397

pop_prolog_flag/1 . 143

popen/3 . 243

portray/1 . 201

portray_attribute/2 . 201

portray_clause/1 . 200

portray_clause/2 . 200

postgres2sqltype/2 . 607

postgres2sqltypes_list/2 . 607

powerset/2 . 232

pred_tester/2 . 838

predicate_property/2 . 250

pretract_fact/1 . 569

pretractall_fact/1 . 569

pretty_print/2 . 337

pretty_print/3 . 337

prettyvars/1. 200

prev/2 . 821

print/1 . 200

print/2 . 199

printable_char/1 . 201

prolog_flag/3 . 142

prolog_query/2 . 626

prolog_response/2 . 626

prolog_server/0 . 621

prolog_server/1 . 622

prolog_server/2 . 622

prompt/2 . 143

prune_dict/3. 664

push_dictionaries/3 . 812

push_global/2 . 397

push_prolog_flag/2 . 143

push_whitespace/3 . 812

put_byte/1 . 206

put_byte/2 . 206

put_char/1 . 207

put_char/2 . 207

put_code/1 . 133

put_code/2 . 133

Q
q_delete/3 . 655

q_empty/1 . 655

q_insert/3 . 655

q_member/2 . 655

query_generation/3 . 597

query_requests/2 . 623

query_solutions/2 . 622

R
random/1 . 657

random/3 . 657

random_color/1 . 721

random_darkcolor/1 . 721

random_lightcolor/1 . 721

random_pattern/1 . 722

rd/1 . 632

rd/2 . 632

rd_findall/3. 632

rd_noblock/1. 632

read/1 . 193

read/2 . 193

read_page/2 . 774

read_term/2 . 193

read_term/3 . 194

read_terms_file/2 . 799

read_top_level/3 . 194

read_vrml_file/2 . 800

readf/2 . 375

reading/4 . 791

reading/5 . 791

reading/6 . 791

rebuild_foreign_interface/1 487

rebuild_foreign_interface_explicit_decls/2

. 488

rebuild_foreign_interface_object/1 488

receive_confirm/2 . 501

receive_event/2 . 501

receive_list/2 . 501

receive_result/2 . 500

882 The Ciao Prolog System

recorda/3 . 255

recorded/3 . 255

recordz/3 . 255

reduce_indentation/3 . 812

relief_type/1 . 509

remove_code/3 . 815

remove_comments/4 . 793

rename/2 . 664

rename_file/2 . 246

repeat/0 . 94

replace_strings_in_file/3 376

reserved_words/1 . 776

retract/1 . 188

retract_fact/1 . 146, 569, 578

retract_fact_nb/1 . 147

retractall/1. 189

retractall_fact/1 . 146, 570

retrieve_list_of_values/2 695

retrieve_range/2 . 694

retrieve_store/2 . 695

reverse/2 . 227

reverse/3 . 228

reverse_parsed/2 . 815

rewind/2 . 823

row_value/1 . 511

rowspan_value/1 . 511

run_tester/10 . 839

running_queries/2 . 623

S
safe_write/2. 363

scattergraph_b1/12 . 744

scattergraph_b1/8 . 744

scattergraph_b2/12 . 752

scattergraph_b2/8 . 751

scattergraph_w1/12 . 745

scattergraph_w1/8 . 745

scattergraph_w2/12 . 753

scattergraph_w2/8 . 752

second_prompt/2 . 194

see/1 . 253

seeing/1 . 253

seen/0 . 253

select/3 . 228

select_socket/5 . 361

self/1 . 445

send_term/2 . 500

serve_socket/3 . 363

set_action/1. 531

set_cookie/2. 551

set_debug_mode/1 . 44, 236

set_debug_module/1 . 236

set_debug_module_source/1 236

set_environment/3 . 814

set_fact/1 . 147

set_general_options/1 . 833

set_global/2. 397

set_input/1 . 124

set_name/1 . 531

set_nodebug_mode/1 . 44, 236

set_nodebug_module/1 . 236

set_output/1. 125

set_parsed/3. 814

set_perms/2 . 375

set_prolog_flag/2 . 142

set_stream/3. 313

setarg/3 . 407

setcounter/2. 637

setenvstr/2 . 240

setof/3 . 183

setproduct/3. 661

shape_class/0 . 534

shape_class/1 . 534

shell/0 . 242

shell/1 . 242

shell/2 . 243

shell_s/0 . 622

show/0 . 504

side_type/1 . 509

simple_message/1 . 309

simple_message/2 . 309

skip_code/1 . 132

skip_code/2 . 132

skip_line/0 . 132

skip_line/1 . 132

socket_accept/2 . 361

socket_recv/2 . 359

socket_recv_code/3 . 360

socket_send/2 . 360

socket_shutdown/2 . 360

sort/2 . 233

sort_dict/2 . 664

spy/1 . 56

sql__attribute/4 . 596, 611

sql__relation/3 . 596, 611

sql_get_tables/2 . 587

sql_persistent_location/2 588

sql_persistent_tr/2 . 609

sql_query/3 . 586

Predicate/Method Definition Index 883

sql_query_one_tuple/3 . 590

sql_table_types/3 . 587

sqlterm2string/2 . 596

srandom/1 . 657

start_socket_interface/2 . 625

start_threads/0 . 627

start_vrmlScene/4 . 793

statistics/0. 249

statistics/2. 249

stop_parse/2. 815

stop_socket_interface/0 . 625

stream_code/2 . 126

stream_property/2 . 211

stream_to_string/2 . 328

string/3 . 306

string2term/2 . 315

strip_clean/2 . 813

strip_exposed/2 . 814

strip_from_list/2 . 813

strip_from_term/2 . 813

strip_interface/2 . 814

strip_restricted/2 . 814

style_type/1. 536

sub_atom/4 . 117

sub_atom/5 . 209

sub_times/3 . 830

subtract/3 . 640

sum_list/2 . 641

sum_list/3 . 642

sum_list_of_lists/2 . 642

sum_list_of_lists/3 . 642

sybase2sqltype/2 . 607

sybase2sqltypes_list/2 . 606

symbolic_link/2 . 374

symbolic_link/3 . 374

system/1 . 243

system/2 . 243

system_lib/1. 345

T
tab/1 . 133

tab/2 . 133

tablewidget1/4 . 759

tablewidget1/5 . 759

tablewidget2/4 . 763

tablewidget2/5 . 763

tablewidget3/4 . 765

tablewidget3/5 . 765

tablewidget4/4 . 767

tablewidget4/5 . 767

tcl_delete/1. 497

tcl_eval/3 . 496

tcl_event/3 . 497

tcl_name/1 . 516

tcl_new/1 . 496

tcltk/2 . 500

tcltk_raw_code/2 . 500, 715

tearoff_value/1 . 516

tell/1 . 253

telling/1 . 253

terms_file_to_vrml/2 . 772

terms_file_to_vrml_file/2 772

terms_to_vrml/2 . 773

terms_to_vrml_file/2 . 772

tester_func/1 . 837

text_characters/1 . 507, 545

textvariable_entry/1 . 525

textvariable_label/1 . 527

textvariablevalue_number/1 525

textvariablevalue_string/1 525

this_module/1 . 162

throw/1 . 138

time/1 . 239

title/1 . 504

tk_event_loop/1 . 497

tk_main_loop/1 . 497

tk_new/2 . 498

tk_next_event/2 . 498

token_read/3. 819

tokeniser/2 . 819

told/0 . 253

top/2 . 823

topd/0 . 489

trace/0 . 56

translate_arithmetic_function/5 598

translate_comparison/5 . 598

translate_conjunction/5 . 597

translate_goal/5 . 598

transpose/2 . 650

true/0 . 94

true/1 . 269

trust/1 . 269

ttydisplay/1. 258

ttydisplay_string/1 . 258

ttydisplayq/1 . 258

ttyflush/0 . 257

ttyget/1 . 257

ttyget1/1 . 257

ttynl/0 . 257

884 The Ciao Prolog System

ttyput/1 . 257

ttyskip/1 . 257

ttyskipeol/0. 258

ttytab/1 . 257

type_compatible/2 . 606

type_union/3. 606

U
ugraph2term/2 . 490

umask/2 . 241

undo/1 . 407

undo_force_lazy/1 . 45

unfold_tree/2 . 698

unfold_tree_dic/3 . 698

unify_with_occurs_check/2 210

union/3 . 231

union_idlists/3 . 640

unload/1 . 44, 235

unlock_atom/1 . 354

unlock_file/2 . 329

update/0 . 344

update_attribute/2 . 157

update_files/0 . 570

update_files/1 . 570

url_info/2 . 552

url_info_relative/3 . 552

url_query/2 . 552

url_query_values/2 . 552

use_class/1 . 462

use_module/1 . 42, 235

use_module/2 . 42, 235

use_module/3. 235

use_package/1. 43

V
valid_attributes/2 . 770

valid_format/4 . 770

valid_table/2 . 770

valid_vectors/4 . 770

variable_value/1 . 521, 523

variant/2 . 333

varnamesl2dict/2 . 664

vars_names_dict/3 . 665

varsbag/3 . 335

varset/2 . 335

varset_in_args/2 . 335

vectors_format/4 . 770

verbose_message/2 . 372

verify_attribute/2 . 158

vertices/1 . 541, 543

vertices/2 . 650

vertices_edges_to_lgraph/3 653

vertices_edges_to_ugraph/3 649

vertices_edges_to_wgraph/3 651

vrml_file_to_terms/2 . 771

vrml_file_to_terms_file/2 772

vrml_http_access/2 . 773

vrml_in_out/2 . 773

vrml_to_terms/2 . 773

vrml_web_to_terms/2 . 771

vrml_web_to_terms_file/2 . 772

W
wait/3 . 244

warning/1 . 154

warning_message/1 . 308

warning_message/2 . 308

warning_message/3 . 308

wellformed_body/3 . 190

when/2 . 412

where/1 . 344

whitespace/2. 305

whitespace0/2 . 306

width/1 . 535, 539

width_value/1 . 509

window_class/0 . 504

window_class/3 . 504

withdraw/0 . 505

working_directory/2 . 242

write/1 . 199

write/2 . 198

write_assertion/6 . 341

write_assertion_as_comment/6 341

write_canonical/1 . 199

write_canonical/2 . 199

write_list1/1 . 200

write_string/1 . 305

write_string/2 . 305

write_term/2. 197

write_term/3. 197

write_terms_file/2 . 800

write_vrml_file/2 . 800

writef/2 . 376

writef/3 . 376

writeq/1 . 199

writeq/2 . 199

Predicate/Method Definition Index 885

X

xdr_tree/1 . 697

xdr_tree/3 . 697

xdr_xpath/2 . 699

xdr2html/2 . 698

xdr2html/4 . 698

xml_index/1 . 703

xml_index_query/3 . 703

xml_index_to_file/2 . 703

xml_parse/3 . 702

xml_parse_match/3 . 703

xml_query/3 . 704

xml_search/3. 702

xml_search_match/3 . 703

xml2terms/2 . 549

886 The Ciao Prolog System

Property Definition Index 887

Property Definition Index

=
=/2 . 109

==/2 . 111

@
@=</2 . 112

@>/2 . 112

@>=/2 . 112

@</2 . 112

\
\==/2 . 111

A
atom/1 . 106

atomic/1 . 106

C
class_name/1. 463

class_source/1 . 463

compat/2 . 102

constructor/1 . 463

covered/1 . 285

covered/2 . 283

D
davinci_command/1 . 491

dictionary/1. 303

do_not_free/2 . 480

docstring/1 . 276

E
expander_pred/1 . 349

F
fails/1 . 284

field_Id/1 . 805

finite_solutions/1 . 287

float/1 . 106

foreign/1 . 480

foreign/2 . 480

fuzzybody/1 . 432

G
ground/1 . 107, 287

H
head_pattern/1 . 272

I
indep/1 . 287

indep/2 . 287

instance/2 . 333

instance_id/1 . 463

integer/1 . 106

interface_name/1 . 463

interface_source/1 . 463

internal_module_id/1 . 163

is_det/1 . 285

iso/1 . 103

L
lgraph/1 . 491

line/1 . 306

linear/1 . 283

list1/2 . 229

M
member/2 . 101

method_spec/1 . 463

mshare/1 . 284

multpredspec/1 . 59

mut_exclusive/1 . 285

N
nabody/1 . 274

native/1 . 103, 480

native/2 . 104, 480

non_det/1 . 285

nonground/1 . 284

nonvar/1 . 105, 287

not_covered/1 . 285

not_fails/1 . 284

not_further_inst/2 . 103

not_mut_exclusive/1 . 285

number/1 . 106

888 The Ciao Prolog System

P
parse/1 . 785

possibly_fails/1 . 284

possibly_nondet/1 . 285

R
regtype/1 . 103

returns/2 . 480

S
sideff/2 . 103

size_lb/2 . 286

size_of/3 . 480

size_ub/2 . 286

sourcenames/1. 45

steps/2 . 286

steps_lb/2 . 286

steps_ub/2 . 286

sublist/2 . 231

subordlist/2. 231

T
terminates/1. 287

type/2 . 107

U
ugraph/1 . 491

V
var/1 . 105, 288

virtual_method_spec/1 . 463

W
write_option/1 . 198

Regular Type Definition Index 889

Regular Type Definition Index

A

address/1 . 479

answertableterm/1 . 604

answertupleterm/1 . 604

any_term/1 . 480

apropos_spec/1 . 346

argspec/1 . 386

arithexpression/1 . 121

assrt_body/1. 271

assrt_status/1 . 275

assrt_type/1. 275

atm/1 . 100

atm_or_atm_list/1 . 102

attributes/1. 746

axis_limit/1. 726

B

bltwish_interp/1 . 715

body/1 . 338

bound/1 . 795

bound_double/1 . 795

byte/1 . 479

byte_list/1 . 479

C

c_assrt_body/1 . 274

callable/1 . 100

canonic_html_term/1 . 557

canonic_xml_item/1 . 704

canonic_xml_query/1 . 704

canonic_xml_subquery/1 . 704

canonic_xml_term/1 . 558, 704

canvas/1 . 504

cell_value/1. 760

character_code/1 . 102

clause/1 . 338

clauses/1 . 338

clterm/1 . 338

color/1 . 719

complex_arg_property/1 . 272

complex_goal_property/1 . 273

constant/1 . 100

D
datime_struct/1 . 240

dbconnection/1 . 589, 601

dbname/1 . 588, 603

dbqueryconnection/1 . 602

ddlist/1 . 824

detcond/1 . 402

dgraph/1 . 645

dictionary/1 . 274, 795

directoryname/1 . 572

dlgraph/1 . 645

E
elisp_string/1 . 630

environment/1 . 796

expr/1 . 297

F
faggregator/1 . 432

fd_item/1 . 693

fd_range/1 . 693

fd_store/1 . 693

fd_store_entity/1 . 693

fd_subrange/1 . 693

flag/1 . 338

flt/1 . 99

footer/1 . 726

form_assignment/1 . 561

form_dict/1 . 561

form_value/1. 562

format_control/1 . 222

G
g_assrt_body/1 . 275

garbage_collection_option/1 251

gc_result/1 . 252

gnd/1 . 100

H
handler_type/1 . 717

header/1 . 726

hms_time/1 . 563

html_term/1 . 559

http_date/1 . 563

http_request_param/1 . 562

http_response_param/1 . 562

890 The Ciao Prolog System

I
image/1 . 760

indexspecs/1. 386

int/1 . 99

int_list/1 . 479

intlist/1 . 641

io_mode/1 . 128

J
java_constructor/1 . 617

java_event/1. 618

java_field/1. 618

java_method/1 . 619

java_object/1 . 617

K
keylist/1 . 233

keypair/1 . 234

L
lgraph/2 . 653

list/1 . 101

list/2 . 101

location/1 . 311

M
machine_name/1 . 617

memory_option/1 . 251

memory_result/1 . 252

menu/1 . 503

metaspec/1 . 90

modulename/1 . 90

month/1 . 563

multibar_attribute/1 . 757

N
nnegint/1 . 99

null/1 . 479

null_dict/1 . 663

num/1 . 100

numlist/1 . 641

O
open_option_list/1 . 124

operator_specifier/1 . 100

option/1 . 503

P
pair/1 . 647

parse/1 . 796

passwd/1 . 588, 603

path/1 . 403

pattern/1 . 644, 721

popen_mode/1. 243

postgrestype/1 . 607

predfunctor/1 . 276

predname/1 . 102

projterm/1 . 588, 595

prolog_goal/1 . 618

property_conjunction/1 . 273

property_starterm/1 . 273

propfunctor/1 . 276

Q
querybody/1 . 588, 594

R
read_option/1 . 195

reference/1 . 148

row/1 . 760

S
s_assrt_body/1 . 274

sequence/2 . 101

sequence_or_list/2 . 102

shutdown_type/1 . 360

size/1 . 747

smooth/1 . 745

socket_type/1 . 360

socketname/1 . 588, 603

sourcename/1. 127

sqlstring/1 . 595, 604

sqltype/1 . 605

stream/1 . 128

stream_alias/1 . 128

string/1 . 102

struct/1 . 100

sybasetype/1. 606

Regular Type Definition Index 891

symbol/1 . 746

symbol_option/1 . 251

symbol_result/1 . 252

T
table/1 . 760

tag_attrib/1. 704

target/1 . 371

tclCommand/1. 497

tclInterpreter/1 . 497

term/1 . 99

time_option/1 . 251

time_result/1 . 252

title/1 . 726

translation_predname/1 . 151

tree/1 . 796

triple/1 . 647

tuple/1 . 589, 604

U
ugraph/1 . 650

url_term/1 . 562

user/1 . 588, 603

V
value_dict/1. 562

varname/1 . 665

varnamedict/1 . 665

varnamesl/1 . 665

vector/1 . 745

W
wakeup_exp/1. 412

weekday/1 . 563

whitespace/1. 796

widget/1 . 503

X
xbarelement1/1 . 726

xbarelement2/1 . 730

xbarelement3/1 . 734

xbarelement4/1 . 738

xdr_node/1 . 698

xelement/1 . 757

Y
yelement/1 . 725

892 The Ciao Prolog System

Declaration Definition Index 893

Declaration Definition Index

A
add_clause_trans/1 . 151

add_goal_trans/1 . 151

add_sentence_trans/1 . 150

add_term_trans/1 . 150

aggr/1 . 430

argnames/1 . 391

C
calls/1 . 265

calls/2 . 265

comment/2 . 268

comp/1 . 266

comp/2 . 266

concurrent/1 . 148, 443

D
data/1 . 148, 442

decl/1 . 268

decl/2 . 268

determinate/2 . 401

discontiguous/1 . 97

dynamic/1 . 443

E
ensure_loaded/1 . 91

entry/1 . 267

export/1 . 88, 442, 689

extra_compiler_opts/1 . 481

extra_compiler_opts/2 . 481

extra_linker_opts/1 . 482

extra_linker_opts/2 . 482

F
facts/2 . 579

I
impl_defined/1 . 97

implements/1. 444

import/2 . 89

include/1 . 91

index/1 . 385

inherit_class/1 . 443

inheritable/1 . 442

initialization/1 . 98

instance_of/2 . 453

L
load_compilation_module/1 150

M
meta_predicate/1 . 89

modedef/1 . 267

module/2 . 88

module/3 . 87

multifile/1 . 97

N
new/2 . 454

new_declaration/1 . 149

new_declaration/2 . 149

O
on_abort/1 . 98

op/3 . 149

P
persistent/2. 571

pred/1 . 264

pred/2 . 265

prop/1 . 266

prop/2 . 267

public/1 . 442

R
redefining/1 . 98

reexport/1 . 89

reexport/2 . 89

regtype/1 . 280

regtype/2 . 281

S
sql_persistent/3 . 589

success/1 . 265

success/2 . 265

894 The Ciao Prolog System

U
use_active_module/2 . 418

use_class/1 . 453

use_compiler/1 . 482

use_compiler/2 . 482

use_foreign_library/1 . 481

use_foreign_library/2 . 481

use_foreign_source/1 . 481

use_foreign_source/2 . 481

use_linker/1. 482

use_linker/2. 483

use_module/1 . 89

use_module/2 . 88

use_package/1. 91

V
virtual/1 . 444

Concept Definition Index 895

Concept Definition Index

&
&-Prolog . 10

.

.ciaorc . 22, 27

A
abort . 53

abstract methods . 444

acceptable modes . 272

acknowledgments . 9

active module . 35, 415

active object . 415

addmodule and pred(N) meta-arguments 441

ancestors . 53

Anne Mulkers . 10

answer variable . 40

assertion body syntax 271, 274, 275

assertion language . 71

assertions . 65

attribute . 442

attributed variables . 157

Austrian Research Institute for AI 10

auto-documenter command args, setting 76

auto-documenter command, setting 76

auto-documenter default format, setting 75

auto-documenter lib path, setting 76

auto-documenter working dir, setting 75

auto-fill . 65

auto-indentation . 65

B
binary directory . 848

box-type debugger . 47

breakpoint . 57

breakpoints . 70

Bristol University . 10

bugs, reporting . 862

C
calls assertion . 265

certainty factor . 689

CGI . 547

CGI executables . 61

change, author . 72

change, comment . 73

changelog . 65

changing the executables used 75

check assertion . 268

checking the assertions . 71

Christian Holzbauer . 10

Ciao basic builtins . 8, 85

Ciao engine . 10

Ciao preprocessor . 10, 65, 71

Ciao top-level . 65

ciao, global description . 3

Ciao, why this name . 4

ciao-users. 861

Ciao/Prolog mode version . 77

client installation . 859

CLIP group . 9

closed . 147

coloring, syntax . 65

command . 54

comment assertion . 268

comments, machine readable 263

comp assertion . 266

compatibility properties . 277

compiler, standalone. 31

compiling . 67, 68

compiling programs 20, 21, 26, 27

compiling, from command line 31

compiling, Win32 . 853

computational cost . 71

concurrency . 351

concurrent attribute . 443

concurrent predicate. 145

concurrent predicates . 145

configuration file . 681

constructor . 445

contributed libraries . 9, 687

creating executables . 67

creep . 52

csh-compatible shell 20, 847, 850

current input stream . 124

current output stream . 125

customize . 66, 75

Cygnus Win32 . 853

896 The Ciao Prolog System

D
D.H.D. Warren . 10

D.L. Bowen . 10

Daniel Cabeza . 9

data declaration . 145

data predicate . 145

database initialization . 570

debug options . 52

debugger . 47

debugging . 53, 70

debugging, source-level . 65, 70

decl assertion . 268

declarations, user defined . 97

DECsystem-10 Prolog User’s Manual 10

depth first iterative deepening 421

depth limit . 421

destructor . 446

determinacy . 71

determinate goal . 401

development environment 22, 27, 848, 850, 857

display . 53

downloading emacs . 850, 858

downloading, latest versions . 861

E
emacs interface . 7, 29

emacs lisp . 629

emacs mode . 65

emacs mode, loading several . 76

emacs mode, setting up, Win32 858

emacs server . 629

emacs, download . 850, 858

emacs, intro . 22, 27

engine directory . 8, 85

engine module . 383

Enrico Pontelli . 10

entry assertion . 267

environment variable definitions 847

environment variables . 83

environment variables, setup . 19

equi join in the WHERE-clause 597

executable . 31

executables, compressed . 35

executables, dynamic . 33

executables, generating . 21, 26

executables, how to run . 32

executables, lazy load . 34

executables, self-contained . 34

executables, static . 34

executables, types . 33

existential quantification . 595

extensibility . 4

F
F.C.N. Pereira . 10

fail . 53

false assertion . 269

feature terms . 391

formatting commands . 263

formatting conventions, for emacs 65

Francisco Bueno . 9

G
Gerda Janssens . 10

German Puebla . 9

Gopal Gupta . 10

granularity control . 71

H
H. Ait-Kaci . 40

help . 22, 25, 27, 54, 858

help, unix . 20

help, windows . 26

HTML . 547

HTTP . 547

I
independent . 399

Inference of properties . 71

INFOPATH . 849

inheritable interface . 442

inheritance relationship . 444

initialization clauses . 443

initialization file . 22, 27

INRIA . 10

installation, checking the . 851

installation, Mac OS X, full instructions 848

installation, Mac OS X, summary 847

installation, network based . 849

installation, Un*x, full instructions 848

installation, Un*x, summary 847

installation, Windows clients 859

installation, Windows server 859

installation, Windows, from binaries 857

installation, Windows, from sources 853

Concept Definition Index 897

instantiation properties . 277

interface inheritance . 444

interfaces . 441

interpreted mode . 47

interpreting . 67, 68

iso . 8, 179

ISO-Prolog . 4, 122

ISO-Prolog builtins . 8, 179

iso-prolog, compliance . 4

iterative-deepening . 421

J
Jan Maluzynski . 10

Java event handling from Prolog 614

Java exception handling from Prolog 616

Java to Prolog interface . 621

Johan Andersson . 83

Johan Bevemyr . 83

Johan Widen . 10

John Gallagher . 10

K
K.U. Leuven . 10

Kalyan Muthukumar . 10

Kevin Greene . 10

key sequences . 66

keyboard . 5

Kim Marriott . 10

L
L. Byrd . 10

L.M. Pereira . 10

leap . 52

lib library . 8, 85

library directory . 848

limitations, architecture-specific 861

Linkoping U. 10

loading mode . 48

loading programs . 20, 26, 67

locating errors . 70

LogIn . 40

LPdoc . 3

lpdoc command args, setting . 76

lpdoc command, setting . 76

lpdoc default format, setting . 75

lpdoc lib path, setting . 76

lpdoc working dir, setting . 75

lpmake . 681

lpmake autodocumentation . 681

M

mailing list . 861

main module. 68

make . 681

MANPATH . 849

manual, printing . 22, 25, 27, 858

manual, tour . 7

manuals, printing . 22, 27

Manuel Carro . 9

Manuel Hermenegildo . 9, 10

Maria Jose Garcia de la Banda 9

Masanobu Umeda . 83

Mats Carlsson . 10, 83

Maurice Bruynooghe . 10

MCC . 10

Melbourne U. 10

modes . 71

modular interface . 35

module qualification . 87

modules, active . 35

Monash U. 10

moving changelog entries . 74

multi-evaluated . 442

multiarchitecture support . 852

N

Naming term aguments . 391

New Mexico State University. 10

nodebug . 53

non-failure . 71

nospy . 53

notation . 5

O

overriden . 443

898 The Ciao Prolog System

P
P. Lincoln . 40

parallel Prolog . 10

parallelizing compiler . 10

parametric type functor . 280

PATH . 849

path alias . 127

patterns . 643

Paulo Moura. 13

Pawel Pietrzak . 10

Pedro Lopez . 9

Peter Olin . 83

Peter Stuckey . 10

Pierre Deransart . 10

PiLLoW on-line tutorial . 547

Polymorphism . 435

pred assertion . 264, 265

preprocessing programs . 71

preprocessor command args, setting 76

preprocessor command, setting 76

print . 53

printdepth . 54

printing, manual . 22, 25, 27, 858

program development environment 65

program parallelization . 71

program specialization . 71

program transformations . 65, 71

programming environment . 7, 29

prolog flag . 141, 153

Prolog server . 622

Prolog shell scripts . 61

Prolog to Java Interface Structure 613

Prolog to Java Interface Structure. Java side 613

Prolog to Java Interface Structure. Prolog side . . 613

prolog-emacs interface . 629

prop assertion . 266, 267

properties of computations . 277

properties of execution states 277

properties, basic . 99

properties, native . 283

protected . 442

public domain . 1

public interface . 442

pure Prolog . 383

Q
query . 39

R

records . 8, 381, 391

recursive level . 40

references, to Ciao . 5

referring to Ciao . 5

regtype assertion . 280, 281

regular expressions . 643

regular type expression . 280

reporting bugs . 862

retry . 53

Roger Nasr . 10, 40

run-time checks . 297

run-time tests . 71

running programs . 20, 21, 26, 27

S

Saumya Debray . 10

script header, inserting automatically 70

scripts . 21, 27, 849

Seif Haridi . 10

sh-compatible shell . 20, 848, 850

sharing sets . 284

shortcut, windows . 857

SICS. 10, 83

SICStus Prolog . 10

sizes of terms . 71

skip . 52

Socket implementation . 625

source directory . 848

source-level debugging . 65, 70

specifications . 71

spy . 53

standard total ordering . 111

static checks . 65

static debugging . 71

status, this manual . 3

style sheets . 19, 25, 851, 858

subterm . 54

success assertion . 265, 266

super class. 443

Swedish Institute of Computer Science 10

Syntax-based highlighting . 65

Concept Definition Index 899

T
tar . 848

Technical University of Madrid 9

top-level shell, starting, unix . 20

top-level shell, starting, windows 25

toplevel command args, setting 76

toplevel command, setting . 75

tour, of the manual . 7

tracing the source code . 65

troubleshooting . 847, 854, 857

true assertion . 269

trust assertion . 269

types . 71

U
U. of Arizona . 10

unify . 54

uninstalling . 848, 851

UPM . 10

user module . 87

user modules, debugging . 47

user setup . 19

users mailing list . 861

V
variable instantiation . 71

Veroniek Dumortier . 10

version control . 65

version maintenance mode for packages 73

version number . 72

virtual . 444

W
WAM . 10

why the name Ciao . 4

windows shortcut . 857

Wlodek Drabent . 10

write . 53

WWW, interfacing with . 547

X
XML . 547

900 The Ciao Prolog System

Global Index 901

Global Index

This is a global index containing pointers to places where concepts, predicates, modes, prop-
erties, types, applications, etc., are referred to in the text of the document. Note that due
to limitations of the info format unfortunately only the first reference will appear in online
versions of the document.

!
!!/0 . 405

!/0 . 93

#
/2 . 121

##/2 . 429

#>/2 . 429

$
$/1 . 547

$/2 . 391, 547

$class$/1 . 517

$factsdb$cached_goal/3 577, 579

$is_persistent/2 . 568, 571

&
&-Prolog. 10, 83

&/2 . 399

’
’$xml_search_match/3 . 703

’,’/2 . 102

’<-’/1 . 419

’<-’/2 . 419

’persdb/ll’ . 568, 569

*
* /2 . 121

* projection . 597

** /2 . 121

*/1 . 291

*/2 . 273, 291, 292

,
,/2 . 93

-
- /1 . 121

- /2 . 121

-- /1 . 121

-/1 . 291, 293, 375

-/2 . 230, 291, 292, 293, 294

->/2 . 93

.

.&./2 . 692

../2 . 692

./2 . 42, 44

.=./2 . 692

.=<./2 . 692

.>./2 . 692

.>=./2 . 692

.<./2 . 692

.<>./2 . 692

.ciaorc . 21, 22, 26, 27, 39

.emacs . 22, 27, 66, 82, 629

.tar files . 677

/
/ /2 . 121

// /2 . 121

/\ /2 . 121

/bin/sh . 243

/bin/sh.exe . 33, 853

/etc/bashrc . 848, 850

/etc/csh.cshrc . 848, 850

/etc/csh.login . 848, 850

/etc/skel . 848, 850

/usr/share/emacs/.../lisp/site-init.pl 848,

850

:
:#/2 . 429, 430

::/2 . 264, 365, 702

:=/1 . 429

:=/2 . 429

:~/1 . 429

:~/2 . 429, 431

902 The Ciao Prolog System

;

;/2 . 93

=

=../2 . 109, 110

=/2 . 109

=:=/2 . 119, 120

==/2 . 111, 649

=>/1 . 429

=>/2 . 264, 391

=>/4 . 429, 432

=\=/2 . 119, 120

=</2 . 119, 120

?

?/1 . 291, 293

?/2 . 291, 292, 293, 294

?=/2 . 401

?\=/2 . 401

@

@/1 . 291, 293

@/2 . 291, 292, 293, 295, 465, 702

@=</2 . 111, 112

@>/2 . 111, 112

@>=/2 . 111, 112

@</2 . 111, 112

|

|/2 . 95

~

~/.ciaorc . 165

~/.cshrc . 20, 847, 850

~/.emacs. 20, 848, 850, 858

~/.profile . 20, 848, 850

+
+ /1 . 121

+ /2 . 121

+/1 . 272, 291, 293

+/2 . 291, 292, 293, 294

++ /1 . 121

>
>/2 . 119, 120

>=/2 . 119, 120

>> /2 . 121

^
^/1 . 293

^/2 . 166, 183, 184, 185, 595

\
\ /1 . 121

\/ /2 . 121

\=/2 . 172, 209

\==/2 . 111

\+/1 . 93

<
<#/2 . 429

<-/1 . 365, 419

<-/2 . 365, 419

</2 . 119

<=/2 . 365

<< /2 . 121

<LIBROOT>/ciao/DOTcshrc . 852

A
a_string/1 . 476

abolish/1 . 167, 187, 189

abort . 53

abort/0 . 139

abs/1 . 121

absolute_file_name/2 123, 126, 239

absolute_file_name/7 123, 127

abstract methods . 444

Global Index 903

acceptable modes . 272

accepted_type/2 . 605

ACCLAIM . 10

acknowledgments . 9

acrobat reader . 22, 27

action_widget/1 . 507, 512

action_widget/3 . 507, 512

active module . 35, 44, 415

active modules . 8, 381

active object . 415

active_agents/1 . 399

activemod . 67

add_after/4 . 227, 229, 639

add_before/4 . 227, 229, 639

add_clause_trans/1 . 151

add_edges/3 . 649, 650

add_environment_whitespace/3 807, 811

add_goal_trans/1 . 151

add_indentation/3 . 807, 812

add_sentence_trans/1 149, 150, 151

add_term_trans/1 . 150, 151

add_vertices/3 . 649, 650

addmodule and pred(N) meta-arguments 441

address/1 . 479

aggr/1 . 429, 430

aggregate function (sub)queries 597

aggregate function terms . 597

aggregate_function/3 . 598

aggregate_functor/2 595, 598, 599

aggregates 55, 165, 166, 167, 181, 357, 373, 459,

487, 489, 503, 568, 584, 594, 611, 697, 775, 777,

779, 789, 799, 801, 805, 807

aggregation operations . 581

aggregation predicates . 185

alias_file/1. 325

all_values/2 . 373, 375

AMOS . 10

analyzer output . 269

ancestors . 53

anchor/1 . 545, 546

andprolog/andprolog_rt . 283

angle_start/1 . 535, 536

Anne Mulkers . 10

answer variable . 40

answertableterm/1 587, 603, 604

answertupleterm/1 . 603, 604

any_term/1 . 479, 480

append/2 . 12

append/3 . 165, 227

apropos/1 . 343, 345

apropos_spec/1 . 346

aref/3 . 635

arefa/3 . 635

arefl/3 . 635

arg/2 . 331

arg/3 . 109

arg_expander/6 . 347, 348

argnames/1 . 391, 392

argspec/1 . 386

arithexpression/1 . 119, 121

arithmetic . 265

arithmetic goal . 598

arithmetic_functor/2 595, 599

array_to_list/2 . 635, 636

arrowheads/1. 543

ASAP . 10

ASCII code . 122

aset/4 . 635, 636

ask/2 . 333

assert/1 . 168, 187, 188

assert/2 . 168, 187, 188

asserta/1 . 168, 187

asserta/2 . 168, 187

asserta_fact/1. 145, 565, 568, 569, 577

asserta_fact/2 . 145

assertion body syntax 271, 274, 275

assertion language. 3

assertion language . 6

assertion language . 71

assertion normalizer . 671

assertions 65, 73, 263, 264, 271

assertions/assertions_props 264, 280, 341

assertions/assrt_lib 341, 487

assertions/doc_props 219, 221

assertions/native_props . 385

assertz/1 . 168, 187, 188

assertz/2 . 168, 187, 188

assertz_fact/1 . . . 145, 146, 565, 568, 569, 577, 578,

581, 585

assertz_fact/2 . 145, 146

assrt_body/1 . 264, 271

assrt_status/1 . 271, 275

904 The Ciao Prolog System

assrt_type/1 . 271, 275

at_least_one/4 . 807

at_least_one/5 . 807

atan/1 . 121

atm/1 . 99, 100, 289

atm_or_atm_list/1 . 99, 102

atom/1 . 105, 106

atom_chars/2 . 171, 205

atom_codes/2. 115

atom_concat/2 . 331

atom_concat/3 . 115, 117

atom_length/2 . 115, 116

atom_lock_state/2 . 351, 354

atom_number/2 . 115, 116

atom2term . 621

atom2term/2 . 315

Atomic goals . 594

atomic/1 . 105, 106

attach_attribute/2 . 157

attribute . 442

attributed variables . 157

attributes . 110, 589

attributes/1 741, 742, 746, 749

Austrian Research Institute for AI 10

auto-documenter command args, setting 76

auto-documenter command, setting 76

auto-documenter default format, setting 75

auto-documenter lib path, setting 76

auto-documenter working dir, setting 75

auto-fill . 65

auto-indentation . 65

axis_limit/1 723, 724, 726, 730

B
background_color/1 . 507, 508

backup file . 566

bagof/3. 167, 183, 184, 357

barchart1/10. 734

barchart1/7 . 710, 723

barchart1/8 . 733

barchart1/9 . 710, 723, 724

barchart2/10. 738

barchart2/11 . 710, 729, 730

barchart2/7 . 710, 729

barchart2/8 . 737

barchart3/7 . 710, 733

barchart3/9 . 711, 733

barchart4/11 . 711, 737

barchart4/7 . 711, 737

basename/2 . 323, 324

bash . 20, 33, 83, 848, 850, 853

basic_props . 288, 289

basic_props:regtype/1 . 277

basictypes . 605

benchmark/6 . 827, 828

benchmark2/6 . 827, 829, 830

between . 165, 172, 209, 459, 611

between/3 . 172, 237

bf . 422

bf/af . 419

bg_color/1 . 533

binary directory . 848

bind_socket/3 . 359, 361

bind_socket_interface/1 . 625

bltwish_interp/1 . 715

body/1 . 338

body_expander/6 . 347, 348

border_width/1 . 533

borderwidth_value/1. 507, 508

bound/1 . 795

bound_double/1 . 795

boundary_check/3 . 775

boundary_rotation_first/2 775

boundary_rotation_last/2 . 775

bounds/3 . 692, 695

box-type debugger . 47

breadth first execution . 422

breadth-first execution 9, 381

breakpoins . 49

breakpoint . 57

breakpoints . 47, 70

breakpt/6 . 48, 49, 55, 57

Bristol University . 10

browse/2 . 343, 344

buffer . 66

bugs, reporting . 862

build_foreign_interface/1 487, 488

build_foreign_interface_explicit_decls/1 . . 488

build_foreign_interface_explicit_decls/2 . . 487

build_foreign_interface_object/1 487, 488

building standalone distributions 677

Global Index 905

builtin directives . 97, 149

builtin modules . 87

byrd-box model . 70

byte/1 . 479

byte_list/1 . 470, 479, 480

bytecode object files . 849

C
C . 849

C/3 . 109, 110

c:/.emacs . 858

c_assrt_body/1 . 271, 274

c_itf . 347

cache . 577

call/1 93, 94, 209, 274, 577, 578

call/2 . 90, 387

call/N . 194, 387

call_in_module/2 . 54, 55, 58

call_unknown/1 371, 372, 373, 376

callable/1 . 99, 100

Calling emacs . 9, 467

calls assertion . 265

calls/1 . 264, 265, 267

calls/2 . 264, 265

canonic_html_term/1 557, 558, 559

canonic_xml_item/1 . 704

canonic_xml_query/1 . 704

canonic_xml_subquery/1 . 704

canonic_xml_term/1 557, 558, 559, 704

canvas/1 . 503, 504

case_insensitive_match/2 . 643

cat/2 . 373, 374

cat_append/2 . 373, 374

catch/3 . 137, 138

cd/1 . 21, 26, 174, 239, 242, 378

ceiling/1 . 121

cell_value/1. 760

center/2 . 535, 536, 539, 540

certainty factor . 689

CGI . 547, 549

CGI executables . 61

change, author . 72

change, comment . 73

changelog . 65

changelog entry . 73

changing the executables used 75

char_code/2 . 171, 205

char_conversion/2 . 149

character string . 263

character_code/1 . 99, 102

character_count/2 . 123, 125

chartlib/bltclass 717, 723, 729, 733, 737, 742,

749, 755, 759, 763, 765, 767, 769

chartlib/chartlib_errhandle 710

chartlib/color_pattern . . . 723, 729, 733, 737, 742,

749, 755

chartlib/genbar1 710, 729, 733, 737, 742, 749,

755, 759, 763, 765, 767

chartlib/genbar2 . 710

chartlib/genbar3 . 710

chartlib/genbar4 . 710

chartlib/gengraph1 . 710, 749

chartlib/gengraph2 . 710

chartlib/genmultibar . 710

chartlib/install_utils . . . 717, 723, 729, 733, 737,

742, 749, 755, 759, 763, 765, 767

chartlib/table_widget1 710, 763, 765, 767

chartlib/table_widget2 . 710

chartlib/table_widget3 . 710

chartlib/table_widget4 . 710

chartlib/test_format 723, 729, 733, 737, 742,

749, 755, 759, 763, 765, 767

chartlib_errhandle . 713

chartlib_text_error_protect/1 713, 717, 769

chartlib_visual_error_protect/1 713, 717

check assertion . 268, 297

check/1. 264, 268, 269, 297

check_sublist/4 . 769

checking the assertions . 71

children_nodes/1 . 775, 776

chmod/2. 173, 239, 246, 376

chmod/3. 173, 239, 246, 376

choose_free_var/2 . 692, 694

choose_value/2 . 692, 694

choose_var/3 . 692, 694

choose_var_nd/2 . 692, 694

Christian Holzbauer . 10

ciao 19, 22, 27, 77, 83, 849, 851, 857

Ciao basic builtins . 8, 85

Ciao engine . 10, 32, 34

Ciao engine builtins . 129

906 The Ciao Prolog System

Ciao preprocessor . 10, 65, 71

Ciao top-level . 65

ciao, global description . 3

Ciao, why this name . 4

ciao-shell 19, 61, 62, 63, 849, 851

ciao-users . 861

ciao.el . 849

ciao.reg . 859, 860

Ciao/Prolog mode version . 77

ciao_client_rt . 465

ciaoc . . . 19, 21, 26, 31, 33, 36, 63, 97, 848, 849, 851,

854

ciaoc.bat . 31

ciaolibdir/1 . 161, 162

ciaopp 1, 7, 10, 13, 29, 34, 47, 65, 71, 77, 283

CiaoPP . 471

ciaosh . . . 7, 19, 25, 29, 39, 42, 63, 65, 343, 675, 851,

854, 858

ciaosh.cpx . 857

class constructor. 460

class instances . 459

class$attr_template/4 . 517

class$constructor/4 . 518

class$default_cons/1 . 517

class$destructor/3 . 518

class$implements/2 . 518

class$initial_state/3 . 517

class$super/2 . 517

class$virtual/6 . 517

class/class_rt . 517

class/virtual . 517

class_name/1 . 459, 463

class_source/1 . 459, 463

clause/1 . 338

clause/2 . 167, 187, 189

clause/3 . 167, 187, 189

clauses/1 . 338

clearerr/1 . 123, 126

client installation . 859

client.bat . 859

CLIP group . 9

close/1 . 123, 124, 243

close/2 . 211

close_client/0 . 631

close_DEF/5 . 791, 792

close_EXTERNPROTO/6. 791, 792

close_file/1 . 176, 253

close_input/1 . 301

close_node/5 . 791, 792

close_nodeGut/4 . 791, 792

close_output/1 . 301

close_predicate/1 . 145, 147

close_PROTO/6 . 791, 792

close_Script/5 . 791, 792

closed . 146, 147

clterm/1 . 338

code_class/2 . 131, 132, 134

color/1 . 719, 746

color/2 . 719, 720

coloring, syntax . 65

column_value/1 . 507, 511

columnspan_value/1 . 507, 511

combine_attributes/2 157, 158

command . 54

command_button/1 . 519

comment assertion. 268

comment string . 272, 274, 275

comment/2 . 73, 264, 268

comments, machine readable 263

comp assertion . 266

comp/1 . 264, 266, 275

comp/2 . 264, 266

compare/3 . 111, 112

compare_benchmark/7. 827, 828

compare_benchmark2/7 827, 830

comparison goal . 598

comparison operations . 597

comparison/2 . 594, 598

compat/2 . 99, 102

compatibility properties . 277

compatible . 271

compile/1 . 21, 26, 42, 43, 76

compiler . 166, 848

compiler, standalone . 31

compiler/c_itf 42, 235, 347, 487

compiler/compiler . . 42, 165, 371, 459, 611, 621, 837

compiler/exemaker . 42

compiler_and_opts/2 . 485

compiling . 67, 68

compiling programs 20, 21, 26, 27

compiling, from command line 31

compiling, Win32 . 853

Global Index 907

complete proof procedure 419, 421

complete_dict/3 . 663

complete_vars_dict/3 . 663

complex argument property 271, 272, 274, 275

complex goal property 272, 273, 275

complex_arg_property/1 271, 272, 274, 275

complex_goal_property/1 271, 272, 273, 275

compound/1 . 171, 209

computational cost . 71

conc_aggregates . 837

concurrency . 351

concurrency/concurrency 616, 621, 625

concurrent . 146, 147, 355

concurrent attribute . 443

concurrent predicate 145, 147, 148

concurrent predicates 145, 351

concurrent updates . 565, 581

concurrent/1 145, 148, 351, 355, 441, 443

configuration file . 681

conjunctions. 594

connect_to_socket/3 . 359

connect_to_socket_type/4 359, 360, 362

constant arguments . 597

constant/1 . 99, 100

constraint logic programming 9, 381

constructor . 445

constructor/0 . 441, 445

constructor/1 . 459, 463

consult/1 . 21, 26, 42, 43, 76

contains_ro/2 . 227, 230

contains1/2 . 227, 230

Context-sensitive . 20, 26

continue/3 . 817

contributed libraries . 9, 687

control . 407

convert_atoms_to_string/2 799

convert_permissions/4 373, 374

coord/2 . 545

coord/4 . 535, 539

copy_args/3 . 331

copy_file/2 . 373, 374

copy_files/2. 373

copy_stdout/1 . 327, 328

copy_term/2 . 109, 110

core/1 . 501

correct_commenting/4 807, 809

cos/1 . 121

cost/3 . 827, 830

counters . 577

covered/1 . 283, 285

covered/2 . 283

create_dict/2 . 663

create_dictionaries/1 . 779

create_directed_field/5 807, 808

create_environment/4 807, 810

create_field/3 . 807, 808

create_field/4 . 807, 808

create_field/5 . 807, 808

create_node/3 . 807

create_parse_structure/1 807, 809

create_parse_structure/2 807, 809

create_parse_structure/3 807, 810

create_proto_element/3 . 801

creating executables . 67

creation_bind/1 . 507, 513

creation_menu_name/1 515, 516

creation_options/1 507, 513, 515, 516

creation_options_entry/1 515, 516

creation_position/1. 507, 513

creation_position_grid/1 507, 513

creep . 52

cross_product/2 . 12, 227, 232

csh . 20, 83, 847, 850

csh-compatible shell 20, 847, 850

ctrlc_clean/1 . 317

ctrlcclean . 487

ctrlcclean/0. 317

CUBICO . 10

current input . 194

current input stream . 124, 125

current output stream . 125

current_atom/1 . 176, 249, 251

current_executable/1. 175, 239, 241, 379

current_fact/1 145, 146, 147, 577, 578, 585

current_fact/2 . 145, 146

current_fact_nb/1 . 145, 147

current_host/1 175, 239, 241, 379

current_infixop/4 . 203, 204

current_input/1 . 123, 124

current_key/2. 177, 255, 256

current_module/1 . 161, 162

current_op/3 . 165, 203, 204

908 The Ciao Prolog System

current_output/1 . 123, 125

current_postfixop/3. 203, 204

current_predicate/1 167, 187, 190

current_predicate/2 167, 187, 190

current_prefixop/3 . 203, 204

current_prolog_flag/2 . 142

current_stream/3 . 123, 126

customize . 66, 75

cyg2win/3 . 172, 239, 247, 376

Cygnus Win32 . 853

Cygwin . 10

D
D.H.D. Warren . 10

D.L. Bowen . 10

Daniel Cabeza . 9

data . 190

data declaration . 145

data file . 566

data predicate 145, 146, 147, 148

data/1 . . . 145, 148, 167, 187, 190, 391, 441, 442, 443,

448, 566

data_facts:asserta_fact/1 577

data_facts:assertz_fact/1 578

data_facts:current_fact/1 578

data_facts:retract_fact/1 579

Database aggregation functions 595

Database arithmetic expressions 595

Database arithmetic functions 595

Database calls to is/2 . 595

Database comparison goals 594

database comparison operator 594

database initialization . 570

datime/1 . 176, 239, 380

datime/9 . 176, 239, 240, 379

datime_string/1 . 373, 375

datime_string/2 . 373, 375

datime_struct/1 175, 239, 240, 379

davinci/0 . 489

davinci_command/1 . 491

davinci_get/1 . 489

davinci_get_all/1 . 489

davinci_lgraph/1 . 489, 490

davinci_put/1 . 489, 490

davinci_quit/0 . 489, 490

davinci_ugraph/1 . 489, 490

db_client . 581

db_query/4 . 589

db_query_one_tuple/4 . 590

dbassertz_fact/1 . 584, 585

dbcall/2 . 584, 586

dbconnection/1 . 589, 601

dbcurrent_fact/1 . 584, 585

dbfindall/4 . 584, 586

dbId/2 . 609

dbname/1 . 588, 603

dbqueryconnection/1. 601, 602

dbretract_fact/1 . 584, 585

dbretractall_fact/1. 584, 585

dcg_expansion . 271

dcg_translation/2 . 219

ddlist/1 . 821, 824

debug . 48

debug options . 52

debug/0 . 48, 55, 56

debug/1 . 153, 154

debug_goal/2 . 307, 310

debug_goal/3 . 307, 311

debug_message/1 . 307, 310

debug_message/2 . 307, 310

debug_module/1 . 48, 55

debug_module_source/1 . 48, 55

debugger. 47, 48

debugger/debugger . 42

debugger/debugger_lib . 55

debugging . 53, 70

debugging tools . 47

debugging, source-level 65, 70

debugging/0 . 55, 58

dec_indentation/2 . 807, 812

dec10_io 165, 176, 177, 459, 611

decl assertion . 268

decl/1 . 264, 268, 271

decl/2 . 264, 268

declarations, user defined 97

decompose_field/3 . 791, 793

DECsystem-10 Prolog User’s Manual 10

deductive database . 565

default . 39

default constructor . 456, 460

Global Index 909

define_flag/3 142, 144, 193, 194, 197, 201, 239,

247, 549, 553

del_dir_if_empty/1 . 373

del_endings_nofail/2 373, 374

del_file_nofail/1 . 373, 374

del_file_nofail/2 . 373, 374

del_global/1. 397

del_vertices/3 . 649, 650

delaying predicate execution 8, 381

delete/1 . 499, 501

delete/2 . 821, 822

delete/3 165, 227, 228, 639, 640

delete_after/2 . 821, 823

delete_directory/1 172, 239, 246, 376

delete_file/1 172, 239, 246, 376

delete_files/1 . 373, 374

delete_non_ground/3 12, 227, 228

delete_on_ctrlc/2 . 317

delete_top/2 . 821, 822

dependent files . 677

depth first iterative deepening 421

depth limit . 421

derived_from/2 . 459, 461

describe/1 . 343, 345

destroy/1 . 459, 462

destructor . 446

destructor/0 441, 446, 503, 504

det_hook/det_hook_rt . 584

det_try/3 . 405

detach_attribute/1 . 157, 158

detcond/1 . 401, 402

determinacy . 71

determinate goal . 401

determinate/2 . 401

development environment 22, 27, 848, 850, 857

dgraph/1 . 645

dgraph_to_ugraph/2 . 645

dic_get/3 . 303, 304

dic_lookup/3. 303

dic_lookup/4 . 303, 304

dic_node/2 . 303

dic_replace/4 . 303, 304

dict . 321

dict2varnamesl/2 . 663, 664

dictionary/1 271, 274, 303, 795

dictionary/5. 303

dictionary/6. 777

dictionary_insert/5. 779, 780

dictionary_lookup/5. 779, 780

difference/3 . 227, 231

directives . 97

directory_files/2 173, 239, 244, 377

directoryname/1 . 572

DISCIPL . 10

discontiguous/1 . 97, 441

disjunctions. 594

display . 53

display/1 131, 135, 153, 155, 197

display/2 . 131, 134, 135, 197

display_list/1 . 153, 155

display_string/1 . 153, 155

display_term/1 . 153, 155

displayq/1 . 131, 135, 153

displayq/2 . 131, 135

distributed execution . 415

div_times/2 . 827, 830

dlgraph/1 . 645

dlgraph_to_lgraph/2. 645, 646

dlist/3 . 227, 229

do/2 . 373, 375

do_interface/1 . 487, 488

do_not_free/2. 470, 479, 480

do_on_abolish/1 . 187, 191

docstring/1 263, 271, 272, 274, 275, 276

documentation generator . 7, 29

DOTemacs . 849

downloading emacs . 850, 858

downloading new versions 9, 845

downloading, latest versions 861

dvips . 681

dyn_load_cfg_module_into_make/1 371, 372

dynamic . . 165, 167, 168, 181, 190, 459, 584, 609, 611,

621, 625, 775, 777, 779, 789, 799, 801, 805, 807

dynamic predicate. 145

dynamic/1 167, 187, 190, 441, 443

dynamic_search_path/1 . 42, 45

910 The Ciao Prolog System

E
edges/2 . 649

edges_to_lgraph/2 . 645, 646

edges_to_ugraph/2 . 645, 646

EDIPIA . 10

elisp_string/1 . 630

ELLA . 10

emacs 3, 19, 20, 22, 25, 26, 27, 28, 47, 50, 51, 57,

62, 65, 66, 68, 71, 73, 76, 77, 82, 629, 630, 847,

848, 849, 850, 851, 857, 858, 859

emacs Ciao/Prolog mode. 73

emacs interface . 7, 29, 39, 65

emacs lisp . 629

emacs menu bar . 66

emacs mode . 47, 62, 65, 629

emacs mode setup . 850

emacs mode, loading several. 76

emacs mode, setting up, Win32 858

emacs server . 629

emacs, download . 850, 858

emacs, intro . 22, 27

emacs_edit/1. 630

emacs_edit_nowait/1 . 630

emacs_eval/1. 630

emacs_eval_nowait/1 . 630

embedded debugger . 47, 49, 77

eng_backtrack/2 . 351, 352

eng_call/3 . 351, 352

eng_call/4 . 351, 352

eng_cut/1 . 351, 352

eng_goal_id/1 . 351, 354

eng_kill/1 . 351, 353

eng_killothers . 353

eng_killothers/0 . 351, 353

eng_release/1 . 351, 352

eng_self/1 . 351, 353

eng_status/0 . 351, 354

eng_wait/1 . 351, 353

engine . 849

engine directory . 8, 85

engine module . 383

Enrico Pontelli . 10

ensure_loaded/1 32, 33, 42, 43, 44, 91, 166, 235

entry assertion . 267

entry/1 . 264, 267, 274

environment variable . 849

environment variable definitions 847, 850

environment variables . 83, 849

environment variables, setup 19

environment/1 . 795, 796

equal_lists/2 . 227, 231

equality comparisons in the WHERE-clause 597

equalnumber/3 . 769

equi join in the WHERE-clause 597

erase/1 . 145, 147

errhandle . 487, 489

error term . 141

error/1 . 153, 154

error_file/2. 718

error_message/1 . 307

error_message/2 . 307, 718

error_message/3 . 307, 308

error_protect/1 . 319

error_vrml/1. 781

etc . 849, 859

etc(xfrefs) . 675

etc(xmrefs) . 675

evaluable functors . 121

event_loop/0 . 503, 505

event_type_widget/1. 507, 512

examples . 21, 26, 27

examples/webbased_server/webbased_server.pl

. 416

exceptions . 473

exec/3 . 174, 239, 243, 378

exec/4 . 174, 239, 243, 247, 378

exec/8 . 174, 239, 243, 244, 377

executable . 31

executables . 849

executables, compressed . 35

executables, dynamic . 33

executables, generating 21, 26

executables, how to run . 32

executables, lazy load. 34

executables, self-contained 34

executables, static . 34

executables, types . 33

execution visualizers . 47

existential quantification 595

exp/1 . 121

expand_value/1 . 507, 510

expander_pred/1 . 349

Global Index 911

expansion . 149

expansions . 7

Explorer . 25, 858

export/1. 88, 441, 442, 689

exports . 671

expr/1 . 297

extensibility . 4

extension/2 . 323, 324

External interface . 9, 467

extra_compiler_options . 482

extra_compiler_opts/1 . 481

extra_compiler_opts/2 . 481

extra_linker_options/1 . 482

extra_linker_opts/1 . 482

extra_linker_opts/2 . 482

extract_paths/2 175, 239, 240, 379

F
F.C.N. Pereira . 10

facts . 577, 578, 579

facts/2 . 579

factsdb . 577

factsdb_rt . 577

faggregator/1 . 429, 432

fail . 53

fail/0 . 93, 94

fails/1 . 283, 284

false assertion . 269

false/1 . 264, 269

fast_read/1 . 321, 322

fast_read/2 . 321, 322

fast_write/1 . 321, 322

fast_write/2 . 321, 322

fast_write_to_string/3 321, 322

fastrw . 343, 625, 631

fd_item/1 . 692, 693

fd_range/1 . 692, 693

fd_store/1 . 692, 693

fd_store_entity/1 . 692, 693

fd_subrange/1 . 692, 693

feature terms . 8, 381, 391

fetch_url/3 . 555

field_Id/1 . 805

fieldType/1 . 783

fieldValue/6. 785

fieldValue_check/8 . 787

file_alias . 579

file_alias/2 325, 326, 577, 579

file_exists/1 173, 239, 244, 377

file_exists/2 173, 239, 245, 377

file_locks/file_locks . 568

file_name_extension/3 323, 324

file_properties/6 173, 239, 245, 377

file_property/2 173, 239, 245, 377

file_search_path/2 32, 33, 63, 123, 128, 129

file_terms/2. 327

file_to_string/2 . 327, 328

file_utils . 363

filed predicate . 577

fileerrors/0 . 142, 143

fileinfo . 672

filenames 307, 343, 371, 373, 837

fill_type/1 . 507, 510

fillout/4 . 807

fillout/5 . 807

filter_alist_pattern/3 373, 375

find_name/4 . 663, 664

findall/3 166, 183, 184, 357, 586

findall/4 . 166, 183, 184

findnsols/4 . 166, 183, 184, 185

findnsols/5 . 166, 183, 185

finite_solutions/1 . 283, 287

first-timers. 165

flag/1 . 338

float/1 . 105, 106, 121

float_fractional_part/1 . 121

float_integer_part/1 . 121

floor/1 . 121

flt/1 . 99, 121, 289

flush_output/0 . 123, 126

flush_output/1 . 123, 126

fmode/2. 173, 239, 246, 377

fnot/1 . 429, 431

foldl/4 . 389

font_type/1 . 507, 545, 546

footer/1 . 723, 726

force_lazy/1 . 42, 45

foreground_color/1 . 507, 508

foreign/1 . 479, 480

foreign/2 . 479, 480

foreign_compilation . 487

912 The Ciao Prolog System

foreign_interface/foreign_interface_properties

. 601

ForEmacs.txt. 858

form_assignment/1 . 557, 561

form_default/3 . 549, 551

form_dict/1 . 557, 561

form_empty_value/1 . 549, 551

form_request_method/1 549, 552

form_value/1 . 557, 562

format 55, 165, 172, 307, 341, 371, 459, 487, 489,

499, 611, 616, 621, 625, 715, 799

format/2 . 172, 221, 222

format/3 . 172, 221, 222

format_control/1 172, 221, 222

formatting commands . 263

formatting conventions, for emacs 65

formatting/2 . 489, 490

forward/2 . 821, 823

Francisco Bueno . 9

free variable . 361

freeze/2 . 158, 409

FROM-clauses. 597

frozen/2 . 409

func/1 . 274

function/1 . 395

functional syntax . 8, 381

functions . 7, 365, 366, 367

functor of a goal . 597

functor/3 . 109

fuzzy/1 . 429, 430

fuzzy_discrete/1 . 429

fuzzy_predicate/1 . 429, 430

fuzzybody/1 . 429, 432

G
g_assrt_body/1 . 271, 275

garbage collection . 250, 252

garbage_collect/0 176, 249, 251

garbage_collection_option/1 251

gc/0 . 142, 143

gc_result/1 . 252

gcc . 854

gcd/2 . 122

genbar1 . 710

genbar2 . 710

genbar3 . 711

genbar4 . 711

generate_plot/2 . 831, 833, 834

generate_plot/3 . 831, 833, 834

generator/2 . 789

gengraph1 . 712

gengraph2 . 713

genmultibar . 711

Gerda Janssens . 10

German Puebla . 9

get_alias_path/0 . 63

get_arch/1 . 161

get_attribute/2 . 157, 158

get_byte/1 . 171, 205

get_byte/2 . 171, 205

get_char/1 . 170, 205, 206

get_char/2 . 170, 205, 206

get_code/1 . 131

get_code/2 . 131

get_cookies/1 . 549, 552

get_definition_dictionary/2 779

get_dictionaries/2 . 807, 813

get_environment/2 . 807, 813

get_environment_name/2 807, 810

get_environment_type/2 807, 810

get_first_parsed/3 . 807, 815

get_form_input/1 12, 549, 551, 553

get_form_value/3 . 549, 551

get_general_options/1 831, 833

get_global/2. 397

get_indentation/2 . 807, 811

get_line/1 . 305

get_line/2 . 305

get_os/1 . 161

get_parsed/2 . 807, 812

get_pid/1 . 175, 239, 241, 379

get_primes/2. 641

get_prototype_definition/2 801

get_prototype_dictionary/2 779, 780

get_prototype_interface/2 801

get_row_number/2 . 807, 811

get_stream/2. 313

get_type/2 . 605

get1_code/1 . 131, 132

get1_code/2 . 131

getcounter/2. 637

Global Index 913

getct/2 . 131, 134

getct1/2 . 131, 134

getenvstr/2 . 175, 239, 240, 379

ghostview . 22, 27, 366

glb/2 . 692, 695

global variables . 8, 381

GlobalChangeLog . 74, 75

gmake . 682, 849

gmax/3 . 411

gnd/1 . 99, 100, 289

GNU . 847

GNU emacs . 7, 29, 83

GNU general public license . 71

GNU General Public License . 1

GNU make . 849

gnuplot . 831

gnuplot/gnuplot . 827

go/1 . 293, 294

go/2 . 293, 295

Goal . 412

goal_id/1 . 351, 353, 354

Gopal Gupta . 10

grammar rule . 306

granularity control . 71

graph_b1/13 . 712, 742, 743

graph_b1/9 . 712, 742, 743

graph_b2/13 . 713, 749, 750, 751

graph_b2/9 . 713, 749, 750, 751

graph_w1/13 . 712, 742, 743

graph_w1/9 . 712, 742, 743

graph_w2/13 . 713, 749, 751

graph_w2/9 . 713, 749, 750

graphs/lgraphs . 645

graphs/ugraphs . 489, 645

ground/1 105, 107, 284, 287, 400

gunzip . 847, 848

H
H. Ait-Kaci . 40

halt/0 . 137, 138

halt/1 . 137, 138

halt_server/0 . 631, 632

handle_error/2 . 319

handler_type/1 . 717

hash . 385

hash_term/2 . 385, 386

head pattern. 271, 272, 274, 275

head_pattern/1 271, 272, 274, 275

header/1 . 723, 726

height/1 . 535, 539

hello . 61

help . 22, 25, 27, 54, 858

help, unix . 20

help, windows . 26

hide_/0 . 503, 504

higher-order library . 8, 381

highlight_color/1 . 507, 509

highlightbackground_color/1 507, 508

hiordlib . 827

hms_time/1 . 557, 563

hostname_address/2 . 359, 360

HTML . 547, 549

html_expansion/2 . 549, 553

html_protect/1 . 549, 553

html_report_error/1. 549, 551

html_template/3 . 549, 550

html_term/1 . 549, 557, 559

html2terms/2. 549

HTTP . 547, 555

http_date/1 . 557, 562, 563

http_lines/3 . 549, 553

http_request_param/1 557, 562

http_response_param/1 557, 562

hw . 21

hw.pls . 21, 27

I
icon_address.pl . 547

icon_address/2 . 549, 553, 560

identifier of a location 571, 579

idlists . 335, 663

if/3 . 93, 94

image/1 . 759, 760

impl_defined/1 . 97

implements/1 441, 443, 444, 448

import/2 . 89

imports . 671

imports_meta_pred/3 . 347

in/1 . 293, 294, 631

in/2 . 293, 295, 631, 692

914 The Ciao Prolog System

in_noblock/1. 631

in_stream/2 . 631, 632

inc_indentation/2 . 807, 811

inccounter/2. 637

include/1 . 42, 43, 88, 91

indentation_list/2 . 791, 793

indep/1 . 284, 287, 400

indep/2. 284, 287, 399, 400

independent . 399

index/1 . 385

indexer . 385

indexspecs/1. 386

Inference of properties . 71

info 19, 20, 65, 66, 68, 848, 849, 850, 851

INFOPATH . 849

inform_user/1 . 153, 155

inherit_class/1 . 441, 443

inheritable interface . 442

inheritable/1 . 441, 442

inheritance relationship . 444

inherited/1 . 441, 445

init_sql_persdb/0 . 584, 585

initialization clauses . 443

initialization file . 22, 27

initialization/1 . 98

initialize_db/0 . 567, 568, 570

INRIA . 10

insert/3 . 659, 821, 822

insert_after/3 . 821, 822

insert_comments_in_beginning/3 807, 810

insert_last/3 . 227, 230

insert_parsed/3 . 807, 815

insert_top/3 . 821, 822

inside_proto/1 . 807, 813

installation . 9, 845

installation, checking the 851

installation, Mac OS X, full instructions . . . 848

installation, Mac OS X, summary. 847

installation, network based 849

installation, Un*x, full instructions 848

installation, Un*x, summary 847

installation, Windows clients 859

installation, Windows server 859

installation, Windows, from binaries 857

installation, Windows, from sources 853

instance/2 . 289, 333

instance_codes/2 . 459, 462

instance_id/1 . 459, 463

instance_of/2 453, 454, 455, 456, 459, 460, 461

instances . 459

instantiation mode . 8, 261

instantiation properties . 277

instantiation state . 6

int/1 . 99, 121, 141, 288

int_list/1 . 479

integer/1 . 105, 106, 121, 273

inter-process communication 415

intercept/3 . 137, 138

interface file . 150

interface inheritance . 444

interface/2 . 459, 461

interface_name/1 . 459, 463

interface_source/1 . 459, 463

interfaces . 441

internal_module_id/1 . 163

interp_file/2 . 715

interpreted mode . 47

interpreting . 67, 68

intersection/3 . 227, 231

intlist/1 . 641

intset_delete/3 . 227, 230

intset_in/2 . 227, 231

intset_insert/3 . 227, 230

intset_sequence/3 . 227, 231

io_alias_redirection . 839

io_aux . 141

io_mode/1 . 123, 128

is/2 . 119, 395, 396, 595

is_array/1 . 635

is_connected_to_java/0 625, 627

is_det/1 . 283, 285

is_dictionaries/1 . 779

iso . 8, 179

ISO-Prolog . . . 4, 6, 121, 122, 131, 134, 149, 181, 203

ISO-Prolog builtins . 8, 85, 179

iso-prolog, compliance . 4

iso/1 . 99, 103

iso_byte_char 165, 170, 171, 181, 459, 611, 616,

775, 777, 779, 789, 799, 801, 805, 807, 819

iso_incomplete . . . 181, 775, 777, 779, 789, 799, 801,

805, 807

Global Index 915

iso_misc 165, 171, 172, 181, 459, 496, 594, 611,

775, 777, 779, 789, 799, 801, 805, 807

isomodes . 6

issue_debug_messages/1 307, 310, 311

iterative deepening-based execution 9, 381

iterative-deepening . 421

J
Jan Maluzynski . 10

Java event handling from Prolog. 614

Java exception handling from Prolog 616

Java interface . 9, 467

Java to Prolog interface . 621

java_add_listener/3. 616, 620

java_connect/2 . 616, 617

java_constructor/1 . 616, 617

java_create_object/2 616, 618

java_debug/1 . 625, 627

java_debug_redo/1 . 625, 627

java_delete_object/1 616, 618

java_disconnect/0 . 616, 617

java_event/1 . 616, 618

java_field/1 . 616, 618

java_get_value/2 . 616, 619

java_invoke_method/2 616, 619

java_method/1 . 616, 619

java_object/1 . 616, 617

java_query/2 . 625, 626

java_remove_listener/3 616, 620

java_response/2 . 625, 626

java_set_value/2 . 616, 619

java_start/0. 616

java_start/1. 616

java_start/2 . 616, 617

java_stop/0 . 616, 617

java_use_module/1 . 616, 618

javall/javasock . 616, 621

javall/jtopl. 625

javart . 625

Johan Andersson . 83

Johan Bevemyr . 83

Johan Widen . 10

John Gallagher . 10

join_socket_interface/0 625, 626

jtopl . 625

justify_entry/1 . 525, 526

justify_text/1 . 545, 546

K
K.U. Leuven . 10

Kalyan Muthukumar . 10

Kevin Greene . 10

key sequences . 66

keyboard . 5

keylist/1 . 172, 233

keypair/1 . 234

keysort/2 . 172, 233

keyword/1 . 572, 580

Kim Marriott . 10

L
L. Byrd . 10

L.M. Pereira . 10

label_value/1 . 515, 531

labeling/1 . 692, 693

last/2 . 166, 227, 230

latex . 681

leap . 52

leash/1 . 52, 55, 58

length/2 166, 227, 228, 821, 823

length_next/2 . 821, 824

length_prev/2 . 821, 824

letter_match/2 . 643, 644

lgraph/1 . 491

lgraph/2 . 653

lib library . 8, 85

libpaths . 42

libraries used . 671

library directory. 848

library(’xrefs/mrefs’) . 675

library(’xrefs/pxrefs’) . 675

library(iso_byte_char) . 131

library(modes) . 272

library(pure). 87

library(xrefs) . 675

library/pillow/doc . 547

library_directory/1 32, 63, 64, 123, 129

librowser . 343

limitations . 9, 845

916 The Ciao Prolog System

limitations, architecture-specific 861

linda_client/1 . 631

linda_timeout/2 . 631, 632

line/1 . 306

line_count/2 . 123, 125

line_position/2 . 123, 125

linear/1 . 283

linker_and_opts/2 . 485

Linkoping U. 10

Linux . 852

list/1 . 99, 101, 103

list/2 . 99, 101, 273

list_breakpt/0 . 55, 58

list_concat/2 . 227, 229

list_insert/2. 227, 230, 639

list_lookup/3 . 227, 230

list_lookup/4 . 227, 230

list_to_list_of_lists/2 227, 232

list1/2 . 227, 229

lists 63, 165, 166, 183, 193, 239, 264, 266, 283,

307, 323, 343, 363, 373, 459, 487, 496, 499, 503,

515, 517, 525, 529, 531, 541, 543, 549, 555, 568,

584, 594, 611, 616, 621, 630, 641, 643, 697, 719,

723, 729, 733, 737, 742, 749, 755, 759, 763, 765,

767, 769, 771, 777, 779, 785, 787, 791, 799, 801,

805, 807, 817, 819, 821, 827, 833, 837, 839

llists . 487

load_compilation_module/1 150, 151

loading mode . 48

loading programs . 20, 26, 67

locating errors . 70

location/1 . 311

lock_atom/1 . 351, 354

lock_file/3 . 329

log of changes . 72

log/1 . 121

LogIn . 40

look_ahead/3 . 807, 815

look_first_parsed/2. 807, 815

lookup_check_field/6 801, 802

lookup_check_interface_fieldValue/8 . . . 801, 802

lookup_check_node/4. 801, 802

lookup_field/4 . 801, 802

lookup_field_access/4 801, 803

lookup_fieldTypeId/1 801, 803

lookup_get_fieldType/4 801, 803

lookup_route/5 . 801, 802

lookup_set_def/3 . 801, 803

lookup_set_extern_prototype/4 801, 804

lookup_set_prototype/4 801, 804

lpdoc 1, 3, 7, 29, 65, 66, 71, 72, 73, 77, 263, 268,

272, 276

LPdoc . 3

lpdoc command args, setting. 76

lpdoc command, setting. 76

lpdoc default format, setting 75

lpdoc lib path, setting . 76

lpdoc working dir, setting . 75

lpmake . 365, 367, 371, 681, 682

lpmake autodocumentation . 681

ls/2 . 373, 375

ls/3 . 373, 375

lub/2 . 692, 695

M
Mac OS X . 20, 847, 850

machine_name/1 . 616, 617

mailing list . 9, 845, 861

main module . 68

main/0 . 21, 26, 27, 31, 32, 67

main/1 21, 23, 26, 27, 28, 31, 32, 61, 62, 67, 141

major version number . 72

make 365, 367, 369, 371, 681, 682, 847, 849

make/1 . 371

make/make_rt. 365

make_actmod/2 . 42, 44, 416

make_directory/1 175, 239, 241, 379

make_directory/2 175, 239, 241, 379

make_dirpath/1 175, 239, 242, 378

make_dirpath/2 175, 239, 242, 379

make_exec/2 . 21, 26, 42, 43

make_option/1 . 371

make_persistent/2 566, 568, 570

make_po/1 . 42, 44, 235

make_sql_persistent/3 584, 585, 586

Makefile . 31, 365, 367, 372, 373

Makefile.pl . 366, 681, 682

man . 849

MANPATH . 849

manual, printing 22, 25, 27, 858

manual, tour . 7

Global Index 917

manuals . 849

manuals, printing . 22, 27

Manuel Carro . 9

Manuel Hermenegildo . 9, 10

map/3 . 389

Maria Jose Garcia de la Banda 9

marshalling . 8, 299

Masanobu Umeda . 83

match_pattern/2 . 643

match_pattern/3 . 643

match_pattern_pred/2 643, 644

Mats Carlsson . 10, 83

Maurice Bruynooghe . 10

max/3 . 411

maxdepth/1 . 55, 58

maxsize/2 . 503, 505

MCC . 10

Melbourne U. 10

member/2 . 99, 101

member_0/2 . 639

memberchk/2 . 639

memory management . 250, 252

memory_option/1 . 251

memory_result/1 . 252

menu/1 . 503

menu_data/1 . 515

menu_name/1 . 529, 531, 532

merge/3 . 659, 661

merge_tree/2 . 779, 780

message/1 . 153, 154, 155

message/2 . 153, 154, 155

message_lns/4 . 153

messages. 341, 371, 373, 487, 584, 594

meta_predicate/1 . 89, 441

metaspec/1 . 90

method_spec/1 . 459, 463

mfstringValue/5 . 785

mfstringValue/7 . 787

MICYT . 10

minimum/3 . 389

minor version number . 72

minsize/2 . 503, 505

mkf-CIAOARCH. 854

mktemp/2 . 173, 239, 244, 377

mod/2 . 121

mod_tester/2. 837

mode . 6

mode . 264, 272

mode spec . 6

mode_of_module/2 . 235, 236

modedef/1 . 6, 264, 267, 272

modes . 71, 291, 293

modif_time/2 173, 239, 245, 246, 377

modif_time0/2 173, 239, 245, 377

modular interface . 35

module qualification . 87

module/2 . 88, 165

module/3 . 49, 87, 88, 91, 441

module_of/2 . 235, 236

modulename/1 . 90

modules, active . 35

modules_tester/2 . 837

Monash U. 10

month/1 . 557, 563

most_general_instance/3 12, 333

most_specific_generalization/3 12, 333

move_file/2 . 373

move_files/2. 373

moving changelog entries . 74

mshare/1 . 283, 284

multi-evaluated . 442

multiarchitecture support 852

multibar_attribute/1 . 757

multibarchart/10 711, 755, 756

multibarchart/8 . 711, 755, 756

multifile predicate . 97

multifile/1 . 42, 45, 87, 97, 441

multifile:alias_file/1 . 325

multpredspec/1 . 59

mut_exclusive/1 . 283, 285

my_url/1 . 549, 552

mysql_connect/5 . 601

mysql_disconnect/1 590, 601, 602

mysql_fetch/2 . 601, 602

mysql_free_query_connection/1 601, 602

mysql_get_tables/2 . 601, 602

mysql_query/3 . 601

mysql_query_one_tuple/3 . 601

mysql_table_types/3. 601, 602

918 The Ciao Prolog System

N
n_assrt_body/5 . 274, 275

nabody/1 . 271, 274

Name . 480

name of a location . 589

name server . 416

name/2 . 115, 551

name_menu/1 . 515

Naming term aguments . 391

native/1 . 99, 103, 288, 479, 480

native/1,2 . 12

native/2 . 99, 104, 288, 479, 480

negated comparison goal . 598

negated database goal . 598

negated goals . 597

negated_comparison/2 . 599

negations . 594

neighbors/3 . 649

netscape . 19, 851

New Mexico State University. 10

new/2 445, 453, 454, 455, 459, 461

new_array/1 . 635

new_atom/1 . 176, 249, 251

new_declaration/1 . 97, 149

new_declaration/2 . 97, 149

new_interp/1 . 499, 715

new_interp/2. 499

new_interp_file/2 . 499

next/2 . 821

nl/0 . 131, 133

nl/1 . 131, 133

nnegint/1 . 99, 288

no_path_file_name/2 . 323

no_tr_nl/2 . 373, 376

nobreakall/0 . 55, 57

nobreakpt/6 . 48, 49, 55, 57

nocontainsx/2 . 227, 230

nodebug . 48, 53

nodebug/0 . 55, 56

nodebug_module/1 . 48, 55

nodeDeclaration/4 . 789, 805

nofileerrors/0 . 142, 143

nogc/0 . 142, 143

non-failure . 71

non_det/1 . 283, 285

nonground/1 . 12, 283, 284

nonsingle/1 . 227

nonvar/1 . 105, 287

nospy . 53

nospy/1 . 48, 49, 54, 55, 56

nospyall/0 . 55, 57

NOT EXISTS-subqueries . 597

not_covered/1 . 283, 285

not_empty/3 . 769

not_empty/4 . 769

not_fails/1 . 283, 284

not_further_inst/1 . 273

not_further_inst/2 . 99, 103

not_mut_exclusive/1. 283, 285

notation . 5

note/1 . 153, 154

note_message/1 . 307, 308

note_message/2 . 307, 309

note_message/3 . 307, 309

notrace/0 . 55, 56

ntemacs . 850, 858

nth/3 . 166, 227, 229

null/1 . 479

null_dict/1 . 663

null_list/1 . 821

num/1 . 99, 100, 289

number/1 . 105, 106

number_chars/2 . 171, 205

number_codes/2 . 115, 116

number_codes/3 . 115, 116

numbervars/3 . 169, 197, 200

numlist/1 . 641

O
object . 459

object oriented programming 9, 381

objects/objects_rt . . . 441, 453, 503, 507, 515, 517,

519, 521, 523, 525, 527, 529, 531, 533, 535, 539,

541, 543, 545

old_database 165, 177, 459, 611

on-line help . 65

on_abort/1 . 98

once/1 . 171, 209

op/3 . 149, 165, 203

open/3 . 12, 123, 325

open/4 . 123, 124

Global Index 919

open_client/2 . 631, 632

open_DEF/5 . 791, 792

open_EXTERNPROTO/5 . 791, 792

open_input/2. 301

open_node/6 . 791, 792

open_null_stream/1 . 301

open_option_list/1 . 123, 124

open_output/2 . 301

open_predicate/1 . 145, 147

open_PROTO/4 . 791, 792

open_Script/5 . 791, 792

operations file . 566

operator table . 149

operator_specifier/1 . 99, 100

operators 165, 181, 193, 197, 259, 337, 459, 611,

775, 777, 779, 789, 799, 801, 805, 807

option/1 . 503

optional_message/2 . 307, 310

optional_message/3 . 307, 310

ord_delete/3. 659

ord_disjoint/2 . 659, 661

ord_intersect/2 . 659, 660

ord_intersection/3 . 659, 660

ord_intersection_diff/4 659, 660

ord_member/2. 659

ord_subset/2 . 659, 660

ord_subset_diff/3 . 659, 660

ord_subtract/3 . 659

ord_test_member/3 . 659

ord_union/3 . 659, 660

ord_union_change/3 . 659, 661

ord_union_diff/4 . 659, 660

ord_union_symdiff/4. 659, 660

out/1 . 293, 294, 631, 799

out/2 . 293, 295

out/3 . 799

out_stream/2 . 631, 632

outline_color/1 535, 537, 539, 540, 541

output_error/1 . 781

output_html/1 . 549, 553

overriden . 442, 443

P
P. Lincoln . 40

package file 88, 91, 149, 150, 151

padx_value/1 . 507, 510

pady_value/1 . 507, 510

pair/1 . 647

parallel programming . 8, 381

parallel Prolog . 10

parallelizing compiler . 10

parametric type functor . 280

PARFORCE . 10

parse/1 . 785, 795, 796

parse_term/3. 315

parser/2 . 805

passerta_fact/1 . 568, 569

passertz_fact/1 . 568, 569

passwd/1 . 588, 603

patch number . 72

path . 20, 847, 850

PATH . 849

path alias 45, 63, 88, 127, 129, 239

path aliases . 33

path/1 . 401, 403

pattern/1 . 643, 644, 719, 721

pattern/2 . 719, 721

patterns . 343, 345, 373, 643

Paulo Moura . 13

pause/1 . 176, 239, 380

Pawel Pietrzak . 10

Pedro Lopez . 9

peek_byte/1 . 171, 205, 206

peek_byte/2 . 171, 205, 206

peek_char/1 . 170, 205, 206

peek_char/2 . 170, 205, 206

peek_code/1 . 131, 132, 206

peek_code/2 . 131, 132, 207

percentbarchart1/7 710, 723, 724

percentbarchart2/7 710, 729, 730

percentbarchart3/7 711, 733, 734

percentbarchart4/7 711, 737, 738

performance/3 . 827

perl . 82

persdb 566, 568, 569, 570, 577, 579, 581, 593

persdb/persdbcache . 568, 577

persdb_mysql/db_client_types 584, 601

persdb_mysql/delete_compiler/pl2sqldelete

. 584

persdb_mysql/mysql_client 584

persdb_mysql/pl2sql . 584

920 The Ciao Prolog System

persdb_sql . 565, 566

persdb_sql_common/pl2sqlinsert 584

persdb_sql_common/sqltypes 584, 594

persdbrt . 580

persistence set . 566

persistent . 568, 569, 570

persistent predicate . 565

Persistent predicate . 9, 467

persistent predicates 581, 593

persistent storage . 589

persistent/2 . 566, 571

persistent_dir . 571

persistent_dir/2 . . 566, 568, 570, 571, 572, 577, 579

Peter Olin . 83

Peter Stuckey . 10

phrase/2 . 219

phrase/3 . 219

Pierre Deransart . 10

pillow . 566, 859

PiLLoW on-line tutorial . 547

pillow.pl . 547

pillow/html . 547, 697, 771

pillow/http . 547, 697, 771

pillow/http_ll . 555

pillow/pillow_aux . 549, 555

pillow/pillow_types 549, 555, 697

pitm/2 . 692, 693

pkunzip . 857

pl2sql . 581, 594, 595

pl2sqlInsert/2 . 611

pl2sqlstring/3 590, 593, 594, 596

pl2sqlterm/3 . 593, 594, 595

platform-dependent . 35

platform-independent . 33, 34

point/2 . 545

point_to/3 . 649, 650

Polymorphism. 435

pop_global/2. 397

pop_prolog_flag/1 . 142, 143

popen/2 . 243

popen/3. 174, 239, 243, 378

popen_mode/1 174, 239, 243, 378

portray/1 . 197, 198, 201

portray_attribute/2 159, 197, 198, 201

portray_clause/1 169, 197, 200

portray_clause/2 169, 197, 200, 201

positive database goal . 598

Posix threads . 854

possibly_fails/1 . 283, 284

possibly_nondet/1 . 283, 285

postgres2sqltype/2 . 605, 607

postgres2sqltypes_list/2 605, 607

postgrestype/1 . 605, 607

powerset/2 . 227, 232

pred assertion . 264, 265

pred/1 264, 265, 266, 268, 271, 274

pred/2 . 264, 265

pred_tester/2 . 837, 838

predfunctor/1 . 271, 276

predicate declarations . 671

predicate spec . 6

predicate spec . 355

predicate_property/2 176, 249, 250

predname/1 . 99, 102, 272

preprocessing programs . 71

preprocessor . 7, 29

preprocessor command args, setting 76

preprocessor command, setting 76

pretract_fact/1 . 568, 569, 570

pretractall_fact/1 12, 568, 569, 570

pretty_print/2 . 337

pretty_print/3 . 337

prettyvars/1 . 169, 197, 200

prev/2 . 821

print . 53

print/1 . 54, 169, 197, 200

print/2 . 169, 197, 199

printable_char/1 169, 197, 201

printdepth . 54

printing assertion information 671

printing code-related information 671

printing, manual 22, 25, 27, 858

Procedure Box . 47

program assertions . 263

program development environment 65

program development tools 849

program parallelization . 71

program specialization . 71

program transformations 65, 71

programming environment . 7, 29

project files . 31

projterm/1 . 588, 594, 595

Global Index 921

prolog flag 39, 61, 97, 127, 141, 153

Prolog predicate argument positions 596

Prolog predicate names . 596

Prolog scripts . 21, 849

Prolog server . 622

Prolog shell . 849

Prolog shell scripts . 61

Prolog to Java Interface Structure 613

Prolog to Java Interface Structure. Java side

. 613

Prolog to Java Interface Structure. Prolog side

. 613

Prolog to SQL compiler . 593

Prolog to SQL translation . 590

Prolog to SQL translator . 581

prolog-emacs interface . 629

prolog.el . 83

prolog_flag/3 . 142

prolog_goal/1 . 616, 618

prolog_predicate/N . 469

prolog_query/2 . 625, 626

prolog_response/2 . 625, 626

prolog_server/0 . 621

prolog_server/1 . 621, 622

prolog_server/2 . 621, 622

prolog_sys . . . 165, 176, 187, 351, 357, 459, 611, 621,

827

PrologName . 480

prompt . 489

prompt/2 . 142, 143

prop assertion . 266, 267

prop/1 . 264, 266, 267

prop/2 . 264, 267

properties of computations 277

properties of execution states 277

properties, basic . 99

properties, native . 283

property . 266

property compatibility . 103

property declarations . 671

property_conjunction/1 271, 272, 273

property_starterm/1 271, 272, 273

propfunctor/1 . 271, 276

protected . 442

providing information to the compiler . . . 267, 269

ProVRML . 771

provrml/boundary . 787, 801

provrml/dictionary . 801

provrml/dictionary_tree 801, 807

provrml/error 775, 785, 789, 791, 801, 805, 819

provrml/field_type . 801

provrml/field_value 791, 801, 805

provrml/field_value_check 791, 801

provrml/generator . 771, 787

provrml/generator_util 787, 789, 801

provrml/internal_types . . . 775, 777, 779, 789, 801,

807

provrml/io 771, 787, 789, 791, 801

provrml/lookup . 789, 791, 805

provrml/parser . 771, 785, 801

provrml/parser_util . . . 785, 787, 789, 791, 801, 805

provrml/possible . 805

provrml/tokeniser . 787, 805

prune_dict/3 . 663, 664

public . 443

public domain . 1

public interface . 442

public/1 . 441, 442, 449

pure . 8, 85

pure Prolog . 8, 381, 383

push_dictionaries/3. 807, 812

push_global/2 . 397

push_prolog_flag/2 . 142, 143

push_whitespace/3 . 807, 812

put_byte/1 . 171, 205, 206

put_byte/2 . 170, 205, 206

put_char/1 . 170, 205, 207

put_char/2 . 170, 205, 207

put_code/1 . 131, 133, 207

put_code/2 . 131, 133, 207

putbyte/2 . 206

Q
q_delete/3 . 655

q_empty/1 . 655

q_insert/3 . 655

q_member/2 . 655

qualified attributes . 597

query . 39

query_generation/3 . 597

query_requests/2 . 621, 623

922 The Ciao Prolog System

query_solutions/2 . 621, 622

querybody/1 . 588, 594, 597

quoted string . 122

R
random/1 . 657

random/3 . 657

random/random 719, 723, 729, 733, 737, 742, 749,

755

random_color/1 . 719, 721

random_darkcolor/1 . 719, 721

random_lightcolor/1. 719, 721

random_pattern/1 . 719, 722

range variable . 597

rd/1 . 631, 632

rd/2 . 631, 632

rd_findall/3 . 631, 632

rd_noblock/1 . 631, 632

read . . 55, 165, 168, 181, 325, 327, 343, 459, 489, 499,

568, 577, 611, 616, 621, 625, 631, 715, 775, 777,

779, 789, 799, 801, 805, 807

read/1 . 155, 168, 193

read/2 . 168, 193, 194, 359, 362

read_option/1 . 194, 195

read_page/2 . 774

read_term/[2,3] . 195

read_term/2 . 168, 193, 199

read_term/3 135, 168, 193, 194, 198

read_terms_file/2 . 799

read_top_level/3 168, 193, 194

read_vrml_file/2 . 799, 800

readf/2 . 373, 375

reading/4 . 791

reading/5 . 791

reading/6 . 791

rebuild_foreign_interface/1 487

rebuild_foreign_interface_explicit_decls/2

. 487, 488

rebuild_foreign_interface_object/1 487, 488

receive_confirm/2 . 499, 501

receive_event/2 . 499, 501

receive_list/2 . 499, 501

receive_result/2 . 499, 500

recorda/3 . 177, 255

recorded/3 . 177, 255

records . 8, 381, 391

recordz/3 . 177, 255

recursive level . 40

redefined . 445

redefining/1 . 98

RedHat 5.0 . 854

reduce_indentation/3 807, 812

reexport/1 . 89

reexport/2 . 89

reference/1 . 148

references, to Ciao . 5

referring to Ciao . 5

regedit . 860

regtype assertion . 280, 281

regtype/1 99, 103, 280, 281, 288

regtype/2 . 280, 281

regular expresions . 345

regular expressions . 643

regular type . 280

regular type abstractions 280

regular type definitions . 277

regular type expression . 280

regular types . 277

relation name . 597

relational databases . 581

relief_type/1 . 507, 509

rem/2 . 121

remote/ciao_client_rt . 465

remove_code/3 . 807, 815

remove_comments/4 . 791, 793

rename/2 . 663, 664

rename_file/2 172, 239, 246, 373, 374, 376

repeat/0. 93, 94

replace_strings_in_file/3 373, 376

reporting bugs . 9, 845, 862

reserved_words/1 . 775, 776

retract/1 . 167, 187, 188

retract_fact/1 . . . 145, 146, 147, 565, 568, 569, 577,

578, 581, 585

retract_fact_nb/1 . 145, 147

retractall/1 . 167, 187, 189

retractall_fact/1 . . 12, 145, 146, 568, 570, 581, 585

retrieve_list_of_values/2 692, 695

retrieve_range/2 . 692, 694

retrieve_store/2 . 692, 695

retry . 53

Global Index 923

returns/2 . 479, 480

reverse/2 . 166, 227

reverse/3 . 227, 228

reverse_parsed/2 . 807, 815

rewind/2 . 821, 823

Roger Nasr . 10, 40

round/1 . 121

row/1 . 760

row_value/1 . 507, 511

rowspan_value/1 . 507, 511

rtchecks/rtchecks_sys . 297

run-time checks . 266, 297

run-time libraries . 848

run-time tests . 71

run_tester/10 . 839

running programs 20, 21, 26, 27

running_queries/2 . 621, 623

S
s_assrt_body/1 . 271, 274

safe_write/2. 363

Saumya Debray . 10

scattergraph_b1/12 712, 742, 744

scattergraph_b1/8 712, 742, 744, 745

scattergraph_b2/12 713, 749, 752

scattergraph_b2/8 713, 749, 751

scattergraph_w1/12 712, 742, 745

scattergraph_w1/8 712, 742, 745, 752

scattergraph_w2/12 713, 749, 753

scattergraph_w2/13 . 753

scattergraph_w2/8 713, 749, 752

scattergraph1_b1/13 . 745

script header, inserting automatically 70

scripts . 19, 21, 27, 849, 851

second_prompt/2 . 168, 193, 194

see/1 . 177, 253

seeing/1 . 177, 253

seen/0 . 177, 253

Seif Haridi . 10

select/3 . 165, 227, 228

select_socket/5 . 359, 361

self/1 . 441, 445

semantic analisys. 460

semaphore . 354

send_term/2 . 499, 500

sequence/2 . 99, 101

sequence_or_list/2 . 99, 102

serve_socket/3 . 363

server_notrace/1 . 465

server_stop/1 . 465

server_trace/1 . 465

set_action/1. 531

set_cookie/2 . 549, 551

set_debug_mode/1. 42, 44, 48, 235, 236

set_debug_module/1 . 235, 236

set_debug_module_source/1 235, 236

set_environment/3 . 807, 814

set_fact/1 . 145, 147

set_general_options/1 831, 833

set_global/2. 397

set_input/1 . 123, 124

set_name/1 . 531

set_nodebug_mode/1 42, 44, 48, 235, 236

set_nodebug_module/1 235, 236

set_output/1 . 123, 125

set_parsed/3 . 807, 814

set_perms/2 . 373, 375

set_prolog_flag/1 . 450

set_prolog_flag/2 . 142, 143

set_stream/3. 313

setarg/3 . 407

setcounter/2. 637

setenvstr/2 . 175, 239, 240, 379

setof/3 . 167, 183, 357, 594, 595

setproduct/3 . 659, 661

sets 412, 489, 649, 651, 653, 663

SETTINGS 847, 848, 849, 851, 854

sh . 20, 83, 848, 850

sh-compatible shell 20, 848, 850

shape_class/0 . 533, 534

shape_class/1 . 533, 534

sharing sets . 284

shell . 25

shell scripts . 31

shell/0. 174, 239, 242, 378

shell/1. 174, 239, 242, 378

shell/2. 174, 239, 243, 378

shell/n . 247

shell_s/0 . 621, 622

shortcut, windows. 857

show/0 . 503, 504

924 The Ciao Prolog System

shutdown_type/1 . 359, 360

SICS . 10, 83

SICStus . 76

SICStus Prolog . 10

side_type/1 . 507, 509

sideff/2 . 99, 103, 288

sign/1 . 121

simple_client.pl . 416

simple_message/1 . 307, 309

simple_message/2 . 307, 309

sin/1 . 121

site-specific programs . 848

size/1 . 742, 747

size_lb/2 . 283, 286

size_of/2 . 470

size_of/3 . 479, 480

size_ub/2 . 283, 286

sizes of terms . 71

skip . 52

skip_code/1 . 131, 132

skip_code/2 . 131, 132

skip_line/0 . 131, 132

skip_line/1 . 131, 132

SmallerThan(X, Y). 390

smooth/1 . 742, 745

Socket implementation . 625

Socket interface . 9, 467

socket_accept/2 . 359, 361

socket_recv/2 . 359, 362

socket_recv_code/3 . 359, 360

socket_send/2. 359, 360, 362

socket_shutdown/2 . 359, 360

socket_type/1 . 359, 360

socketname/1 . 588, 603

sockets . 854

sockets/sockets 363, 499, 625, 631, 715

sockets/sockets_c . 359

sockets/sockets_io . 625

Solaris . 852

sort . . 55, 165, 172, 183, 197, 283, 335, 373, 412, 459,

489, 611, 645, 649, 651, 653, 659, 663

sort/2 . 172, 233

sort_dict/2 . 12, 663, 664

source directory . 848

source-level debugger . 47, 65

source-level debugging 47, 48, 50, 51, 65, 70

sourcename/1 . 45, 123, 127

sourcenames/1. 45

specifications . 71, 263

spy . 53

spy-points . 47, 49, 70

spy/1. 48, 49, 54, 55, 56

SQL . 581, 593

SQL attributes . 596

SQL query . 587, 590, 594

SQL server . 594

SQL table names . 596

SQL tables . 593, 596

SQL-like database interface 9, 467

sql__attribute/4 593, 594, 596, 611

sql__relation/3 593, 594, 596, 611

sql_get_tables/2 . 584, 587

sql_persistent/3 585, 586, 589

sql_persistent_location . 589

sql_persistent_location/2 584, 588

sql_persistent_tr/2 . 609

sql_query/3 . 584, 586, 587, 590

sql_query_one_tuple/3 . 590

sql_table_types/3 . 584, 587

sqlstring/1 . 594, 595, 603, 604

sqlterm2string/2 . 594, 596

sqltype/1 . 588, 596, 597, 605

sqltypes . 588, 596

sqrt/1 . 121

srandom/1 . 657

standalone compiler 19, 849, 851

standalone utilities . 9, 667

standard total ordering . 111

start_socket_interface/2 . 625

start_threads/0 . 625, 627

start_vrmlScene/4 . 791, 793

static checks . 65

static debugging . 71

statistics/0 . 176, 249

statistics/2 . 176, 249

status bar . 66

status, this manual . 3

steps/2 . 283, 286

steps_lb/2 . 283, 286

steps_ub/2 . 283, 286

stop_parse/2 . 807, 815

stop_socket_interface/0 . 625

Global Index 925

stream/1 . 123, 128

stream_alias/1 . 123, 128

stream_code/2 . 123, 126

stream_property/2 . 211

stream_to_string/2 . 327, 328

streams. 327, 343, 487, 568

streams_basic:open/3 . 325

string/1 . 99, 102

string/3 . 305, 306

string2term/2 . 315

stringcommand/1 268, 272, 274, 275, 276

strings 496, 499, 503, 517, 549, 555, 715

strip_clean/2 . 807, 813

strip_exposed/2 . 807, 814

strip_from_list/2 . 807, 813

strip_from_term/2 . 807, 813

strip_interface/2 . 807, 814

strip_restricted/2 . 807, 814

struct/1 . 99, 100, 289

style sheets . 19, 25, 851, 858

style_type/1 . 535, 536

sub-shell . 65

sub_atom/4 . 115, 117

sub_atom/5 . 171, 209

sub_times/3 . 827, 830

sublist/2 . 227, 231

subordlist/2 . 227, 231

subterm . 54

subtract/3 . 639, 640

success assertion . 265, 266

success/1 . 264, 265, 266

success/2 . 264, 265

sum_list/2 . 641

sum_list/3 . 641, 642

sum_list_of_lists/2. 641, 642

sum_list_of_lists/3. 641, 642

super class . 443

Swedish Institute of Computer Science 10

sybase2sqltype/2 . 605, 607

sybase2sqltypes_list/2 605, 606

sybasetype/1 . 605, 606

symbol/1 . 742, 746

symbol_option/1 . 251

symbol_result/1 . 252

symbolic_link/2 . 373, 374

symbolic_link/3 . 373, 374

symfnames . 579

syntax of regular types . 277

syntax-based coloring . 65

Syntax-based highlighting . 65

system . . 21, 26, 55, 63, 165, 172, 173, 174, 175, 176,

317, 325, 343, 367, 371, 373, 376, 377, 378, 379,

380, 459, 485, 487, 489, 499, 503, 517, 549, 568,

611, 616, 621, 630, 715, 827, 833, 837

system libraries . 344

system/1 . 174, 239, 243, 378

system/2 . 174, 239, 243, 378

system_extra. 367

system_lib/1 . 343, 345

T
tab/1 . 131, 133

tab/2 . 131, 133

table name . 589

table/1 . 759, 760

table_widget1 . 711

table_widget2 . 711

table_widget3 . 712

table_widget4 . 712

tablewidget1/4 . 711, 759

tablewidget1/5 . 711, 759

tablewidget2/4 . 711, 763

tablewidget2/5 . 711, 763

tablewidget3/4 . 712, 765

tablewidget3/5 . 712, 765

tablewidget4/4 . 712, 767

tablewidget4/5 . 712, 767

tag_attrib/1 . 558, 704

tar . 848

target/1 . 371

Tcl/tk interface . 9, 467

tcl_delete/1 . 494, 496, 497

tcl_eval/3 . 494, 496

tcl_event/3 . 494, 495, 496, 497

tcl_name/1 . 515, 516

tcl_new/1 . 494, 496

tclCommand/1 . 496, 497

tclInterpreter/1 . 496, 497

tcltk . 493, 499

tcltk/2 . 499, 500

tcltk/examples/tk_test_aux 525

926 The Ciao Prolog System

tcltk/tcltk . 503, 515, 517, 525

tcltk/tcltk_low_level 496, 503, 515, 517

tcltk_low_level . 499

tcltk_obj/canvas_class . 533

tcltk_obj/menu_class . 531

tcltk_obj/menu_entry_class 515

tcltk_obj/shape_class . 517

tcltk_obj/window_class 515, 517

tcltk_raw_code/2 499, 500, 715

tcsh . 20, 83, 847, 850

tearoff_value/1 . 515, 516

Technical University of Madrid 9

tell/1 . 177, 253

telling/1 . 177, 253

term/1 . 99, 288

terminates/1 . 283, 287

terms 219, 371, 373, 487, 499, 584, 630, 697, 715

terms_check . 283, 289, 630, 837

terms_file_to_vrml/2 771, 772

terms_file_to_vrml_file/2 771, 772

terms_to_vrml/2 . 771, 773

terms_to_vrml_file/2 771, 772

terms_vars . 283, 412, 584, 663

tester/tester . 837

tester_func/1 . 837

text_characters/1 . 507, 545

textvariable_entry/1 . 525

textvariable_label/1 . 527

textvariablevalue_number/1 525

textvariablevalue_string/1 525

this_module/1 . 161, 162

throw/1 . 137, 138

time stamp . 72

time/1 . 176, 239, 240, 380

time_option/1 . 251

time_result/1 . 252

title/1. 503, 504, 723, 726

tk_event_loop/1 . 495, 496, 497

tk_main_loop/1 . 495, 496, 497

tk_new/2 . 495, 496, 498

tk_next_event/2 . 495, 496, 498

token_read/3. 819

tokeniser/2 . 819

tokenize . 193

told/0 . 176, 253

top-level . 47

top-level shell, starting, unix 20

top-level shell, starting, windows 25

top/2 . 821, 823

topd/0 . 489

toplevel . 162

toplevel command args, setting 76

toplevel command, setting . 75

tour, of the manual . 7

trace . 48

trace/0 . 48, 55, 56

trace/1 . 49

tracing the source code . 65

transactional update . 565

transient state . 567

translate_arithmetic_function/5 597, 598

translate_comparison/5 . 598

translate_conjunction/5 . 597

translate_goal/5 . 598

translate_projection/3 . 594

translation_predname/1 . 151

transpose/2 . 12, 649, 650

tree/1 . 795, 796

triple/1 . 647

troubleshooting . 847, 854, 857

true assertion . 269

true/0 . 87, 93, 94

true/1 . 264, 269

truncate/1 . 121

trust assertion . 269

trust/1 . 264, 269

ttydisplay/1 . 178, 257, 258

ttydisplay_string/1 177, 257, 258

ttydisplayq/1. 177, 257, 258

ttyflush/0 . 178, 257

ttyget/1 . 178, 257

ttyget1/1 . 178, 257

ttynl/0 . 178, 257

ttyout 55, 165, 177, 178, 459, 611

ttyput/1 . 178, 257

ttyskip/1 . 178, 257

ttyskipeol/0 . 177, 257, 258

ttytab/1 . 178, 257

tuple/1 . 589, 603, 604

tuples . 590

type . 8, 261

type declarations. 671

Global Index 927

type of version control . 73

type/2 . 105, 107

type_compatible/2 . 605, 606

type_union/3 . 605, 606

types . 71

U
U. of Arizona . 10

ugraph/1 . 491, 649, 650

ugraph2term/2 . 489, 490

ugraphs . 653

umask/2. 175, 239, 241, 379

undo/1 . 407

undo_force_lazy/1 . 42, 45

unfold_tree/2 . 697, 698

unfold_tree_dic/3 . 697, 698

unify . 54

unify_with_occurs_check/2 171, 209, 210

uninstalling . 848, 851

UNION-operator . 597

union/3 . 227, 231

union_idlists/3 . 639, 640

UNIX make . 849

unload/1 . 42, 44, 235

unlock_atom/1 . 351, 354

unlock_file/2 . 329

unmarshalling . 8, 299

unzip . 857

update/0 . 343, 344, 345

update_attribute/2 . 157

update_files. 567

update_files/0 . 568, 570

update_files/1 . 568, 570

updated state . 566

Updates to persistent predicates 565

UPM . 10

url_info/2 . 549, 552

url_info_relative/3. 549, 552

url_query/2 . 12, 549, 552

url_query_values/2 12, 549, 552

url_term/1 . 557, 562

usage . 264

usage relationship . 453

use_active_module . 415

use_active_module/2 . 418

use_class/1 442, 453, 455, 456, 459, 462

use_compiler/1 . 482

use_compiler/2 . 482, 483

use_foreign_library/1 . 481

use_foreign_library/2 . 481

use_foreign_source/1 . 481

use_foreign_source/2 . 481

use_linker/1. 482

use_linker/2. 483

use_module . 415

use_module/1 . . 32, 33, 39, 42, 89, 128, 166, 235, 343,

347, 453, 462, 464

use_module/2 . 42, 88, 166, 235

use_module/3 . 235, 365

use_package . 49

use_package/1 . . . 42, 43, 91, 165, 385, 568, 577, 584

user module . 39, 87

user modules, debugging . 47

user setup . 19

user/1 . 588, 603

user:file_alias/2 . 325

users mailing list . 861

using alternate engines or libraries 35

V
valid_attributes/2 . 769, 770

valid_format/4 . 769, 770

valid_table/2 . 769, 770

valid_vectors/4 . 769, 770

value_dict/1 . 557, 562

var/1 . 105, 273, 288

variable instantiation . 71

variable names . 263

variable_value/1 . 521, 523

variables occurring in several goals 597

variant/2 . 333

varname/1 . 663, 665

varnamedict/1 . 663, 665

varnamesl/1 . 663, 665

varnamesl2dict/2 . 663, 664

vars_names_dict/3 . 663, 665

varsbag/3 . 335

varset/2 . 335

varset_in_args/2 . 335

vector/1 . 742, 745

928 The Ciao Prolog System

vectors_format/4 . 769, 770

verbose_message/2 . 371, 372

verify_attribute/2 . 157, 158

Veroniek Dumortier . 10

version control . 65, 72

version maintenance mode for packages 73

version number . 72

version numbering . 73

vertices/1 . 541, 543

vertices/2 . 649, 650

vertices_edges_to_lgraph/3 653

vertices_edges_to_ugraph/3 649

vertices_edges_to_wgraph/3 651

views . 581

virtual . 444

virtual/1 . 441, 444

virtual_method_spec/1 459, 463

vndict . 337

vpath/1 . 367

vrml_file_to_terms/2 . 771

vrml_file_to_terms_file/2 771, 772

vrml_http_access/2 . 771, 773

vrml_in_out/2 . 771, 773

vrml_to_terms/2 . 771, 773

vrml_web_to_terms/2 . 771

vrml_web_to_terms_file/2 771, 772

W
wait/3 . 173, 239, 244, 377

wakeup_exp/1. 412

WAM . 10

warning/1 . 153, 154

warning_message/1 . 307, 308

warning_message/2 . 307, 308

warning_message/3 . 307, 308

Web interface . 9, 467

WebDB . 566

weekday/1 . 557, 563

wellformed_body/3 167, 187, 190

when/2 . 411, 412

WHERE-clause. 597

WHERE-clauses . 597

where/1 . 343, 344

whitespace/1 . 795, 796

whitespace/2. 305

whitespace0/2 . 305, 306

why the name Ciao . 4

widget/1 . 503

width/1 . 535, 539

width_value/1 . 507, 509

Win32 . 33

window_class. 503

window_class/0 . 503, 504

window_class/3 . 503, 504

windows shortcut . 857

WinZip . 857

with/2 . 702

withdraw/0 . 503, 505

Wlodek Drabent . 10

word-help.el . 66, 68

working_directory/2 174, 239, 242, 378

write . . 53, 55, 153, 165, 169, 170, 181, 221, 337, 459,

489, 496, 499, 611, 616, 621, 715, 775, 777, 779,

781, 789, 799, 801, 805, 807, 819, 827, 833, 837,

839

write/1 54, 153, 170, 197, 199, 201

write/2 . 170, 197, 198, 359, 362

write_assertion/6 . 341

write_assertion_as_comment/6 341

write_c/write_c . 487

write_canonical/1 169, 197, 199

write_canonical/2 169, 197, 199

write_list1/1. 169, 197, 200

write_option/1 . 170, 197, 198

write_string/1 . 305

write_string/2 . 305

write_term/2 . 170, 197

write_term/3 . 170, 197

write_terms_file/2 . 799, 800

write_vrml_file/2 . 799, 800

writef/2 . 373, 376

writef/3 . 373, 376

writeq/1 . 153, 169, 197, 199

writeq/2 . 169, 197, 199

WWW . 847, 849

WWW browser . 19, 851

WWW, interfacing with . 547

Global Index 929

X
xbarelement1. 723

xbarelement1/1 . 723, 726

xbarelement2/1 . 729, 730

xbarelement3/1 . 734

xbarelement4/1 . 738

xdr_handle/xdr_types . 697

xdr_node/1 . 697, 698

xdr_tree/1 . 697

xdr_tree/3 . 697

xdr_xpath/2 . 697, 699

xdr2html/2 . 697, 698

xdr2html/4 . 697, 698

xelement/1 . 757

xemacs . 83

XML . 547, 549

xml_index/1 . 702, 703

xml_index_query/3 . 702, 703

xml_index_to_file/2. 702, 703

xml_parse/3 . 702

xml_parse_match/3 . 702, 703

xml_path/xml_path_types . 702

xml_query/3 . 702, 704

xml_search/3. 702

xml_search_match/3 . 702, 703

xml2terms/2 . 549

Y
yelement/1 . 723, 725

930 The Ciao Prolog System

