Go to the first, previous, next, last section, table of contents.


Constraint programming over reals

Author(s): Christian Holzbaur, Daniel Cabeza.

Note: This package is currently being adapted to the new characteristics of the Ciao module system. This new version now works right now to some extent, but it under further development at the moment. Use with (lots of) caution.

Usage and interface (clpr)

Other information (clpr)

Some CLP(R) examples

(Other examples can be found in the source and library directories.)

:- use_package(clpr).

fib(X,Y):- X .=. 0, Y .=. 0.
fib(X,Y):- X .=. 1, Y .=. 1.
fib(N,F) :-
        N .>. 1,
        N1 .=. N - 1,
        N2 .=. N - 2,
        fib(N1, F1),
        fib(N2, F2),
        F .=. F1+F2.

%
% Solve the Dirichlet problem for Laplace's equation using
% Leibman's five-point finit-differenc approximation. 
% The goal ?- go1 is a normal example, while the goal ?- go2
% shows output constraints for a small region where the boundary conditions
% are not specified.
%
:- use_package(clpr).
:- use_module(library(write)).

laplace([_, _]).
laplace([H1, H2, H3|T]):-
        laplace_vec(H1, H2, H3), 
        laplace([H2, H3|T]).

laplace_vec([_, _], [_, _], [_, _]).
laplace_vec([_TL, T, TR|T1], [ML, M, MR|T2], [_BL, B, BR|T3]):-
        B + T + ML + MR - 4 * M .=. 0, 
        laplace_vec([T, TR|T1], [M, MR|T2], [B, BR|T3]).

printmat([]).
printmat([H|T]):-
        printvec(H), 
        printmat(T).

printvec([]):- nl.
printvec([H|T]):-
        Hdd .=. integer(H*100),
        print(Hdd), 
        printvec(T).

go1:-
        X =  [
    [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, _, _, _, _, _, _, _, _, _, 100], 
    [100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100]
    ], 
        laplace(X),
        printmat(X).

% Answer:
%   0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00   0.00
% 100.00 51.11 32.52 24.56 21.11 20.12 21.11 24.56 32.52 51.11 100.00
% 100.00 71.91 54.41 44.63 39.74 38.26 39.74 44.63 54.41 71.91 100.00
% 100.00 82.12 68.59 59.80 54.97 53.44 54.97 59.80 68.59 82.12 100.00
% 100.00 87.97 78.03 71.00 66.90 65.56 66.90 71.00 78.03 87.97 100.00
% 100.00 91.71 84.58 79.28 76.07 75.00 76.07 79.28 84.58 91.71 100.00
% 100.00 94.30 89.29 85.47 83.10 82.30 83.10 85.47 89.29 94.30 100.00
% 100.00 96.20 92.82 90.20 88.56 88.00 88.56 90.20 92.82 96.20 100.00
% 100.00 97.67 95.59 93.96 92.93 92.58 92.93 93.96 95.59 97.67 100.00
% 100.00 98.89 97.90 97.12 96.63 96.46 96.63 97.12 97.90 98.89 100.00
% 100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00 100.00

go2 :-
        laplace([
            [_B11, B12, B13, _B14], 
            [B21, M22, M23, B24], 
            [B31, M32, M33, B34], 
            [_B41, B42, B43, _B44]
    ]), 
        dump([B31, M32, M33, B34, B42, B43, B12, B13, B21, M22, M23, B24]).
              

% Answer:
%  B12 =  -B21 - 4*B31 + 16*M32 - 8*M33 + B34 - 4*B42 + B43
%  B13 =  -B24 + B31 - 8*M32 + 16*M33 - 4*B34 + B42 - 4*B43
%  M22 =  -B31 + 4*M32 - M33 - B42
%  M23 =  -M32 + 4*M33 - B34 - B43


Go to the first, previous, next, last section, table of contents.